Jaypee University of Information Technology
Solan (H.P.)
LEARNING RESOURCE CENTER

Acc. Num.S'P0¢ o'} Scall Num:
General Guidelines:

¢ Library books should be used with great care.

¢ Tearing, folding, cutting of library books or making
any marks on them is not permitted and shall lead
to disciplinary action.

¢ Any defect noticed at the time of borrowing books
must be brought to the library staff immediately.
Otherwise the borrower may be required to replace
the book by a new copy.

& The loss of LRC book(s) must be immediately
brought to the notice of the Librarian in writing.

- Learning Resource Centre-JUIT

AV

SP06075 -

L e R R R T e e

INFRARED BASED VIDEO SURVEILLANCE
ON MOBILE PHONES

By
AYUSH AGARWAL - 061225
BHUNESHWAR KUMAR - 061313
; ANCHIT BANSAL — 061325
SIDDHANT UPPAL - 061331

tym o wtm

DEPARTMENT OF COMPUTER SCIENCE
AND ENGINEERING
JAYPEE UNIVERSITY OF INFORMATION
TECHNOLOGY — WAKNAGHAT

MAY -2010

CERTIFICATE

This is to certify that the work entitled *“Infrared based Video Surveillance on
/ Mobile Phones” submitted by Ayush Agarwal (061225) Bhuneshwar Kumar
(061331) Anchit Bansal (061325) and Siddhant Uppal (061331) for the award of
Bachelor of Technology in Computer Science and Engineering of Jaypee University
of Information Technology has been carried out under my supervision. This work has
not been submitted partially or wholly to any other University or Institute for the

award of this or any other degree or diploma.

Brig (Retd\) S.P. Ghrera
Head of Depag
Computér Science Engineering and Information Technology

Jaypee University of Information Technology

Waknaghat.

ACKNOWLEDGEMENTS

We would like to extend our gratitude and take this opportunity to thank our esteemed
project guide, Brig (Retd.) S.P. Ghrera who helped us time and again and also

guided us in times of uncertainty.

We would also like to thank Pfr. Satish Chandra (CSE) who helped us and gave us
new innovative ideas for extending the scope of our project and increasing the

security provided by the surveillance system.

We would also like to thank Mr. Pramod and Mr. Pandey, incharge of the
Microprocessor Laboratory and the Electronics Laboratory respectively for their help

in implementing the circuit.

| s

. Epvethvian Kumas,

MM AW Db\,

061227

Mk Bameal &Mt Vpad

Dp122S Obr22)

TABLE OF CONTENTS

A. List of Figures
B. List of Abbreviations
C. Abstract

1. Problem Statement
1.1. Description
1.1.1. Setting up the Infrared Infrastructure
1.1.2. Connectivity with the speaker
1.1.3. Connectivity with the Web camera
{ 1.1.4. Video Capturing
1.1.5. Video Saving
1.1.6. Video Transfer
1.1.7. Image Acquisition
1.1.8. Image Saving
1.1.9. Image Transfer
1.1.10. Sending Warning SMS
2. Objective and Scope of the Project

3. [Initial Project Investigation

3.1. Home security system for detecting an intrusion into a monitored area

by an infrared detector by Devan Dockery
3.2. Infrared alarm system by Milton O. Smith

3.3, Outdoor infrared video surveillance: A novel dynamic technique for

the subtraction of a changing background of IR images.

ﬁ il 3.4. IR based third eye implementation for industrial safety with loud 60dB

siren.
4. Motivation
5. Hardware Components
5.1. Block Diagram
5.2. Block Descnption

5.2.1. Infrared Transmitter

%
|
!
E
]

] 5.2.3. Relay
< 5.2.4. Speaker
5 5.2.5. Webcam

5.2.2. Infrared Receiver

5.3. Circuit Diagram

5.4. Circuit Description

5.5. List of Components
6. Software Components

6.1. Overview

6.2. Sub Process Description
' 6.2.1. lmage Acquisition
: 6.2.2. Image Saving
6.2.3. Image Transfer
6.2.4. Sending SMS

7. Testing Techniques in Real Time
8. Contribution of the Project
9. Conclusions
10. References
11. Appendix
12.1. Main code for detection of the webcam, the video streaming, image
capturing, image saving, video saving, SMS sending and backup
creation.
12.2. Code for file transferring through bluetooth.
12.3. Sending SMS
12.3. Backend code for various components-buttons, menu, video space, etc.

12.4. Code for password authentication

] 12.5. Backend code for various buttons, text boxes, etc.

s

o

LIST OF FIGURES

Fig 1 : Block diagram of the surveillance system

Fig 2 : IR transmitter circuit’s implementation diagram
Fig 3 : IR receiver circuit’s implementation diagram
Fig 4 : Relay circuit’s implementation diagram

Fig 5 : Full circuit diagram ((ransmitter and receiver)
Fig 6 : IC NE555 diagram

Fig 7 : IC NES55 pin diagram

Fig 8 : IR LED (light emitting diode) diagram

Fig 9 : IR receiver sensor TSOP 1738 diagram

Fig 10 : IC UM66 diagram

Fig 11 ; Twisted pair for USB cabling diagram

LIST OF ABBREVIATIONS

i. IRVSMS : InfraRed based Video Surveillance on Mobile phones System
ii. DFD: Data Flow Diagram
iii. DFG: Data Flow Graph

: iv. 1D : identity
23 . v. LCD: Liquid Crystal Display
| vi. IC: Integrated Circuit
vii. LAN: Local Area Network
i viii. CPU : Central Processing Unit
; ix. P : Internet Protocol

x. AC : Alternating Current

xi. DC : Direct Current
xii. SMS : Short Messaging Service
xiii. AP Access Point
xiv. IR : Infrared

xv, O : Input/ Output

xvi. TTL : Transistor Logic

e RS e+ s M il e e

xvii. RAM : Random Access Memory

xviii. ROM : Read Only Memory
xix. GSM : Global System for Mobile communications
xX. ESP: Enterprise Service Provider
xxi. LED: Light Emitting Diode

xxil. USB: Universal Serial Bus

xxiil. CMOS: Complementary Metal Oxide Silicon.

Vi

|
i
|
;

Abstract

This document will give you an insight in the implementation of “Infrared based

Video Surveillance on Mobile Phones.”

In this document we have described the basic steps involved in providing security by
making an infrared based surveillance system and then transmitting the live feed of

the intrusion back to the owner of the surveillance system.

The project literature forms an important part of this document as we have explained

in detail the work performed in this arca.

Followed by the description of the project we have given an overview of the concepts

used in the implementation of the project,

Further, we have developed a code for the security surveillance and detecting the

intrusion and informing about the same to the owner of the surveillance system.

Then we have tried implementing the project in real time and we have explained the
problems and limitations of the product being produced and tested our product in real

time,
Finally, we draw a conclusion and show our result.

This project takes the advantage by studying the flaws of similar products and works

in this area of technology and tries to overcome them in real time.

Vil

T e A A Tt

CHAPTER 1
PROBLEM STATEMENT

Security is always an issue at your workplace and house. There are a number of
expensive security systems available in the market but in a one way or the other they

lack the software component.

We have made a surveillance security system which integrates both hardware and
software thus giving us all the processing power of a computer to perform various

functions.
1.1. DESCRIPTION

The surveillance system is designed to detect any intrusion in a restricted region, then

capturing the image of the intruder and informing about the same to the owner.

The basic steps involved in performing this are:

1.1.1. SETTING UP THE INFRARED INFRASTRUCTURE

The infrared infrastructure involves the creation of a transmitter circuit that transmits
the IR rays and the creation of a receiver circuit that will receive the IR rays sent by
the transmitter circuit. The software built will monitor both these circuits and will
provide additional features like image capturing, video capturing, image saving, video

saving, SMS sending, etc.

1.1.2, CONNECTI VITY WITH THE SPEAKER
A speaker (alarm) is interfaced with the receiver circuit in such a way that when the

IR beam sent by the transmitter circuit is cut or intercepted, the speaker (alarm) will

go off automatically and will alert the owner regarding the intrusion.

1.1.3. CONNECTIVITY WITH THE WEB CAMERA

The web camera is installed (interfaced) with the receiver circuit in such a way that

when the IR beam sent by the transmitter circuit is cut or intercepted, the web camera
starts the video recording of the surveillance region automatically, which is saved in

the monitoring computer.

1.1.4. IMAGE CAPTURING

Screenshots of the video that is being streamed is taken automatically once in every

three seconds.

1.1.5. SENDING WARNING SMS

After the intrusion has occurred, the owner of the surveillance system is informed

about the same by means of sending him an SMS over his mobile phone.

1.1.6. IMAGE SAVING

The screenshots (images) taken above will be saved on the master computer that is

monitoring the surveillance system.

1.1.7, IMAGE TRANSFERRING

The image previously captured is sent to the owner’s mobile phone. First we connect
our mobile phone with the surveillance system via bluetooth and then the image that
was previously captured is sent to the owner’s mobile phone through our mobile

phone by using the services of any GSM service network.

1.1.8. VIDEQ CAPTURING

The instant the IR rays are cut that are being transmitted from the IR transmitter
circuit to the IR receiver circuit, the web camera is initiated and the video recording

L.e. video capturing is started for surveillance purposes.

2

1.1.9. VIDEQ SAVING
The video that was carlier being captured when the IR beam was intercepted is now

being saved on the master computer that is monitoring the surveillance system. This

saved video can be now used for further surveillance purposes and repeated playing to

identify any intrusion.

1.1.10. VIDEOQ TRANSFERRING

The video is transferred from the master computer to the master mobile that has

already been synchronized with the master computer via bluetooth. We also have the
option of choosing the video which we want to transfer to the master mobile via

bluetooth,

CHAPTER 2
OBJECTIVE AND SCOPE

The end product is an infrared based video surveillance system that has excellent

‘security providing and intrusion detecting features like:

1. Image and video capturing,
2. Image and video transferring,

3. Alerting the owner via an SMS.

The end product can be used by Security Service Groups to provide intense security

and detect any intrusion in a sensitive region and also capturing the effective details of

the intruder.

The small size of the surveillance system increases its portability and also giving it an
added advantage that it won’t be discovered by any intruder before making his

intrusion.

CHAPTER 3
INITIAL PROJECT INVESTIGATION

This section gives the details of the previous work done in the field of “Infrared based

surveillance systems.”

3.1. Home security system for detecting a intrusion into a

monitored area by an infrared detector-by Devan Dockery

ABSTRACT

A security system has a free-standing intrusion detector. The free standing intrusion
detector has a transmitter coupled with a portable receiver to alert a homeowner that
an intrusion has taken place or occurred within a pre-set time period. The area under
surveillance is monitored by an infrared detector which activates the transmitter upon
the detection of abrupt differences in infrared radiation levels, associated with the
presence of a warm body in an otherwise equilibrated environment. A radio signal is
emitted by the transmitter which is received by the portable hand held remote
receiver. A first signal, indicating that an intrusion has been detected less than a
preselected period of time in the past in the monitored areas, is displayed on the
receiver for that preselected period of time, After the preselected period of time has
elapsed, a second signal is generated to indicate that the intrusion took place at a time
greater than the preselected period of time in the past and that the probability of the
intruder still being present is less. Once the intrusion detector is activated, the signal is

continuously transmitted to the portable receiver until the intrusion detection has been

reset,

3.2, Infrared alarm_ _system-by Milton O, Smith, Bothell,
Washington '

ABSTRACT

A battery powered infrared sensor security system capable of operating a single set of
batteries for a minimal of one year. The system is connected to a telephone line and
employs a bidirectional dual-tone multiple frequency (DTMF) tome
generator/receiver to allow communication to and from a remote location. The system
status may be checked from a remote location. The system uses a Fresnel lens
arrangement and a pair of infrared sensors to provide a substantially uniform field of
coverage of 180 degrees. The system also uses real time digital analysis of the output
signals from the infrared sensors. The digital analysis uses time sequence analysis of
the output signals, perform variance measurements between the current measurement
of the infrared sensor signals and the stored time sequence, coherence measurements
between the two sensors, and can compare measured amplitude spectra to predefined

signature spectra entered by the user.

3.3. Outdoor infrared video surveillance; A novel dynamic

technique for the subtraction of a changing background of IR

1mages

ABSTRACT

For security applications, automatic detection and tracking of moving objects is an
important and challenging issue especially in uncontrolled environments. Recently,
due to the decreasing costs and increasing miniaturization of infrared sensors, the use
of infrared imaging technology has become an interesting alternative in such
applications.

