JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT

TEST -3 EXAMINATION- 2024

B.Tech-VII Semester (CSE/IT/ECE)

COURSE CODE (CREDITS): 19B1WCI731(2)

MAX. MARKS: 35

COURSE NAME: Computational Data Analysis

COURSE INSTRUCTORS: VKS

MAX. TIME: 2 Hours

Note: (a) All questions are compulsory.

(b) The candidate is allowed to make Suitable numeric assumptions wherever required for solving problems

Q.No		Qı	ıestion		CO	Marks
Q1:	How does Elasti			strengths of Lasso	CO3	[5]
	and Ridge regression, and what impact does the mixing parameter (a)					r- 1
	have on the mo					
	selection? Analyze how changes in a affect the bias variance trade-					
	off.					
Q2:	a. Derive th	ne undate rule	for RMSProp by	starting with the	CO3	[5]
C	a. Derive the update rule for RMSProp by starting with the stochastic gradient descent update rule and incorporating the					[၁]
	exponentially decaying average of squared gradients. Explain how this modification addresses the issue of vanishing or					
						ĺ
	exploding	or the state of				
	b. How do		[2.5]			
	b. How do adaptive gradient-based optimizers (e.g., Adam, RMSProp) differ from non-adaptive optimizers like SGD in					[2.0]
	terms of					
	Under wh	at circumstances	might one outper	form the other?		
Q3:	You are using the Naive Bayes algorithm to classify emails as "Spam" or "Not Spam" based on the presence of two words: "Buy" and					[5]
	"Cheap." The trai					
	Email ID	Buy (Word)	Cheap (Word)	Class (Label)		
	<u> </u>	1	1	Spam		
	2	1	0	Not Spam		
1	3,	1	1	Spam		
	<u>4</u>	0	1	Not Spam		
	calculate the prior probabilities for each class. P(Spain) and P(Not					
200						
	Spam). Also cal					
			n), P(Cheap=1 Spa			
	Spam), P(Cheap=	spam), P(Cheap=1 Not Spam). Use the probabilities to classify a new				
	email with features: Buy =1, Cheap =1. Determine if it is "Spam" or "Not Spam"					
į						
						[P.T.O]

Q4:	Suppose you are performing linear regression to predict a target variable y using features x_1 and x_2 . The model is represented as:	CO5	[7.5]
	y=w ₁ x ₁ +w ₂ x ₂ +b After applying L2 regularization to the model, the objective function becomes:		
	$J(w_1, w_2, b) = \frac{1}{n} \sum_{i=1}^{n} (y_i - (w_1 x_{i1} + w_2 x_{i2} + b))^2 + \lambda (w_1^2 + w_2^2)$		
	Where n is the number of samples and λ is the regularization parameter.		
	Explain how increasing λ affects the values of w_1 and w_2 . Also Derive the gradient of the objective function $J(w_1, w_2, b)$ with respect to w_1 . How does L2 regularization impact models with highly concluded features x_1 and x_2 ?		
Q5:	You are using gradient boosting to predict a continuous target variable y (regression problem). The dataset contains three samples:	CO5	[5]
	x y 1 10 2 20 3 30		
	Initial model is represented as $F_0(x)$ and it is initialized with the mean of the target variable. Suppose the decision stump predicts residuals $h_1(x)$ as follows: for $x=1$, $h_1(x) = -5$, for $x=2$, $h_1(x) = 0$ and for $x=3$,		
	$h_1(x) = 5$. Update the model using $F_1(x) = F_0(x) + \beta$. $h_1(x)$, where the learning rate $\beta = 0.2$. Compute the updated predictions $F_1(x)$ for all x.		
Q6:	How does ensemble learning improve model performance, and why do methods like Bagging and Boosting lead to different outcomes in terms of bias-variance trade-off? Discuss under what circumstances	CO4	[5]
	each method is likely to outperform the other.		