JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT TEST -3 EXAMINATION- 2024

B.Tech-V Semester (BT/BI)

COURSE CODE (CREDITS): 18B11BT511

MAX. MARKS: 35

COURSE NAME: Bioprocess Engineering

COURSE INSTRUCTORS: Dr. Saurabh Bansal

MAX. TIME: 2 Hours

Note: (a) All questions are compulsory.

(b) The candidate is allowed to make Suitable numeric assumptions wherever required for solving problems

(c) The candidate is allowed to bring a formula sheet (1 page) signed by meduring the exam.

Q. No.	Question	СО	Marks
Qla	What is a chemostat? How is it different from a turbidostat?	I	2
Q1b	Draw a graph (OD vs t) representing the growth curve of an organism during a chemostat.	I	2
Q2	How do bubble size and sparger design influence mass transfer rates in bioreactors?	II	2
Q3	What types of tubes are available for adding neutralizing agents, and what are the respective advantages and limitations of each type?	II	3
Q4a	What is the primary advantage of using fed-batch culture over batch culture in microbial growth kinetics?	III	2
Q4b	Given a 20-liter fermenter with a nutrient broth flow rate of 20 liters per hour, what is the dilution rate in the fermenter?	III	1
Q5	A fermentation broth with a viscosity of 10^{-2} Pa s and density of 1000 kg m^{-3} is agitated in a 50 m³ baffled tank using a marine propeller 1.3 m in diameter. The power number for the impeller is 0.35. Calculate the power required for a stirrer speed of 4 s ⁻¹ .	IV	2
	Serratia marcescens bacteria are utilized in the production of threonine. In batch culture, the maximum specific oxygen uptake rate of <i>S. marcescens</i> is 5 mmol O ₂ g ⁻¹ h ⁻¹ . These bacteria are cultivated in a stirred fermenter at a cell density of 40 g l ⁻¹ , with a k _L a of 0.15 s ⁻¹ under the given conditions. At the operating temperature and pressure of the fermenter, the solubility of oxygen in the culture liquid is 8 x 10 ⁻³ kg m ⁻³ . Is the cell metabolism rate restricted by mass-transfer limitations, or is it solely governed by metabolic kinetics?	IV	2

A microbial strain is cultured in a 200 L stirred fermenter for secondary metabolite production. If the specific rate of oxygen uptake is 0.6 h^{-1} and the oxygen solubility in the broth is 10 mg/L . Calculate the volumetric mass transfer coefficient ($K_L a$) (in s ⁻¹) of oxygen required to achieve a maximum cell concentration of 12 g/L .	IV	2
What is headspace volume in a fermenter, and why is it significant in the fermentation process?	V	2
Draw the schematic diagrams of Airlift bioreactors representing all their important parts.	V	2
What are the major advantages of the Fluidized Bed Bioreactor over the Fixed bed Bioreactor?	V	2
Which of the following bioreactors is better and why: Airlift Bioreactor with internal loop and Airlift Bioreactor with external loop?	V	2
What are the advantages of using scale-down models in process development?	VI	2
The dimensions and operating conditions of a lab-scale fermenter are as follows: Volume = 1 L, Diameter = 20 cm, Agitator speed = 600 rpm, Ratio of impeller diameter to fermenter diameter = 0.3.	VI	2
application. If the scale-up is based on constant impeller tip speed, what will the speed (rpm) of the agitator be in the larger reactor?		
A stirred-tank reactor is to be scaled down from 10 m^3 to 0.1 m^3 . The dimensions of the large tank are $Dt = 2 \text{ m}$; $Di = 0.5 \text{ m}$; $N = 100 \text{ rpm}$.	VI	3
Determine the dimensions of the small tank (Dt, Di, H) by using geometric similarity.		
What would be the required rotational speed of the impeller in the small tank if the impeller Re number (N _{Re}) was used as a scale-up criterion?	VI	2
	metabolite production. If the specific rate of oxygen uptake is 0.6 h ⁻¹ and the oxygen solubility in the broth is 10 mg/L. Calculate the volumetric mass transfer coefficient (<i>K_La</i>) (in s ⁻¹) of oxygen required to achieve a maximum cell concentration of 12 g/L. What is headspace volume in a fermenter, and why is it significant in the fermentation process? Draw the schematic diagrams of Airlift bioreactors representing all their important parts. What are the major advantages of the Fluidized Bed Bioreactor over the Fixed bed Bioreactor? Which of the following bioreactors is better and why: Airlift Bioreactor with internal loop and Airlift Bioreactor with external loop? What are the advantages of using scale-down models in process development? The dimensions and operating conditions of a lab-scale fermenter are as follows: Volume = 1 L, Diameter = 20 cm, Agitator speed = 600 rpm, Ratio of impeller diameter to fermenter diameter = 0.3. This fermenter needs to be scaled up to 8,000 L for a large-scale industrial application. If the scale-up is based on constant impeller tip speed, what will the speed (rpm) of the agitator be in the larger reactor? A stirred-tank reactor is to be scaled down from 10 m ³ to 0.1 m ³ . The dimensions of the large tank are <i>Dt</i> = 2 m; <i>Di</i> = 0.5 m; <i>N</i> = 100 rpm. Determine the dimensions of the small tank (<i>Dt</i> , <i>Di</i> , <i>H</i>) by using geometric similarity. What would be the required rotational speed of the impeller in the small tank (<i>Dt</i> , <i>Di</i> , <i>H</i>) by using geometric similarity.	metabolite production. If the specific rate of oxygen uptake is 0.6 h ⁻¹ and the oxygen solubility in the broth is 10 mg/L. Calculate the volumetric mass transfer coefficient (<i>K_La</i>) (in s ⁻¹) of oxygen required to achieve a maximum cell concentration of 12 g/L. What is headspace volume in a fermenter, and why is it significant in the fermentation process? Draw the schematic diagrams of Airlift bioreactors representing all their important parts. What are the major advantages of the Fluidized Bed Bioreactor over the Fixed bed Bioreactor? Which of the following bioreactors is better and why: Airlift Bioreactor with internal loop and Airlift Bioreactor with external loop? What are the advantages of using scale-down models in process development? The dimensions and operating conditions of a lab-scale fermenter are as follows: Volume = 1 L, Diameter = 20 cm, Agitator speed = 600 rpm, Ratio of impeller diameter to fermenter diameter = 0.3: This fermenter needs to be scaled up to 8,000 L for a large-scale industrial application. If the scale-up is based on constant impeller tip speed, what will the speed (rpm) of the agitator be in the larger reactor? A stirred-tank reactor is to be scaled down from 10 m ³ to 0.1 m ³ . The dimensions of the large tank are <i>Dt</i> = 2 m; <i>Di</i> = 0.5 m; <i>N</i> = 100 rpm. Determine the dimensions of the small tank (<i>Dt</i> , <i>Di</i> , <i>H</i>) by using geometric similarity.