In this paper, a framework is proposed to detect, track and classify both pedestrians
and vehicles in realistic scenarios using a stationary infrared camera. More
specifically, a novel dynamic background-subtraction technique to robustly adapt

6

detection to illumination changes in outdoor scenes is proposed. We noticed that
combining results with edge detection enables to reduce considerably false alarms
while this reinforces also tracking efficiency. The proposed system was implemented

and tested successfully in various environmental conditions.

3.4. IR Based Third Eve Implementation for Industrial Safety with
Loud 60dB Siren

ABSTRACT

Security is primary concern everywhere and for everyone. Every person wants his
home, industry etc to be secured. This project describes a security alarm system that
can monitor an industry and home. This is a simple and useful security system and
easy to install. There will be an arrangement of IR transmitter and IR receiver to
which an LED and buzzer are connected . This IR transmitter and IR receiver are kept
at two sides of the door of restricted area. The concept is such that, the IR transmitter
transmits a frequency of 38 KHZ and this frequency should be detected or received by
IR receiver. If any intruder comes in between this arrangement IR receiver cannot
detect the signal and, so led and buzzer connected to IR receiver are activated, which

alerts the people surrounding that area.

CHAPTER 4

MOTIVATION

We got utmost motivation for making this infrared based surveillance system by the
in depth study and analysis of the other surveillance systems available in the market.
Also, the price was a major consideration as the other surveillance systems available
in the market are frightfully expensive and unaffordable to the common man. So, we
decided to make an affordable surveillance system of our own with the features
mention above.

A comparative study of the available surveillance systems in the market along with

our own infrared based surveillance system is shown in the table below.

Sr. No. | Name of the System Price (in INR) | Features Missing
1 | Intelligent Wireless Alarm 3,500/- No alerts sent on
Doorbell mobile phones.
Advante 007-A No video streamed.
2 | Infrared Security System 2,600/- No alerts sent on
United States Patent 4751396 mobile phones.
No video streamed.
3 | Battery Operated Portable Passive 1,800/- No alerts sent on
Infrared Intrusion Alarm ' mobile phones.
#AEI PIR-9112 No video recorded.
4 | Electronic Watch Dog 1,670/- No alerts sent on

mobile phones.
No video recorded.

5| IRVSMS - : 800/- NONE

CHAPTER 5

HARDWARE COMPONENTS

5.1. BLOCK DIAGRAM

This is the entire pictorial view of our surveillance system’s setup.

Gate
| iz ersitisaacnosy i fanmtie st

Speaker
______ i (nactve)

IR

receiver

Intrusion
[Mmﬂ

: Vi
Transmitter :
Computer Mobile
Phone
E]
Webcam Mobile
(inactive) Phone

5.2. BLOCK DESCRIPTION

5.2.1. INFRARED TRANSMITTER

~ An IR transmitter circuit can be used in many projects as the integral portion of the

circuitry hardware. The IR transmitter sends a 40 kHz of frequency carrier under

computer control. The computer can turn the IR transmission on and off. The IR

carrier at around 40 kHz carriers a frequency which is widely used for ICs as
9

T

T

receiving these signals is quite easy. The circuit can be controlled using any TTL
(transistor logic) which makes the interfacing very simple. The circuit can be used in
many applications, for example, for using a computer to generate IR remote control

signals or experimental IR data transmission.

5.2.2. INFRARED RECEIVER

IR receivers pickup the infrafred beams pointed at them and repeat it, through wires
and a connecting block, to infrared emitters that reproduce the signal. IR receivers are
the easiest receivers to hide, as their two piece design allows the IR sensor to be
located where it is nearly invisible, while the electronics section can be hidden at
some other place. The hidden link in the IR receiver is a small shelf-top infrared

repeater assembly. It includes an IR receiver and a connecting block.

10

2
4
i

i

b e 1

5.2.3. RELAY
The relay is an electro mechanical switch which converts electrical signal into

mechanical output and provides the isolation between the two connections. The relay
allows one circuit to switch to a second circuit which can be completely separate from
the first one. For example, a low voltage DC circuit can use a relay to switch to a
230V AC mains circuit. In our case it is from a low voltage DC to a higher voltage
DC. There is no electrical connection inside the relay and between the circuits; the
link is magnetic and mechanical. The relay circuit or simply a relay is connected to
the receiver circuit to reset the alarm (loudspeaker), as after the alarm has gone off for
the required amount of time, the loud noise that it creates is a nuisance. Hence, the
alarm has to be reset without turning off the entire surveillance system. Thereby,

making the need of the relay circuit very essential and elementary.

o
COM

In this above relay circuit, _
COM : Common, always connect to this; it is the moving part of the switch.
NC : Normally Closed, COM is connected to this when the relay coil is off.

NO : Normally Open, COM is connected to this when the relay coil is on.
11

5.2.4. SPEAKER

A loudspeaker is an electro-acoustic transducer that converts

an electrical signal into sound. The speaker moves in accordance with the variations
of an electrical signal and causes sound waves to propagate through a medium such as
air or water. After the acoustics of the listening space, loudspeakers are the most
variable elements in a modern audio system and are usually responsible for most

distortion and audible differences when comparing sound systems.

The loudspeaker is connected to the receiver circuit to function as an
alarm and alert the required people near the surveillance system. We were also
required to put a volume control to the alarm (loudspeaker) as during the

demonstration of the project, the noise that it created was intolerable,

5.2.5. WEBCAM

The web camera was required to be connected to the receiver circuit and also to the
master computer. The purpose of connectivity with the receiver circuit was that the
moment the IR beam is intercepted the video recording is started and the purpose of
the connectivity of the web camera with the master computer was that the already
started video recording is enabled to be saved on the master computer and

subsequently transferred to the master mobile via the bluetooth connectivity.

53. CIRCUIT DIAGRAM

" o . "
. E l 4 A ; H B
B 1 i i 3 % i 45’5 B
Py B k% I I
ks 1 i 4” é as 4 S i 153 ; Lt
L ¥ s = 5 B
.i«« P L £ 1,59
i <
: 71 Ak ¢
g | o L - T 5
! ;:i B »5:. s NE555 3 £ MGG 1 ({;“a'a'
o't Wiy e gy " —® 3
. P A A { -
B v ' i st H (B4 -,
prois L A ; &
; ® W s o 0 g
P i st Lshan - 35 TR 1
‘é!:j.Emw"z - r‘,z oy ; Joes i w3 o J ZENER BEMA
o i T Bl ey PV R
i,) Gy v [Py RS
) _
GH
¢ P | 5

12

5.4. CIRCUIT DESCRIPTION

5.4.1, REGUALTED SUPPLY

A 6 volt battery is used to provide power to the whole branches of the circuit. As the

transmitter and the receiver circuit, each work on a 5 volt regulated voltage

requirement.

5.4.2. TRANSMITTER WORKING

The transmitter circuit is built around timer IC NE555, which is wired as an astable

multivibrator producing a frequency of about 38 kHz. The infrared beam is
transmitted through IR LED. The power supply for the transmitter is derived from a
separate battery by connecting its points A and B fo the respective points of the
battery. The transmitter and receiver units are aligned such that the IR beam falls

directly on the IR sensor.

5.4.3. RECEIVER WORKING

The receiver circuit is shown in the figure above. It comprises of an IR sensor

TSOP1738, npn transistor BC548, timer IC NE555 and some resistors and capacitors.
In the actual configuration, 1C2 was wired in a monostable multivibrator with a time
period of around 30 seconds but we have increased this time period to | min and 8
seconds by changing the value of R7 in the circuit from 560 K ohm to 1.3M ohm,
according to the formula:
T=RCIn(3)=11RC

‘The melody generator section is built around melody generator [C UM66 (IC3),
transistor T2 and the loudspeaker. The above figure shows pin configurations of the
IR sensor TSOP1738 and melody generator IC UM66. The receiver is powered by
regulated 9V DC. For this purpose, we can use a 9V battery. The transmitter and
receiver units are aligned such that the IR beam falls directly on the IR sensor. As
long as IR beam falls on the sensor, its output remains low, transistor T1 does not
conduct and trigger pin 2 of IC2 remains high. When anyone interrupts the IR beam
falling on the sensor, its output goes high to drive transistor T1 into conduction and

pin 2 of 1C2 goes low momentarily. As a result, [C2 gets triggered and its pin 3 goes

13

high to supply 3.3V to melody generator IC3 at its pin 2, which produces a sweet
melody through the speaker, fitted inside the house. Output pin 3 of [C2 remains high
for around 68 seconds. We have also installed a RESET switch to switch off the alarm

before 68 seconds. The RESET switch is added between pind4 of NES55 IC and

ground.

5.4.4. RELAY WORKING

The relay is used to take more power for the webcam to work properly. When an

intrusion is made which triggers off the receiver circuit, we need extra power for
webcam to get triggered at the same time and to do so we have put a relay in which

we install webcam in the series,

5.4.5. IR RECEIVER SENSOR

The TSOP 1738 infrared receiver sensor modulates the infrared signal and converts it
into a corresponding electrical signal. TSOP 1738 is an infrared receiver sensor which
is widely used in a large number of electronic products for receiving and
demodulating infrared signals. These received demodulated signals can be easily
decoded by a microcontroller. Many effective IR proximity sensors are built around
the TSOP 1738 module. The TSOP module is commonly found at the receiving end
of an IR remote control system. These modules require the incoming data to be
modulated at a particular frequency and would ignore any other IR signals. It is also
immune to ambient IR light, so one can easily use these sensors outdoors or under
heavily lit conditions. Such modules are available for different carrier frequencies
from 32 kHz to 42 kHz. In our project, we will be generating a constant stream of
square wave signal using the [C NE555 centered at 38 kHz and would use it to drive
the IR led. So whenever this signal bounces off the obstacles, the receiver would
detect it and change its output. Since the TSOP 1738 module works in the active-low
configuration, its output would normally remain high and would go low when it

detects the signal (the obstacle).

14

55 LIST OF COMPONENTS

5.5.1. TIMER IC NE555

The timer IC NES55 is anintegrated circuit implementing a variety

of timer and multivibrator applications. It has been claimed that the 555 gets its name
from the three 5 k€ resistors used in typical early implementations. Depending on the
manufacturer, the standard 555 package includes over 20 transistors, 2 diodes and
15 resistors on a silicon chip.

The timer IC NES55 has three operating modes:

i. Monostable Mode: In this mode, the timer IC NE555 functions as a "one-
shot", Applications include timers, missing pulse detection, bounce free
switches, touch switches, frequency divider, capacitance measurement, pulse-
width modulation (PWM), etc. In the monostable mode, the 555 timer acts as
a “one-shot” pulse generator. The pulse begins when the 555 timer receives a
signal at the trigger input that falls below a third of the voltage supply. The
width of the pulse is determined by the time constant of an RC network, which
consists of a capacitor (C) and a resistor (R). The pulse ends when the charge
on the C equals 2/3 of the supply voltage. The pulse width can be lengthened
or shortened to the need of the specific application by adjusting the values of
R and C, The pulse width of time ¢, which is the time it takes to charge C to
2/3 of the supply voltage, is given by : |

T=RCIh(3)=1.1RC

ii. Astable Mode or Free Running Mode: The timer IC NE555 can operate as
an oscillator, Uses include LED and lamp flashers, pulse generation, logic
clocks, tone generation, security alarms, pulse position modulation (PPM), etc.
in astable mode, the '555 timer ' puts out a continucus stream of rectangular
pulses having a specified frequency. Resistor R;is connected between
Vec and the discharge pin (pin 7) and another resistor (Ra) is connected

between the discharge pin (pin 7), and the trigger (pin 2} and threshold (pin 6)

15

iii.

pins that share a common node. Hence the capacitor is charged through R and
R,, and discharged only through R, since pin 7 has low impedance to ground
during output low intervals of the cycle, therefore discharging the capacitor. In
the astable mode, the frequency of the pulse stream depends on the values of

Ry, Rz and C and is given by :
f=1/In(2) * C * (R, + 2R,)

Bistable Mode or Schmitt Trigger: The timer IC NES55 can operate as a flip-
flop, if the DIS pin is not connected and no capacitor is used. Uses include
bounce free latched switches, etc. In bistable mode, the 555 timer acts as a
basic flip-flop. The trigger and reset inputs (pins 2 and 4 respectively on a
555) are held high via pull-up resistors while the threshold input (pin 6) is
simply grounded. Thus configured, pulling the trigger momentarily to ground
acts as a 'set’ and transitions the output pin (pin 3) to Vcc (high state). Pulling
the reset input to ground acts as a 'reset' and transitions the output pin to
ground (low state). No capacitors are required in a bistable configuration. Pin
8 (Vce) is, of course, tied to Vce while pin 1 (Gnd) is grounded. Pins 5 and 7

(control and discharge) are left floating.

