JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT TEST -3 EXAMINATION- 2024

B.Tech - V Semester (CE)

COURSE CODE (CREDITS): 18B11CE514 (3)

MAX. MARKS: 35

COURSE NAME: Foundation Engineering

COURSE INSTRUCTORS: Saurabh Rawat

MAX. TIME: 2 Hours

Note: (a) All questions are compulsory.

(b) The candidate is allowed to make Suitable numeric assumptions wherever required for solving problems

Q.No		Question		CO ₄	Marks
Q1		oncrete pile, 30 cm diameter, is driven into a medium dense sand (φ =			5
	35°; $\gamma = 21 \text{ kN/m}^3$; $K = 1.0$	= 21 kN/m ³ ; $K = 1.0$; $tan\delta = 0.70$) for a depth of 8 m. Given for $\varphi =$			
	35° , $D_c/B = 12.0$ and $Nq =$	$O_c/B = 12.0$ and $Nq = 60$. Estimate the safe load, laking Factor of Safety			
	of 2.50.				
Q2	A precast concrete pile (35	cm × 35 cm) is driven alo	ng with the dolly by a	CO5	6
	single acting steam hammer. Estimate the allowable load using Hiley's				
	Formula.				
	Use the following data:				
	i) Weight of hammer	35 kN			
	ii) Efficiency of hami	t e r 80%		į.	
	iii) No. of blows for la	st 2 5.4 mm 6			
	iv) Maximum rated en	ergy 3500 l	cN-cm		
	v) Elastic compression	n of pile, pile 0.0018	$3Q_u$		
	components and adjacent soil (C)				<u>'</u>
	vi) Weight of pile cap	3 kN			
	vii) Length of pile	25			
	viii) Unit weight of con	crete 24 kN	/m ³		
	(ix) Coefficient of resti				
Q3	Answer the following with respect to Plate load test (PLT).			CO3	[2+1+1
A Same	a) With the help of a	a) With the help of a labelled line diagram, describe the PLT set – up.		CO4	+1+1+3
Ę,	b) What are the parameters that can be obtained using PLT.				+3 = 12]
	c) Give the IS code for	e) Give the IS code for PLT.			14]
	d) What are the codal norms for pit depth and pit width in PLT.				
	e) Give the available plate sizes used in PLT.			<u> </u>	

	 f) Give the step-wise procedure for carrying out the PLT and the observed load – settlement curves for different soils. Also mark the type of failure that can be deduced from the curves. g) Explain how the ultimate bearing capacity of cohesionless soils can be obtained using PLT results. 		
Q4	A square footing has dimensions of $2m \times 2m$ and a depth of $2m$. Determine its ultimate bearing capacity in pure clay having an unconfined compressive strength of 150 kN/m^2 and $\gamma = 16.67 \text{ kN/m}^3$. Assume Terzaghi's bearing capacity equation with $Nc = 5.7$; $Nq = 1$ and $N\gamma = 0$.	CO1 CO2	3
Q5	Determine the consolidation settlement of the footing as shown below 936 kN Sand $y = 16 \text{ kN/m}^3$ $y = 20 \text{ kN/m}^3$ Clay $y = 19 \text{ kN/m}^3$ $y' = 8 \text{ kN/m}^3$ $y' = 8 \text{ kN/m}^3$ $wL = 60\%$; $eq = 1.08$	CO2 CO3	3
Q6	Nine piles of 300 mm diameter and 8 m length are arranged in a square pattern on a uniform deposit of medium stiff clay having an undrained compressive strength of 100 kN/m ² . If the center-to-center spacing of piles is 900 mm and adhesion factor = 0.9, calculate the capacity of the pile group assuming a factor of safety of 2.5 Derive the relationship for ultimate load carrying capacity (Q ₁) of a double	CO4 CO5	3
Q7	Derive the relationship for ultimate load carrying capacity (Q_{up}) of a double under reamed pile in expansive clay.	CO5	3