JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT TEST -3 EXAMINATION- 2024

B.Tech.-III Semester (CSE/IT/ECE/CE/BT/BI)

COURSE CODE (CREDITS): 18B11EC312 (4)

MAX. MARKS: 35

COURSE NAME: DIGITAL ELECTRONICS AND LOGIC DESIGN

COURSE INSTRUCTORS: Dr. HARSH SOHAL

MAX. TIME: 2 Hours

Note: (a) All questions are compulsory.

(b) The candidate is allowed to make Suitable numeric assumptions wherever required for solving problems

Q. No.	Question	CO	Marks
Q1	a) Differentiate between Moore and Mealy machines? [2] b) What is race around condition? [1]	CO2	3
Q2	A sequential circuit uses two JK flip-flops as memory elements. One input X and one input Y. A and B are the Q outputs of flip flop A and flip flop B respectively. CLK CLK CLK CLK CLK CLK CLK CL	CO3	4
Q3	Design a sequential circuit using D flip flop that goes through states 0, 1,	CO4	5
	2, 4, 0. The undesired (unused) states must always go to zero (000) on the next clock pulse.		:
Q4	(a)Implement the following functions using a suitable decoder. [3]	CO2	5
! !	$f_i(A,B,C) = \sum m(0,4,7) + d(2,3)$		i
	$f_2(A, B, C) = \sum m(1,5,6,7)$		
	$f_3(A, B, C) = \sum M(1,3,4)$:
	(b) Differentiate between combinational circuits and sequential circuits.		:

	Can we say combinational circuits can be subset to sequential circuits?		
	Why or why not? [2]		
Q5	(a) Convert an SR flipflop to a T flip flop with the help of state	CO3	5
	transition table and k map simplification method. Draw the circuit using		
	relevant symbols.[3]		
 	(b) To shift a hexadecimal number A into a 4 flip flop serial in serial out		
	(SISO) shift register, evaluate time if frequency is 5 MHz. [2]		-
Q6	Differentiate between synchronous and asynchronous counters. Mention at least 4 differences.	CO4	3
Q7	(a) A MOD-16 ripple counter is holding the binary count 1001. What will	CO5	4
	the count be after 31 clock pulses? [1]	 	
:	(b) For the circuit below:		
1	(i) Is it a synchronous or asynchronous circuit explain.) Draw the		
	well labeled input and output waveforms for the circuit. [1+2]		
	HIGH $J_{1} \qquad Q_{0} \qquad J_{1} \qquad Q_{1} \qquad J_{2} \qquad Q_{2}$ $CLK \qquad > C \qquad > C \qquad > C \qquad K_{1} \qquad Q_{1} \qquad K_{2}$	i c	
Q8	(a) Given $X = (11000011)2$ and $Y = (10101001)2$, i) find $X + Y$ ii) find	CO1	6
	X-Y using 2's complement. [1]		
	(b) Reduce the following Boolean expression to a minimum number of		
	literals using Boolean algebra postulates and theorems. [2]		
	i) (CD'+B'A)(BC'+DA') ii) ABC+A'B+ABC'		
	(c) Design a BCD to Gray Code converter circuit using unused		
	combinations of the code as don't care conditions, with the help of K map		
1	method. Also Implement the circuit diagram using logic gates. [3]	<u> </u>	