16

Name of Pin | Purpose of Pin
GND Providing the ground.
TRIG A short pulse high to low to trigger the timer.
ouT During the time interval, output stays at VCC,

The timing interval can be interrupted by applying reset pulse to
RESET low.
CTRL Control voltage allows access to the internal voltage divider.
THR Threshold at which the interval ends.

Connected to a capacitor whose discharge time will influence the
DIS timing interval.
VCC The positive supply voltage which must be between 3 to 15 V.

3.5.2. RELAY

A relay is an electrical device such that the current flowing through it in one circuit can

switch on and off a current in a second circuit. A relay is an electrically operated switch.

Current flowing through the coil of the relay creates a magnetic field which attracts a lever

and changes the switch contacts. The coil current can be on or off so relays have two switch

positions and most have double throw (changeover) switch contacts as shown in the diagram.

Relays allow one circuit to switch a second circuit which can be

completely separate from the first. For example a low voltage battery circuit can use a

relay to switch a 230V AC mains circuit. There is no electrical connection inside the

relay between the two circuits, the link is magnetic and mechanical.

17

553 IR LED

Infrared Light Emitting Diode emits an infrared radiation. This radiation illuminates
the surface in front of the IR LED. The surface reflects the infrared light and
depending on the reflectivity of the surface, amount of light reflected varies. This

reflected light is made incident on the reverse biased IR sensor.

When photons are incident on the reverse biased junction of this diode,
electron-hole pairs are generated, which results in reverse leakage current. Amount of
electron-hole pairs gencrated depends on intensity of incident IR radiation. More
intense radiation results in more reverse leakage current. This current can be passed
through a resistor so as to get a proportional voltage. Thus, as the intensity of the

incident rays varies, the voltage across the resistor will also vary accordingly.

5.5.4. IR RECEIVER SENSOR

The TSOP 1738 infrared receiver sensor modulates the infrared signal and converts it
into a corresponding electrical signal. TSOP 1738 is an infrared receiver sensor which
is widely used in a large number of electronic products for receiving and
demodulating infrared signals. These received demodulated signals can be easily
decoded by a microcontrotler. Many effective IR proximity sensors are built around
the TSOP 1738 module. The TSOP module is commonly found at the receiving end
of an IR remote control system. These modules require the incoming data to be
modulated at a particular frequency and would ignore any other IR signals. It is also
immune to ambient IR light, so one can easily use these sensors outdoors or under
heavily lit conditions. Such modules are available for different carrier frequencies
from 32 kHz to 42 kHz. In our project, we will be generating a constant stream of

square wave signal using the IC NE555 centered at 38 kHz and would use it to drive

18

the IR led. So whenever this signal bounces off the obstacles, the receiver would
detect it and change its output. Since the TSOP 1738 module works in the active-low
configuration, its output would normally remain high and would go low when it

detects the signal.

IR RECEIVER
SENSOR

Y

TSOR
1738

GND ouT
? +\V oo

5.5.5. ICUMG66

The IC UM66 will generate a music signal by taking a less voltage at its input side.
We can use it in our commercial applications and also in designing our surveillance
system. The simplest melody generator circuit can be made using an IC UMG66.
The UM66 series are CMOS 1Cs designed for using in a calling bell. phone and toys.
It has a built in ROM programmed for playing the music. The device has a very low

power consumption because of its CMOS technology. The melody (music / sound)

will be available at pin3 of the 1C UM66.

FRONT VIEW

5.5.6. USB CABLING

USB, more formally known as the Universal Serial Bus is a specification to establish
communication between devices and a host controller. Universal Serial Bus (USB) is

a new external bus standard that supports data transfer rates of 12 Mbps (12 million

19

bits per second). A single USB poit can be used to connect up to 127 peripheral
devices, such as mice, modems, and keyboards. USB also supports plug-and-play
installations. USB transfers isochronous or asynchronous data and is used to replace

the cable clutter,

5.5.7. WEB CAMERA

A webcam is a video capturing device connected to a computer or computer network,
often using a USB port or, if connected to a network, using ethernet or Wi-Fi. The
most popular use is forvideo telephony. permitting a computer to act as
a videophone or video conferencing station. This can be used in messenger programs
such as Windows Live Messenger, Skype and Yahoo messenger services, Other
popular uses, which include the recording of video files or even still-images, are

accessible via numerous software programs, applications and devices.

Web cameras are known for low manufacturing costs and flexibility, making
them the lowest cost form of video telephony. The term 'webcam' may also be used in
its original sense of avideo cameraconnected to the web continucusly for an
indefinite time, rather than for a particular session, generally supplying a view for
anyone who visits its web page over the Internet. Some of these, for example those

used as online traffic cameras, are expensive, rugged professional video cameras.

20

CHAPTER 6
SOFTWARE COMPONENTS

6.1. OVERVIEW

The software is been developed on .NET platform and the reason we choose .NET
was because it provides us with many libraries which is already there and can be used

as it is to perform a particular function.
Our software provides the 7 basic features. These are described below as:-

6.1.1. VIDEO CAPTURING

Software has been made which uses Aforge libraries to capture the video from the
webcam. The webcam on the other hand initiates the moment the IR rays are
interrupted that means our video capturing also automatically initiates when the rays

are cut.

6.1.2. VIDEQ SAVING

The same software interface lets you save the video which is being captured in the

COITIpl.ltCI‘.

6.1.3. IMAGE ACQUISITION

The code for the above interface which lets us capture and save the video stream also
includes acquisition of images as it works on the principle of taking screen shots of
the captured video, i.e. screen shots of the stream video was taken after a fixed time

period automatically.

6.1.4. IMAGE SAVING

The images captured or acquired from before are also saved in a folder in the
computer. Although the images have been captured from the video stored but their

small size is an advantage.

21

n e s
~ Iknaghat,

o W

6.1.5. IMAGE TRANSFERRING

A different interface has been developed for transferring of images from the computer
device on a mobile device using bluetooth. This creates a back up for the images just

in case any harm happens to the computer.

6.1.6. VIDEQ TRANSFERRING

The same code and interface gives transferring of video along with images using
bluetooth technology. The process of creating backup is not automated as it dependent
on bluetooth enabled devices present around the system and there can be more than

one device around the system therefore we have to choose a device to send to it.

6.1.7. SENDING WARNING SMS

A another code has been made which sends a SMS to owner’s mobile phone
informing him/her about a possible intrusion made. This code also depends on
bluetooth as the mobile on which the backup was made establishes a bluetooth
connection with the mobile phone and then the SMS is sent through that phone to

anther phone using GSM service network.

So as mentioned above our entire software can be broken into 3 major codes, as:

Code 1: Video capturing, Video saving, Image Acguisition, Image saving,

This code will be responsible for initiating video capturing and saving along with

image capturing and saving,.
For developing this code we have used Aforge libraries.

The predefined libraries of the Aforge Framework are described as follows and their

various Classes, Interfaces, delegates, and the enumerations are described.

22

AForge.Video namespace

The AForge.Video namespace contains interfaces and classes to access different

video sources.

Classes
Class Description

1. JPEGStream JPEG video source,

2. MIPEGStream MIPEG video source.

3. NewFrameEventArgs Arguments for new frame event from video

source.
4, VideoSourceErrorEventArgs Arguments for video source error event from
video source.

! Interfaces
§ Interface Description
i 1. IVideoSource Video source interface.
|
i Delegates
{
: Delegate Description
‘ [. NewFrameEventHandler Delegate for new frame event
_: | handler.
:L 2. PlayingFinishedEventHandler Delegate for playing finished event
handler.
i

23

VideoSourceErrorEventHandler Delegate for video source error event

handler.
s Enumerations
Enumeration Description
1 ReasonToFinishPlaying Reason of finishing video playing.

AForge.Video.DirectShow namespace

The AForge.Video.DirectShow namespace contains classes, which allow to access

video sources using DirectShow interface.

Classes
Class Description
1. FileVideoSource Video source for video files.
2. FilterCategory DirectShow filter categories.
3. FilterInfo DirectShow filter information.
4. FilterInfoCollection Collection of filters' information objects.
5. VideoCapabilities Capabilities of video device such as frame size and frame rate.

6. VideoCaptureDevice Video source for local video capture device (for example USB

webcam).
AForge.Video.VFW namespace

The AForge.Video.VFW namespace contains classes, which allow reading and

writing of AVI files using Video for Windows interface.

24

; Classes
Class Description
1 AVIFileVideoSource AVl file video source.
; D AVIReader AVI files reading using Video for Windows.
| 3. AVIWriter AVI files writing using Video for Windows

interface.

Out of the mentioned function under Aforge we have used the following few as per
requirement but the reason of making a note of them was to show the furthur scope of

our project.

Access to JPEG and MJPEG video streams

AForge NET framework provides classes to access JPEG snapshots and MJPEG
video stream over HTTP. This API is quite useful taking into account the fact, that
most IP cameras support access to their video data through these simple protocols.
Also usage of these classes is not only limited to [P cameras, since other sources may

also provide JPEG snapshots and MIPEG video streams over HTTP.

JPEGStream class

This class represents the simplest way of getting access to continuously updating
JPEG image over HTTP. Usually such updating JPEG images come from IP cameras,
but any URL may be used to download image from there in loop. If the given URL
points to static JPEG, the class will not be so useful. But once the URL points to CGI
script (or any other server side application), the class will download updating JPEG

images from there.

As an example, below code shows how to get video data (in form of consequent JPEG

updates) from Axis cameras (see Axis documentation for their HTTP API):
25

J/ create JPEG video source
JPEGStream stream = new JPEGStream(
"hitp://<axis_camera_ip>/axis-cgi/jpg/image.cgi");
// set NewFrame event handler
stream.NewFrame 45 new NewFrameEventHandler(video Newlrame);
// start the video source
stream.Start{);
/..
i |
! /1 signal to stop
i

stream.SignalToStop();

...

private void video NewFrame(object sender,

NewFrameEventArgs eventArgs)

/1 get new frame
Bitmap bitmap = eventArgs.Frame;

- /! process the frame

26

b AT i S K 4 B

| Ty

e

MIPEGStream class

The class has similar idea as the above one, but provides access not to JPEG images
over HTTP, but to MJPEG video streams - streams, which are made of multiple JPEG
images joint in sequence. Such types of video streams are usually provided by IP
cameras however may be also provided by other services, which broadcast video to

network using the simple protocol.

The below sample code also demonstrates accessing Axis camera, but now its MIPEG

video stream:

// create MIPEG video source

MIPEGStream stream = new MJPEGStream(
"hitp://<axis_camera_ip>/axis-cgi/mjpg/video.cgi");

// set event handlers

stream.NewFrame += new NewFrameEventHandler(video_NewFrame);

// start the video source

stream.Start();

...

// signal to stop

stream.Signal ToStop();

Access to USB cameras and video files using DirectShow

AForge. NET framework provides classes to access USB web cameras and video files

using DirectShow APIL Since all the classes implement commeon interface, accessing

USB camera is made as easy, as accessing video files or JPEG/MJPEG streams,
27

VideoCaptureDevice class

This class allows getting access to different type of USB web cameras or other
different devices, which support DirectShow interface. Below sample demonstrates

accessing first available capture device in the system:

/{ enumerate video devices

. videoDevices = new FilterInfoCollection(

FilterCategory.VideolnputDevice);

// create video source

VideoCaptureDevice videoSource = new VideoCaptureDevice(
videoDevices[0].MonikerString);

// set NewFrame event handler

videoSource.NewFrame += new NewFrameEventHandler(video_NewFrame);

// start the video source

videoSource.Start();

...

/I signal to stop

videoSource.SignalToStop();

i ...

private void video_NewFrame(object sender,

28

NewFrameEventArgs eventArgs)

// get new frame

Bitmap bitmap = eventArgs.Frame;

// process the frame

FileVideoSource class

the rest will stay as before:

/{ create video source

/7 set NewFrame event handler

/1 start the video source
videoSource.Start();

t ...

-+ /I signal to stop
videoSource.SignalToStop();

..

