JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT TEST -3 EXAMINATION- 2024 ## B.Tech - V Semester (CE) COURSE CODE (CREDITS): 18B11CE514 (3) MAX. MARKS: 35 COURSE NAME: Foundation Engineering COURSE INSTRUCTORS: Saurabh Rawat MAX. TIME: 2 Hours Note: (a) All questions are compulsory. (b) The candidate is allowed to make Suitable numeric assumptions wherever required for solving problems | Q.No | | Question | | CO ₄ | Marks | |--------|---|---|------------------------|-----------------|-------------| | Q1 | | oncrete pile, 30 cm diameter, is driven into a medium dense sand (φ = | | | 5 | | | 35°; $\gamma = 21 \text{ kN/m}^3$; $K = 1.0$ | = 21 kN/m ³ ; $K = 1.0$; $tan\delta = 0.70$) for a depth of 8 m. Given for $\varphi =$ | | | | | | 35° , $D_c/B = 12.0$ and $Nq =$ | $O_c/B = 12.0$ and $Nq = 60$. Estimate the safe load, laking Factor of Safety | | | | | | of 2.50. | | | | | | Q2 | A precast concrete pile (35 | cm × 35 cm) is driven alo | ng with the dolly by a | CO5 | 6 | | | single acting steam hammer. Estimate the allowable load using Hiley's | | | | | | | Formula. | | | | | | | | | | | | | | Use the following data: | | | | | | | i) Weight of hammer | 35 kN | | |
 | | | ii) Efficiency of hami | t e r 80% | | į. | | | | iii) No. of blows for la | st 2 5.4 mm 6 | | | | | | iv) Maximum rated en | ergy 3500 l | cN-cm | | | | | v) Elastic compression | n of pile, pile 0.0018 | $3Q_u$ | | | | | components and adjacent soil (C) | | | | <u>'</u> | | | vi) Weight of pile cap | 3 kN | | | | | | vii) Length of pile | 25 | | | | | | viii) Unit weight of con | crete 24 kN | /m ³ | | | | | (ix) Coefficient of resti | | | | | | Q3 | Answer the following with respect to Plate load test (PLT). | | | CO3 | [2+1+1 | | A Same | a) With the help of a | a) With the help of a labelled line diagram, describe the PLT set – up. | | CO4 | +1+1+3 | | Ę, | b) What are the parameters that can be obtained using PLT. | | | | +3 =
12] | | | c) Give the IS code for | e) Give the IS code for PLT. | | | 14] | | | d) What are the codal norms for pit depth and pit width in PLT. | | | | | | | e) Give the available plate sizes used in PLT. | | | <u> </u> | | | | f) Give the step-wise procedure for carrying out the PLT and the observed load – settlement curves for different soils. Also mark the type of failure that can be deduced from the curves. g) Explain how the ultimate bearing capacity of cohesionless soils can be obtained using PLT results. | | | |----|--|------------|---| | Q4 | A square footing has dimensions of $2m \times 2m$ and a depth of $2m$. Determine its ultimate bearing capacity in pure clay having an unconfined compressive strength of 150 kN/m^2 and $\gamma = 16.67 \text{ kN/m}^3$. Assume Terzaghi's bearing capacity equation with $Nc = 5.7$; $Nq = 1$ and $N\gamma = 0$. | CO1
CO2 | 3 | | Q5 | Determine the consolidation settlement of the footing as shown below 936 kN Sand $y = 16 \text{ kN/m}^3$ $y = 20 \text{ kN/m}^3$ Clay $y = 19 \text{ kN/m}^3$ $y' = 8 \text{ kN/m}^3$ $y' = 8 \text{ kN/m}^3$ $wL = 60\%$; $eq = 1.08$ | CO2
CO3 | 3 | | Q6 | Nine piles of 300 mm diameter and 8 m length are arranged in a square pattern on a uniform deposit of medium stiff clay having an undrained compressive strength of 100 kN/m ² . If the center-to-center spacing of piles is 900 mm and adhesion factor = 0.9, calculate the capacity of the pile group assuming a factor of safety of 2.5 Derive the relationship for ultimate load carrying capacity (Q ₁) of a double | CO4
CO5 | 3 | | Q7 | Derive the relationship for ultimate load carrying capacity (Q_{up}) of a double under reamed pile in expansive clay. | CO5 | 3 |