JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT TEST -3 EXAMINATION- 2024

B.Tech-III Semester (CE)

COURSE CODE (CREDITS): 18B11CE315 (3)

MAX. MARKS: 35

COURSE NAME: ENGINEERING MECHANICS

COURSE INSTRUCTORS: DR. SAURAV MAX. TIME: 2 Hours

Note: (a) All questions are compulsory.

(b) The candidate is allowed to make Suitable numeric assumptions wherever required for solving problems

Q.No	Question	[∌] CO	Marks
202.0	Find the area moment of inertia of a triangular lamina of width b and height h about an		
Q1	axis passing through its base from first principles. Based on the equation derived find	CO-3	5
	the area moment of inertia about an axis passing through its CG and parallel to its base.		
Q2	A semicircular area is removed from a trapezium as shown in Fig.1 (dimensions in mm).		
_	Determine the centroid of the remaining area (shown hatched).	CO-3	5
	60 30 40 40 40 Fig. 1		
Q3.	A steel rail is 12 m long and is laid at a temperature of 18°C. The maximum temperature expected is 40° C. (i) Estimate the minimum gap between two rails to be left so that the temperature stresses do not develop. (ii) Calculate the temperature stresses developed in the rails, if: (a) No expansion joint is provided. (b) If a 1.5 mm gap is provided for expansion. (iii) If the stress developed is 20 N/mm^2 , what is the gap provided between the rails? Take $E = 2 \times 10^5 \text{ N/mm}^2$ and $\alpha = 12 \times 10^{-6}/^{\circ}\text{C}$.	CO-4	6
Q4.	The system of forces acting on a bell crank is shown in Fig 2. Determine the magnitude, direction and the point of application of the resultant.	CO-1	4