' Using this class it is possible to play video files. All we need to change in the code is

to create different video source class and, since it implements the same interface, all

FileVideoSource videoSource = new FileVideoSource(fileName);

videoSource.NewFrame += new NewFrameEventHandler(video NewFrame);

29

private void video NewFrame(object sender,

NewFrameEventArgs eventArgs)

// get new frame
Bitmap bitmap = eventArgs.Frame;
/I process the frame

1

Reading/writing AVI files

AForge NET framework provides simple API to read and write AVI video files
throughVideo for Windows interface. Although the interface is quite old and marked
as obsolete by Microsoft, it is still supported and gives fairly simple API for accessing

AVI video files.

AVIReader class

The class provides access to AVI video files and allows getting each video frame
individually, as well as navigate through a video file specifying index of the next

frame to receive:

// instantiate AVI reader
AVIReader reader = new AVIReader();
/I open video file

reader.Open("test.avi");

30

e T

.

i
5
t
H
4
3

// read the video file

while (reader.Position - reader.Start < reader.l.ength)

// get next frame
Bitmap image = reader.GetNextFrame();

// .. process the frame somehow or display it

}

reader.Close();

AVIWriter class

The class provides simple API for writing AVI video files. All you need to do is to

specify codec to use, video size and frame rate and then start adding frames:

/! instantiate AV writer, use WMV3 codec
AVIWriter writer = new AVIWriter{ "wmv3");
// create new AV file and open it

writer,Open("test.avi", 320, 240);

// create frame image

Bitmap image = new Bitmap(320, 240);

for (inti=0;i<240;i++)

{

31

1/ ﬁpdate image

image.SetPixel(i, i, Color.Red };

// add the image as a new frame of video file
writer.AddFrame(image);

}

writer.Close(};

Nt B Bnisbrmind i Hapiilibe btk d b

The snapshots of the interface developed are shown below with a little |

description.

r
i Azt Motion Datector

Selectvideo source

| -

|]
1 Refrash ; . Stad

Device ready..

In the above software screenshot, we can see the functionality of the video streaming
software such that is capable of selecting the video source and then by clicking the

start button we can start the live video streaming. !

32

3
-
+
Bl

[bl Motion Detector
Select video source
{HP Webcam .
3 FRERESRT
‘ Device ready..
In the above software screenshot, we can select the appropriate video source from the
drop down menu and start the live video streaming from that particular device by
1 clicking the start button.
¥ e Sormtanee
Tl gk wadend Al
;- e ?;,‘st-_mﬁ_u |
‘ ‘l?;uié:a'h : Bt -
Dot ety [N NI S | ;
In the above software screenshot, we can see the functionality of the video capturing
software such that it is capable of capturing the currently streamed video by clicking
the capture button and then we can also save that particular captured video by clicking
- on the save button. In case we do not find the captured video appropriate, then we can
N click on the capture button again to capture a new video which would meet our
requirements.
;
: 33
:%
i

W e burvwihurew

1

i Capre |

Lowva. |
|

In the above software screenshot, the functionality of the software is more or less the
same as the previous screenshot, the only addition being the choice of the video

source, which can be selected from the drop down menu.

Code 2: For_establishing a bluetooth connection with _the mobile to transfer

images and vidoes from master computer to master mobile phone for backup.

So this code will find bluetooth enabled devices, establish the bluetooth connection
with one of the found devices and then select the images and the video to be sent for

backup and then finally send them.

This is actually socket programming and includes two major libraries, i.e. inthehand

library and breham library.

The process involves first access of the system, which is password protected, so
though proper authentication the administrator enters the system, switches on the
bluetooth of the device, then start searching for the device, on finding and selecting

one, ask for the files to be transfered and then finally sending them.

The predefined libraries of the Inthehand Framework and Breham framework are

described as follows and their various Classes.

34

In The Hand

‘, 1. InTheHand.Net Namespace

NET Components for Mobility

| The InTheHand.Net namespace provides a simple programming interface for

additional protocols used on networks today.
Declaration Syntax

namespace InTheHand.Net

Icon Type Description
1. BluetoothAddress Represents a Bluetooth device address.
2. BluetoothEndPoint Establishes connections to a peer device and

provides bluetooth port information.

3. DnsEndPoint Represents a network endpoint as a host
name or a string representation of an IP

address and a port number.

4. DownloadDataCompletedEventArgs Provides data for the

DownloadDataCompleted event.

5. DownloadDataCompletedEventHandler Represents the method that will handle
the DownloadDataCompleted event of
a WebClient.

0. DownloadProgressChangedEventArgs Provides data for

the DownloadProgressChanged
event of a WebClient.
T DownloadProgressChangedEventHandler ~ Represents the method that will handle the

DownloadProgressChanged event of

35

2

10.

1.

12.

14.

15.

DownloadStringCompletedEventArgs

DownloadStringCompletedEventHandler

WebRequestMethods. File

FileWebRequest

FileWebResponse

WebRequestMethods.Ftp

FtpStatusCode

FtpWebRequest

FtpWebResponse

36

a WebClient.

Provides data for

the DownloadStringCompleted event.
Represents the method that will handle the

DownloadStringCompleted event of
a WebClient.

Represents the types of file protocol
methods that can be used with a FILE

request.

Provides a file system impiementation of

the
WebRequest class.

Provides a file system implementation of

the
WebResponse class.

Represents the types of FTP protocol
methods that can be used with an F'TP

request.

Specifies the status codes returned for a File

Transfer Protocol (FTP) operation.

Implements a File Transfer Protocol (FTP)

client.

Encapsulates a File Transfer Protocol (FTP)

server's

response to a request.

|

17.

19.

20.

21.

22.

23,

24,

25.

26.

27.

WebRequestMethods, Http

[rDAAddress

[t DAEndPoint

NetworkShare

ObexListener

ObhexListenerContext

ObexListenerRequest

ObexMethod

ObexStatusCode

ObexTransport

ObexWebRequest

37

Represents the types of HTTP protocol
methods that can be used with an HTTP

request.
Represents an IrDA device address.

Represents an end point for an infrared

connection.

Provides functionality for attaching to

Windows
networking shares.

Provides a simple, programmatically

controlled OBEX protocol listener.

Provides access to the request and response

objects

used by the ObexListener class.

Describes an incoming OBEX request to an
ObexListener object.

Methods which can be carried out in an

Object Exchange transaction.

Specifies the status codes returned for an

Object
Exchange (OBEX) operation.

Supported network transports for Object
Exchange.

Provides an OBEX implementation of

the WebRequest class.

28. ObexWebResponse Provides an OBEX implementation of
the WebResponse class,

29. UploadDataCompletedEventArgs Provides data for
the UploadDataCompleted event.

30. UploadDataCompletedEventHandler Represents the method that will handle the

UploadDataCompleted event of
a WebClient.

31. UploadFileCompletedEventArgs Provides data for
the UploadFileCompleted event.

32. UploadFileCompletedEventHandler Represents the method that will handle the

UploadFileCompleted event of

a WebClient.

33. - UploadProgressChangedEventArgs Provides data for
the UploadProgressChanged event of a
WebClient.

34. UploadProgressChangedEventHandler Represents the method that will handle the

UploadProgressChanged event of
a WebClient.

35. UploadStringCompletedEventArgs Provides data for the
UploadStringCompleted event.

36. UploadStringCompletedEventHandler Represents the method that will handle the

, UploadStringCompleted event of
i | a WebClient.

37. UploadValuesCompletedEventArgs Provides data for the
UploadValuesCompleted event.

38

|

38. UploadValuesCompletedEventHandler

39. WebClient

40. WebRequestMethods

2. InTheHand . Net.Bluetooth Namespace

NET Components for Mobility

Bluetooth functionality such as Radio hardware.
Declaration Syntax

namespace InTheHand.Net.Bluetooth

39

The InTheHand Net.Bluetooth namespace contains

the one selected Bluetooth stack where multiple are

Represents the method that will handle the

UploadValuesCompleted event of
a WebClient.

Provides helper methods for sending data to

and

Receiving data from a resource identified
by a URL.

Container class

for WebRequestMethods.Ftp

and WebRequestMethods.Http classes.

classes for working with

lcon Type Description

1. AttributeldLookup Retrieves the name of the SDP Attribute ID with the
given value in the specified Attribute ID class sets.

Implementing Enum-like behaviour,

2. BluetoothProtocolDescriptorType Configures what type of clement will be added by
the ServiceRecordBuilder for

theProtocolDescriptorList attribute.

3. BluetoothPublicFactory Provides the means to create Bluetooth classes on

loaded in the same process.

4, BluetoothRadio Represents a Bluetooth Radio device,

5. BluetoothSecurity Handles security between bluetooth devices.

6. BluetoothService Standard Bluetooth Profile identifiers.

7. BluetoothWin32Authentication Provides Bluetooth authentication services on
desktop Windows,

2. BluetoothWin32AuthenticationEv ~ Provides data for an authentication event,

entArgs

9. ClassOtDevice Describes the device and service capabilities of a
device.

10. DeviceClass Class of Device flags as assigned in the Bluetooth
specifications.

11. ElementType Represents the types that an SDP element can hold.

12. ElementTypeDescriptor Represents the type of the element in the SDP record
binary format, and is stored as the higher 5 bits of
the header byte.

13. HardwareStatus Specifies the current status of the Bluetooth
hardware.

14. LanguageBaseltem Represents a member of the
SDP LanguageBaseAttributeldList, Attribute which
provides for multi-language strings in a record.

15. LinkPolicy o Flags to describe Link Policy.

16. Manufacturer Manufacturer codes.

17. MapServiceClassToAttributeldLis Gets a list of enum-like classes containing SDP

t Service Attribute Id definitions for a particular

40

|

18.

19.

26.

21

22.

23.

24.

25.

26.

27.

28.

RadioMode

ServiceAttribute

ServiceAttributeld

ServiceClass

ServiceElement

ServiceRecord

ServiceRecordBuilder

ServiceRecordCreator

ServiceRecordHelper

ServiceRecordParser

ServiceRecordUtilities

Sizelndex

41

Service Class.

Determine all the possible modes of operation of the

Bluetooth radio.
Holds an attribute from an SDP service record.

A Service Attribute Id identifies each attribute

within an SDP service record.

Holds an SDP data element.
Holds an SDP service record.

Provides a simple way to build a ServiceRecord,
including ServiceClasslds and ServiceNames

attributes etc.

Creates a Service Record byte array from the

given ServiceRecord object.

Some useful methods for working with a
SDP ServiceRecord including creating and
accessing the ProtocolDescriptorList for an

RFCOMM service,

Parses an array of bytes into the contained

SDP ServiceRecord.

Utilities method working on SDP ServiceRecords,
for instance to produce a 'dump’ of the record's

contents.

Represents the size of the SDP element in the record
binary format, and is stored as the lower 3 bits of the

header byte.

3.

30, StringWithLanguageBaseAttribute Indicates that the field to which it is applied

represents an SDP Attribute that can exist in

multiple language instances and thus has a language

base offset applied to its numerical 1D when added

io a record.

InTheHand.Net.Sockets Namespace

NET Components for Mobility

fcon

with IrDA and Bluetocoth Sockets.
Declaration Syntax

namespace InTheHand Net.Sockets

Type

. AddressFamily32

. BluetoothClient

. BluetoothDevicelnfo

. BluetoothListener

BluetoothProtocol Type

BluetoothSocketOptionLevel

The InTheHand.Net.Sockets namespace provides added functionality for working

Description

Specifies additional addressing schemes that an instance of

the Socket class can use.
Provides client connections for Bluetooth network services.

Provides information about an available device obtained by

the client during device discovery.
Listens for connections from Bluetooth network clients.

Specifies additional protocols that the Socket class

supports.

Defines additional Bluetooth socket option levels for
the SetSocketOption(SocketOptionLevel,
SocketOptionName,

42

s

7. BluetoothSocketOptionName

8. IrDACharacterSet
9. IrDAClient

1{ IrDADevicelnfo

11 IrDAHints

1Z IrDAListener

17 IrDASocketOptionLevel

1< IrDASocketOptionName

Int32) and GetSocketOption(SocketOptionLevel,
SocketOptionName)methods.

Defines Socket configuration option names for

the Socket class.
Describes the character sets supported by the device.

Makes connections to services on peer IrDA devices.

‘Provides information about remote devices connected by

infrared communications.

Describes an enumeration of possible device types, such as

Fax.

Places a socket in a listening state to monitor infrared

connections from a specified service or network address.

Defines additional IrDA socket option levels for
the SetSocketOption(SocketOptionLevel,
SocketOptionName,

Int32) and GetSocketOption(SocketOptionLevel,
SocketOptionName)methods.

