JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT TEST -3 EXAMINATION- 2024

B. Tech-5th Semester (ECE)

COURSE CODE (CREDITS): (18B1WEC536) 3

MAX. MARKS: 35

COURSE NAME: Fundamentals of Digital Image Processing

COURSE INSTRUCTORS: Lt. Praggya Gupta

MAX. TIME: 2 Hours

Note: (a) All questions are compulsory.

(b) The candidate is allowed to make Suitable numeric assumptions wherever required for solving problems

Q. No				,	uestion			÷. •		CO -1	Mar ks
Q1	Explain the concepts of spatial resolution and gray-level resolution in digital images. How do these resolutions affect the visual quality of an image? Provide examples of scenarios where: 1. High spatial resolution is essential. 2. High gray-level resolution is more important.										5
Q2	Explain the concepts of gray-level slicing and contrast stretching in image enhancement How do these techniques differ in their approach to improving image quality? Illustrate each technique with a simple example of pixel intensity transformations.									CO-2	5
Q3	Consider a g	CO-5	5								
	Gray Level (r_k)	0	1	2	3	4	5	.6	7		
	Probabilit $y(P_r(r_k))$	0	0.1	0.1	0.3	0	0	0.4	0.1		
	The target histogram $P_z(z_k)$ is:										
	Gray Level (z _k)	0	1	ĵ.	3	4	5	6	7		
	Probabilit $y(P_z(z_k))$	0	0.1	(.2	0.4	0.2	0.1	0	0		
	Perform histogram specification to map the original gray levels r_k to the target gray levels z_k . Show all intermediate steps with a logical explanation and determine the mapping $r_k \rightarrow z_k$.										
Q4	What is image segmentation? Briefly explain its purpose and give two common methods used for image segmentation.								CO-4	5	

Q5	 (a). Explain the Butterworth and Gaussian filters in their characteristics and discuss how each filter affecterms of noise reduction and edge preservation. Profor both filters and explain their parameters. (b). Derive the transfer function of Laplacian in frequency 	CO-3	3+2	
Q6	What is image restoration, and how does it differ the common categories of image degradation encount the following noise models along with their characters. 1. Gaussian Noise 2. Salt-and-Pepper Noise 3. Exponential noise	CO-4	5	
:	Explain the concepts of unsharp masking and high image enhancement. Derive the mathematical techniques and discuss how high-k-boost filtering extendiven a 3×3 image region $(f(x,y))$: 40 30 80 20 Use the 3×3 box filter to compute the smoothed image (a) Apply unsharp masking to calculate the enhanced vector (b) If the high-boost filter is defir ed as $f_{HB}(x,y)=(A-1)$ compute the high-boost filtered value for the center p	relationship between the two hids unsharp masking. 60 70 90 e and then value of the center pixel.) f(x,y)+ fustor (x,y), where A=1.5	CO-2 & 6	5