Socket option constants to set IrDA specific connection

modes, and get/set ItDA specific features.

43

4. InTheHand.Windows.Forms Namespace

NET Compenents for Mobility

The InTheHand. Windows.Forms namespace contains classes for creating Windows-

based applications.
Declaration Syntax

namespace InTheHand. Windows. Forms

Icon Type Description

. ApplicationHelper Provides properties which extend

the Application class.

2. AuthenticationDialog The AuthenticationDialog class launches the |

Authentication dialog which prompts the user for a !

username password.

3. BatteryChargeStatus Defines identifiers that indicate the current battery

charge leve! or charging state information.

4, ButtonState Specifies the appearance of a button.

5. CaptionButton Specifies the type of caption button to display

6. ComboBoxHelper Provides supporting methods for ComboBox.

7. ControlHelper Provides supporting methods for Control.

8. ControlPaint Provides methods used to paint common Windows

controls and their elements.

9. CreateParams Encapsulates the information needed when creating a
control.
N e . l
10. CustomListView An enhanced ListView which supports custom |
44

—‘ |

12.

13

14.

15.

18

19

20.

21

22

23

24

DrawListViewltemEventArgs

DrawListViewltemEventHandler

Help

[MessageFilter

[temBoundsPortion

. ListBoxHelper

. ListViewHelper

ListViewltemStates

MethodInvoker

NativeWindow

PowerLineStatus

PowerStatus

ScrollButton

SelectBluetoothDeviceDialog

. SendKeys

drawing of individual ListViewltems,
Provides data for the Drawltem event.

Represents the method that will handle

the Drawltem event of a CustomListView.

~ Provides Help support for all Windows Mobile

platforms.
Defines a message filter interface.

Specifies a portion of the list view item from which to

retricve the bounding rectangle.
Provides supporting methods for ListBox.
Provides supporting methods for ListView.

Defines constants that represent the possible states of

a ListViewltem.

Represents a delegate that can execute any method in
managed code that is declared void and takes no

parameters.

Provides a low-level encapsulation of a window handle

and a window procedure.
Specifies the system power status,
[ndicates current system power status information.

Specifies the type of scroll arrow to draw on a scroll
bar.

Provides a form to select an available Bluetooth

device,

Provides methods for sending keystrokes to an

45

||- o

28 TextBoxHelper

Brecham

26. SystemInformationHelper

27 TabControlHelper

application.

environment.

Provides helper methods for the TabControl on

Windows Mobile 6.5.

Provides supporting methods for TextBox.

Brecham.Obex — An OBEX library for the .NET

Framework

Brecham.OQbex Namespace

Classes

[con Class

1. AbortableStream

2. ObexClientSession

ObexConstant

I

Description

An abstract Stream containing the functionality

common to the ObexPutStream and ObexGetStream .

A client-side connection to an OBEX server, supports

Put, Get, and most other operation types.

Well-known values used with the OBEX protocol.
These include values for use in the Target or Who
headers to select which service/application to access,

values for use in the Type to indicate the media type of

46

T . .

Provides information about the current

the content, and other miscellaneous values. The Target
and Type values are defined in ObexConstant.Target

and ObexConstant. Type respectively.

4. ObexConstant. Target ~ Well-known values for use in the Target header usually
at Connect time. They select which service or
application is required, for instance the default Inbox

service, or the Folder Browsing service for instance.

5. ObexConstant. Type Well-known Media Type values defined (or at least
referenced) in the OBEX specification.

0. ObexGetStream Provides the stream of content in a OBEX Get

operation.

7. ObexHeaderCollection Contains OBEX protocol headers associated with a

request or response. E:‘

8. ObexHeaderConverter Methods to convert types into the formats required by
various OBEX header types.

9. ObexPutStream Provides the stream of content in a OBEX Put

operation.

10. ObexResponseException The exception that is thrown when an error occurs

while accessing the network through the OBEX

protocol.
Enumerations
— icon Enumeration Description
. BackupFirst Indicate whether on a SETPATH operation that the

server should should first change to the parent folder,

47

before moving to the named folder etc.

2. IfFolderDoesNotExist Indicate whether on a SETPATH operation that a new
folder should be created by the server if it doesn't
already exist, or whether it should instead return an

error in that case,

3. ObexHeaderld OBEX Header Identifiers.

File transfer

We will present a program that lets you browse any device connected to your
computer via Bluetooth and allows you to upload/download files to/from the device.
The device should have OBEX support. In order to connect to a device via Bluetooth
and to perform OBEX operations, we used these libraries:32feet.Net and Brecham
OBEX

Requirements

In order for this application to function, you need to have Bluetooth on your computer
that uses the Microsoft Bluetooth stack and another device with Bluetooth which you
will connect to use this program. If your Bluetooth device uses a non-Microsoft stack,

then it is possible to disable it and install the Microsoft stack. Have

This program uses the OBEX library that communicates to a device, so a general

understanding of what OBEX is and how it works is preferable, but not desired.

How the Application Works
Connecting

When you run the application, the first thing you should do is connect to the device.
You can choose the device you want to connect to using a dialog that shows the
available Bluetooth devices. After the device has been selected, we connect to it and

initiate a new session. The code snippet shows how it is done:

48

e

private void Connect()

{

using (SelectBluetoothDeviceDialog bldialog =

new SelectBluetoothDeviceDialog())

bldialog.ShowAuthenticated = true;
bldialog.ShowRemembered = true:

bldialog.ShowUnknown = true;

if (bldialog.ShowDialog() == DialogResult.OK)

{

if (bldialog.SelectedDevice == null)
{
MessageBox.Show("No device selected", "Error",
MessageBoxButtons.OK, MessageBoxIcon.Error);

return;

}

//Create new end point for the selected device.
//BluetoothService.ObexFileTransfer means
//that we want to connect to Obex service.

BluetoothDevicelnfo selecteddevice = bldialog.SelectedDevice;

49

R =

BluetoothEndPoint remoteEndPoint = new
BluetoothEndPoini(selecteddevice. Device Address,

BluetoothService.ObexFileTransfer);

//Create new Bluetooth client..
client = new BluetoothClient();
try

{

//... and connect to the end point we created.

client.Connect(remoteEndPoint);

//Create a new instance of ObexClientSession
session = new ObexClientSession{clientGetStream(), Ulnti 6.MaxValue);

session.Connect{ObexConstant.Target.FolderBrowsing);

}

catch (SocketException ex)

{

ExceptionHandler{ex, false};

return;

}

catch (ObjectDisposedException ex)

50

z

ExceptionHandler(ex, false);

return;

b

catch (IOException ex)

ExceptionHandier(ex, false);

return;

bgwWorker.RunWorkerAsync();

}

First, we show a dialog that displays the available Bluetooth devices. In addition to
the devices that are present at the moment, it will also show those that were connected
to the computer in the past but might not be available now. This can be turned off by
setting the ShowRemembered property ofSelectBluetoothDeviceDialog to false.
However, in that case, if you want to connect to a remembered device, it will not be

shown by the dialog.

After the device has been selected, we create a remote end point based on the address
of the device. The second parameter specifies the service we want to connect to. In
our case, it is B1uetoothSerQiée.ObexFileTransfer, meaning that we will be able to
transfer files using the OBEX protocol. Next, we need to create an instance of
the BluetoothClient class and connect to the end point we created earlier. When the
connection has been established, we create an instance of

the ObexClientSession class. According to documentation, "[ObexClientSession is] A

51

client-side connection to an OBEX server, supports Put, Get, and most other operation
types.” The instance we create will be used for all the OBEX operations we will
perform. Next, we connect to the folder browsing service so that we can browse the

device using OBEX.

Now, when we are connected to the folder browsing service of the device, we can
start exploring it. We will be able to show the files and folders, create new folders,

delete existing ones, and refresh folder content.

Downloading and Upleoading Files

In order to download or upload files, you can use the GetTo or PutFrom methods.
However. to report progress, you will need to create a new stream type and use it in
conjunction with the Decorator Pattern. A simpler way for progress reporting is to use
the Get and Put methods. Both of them return a Stream object. In the case of
downloading, we should read from the refuned stream and write to
theFileStream object, and in the case of uploading, we should read from
the FileStream and write to the stream returned by the Put method. In both cases, we
can count how many bytes we have read and report progress depending on it. This is

done using the BackgroundWorker too.

private void bgwWorker_DoWork(object sender, DoWorkEventArgs ¢)

long progress = {;

DateTime start = DateTime.Now;

for (int i = 0; i < filesToProcess.Count; i++)
52

string currentfile = filesToProcess[i];
//Report that we started downloading new file
bgwWorker.ReportProgress((int)(({(progress * 100) / totalsize)}), i + 1);
string filename = download ? Path.Combine(dir, currentfile) : currentfile;
//Stream on our file system, We will need to either read from it or write to it.
FileStream hoststream = download ?
new FileStream(filename, FileMode.Create, FileAccess. Write, FileShare.None)

: new FileStream(filename, FileMode.Open, FileAccess.Read, FileShare.None);
AbortableStream remotestream = null;
try '

F

{ :

//Stream on our device. We will need to either read from it or write to it.

remotestream = download ? (AbortableStream)currentSession.Get(currentfile,
null)

: (AbortableStream)currentSession.Put(Path.GetFileName(currentfile), null);

}

catch (IOException ex)

{
exceptionoccured = 7t-rue;
ExceptionMethod(ex);

return;

——

53

I _

catch (ObexResponseException ex)

{
exceptionoccured = true;
> ExceptionMethod(ex);
return;
}

using (hoststream)

using (remotestream)

//This is the function that does actual reading/writing.

long resuit = download ?
ProcessStreams(remotestream, hoststream, progress, currentfile)
:ProcessStreams(hoststream, remotestream, progress, currentfile);

if (result ==0)

e.Cancel = true;

//Even if we are cancelled we need to report how many files we have already
/luploaded so that they are added to the listview. Or if it is download we
//need to delete the partially downloaded last file.

filesProcessed = 1;

return;

54

e A .

}

else
progress = result;

}

}
DateTime end = DateTime.Now;
e.Result = end - start;

j

As the process is similar in both cases, there is one function that does the actual work.
The function reads from the source stream and writes to the destination stream. This is

how it works:
private long ProcessStreams(Stream source, Stream destination, long progress,

string filename)

//Allocate buffer
byte[] buffer = new byte[1024 * 4];
while {true)
{
//Report downloaded file size
bgwWorker.ReportProgress({int}{((progress * 100) / totalsize)), progress),

if (bgwWorker.CancellationPending)

{

55

o ———

currentSession. Abort();

return 0;

try

//Read from source and write to destination.
//Break if finished reading. Count read bytes.
int length = source.Read(buffer, 0, buffer.Length);
if (length == 0) break; '
destination. Write(butfer, 0, length);
progress += length; L
}
//Return 0 as if operation was cancelled so that processedFiles is set.
catch (IOException ex)
{
exceptionoccured = true;
ExceptionMethod{ex);
return 0;
}
catch (ObexResponseException ex)

{

56

exceptionoccured = true;
ExceptionMethod(ex);

return 0;

return progress;

Code 3: For establishing a_bluetooth connection with the_mobile to send

intrusion warning SMS from_the connected_master mobile phone to owner’s

mobile phone using GSM service network with normal charges charged.

This code includes establishing a bluetooth connection with the master mobile phone
and then sending SMS. through that phone to the owner phone. This is automatic
process and the message content of the message can be modified as per need. It

informs the owner of a possible intrusion in their secure area.

It uses AT commands for the process the bluetooth connection has already been
established by the previous code. It makes use of that connection and send a series of
command to the master mobile phone for creating a SMS and then sending it

automatically.

In general. there are two ways (o send SMS messages from a computer / PC to &

mobile phone:

Connect a mobile phone or GSM/GPRS modem to a computer / PC. Then use the
computer / PC and AT commands to instruct the mobile phone or GSM/GPRS

modem to send SMS messages.

57

Connect the computer / PC to the SMS center (SMSC) or SMS gateway of a wireless
carrier or SMS service provider. Then send SMS messages using a protocol / interface

supported by the SMSC or SMS gateway.

The 1st Way: Sending SMS Messages from a Computer Using a Mobile Phone or
GSM/GPRS Modem

The SMS specification has defined a way for a computer to send SMS messages
through a mobile phone or GSM/GPRS modem. A GSM/GPRS modem is a wireless
modem that works with GSM/GPRS wireless networks. A wireless modem is similar
to a dial-up modem. The main difference is that a wireless modem transmits data
through a wireless network whereas a dial-up modem transmits data through a copper
telephone line. More information about GSM/GPRS modems will be provided in the
section "Introduction to GSM / GPRS Wireless Modems". Most mobile phones can be

used as a wireless modem. However, some mobile phones have certain limitations
comparing to GSM/GPRS modems. This will be discussed in the section "Which is
Better: Mobile Phone or GSM / GPRS Modem" later.

To send SMS messages, first place a valid SIM card from a wireless carrier into a
mobile phone or GSM/GPRS modem, which is then connected to a computer. There
are several ways to connect a mobile phone or GSM/GPRS modem to a computer. For
example, they can be connected through a serial cable, a USB cable, a Bluetooth link
or an infrared link. The actual way to use depends on the capability of the mobile
phone or GSM/GPRS modem. For example, if a mobile phone does not support

Bluetooth, it cannot connect to the computer through a Bluetooth link.

After connecting a mobile phone or GSM/GPRS modem to a computer, you can
- control the mobile phone or GSM/GPRS modem by sending instructions to it. The
instructions-used for controlling the mobile phone or GSM/GPRS modem are called
AT commands. (AT commands are also used to control dial-up modems for wired
telephone system.) Dial-up modems, mobile phones and GSM/GPRS modems support

a common set of standard AT commands. In addition to this common set of standard
58

.

AT commands, mobile phones and GSM/GPRS modems support an extended set of
AT commands. One use of the extended AT commands is to control the sending and

receiving of SMS messages.

The following table lists the AT commands that are related to the writing and sending

of SMS messages:

e Meaning
e R g
e R Sendmessage P Storage

Cewow W“temessagetomemory

emen R message .
e e pwmssiy | !
Yt fos e vt

One way to send AT commands to a mobile phone or GSM/GPRS modem is to use a
terminal program. A terminal program's function is like this: It sends the characters
you typed to the mobile phone or GSM/GPRS modem. It then displays the response it
receives from the mobile phone or GSM/GPRS modem on the screen. The terminal

program on Microsoft Windows is called HyperTerminal. More details about the use

of Microsoft HyperTerminal can be found in the "How to Use Microsoft
HyperTerminal to Send AT Commands to a Mobile Phone or GSM/GPRS Modem"

section of this SMS tutorial.

Below shows a simple example that demonstrates how to use AT commands and the
HyperTerminal program of Microsoft Windows to send an SMS text message. The

lines in bold type are the command lines that should be entered in HyperTerminal. .

59

The other lines are responses returned from the GSM / GPRS modem or mobile

phone.
AT

\ OK

/' AT+CMGF=1
OK

AT+CMGW="+85291234567"
> A simple demo of SMS text messaging.
+CMGW: |

OK
AT+CMSS=1
+CMSS: 20

OK

Here is a description of what is done in the above example:

Line 1: "AT" is sent to the GSM / GPRS modem to test the connection. The GSM /
GPRS modem sends back the result code "OK" (line 2), which means the connection

between the HyperTerminal program and the GSM / GPRS modem works fine.

Line 3;: The AT command +CMGEF is used to instruct the GSM / GPRS modem to
operate in SMS text mode. The result code "OK" is returned (line 4), which indicates
the command line "AT+CMGF=1" has been executed successfully. If the result code
"ERROR" is returned, it is likely that the GSM / GPRS modem does not support the
SMS text mode. To confirm, type "AT+CMGF=?" in the HyperTerminal program. If
the response is "+CMGF: (0,1)" (0=PDU mode and l=text mode), then SMS text
mode is supported. If the response is "+CMGF: (0)", then SMS text mode is not

supported.

Line 5 and 6: The AT command +CMGW is used to write an SMS text message to the
message storage of the GSM / GPRS modem. "+85291234567" is the recipient mobile

60

phone number. After typing the recipient mobile phone number, you should press the
Enter button of the keyboard, The GSM / GPRS modem will then return a prompt ">
" and you can start typing the SMS text message "A simple demo of SMS text
messaging.". When finished, press Ctrl+z of the keyboard.

Line 7: "+CMGW: 1" tells us that the index assigned to the SMS text message is 1. It

indicates the location of the SMS text message in the message storage.

Line 9: The result code "OK" indicates the execution of the AT command +CMGW is

successful.

Line 10: The AT command +CMSS is used to send the SMS text message from the
message storage of the GSM / GPRS modem. "I" is the index of the SMS text

message obtained from line 7.

Line 11: "+CMSS: 20" tells us that the reference number assigned to the SMS text

message is 2(.

Line 13: The result code "OK" indicates the execution of the AT command +CMSS is

successful.

To send SMS messages from an application, you have to write the source code for
connecting to and sending AT commands to the mobile phone or GSM/GPRS
modem, just like what a terminal program does. You can write the source code in C,
C++, Java, Visual Basic, Delphi or other programming languages you like. However,

writing your own code has a few disadvantages:

You have to learn how to use AT commands.

You have to learn how to compose the bits and bytes of an SMS message. For
example, to specify the character encoding (e.g. 7-bit encoding and 16-bit Unicode
encoding) of an SMS message, you need to know which bits in the message header

should be modified and what value should be assigned.

Sending SMS messages with a mobile phone or GSM/GPRS modem has a drawback -
- the SMS transmission speed is low. As your SMS messaging application becomes

more popular, it has to handle a larger amount of SMS traffic and finally the mobile

61

phone or GSM/GPRS modem will not be able to take the load. To obtain a high SMS
transmission speed, a direct connection to an SMSC or SMS gateway of a wireless
carrier or SMS service provider is needed. However, AT commands are not used for
communicating with an SMS center or SMS gateway. This means your have to make
a big change to your SMS messaging application in order to move from a wireless-

modem-based solution to a SMSC-based solution.

In most cases, instead of writing your own code for interacting with the mobile phone
or GSM/GPRS modem via AT commands, a better solution is to use a high-level
SMS messaging APl (Application programming interface) / SDK (Software
development kit) / library. The API/ SDK / library encapsulates the low-level details.
So, an SMS application developer does not need to know AT commands and the
composition of SMS messages in the bit-level. Some SMS messaging APls / SDKs /
libraries support SMSC protocols in addition to AT commands. To move from a
wireless-modem-based SMS solution to a SMSC-based SMS solution, usually you
just need to modify a configuration file / property file or make a few changes to your

SMS messaging application's source code.

Another way to hide the low-level AT command layer is to place an SMS gateway
between the SMS messaging application and the mobile phone or GSM/GPRS

modem. (This has been described in the section "What is an SMS Gateway?" earlier.)

Simple protocols such as HTTP / HTTPS can then be used for sending SMS messages
in the application. If an SMSC protocol (e.g. SMPP, CIMD, etc) is used for
communicating with the SMS gateway instead of HTTP / HTTPS, an SMS messaging
APl / SDK / library can be very helpful to you since it encapsulates the SMSC

protocol's details.

Usually a list of supported / unsupported mobile phones or wireless modems is
provided on the web site of an SMS messaging APl / SDK / library or an SMS
gateway software package. Remember to check the list if you are going to use an

SMS messaging API/ SDK / library or an SMS gateway software package.

Major Drawback of Sending SMS Messages through a Mobile Phone or GSM/GPRS
Modem -- Low SMS Sending Rate

62

Using a mobile phone or GSM/GPRS modem to send SMS messages has a major
drawback that is the SMS sending rate is too low. Only 6-10 SMS messages can be
sent per minute (when the "SMS over GSM" mode is used). The performance is not
affected by the connection between the computer and the mobile phone or |
GSM/GPRS modem (i.e. the SMS sending rate is about the same no matter the mobile |
phone or GSM/GPRS modem is connected to the computer through a serial cable,
USB cable, Bluetooth link or infrared link) and does not depend on whether a mobile
phone or GSM/GPRS modem is used (i.e. the SMS sending rate is about the same no
matter a mobile phone or a GSM/GPRS modem is used). The determining factor for

the SMS sending rate is the wireless network. i

The 2nd Way: Sending SMS Messages from a Computer through a Connection !

to the SMSC or SMS Gateway of a Wireless Carrier or SMS Service Provider

The way for sending SMS messages from a computer through a mobile phone or
GSM/GPRS modem has a major limitation that is the SMS sending rate is too low, If

you need a high SMS sending rate, obtaining a direct connection to the SMS center

(SMSC) or SMS gateway of a wireless carrier is necessary. The connection may be
made through the Internet, X.25 or dial-up. If you cannot get a direct connection to
the SMSC or SMS gateway of a wireless carrier, another choice is to get a connection
to the SMS gateway of an SMS service provider, which will forward SMS messages
towards a suitable SMSC.

Difficulties in Getting a Direct Connection to the SMSC or SMS Gateway of a

Wireless Carrier

It can be difficult for small businesses or individual application developers to obtain a
direct connection to the SMSC or SMS gateway of a wireless carrier since a wireless
carrier may only provide such service to those who have huge SMS traffic. Buying
SMS messages in bulk means the total fee will be very high (although the fee per
SMS message will be low). |

Besides, the information about the service (for example, cost of the service, protocols
supported, network coverage) is usually not stated clearly on a wireless carrier's web

site. This is because the wireless carrier staff wants to know more about your SMS

63

messaging application, such as its nature and traffic requirement, before offering a
price and providing further information to you. To decide which wireless carrier's
service plan is the best, you have to discuss with the sales staff of each wireless
carriers. This is troublesome if you just want to send a small number of SMS
messages. (Of course if you need to send a large amount of SMS messages, say one
million SMS messages per month, negotiating with the wireless carrier staff for a

more favorable agreement is a necessary step.)

A more convenient way to send SMS messages is to use the SMS connectivity service

of an SMS service provider.

SMS Service Providers (SMS Gateway Providers, SMS Resellers, SMS Brokers)

There is a demand for SMS connectivity from applications that does not require the

sending or receiving of large amount of SMS messages. One example is a remote

monitoring system. If the remote monitoring system finds that a certain server is not

responding, it will send an SMS alert to the system administrator's mobile phone, This 1
remote monitoring system will have a very small amount of SMS traffic per month \'

since the servers being monitored should be working fine most of the time.

Since a wireless carrier usually does not provide direct SMSC or SMS gateway access
to users without a large amount of SMS traffic, some companies come out to {ill the
gap. These companices are called SMS service providers. There is no minimal
purchase requirement or monthly minimum usage requirement for many SMS service

providers.
SMS service providers are also known as SMS gateway providers, SMS resellers and

SMS brokers because of the following reasons:

SMS gateway providers -- An SMS service provider provides an SMS gateway for its
users to send SMS messages to. This SMS gateway will then route the SMS messages
to another SMS gateway or SMSC.

SMS resellers and SMS brokers -- SMS service providers buy a large amount of SMS
messages from a lot of wireless carriers at a low price per SMS message. They then

sell the SMS messages at a price higher than the cost.

64

j

Unlike wireless carriers, many SMS service providers provide detail information
about their SMS connectivity service on their web site. For example, you may find the
cost of the service, network coverage, protocols supported, developers' guide, etc, on
the web site. Thus, the service of different SMS service providers can be compared
easily. If you are not happy with, say the price or network coverage of an SMS service

provider, you can simply leave its web site and find another SMS service provider.

Another advantage of using the SMS connectivity services of SMS service providers
is that their network coverage is very good. They work hard to cover as many wireless
networks as possible so as to make their services attractive. Some SMS service
providers can send SMS messages not only to GSM wireless networks, but also to

CDMA and TDMA wireless networks.

It is easy to send SMS messages with an SMS service provider, Here are the typical

steps:

Register for an account on the SMS service provider's web site. (An SMS service ll
provider may allow newly registered users to send a few free SMS messages for !\“

testing its service quality.)
Log into the account.

Buy a number of credits or SMS text messages online. Many SMS service providers

suppott credit card payment and some also support PayPal.

Send SMS messages using a protocol / interface (e.g. HTTP, email, FTP) supported
by the SMS service provider.

SMS service providers can be divided into two categories depending on how they

require you to pay for their SMS messaging service:

Credit-based -- You purchase a number of credits from the SMS service provider's
web site. Sending one SMS me.ssage will cost you one or more credits, depending on
the country you send the SMS message to. For example, sending an SMS text
message to India might cost you one credit while sending an SMS text message to the

US might cost you two credits.

65

$MS-based -- You purchase a number of SMS messages from the SMS service
provider's web site. The cost per SMS message is the same for all destinations. For
example, if you purchase ten SMS messages, you can send at most ten SMS messages

no matter the destination is India or the US.

The cost per SMS message sent depends on which SMS service provider you choose
and how many SMS messages you purchase. It starts at around US $0.06 to US $0.07
per SMS message. The more SMS messages you purchased, the lower the cost of

sending one SMS message.

Introduction to AT Commands

AT commands are instructions used to control a modem. AT is the abbreviation of
ATtention. Every command line starts with "AT" or "at". That's why modem
commands are called AT commands. Many of the commands that are used to control
wired dial-up modems, such as ATD (Dial), ATA (Answer), ATH (Hook control) and
ATO (Return to online data state), are also supported by GSM/GPRS modems and
mobile phones. Besides this common AT command set, GSM/GPRS modems and
mobile phones support an AT command set that is specific to the GSM technology,
which includes SMS-related commands like AT+CMGS (Send SMS message),
AT+CMSS (Send SMS message from storage), ATHCMGL (List SMS messages) and
AT+CMGR (Read SMS messages).

Note that the starting "AT" is the prefix that informs the modem about the start of a
command line. It is not part of the AT command name. For example, D is the actual
AT command name in ATD and +CMGS is the actual AT command name in
AT+CMGS. However, some books and web sites use them interchangeably as the

name of an AT command,

Here are some of the tasks that can be done using AT commands with a GSM/GPRS

modem or mobile phone:

66

Get basic information about the mobile phone or GSM/GPRS modem. For example,
name of manufacturer (AT+CGMI), model number (AT+CGMM), IMEI number
(International Mobile Equipment Identity) (AT+CGSN) and software version
(AT+CGMR).

. ' Get basic information about the subscriber. For example, MSISDN (AT+CNUM) and
IMSI number (International Mobile Subscriber Identity) (AT+CIMI}.

Get the current status of the mobile phone or GSM/GPRS modem. For example,
mobile phone activity status (AT+CPAS), mobile network registration status
(AT+CREGQG), radio signal strength (AT+CSQ), battery charge level and battery
charging status (AT+CBC).

Establish a data connection or voice connection to a remote modem (ATD, ATA, etc).
Send and receive fax (ATD, ATA, AT+F*).

y
Send (AT+CMGS, AT+CMSS), read (AT+CMGR, AT+CMGL), write (AT+CMGW) 1{
or delete (AT+CMGD) SMS messages and obtain notifications of newly received l
SMS messages (AT+CNMI).

Read (AT+CPBR), write (AT+CPBW) or search (AT+CPBF) phonebook entries.

Perform security-related tasks, such as opening or closing facility locks (AT+CLCK),
checking whether a facility is locked (AT+CLCK) and changing passwords
{AT+CPWD).

{Facility lock examples: SIM lock [a password must be given to the SIM card every
time the mobile phone is switched on] and PH-SIM lock [a certain SIM card is
associated with the mobile phone. To use other SIM cards with the mobile phone, a

password must be entered.])

Control the presentation of result codes / error messages of AT commands. For
example, you can control whether to enable certain error messages (AT+CMEE) and
whether error messages should be displayed in numeric format or verbose format
{(AT+CMEE=! or AT+CMEE=2).

67 ;

Get or change the configurations of the mobile phone or GSM/GPRS modem. For
example, change the GSM network (AT+COPS), bearer service type (AT+CBST),
radio link protocol parameters (AT+CRLP), SMS center address (AT+CSCA) and
storage of SMS messages (AT+CPMS).

Save and restore configurations of the mobile phone or GSM/GPRS modem. For
example, save (AT+CSAS) and restore (AT+CRES) settings related to SMS

messaging such as the SMS center address.

Note that mobile phone manufacturers usually do not implement all AT commands,
command parameters and parameter values in their mobile phones. Also, the behavior
of the implemented AT commands may be different from that defined in the standard.
In general, GSM/GPRS modems designed for wireless applications have better

support of AT commands than ordinary mobile phones.

In addition, some AT commands require the support of mobile network operators. For
example, SMS over GPRS can be enabled on some GPRS mobile phones and GPRS

modems with the +CGSMS command (command name in text: Select Service for MO
SMS Messages). But if the mobile network operator does not support the transmission

of SMS over GPRS, you cannot use this feature.

Basic Commands and Extended Commands
There are two types of AT commands: basic commands and extended commands.

Basic commands are AT commands that do not staft with "+", For example, D (Dial),
A (Answer), H (Hook control) and O (Return to online data state} are basic

commands.

Extended commands are AT commands that start with "+". All GSM AT commands
are extended commands. For example, +CMGS (Send SMS message), +CMSS (Send
SMS message from storage), FCMGL (List SMS messages) and +CMGR (Read SMS

messages) are extended commands.

68

—

General Syntax of Extended AT Commands

The general syntax of extended AT commands is straightforward. The syntax rules
are provided below. The syntax of basic AT commands is slightly different. We will

not cover the syntax of basic AT commands in this SMS tutorial since all SMS

messaging commands are extended AT commands,

Syntax rule 1. All command lines must start with "AT" and end with a carriage return
character. (We will use <CR> to represent a carriage return character in this SMS
tutorial.) In a terminal program like HyperTerminal of Microsoft Windows, you can

press the Enter key on the keyboard to output a carriage return character.

Example: To tist all unread inbound SMS messages stored in the message storage

~ area, type "AT", then the extended AT command "+CMGL", and finally a carriage

return character, like this: j‘ii
|}h
ATHCMGL<CR> ‘

Syntax rule 2. A command line can contain more than one AT command. Only the
first AT command should be prefixed with "AT". AT commands in the same

command-line string should be separated with semicolons.

Example: To list all unread inbound SMS messages stored in the message storage area
and obtain the manufacturer name of the mobile device, type "AT", then the extended
AT command "+CMGL", followed by a semicolon and the next extended AT
command "+CGMI":

ATHCMGL;+CGMI<CR>

An error will occur if both AT commands are prefixed with "AT", like this:

AT+CMGL;AT+CGMI<CR>
68

Syntax rule 3. A string is enclosed between double quotes.

Example: To read all SMS messages from message storage in SMS text mode (at this
time you do not need to know what SMS text mode is. More information will be
provided later in this SMS tutorial), you need to assign the string "ALL" to the
extended AT command +CMGL, like this:

AT+CMGL="ALL"<CR>

Syntax rule 4. Information responses and result codes (including both final result
codes and unsolicited result codes) always start and end with a carriage return

character and a linefeed character.

Example: After sending the command line "AT+CGMI<CR>" to the mobile device,

the mobile device should return a response similar to this:

<CR>»<LF>Nokia<CR><L}>
<CR><LF>OK<CR><LF>

The first line is the information response of the AT command +CGMI and the second
line is the final result code. <CR> and <LF> represent a carriage return character and
a linefeed character respectively. The final result code "OK" marks the end of the
response. It indicates no more data will be sent from the mobile device to the

computer / PC.

When a terminal program such as HyperTerminal of Microsoft Windows sees a
carriage return character, it moves the cursor to the beginning of the current line.
When it sees a linefeed character, it moves the cursor to the same position on the next

line. Hence, the command line "AT+CGMI<CR>" that you entered and the

70

4

corresponding response will be displayed like this in a terminal program such as

HyperTerminal of Microsoft Windows:

ATH+CGMI
Nokia

OK

Information Response and Final Result Code

Don't forget the meanings of information response and final result code stated above,

since you will see these two terms frequently as you go through this SMS tutorial.

AT+CGMI <-- Command line entered ;"H.
Nokia <-- Information response w

OK <.- Final result code

Case Sensitivity of AT Commands

In the SMS specification, all AT commands are in uppercase letters, However, many
GSM/GPRS modems and mobile phones allow you to type AT commands in either
uppercase or lowercase letters. For example, on Nokia 6021, AT commands are case-

insensitive and the following two command lines are equivalent:

AT+CMGL<CR>

at+cmgl<CR>

71

Sending SMS through GSM Modem using AT Commands

Port Settings

In this tab, you will have to do port settings which will be the same as you did in
hyper terminal and then click the OK button. If modem is connected successfully, a

message box will appear with the message “Modem is connected”.

Fart Ve skt

it Has] 5
ety] a -
i {

Fprgloan Faxan

Lipd Pavend | ¥

=y Toeded TEM

TR T '
Fagg v e et “‘"
P Ly sid

public SerialPort OpenPort(string p_strPortName,

int p_uBaudRate, int p_uDataBits, int p_uReadTimeout, int p_uWriteTimeout)

receiveNow = new AutoResetEvent(false);

SerialPort port = new SerialPort();

try

port.PortName = p_strPortName; HCOMI

72

port.BaudRate = p_uBaudRate; /19600

port.DataBits = p_uDataBits; /18 ;
port.StopBits = StopBits.One; I

port.Parity = Parity.None; //None

port.ReadTimeout = p_uReadTimeout; /1300

port. WriteTimeout = p_uWriteTimeout; /300

port.Encoding = Encoding.GetEncoding("iso-8859-1");
port.DataReceived += new SerialDataReceivedEventHandler
(port_DataReceived);
port.Open(); ’;I
port.DtrEnable = true; la

\
port.RtsEnable = true; g

}

catch (Exception ex)
{

throw ex;

return port;

73

Send SMS

In the second tab, you can send SMS:

§ SMS Application

Port Seftings. SerdSMS | Read MG Delete SMS] -

SiM - |+923331234567

Massage o o e
Have a nice day

p

|

!L'

Conné‘c_tibn Qtatﬁs' o et
Corifection:Status :
| Corinected st COK

public bool sendMsg(SerialPort port, string PhoneNo, string Message)

bool isSend = false;

try

string recievedData = ExecCommand(port,"AT", 300, "No phone

connected");

74

recievedData = ExecCommand{port,"AT+CMGF=1", 300,

"Failed to set message format.");
String command = "AT+CMGS=\"" + PhoneNo + "\"";
recievedData = ExecCommand{port,command, 300,

"Failed to accept phoneNo");
command = Message + char.ConvertFromUtf32(26) + "\r";
recievedData = ExecCommand(port,command, 3000,

"Failed to send message"); /3 seconds
if (recievedData.Ends With("\r\nOK\r\n"))

{
isSend = true;
}

else if (recievedData.Contains("ERROR"))

{

isSend = false;

}

return isSend;

}

catch {Exception ex)
f
L

throw new Exception{ex.Message);

75

CHAPTER 8

TESTING TECHNIQUIES IN REAL TIME

8.1. Applying Power for the First Time:

Use a current limited power supply when applying power to the circuit {(transmitter
and receiver both) board for the first time. By limiting the current, incorrectly inserted
components or other parts may survive, but without current limiting, there is a

likelihood of permanent damage to the incorrectly inserted components.

8.2. Checking for the Power Supply: 1'”
If you observe excessive current, shut off the power supply immediately. If you see m

zero current, the power may be connected in the wrong polarity, or the IR LED may thy
be installed backwards or not soldered properly. Also, check the voltage regulator '

connection.

As a final check before proceeding, measure the +5 volt power line on
the board (both transmitter and receiver) to verify that the voltage regulator is

producing the proper +5 volt power for all the other components on the board.

8.3. Testing the Transmitter Circuit:

The transmitter circuit was tested by applying a voltage of 5 volts to the circuit.
Initially, the transmitter circuit was tested by using an ordinary LED in place of an IR
LED as viewing of the outpﬁt of the IR LED is intricate as compared to viewing of
the output of an ordinary LED. Then the transmitter circuit was tested by using an IR
LED by putting a camera in front of it. If blue rays appeared on the camera screen that

implied that the transmitter circuit was transmitting the IR rays correctly.

76

i

8.4, Testing the Receiver Circuit:

The receiver circuit was tested by first switching on the receiver circuit; the alarm
rang for a period of 30 seconds for the first time. During the period of 30 seconds, we
aligned the transmitter circuit wrt the receiver circuit and after the alignment, if the IR
beam was cut or intersected, then the alarm went off again. This correctly
demonstrated the proper functioning of both, the transmitter circuit and the receiver

circuit.

77

hy

CHAPTER 9

CONTRIBUTION OF THE PROJECT

Our security system provides many features which have not been provided by most
expensive systems available in the market. Besides all the processes in our system are
automatic in nature, also our system has immense scope for further expansion as we
can use multiple IR beams, use face recognition etc. Our system is cheap and made on
NES5S55 timer [C which is very reliable. Also our system is protected by a password

making it accessible only to the owner.

Thus the baseline is that we have built a system which has more features than most
available systems present, that too at a lower cost.
The areas of application for IRVSMS are:
1. Museums
2. Home security
3. Office security
4, Jeweler shops
5. Banks

78

CHAPTER 10

CONCLUSIONS

The core technology is an integrated security system providing detection of an
intrusion, capturing real time video and images of the intrusion and sending sms

informing intrusion with a combination of hardware circuits and software codes.

This system is clearly beneficial as it provides utmost security by features like video

capturing, image acquisition, backup creation and message sending.

[n the last 16 weeks, we have successfully implemented an infrared based surveillance

system which provides full proot security,

Work performed

+ Construction of a full proof security system.
« Use of NESSS timer IC for both the circuits.
+ Connection of the webcam with the computer as well as the circuit.
» Code developed for the following:

* Video capturing,

* Video saving,

* Video transferring,

+ Image acquisition,

* Image saving,

« Image trarnsferring,

s SMS sending.

79

I

I

'J%HII

The problems faced

e Alignment of the IR transmitter and receiver circuit in a straight line.

e Range of IR LED.

¢ Providing enough power for both the circuit and the webcam.
¢ Synchronization with computer peripheral.

» Creating a back up of images and videos in real time.

e Soldering of the circuit was time consuming.

80

]

il

CHAPTER 11
REFERENCES

4 Yuming Liang and Lihong Xu, “On Global Path of an IR Beam and Planning

Jfor intrusions based on IR Beam Interception”, Shanghai, China, 2009.

4 Tetsuo Asano, David Kirkpatrick and Chee Yap, “On Pseudo Approximation

Algorithms with IR Beam Movemeni”, Barcelona, Spain, 2002.

4 Wilson D. Esquivel and Luciano E. Chiang, “IR Beam and IR Mesh

Management and requirements for both” Robotica, Vol.20.No.1, pp49-58,
2002,

4 S. G. KIM and J. H. KIM: Ummnanned IR beams and infrared technology for

avoidance of infrusions.

4 Krishna Nanda Gupta, Prashant Agarwal, Mayur Agarwal: IR Technology.
4+ James Neufeld, Jason Roberts, Stephen Walsh, Michael' Sokolsky, Adam

Milstein and Michael Bowling: Autonomous Geocaching, Navigation and

Goal Finding in Outdoor Domains by using infraved technology.

4 www.ieeexplore.com

#

www.robokits.co.in

4 www.alldatasheets.com

81

m
|
\ |
(1]

CHAPTER 12

APPENDIX

12.1. MAIN CODE FOR DETECTION OF THE WEBCAM, THE VIDEO

STREAMING, IMAGE CAPTURING, IMAGE SAVING, VIDEO SAVING,
SMS SENDING AND BACKUP CREATION,

The following code is the main program code which manages every module.

using System;

using System.Collections.Generic;
using System.ComponentModel;
using System.Data;

using System.Dr'awing;

using System.Text;

using System.Windows.Forms;
using System.Diagnostics;

using System.10;

using System.Net.Sockets;

using System.lO.Ports;

using AForge.Video;
using AForge.Video.DirectShow;

using AForge.Video. VFW;

using InTheHand Net;
using InTheHand.Net.Bluetooth;
using InTheHand.Net.Sockets;

1 using InTheHand, Windows.Forms;

82

.

elp

)

using Brecham.Obex;

namespace WindowsFormsApplication|
{
public partial class oyl i onm
{
private bool DeviceExist = false;
privaie Filwrtnfot cilection videoDevices;
private VideoCaptueiovice videoSource = null;
AV ey writer = new AV ITWrirer();
DlacoathClent client;
Obesihenttession session;
By img,imgl;
Addiin obj_form2 = new Adnin();
SerialPort port = new SeraiPore();

clsiads objelsSMS = new ¢bsbMS();

public Form1{)
{

InitializeComponent();

private void getCamList{object sender, FyemtArgs €)
{
iry
{
videoDevices = new
FilerinteCollecrion(iliwrCatepory. VideolnputDevice),
comboBox 1.Items.Clear();
if (videoDevices.Count == 0)

throw new Apphcationl xeuption();

DeviceExist = true;

83

{34

foreach (1 Hierinte device in videoDevices)

{

comboBox1.Items.Add(device.Name};

}

if{fcomboBox 1.[tems.Contains("Webcan-101"))

{

comboBox|.SelectedIndex = 1;

start_Click(sender,e);

}

else

{

getCamList(sender, e);

ZeamboBoxt Seleetedindex = 00 dmake dafault to first cam !'
} |;|d
catch (Applicationd seoption)

{
DeviceExist = false;

comboBox|.Items. Add("No capture device on your system™);

private void rfsh_Click(object sender, FucniArgs e)

{

getCamList(sender,e};

private void start_Click{object sender, byentargs e)

{

if (start. Text == "&Start")
{

84

it {DeviceExist) '
{
videoSource = new
Videod aptureevice(videoDevices[comboBox 1. SelectedIndex].MonikerString);
videoSource. NewFrame += new
s P beenttiandior(video_NewFrame);
CloseVideoSource();
videoSource.DesiredFrameSize = new 517¢(320,240),
IvideoSource. DestredbrameRae = 10;
videoSource.Start();
label2. Text = "Device running...";
start. Text = "&Stop™;
timerl.Enabled = true;

timer2.Enabled = true; |

string datetime = Dt T une Now. ToString("dd-mm-yy hh-mm-ss™); '
writer,Open(" C:i\UsersiChammyDesktopiSurveillance h
|

VideowVideo "+datetime+".avi”, 320, 240); o
this.port = objclsSMS.OpenPort("com8§"”, 9600, 8, 300, 300); ‘1
if (this.port = null)

{

A1 objelsSM S sendMsgithisport, "HOTOBE6048232" "Intrustion

Detected at ™+ DateTime Now. ToSwingi)n

i

1

MessageBox. Show("Message bas been sent successtullyy

MessageBox.Show("Fatied 1o send message”n:
@R

ihis.port.Close();

¢lse

85

label2. Text = "Frror: No Device setected.”;

}
else
{
it (videoSource.IsRunning)
{
timerl.Enabled = false;
timer2.Enabled = false;
CloseVideoSource();
label2. Text = "Device stopped.”;
start. Text = "&Start";

writer.Close();

private void videoNewFrame(object sender, NowtramebventArgs eventArgs)
{

img = (iziunap)eventArgs.Frame.Clone();

imgl = (Mian)eventArgs.Frame.Clone();

pictureBox |.Image = img;

writer.FrameRate = 2;

writer. AddFrame(imgl};

private void CloseVideoSource()

{
if (!(videoSource == null))

il (videoSource.lsRunning)

{
videoSource.SignalToStop();

86

'iu

il

i

videoSource = null;

writer.Close();

private void timerl_Tick(object sender, ventArgs €)

{

label2. Text = "Device running... " + videoSource.FramesReceived. ToString()
+ 7 IPSTY

il (obj_form2 key == 1)

{
buttond. Text = "Lxit Admin";
comboBox1.Enabled = true;
comboBox2.Enabled = true; !
rfsh.Enabled = true;
start.Enabled = true; |“
button|.Enabled = true; i
button2.Enabled = true; |
buiton3.Enabled = true;
button5.Enabled = trug;
buttoné.Enabled = true;

}

clse if (obj_form2.key ==0)

{
button4. Text = "Admin";
comboBox|.Enabled = false;
comboBox2.Enabled = false;
rfsh.Enabled = false;
start.Enabled = false;
button|.Enabled = false;
button2.Enabled = false;
button3.Enabled = false;
button5.Enabled = falsc;

87

4

button6.Enabled = false;

private void Forml_FormClosed(object sender, I'ormi€ losedEventArgs e)

{
CloseVideoSource();

private void exitToolStripMenultem_Click(object sender, verniArgs €)

{
CloseVideoSource();
J |
ihy
. i
private void button]_Click(object sender, {iventArgse) i"
{ siu"'
pictureBox2.Image = pictureBox|.Image;
}

private void button2_Click(object sender, I'ventArgs €)
string datetime = D Time Now. ToString("dd-mm-yy hh-mm-ss");
pictureBox2.Image.Save(‘¢"C \Users:Chammy\Desktop\Surveillance
IimagesiImage"+datetime+".bmp"),

H

private void Form1_Load(object sender, lventArps e)
{
rfsh_Click(sender,e):
comboBox2.Text = (timer2.Interval/1000). ToString();

88

private void timer2_Tick(object sender, tventArgs e)

{ B
buttonl_Click(sender, ¢); f

button2_Click(sender, e);

private void button3_Click(object sender, L:ventArus e)

{

Process. Start(@e " CiUsers\Chammy\Desktop\Surveillance Images™);

private void comboBox2_SelectedIndexChanged(object sender, I'ven(Aros)

{ . X

b
int timer_changed; ';'
¥
timer_changed = int.Parse(comboBox2.Text), ,‘|
timer_changed = timer_changed * 1000; '

timer2.Interval = timer_changed;

private void button5_Click(object sender, EventArgs e)

{

Process, Start(Ze" ChUsers\ChammyiDesktop\Surveillance Video");

private void button6_Click(object sender, | ventargzse)
using (Selectdityeroothlbovicelsalon bldialog = new
Blocreoihivicetialoe())
bldialog.ShowAuthenticated = true;
bldialog.ShowRemembered = true;

bldialog.ShowUnknown = true;

29

il' (bidialog.ShowDialog(} == [JisinviiesulLlOK)
{ '

il' (bldialog.SelectedDevice == null)
{

Mewsauelion . Show("Na device selected”, "Error”,

MessaseBosButions, OK, MessageBoxicon, Error);

return;

Blaeteothisey woeinio selecteddevice = bldialog.SelectedDevice;
BlucioothDndPomt remoteEndPoint = new
Fvtooth b ndivoini(selecteddevice. Device Address,

GlacteothService ObexFileTransfer); "

client = new DHuetoathi Hom(); o
try
client.Connect(remoteEndPoint);
session = new Obex(Honibession(elient. GetStream(),
Lieis. MaxValue),
session.Connect({box{onstan. Target.FolderBrowsing);
catch (Gockethxeeprion)
return,
cateh (Obiessnmnsadbooeniionm)
retur;

catch (E* s :.‘g'-?%uf‘i)

90

return;

if (opdOpenDialog.ShowDialog() == iialogResuli.OK)
{
UploadFiles(opdOpenDialog.FileNames);

i (session = nulb)

session.Disconnect(); o

session.Dispose();

}

caleh { 1}

if (client I=null)

{
client.Close();

client.Dispose();

private void UploadFiles(string[] files)

{

long size =0,

91

iisistring> filestoupload = new Lisi<string>();

foreach (string filename in files)

i (File Exists(filename))

{
Fileints info = new Fiieinfo(filename);
filestoupload.Add(filename});

size += info.Length;

using (I'iletorm uptorm = new l'itelormi(new 1 ist<string>(filestoupload),

false, session, size, null))

{ i?
upform.ShowDialog(); ‘|
) ’

private void buttond_Click(objeet sender, fventArus e)

{
if (buttond. Text == "Admin")
{
obj_form2.Show();
}
if (buttond. Text == "[:xit Admin")
{

buttond. Text = "Adnuin";
comboBox1.Enabled = false;
comboBox2.Enabled = falsc;
rfsh.Enabled = false;
start.Enabled = false;
buttonl.Enabled = false;

92

button2.Enabled = false;
button3.Enabled = {alse;
buttonS.Enabled = false;
button6.Enabled = talse;
obj_form2.key = 0;

——

12.2. CODE FOR FILE TRANSFERRING THROUGH BLUETOOTH

The following code snippet deals with the file transferring wizard it shows the file “
information and the time remaining, etc. The code shows a new window and a status d?‘!

bar which shows the file transfer progress.

using System;

using System.Collections.Generic;
using System.ComponentModel;
using System.Data;

using System.Drawing;

using System.lO;

using System.Text;

using System. Windows.Forms;
using Brecham.Obex;
namespace WindowsFormsApplicationl

{

public partial class Ml ot o

93

ffregion Fields
public Excoptionlrcicsare ExceptionMethod;

OrsoxC HenrSession currentSession;
string dir;

bool download;

bool exceptionoccured = false;

int filesProcessed = 0;
{isi<string> filesToProcess;

tong totalsize;

#endregion Fields _
)
#region Constructors]l
v
public FileForm(!.isi<string> files, bool down, ObexChentSession
session, long size, string directory)

{

InitializeComponent();

filesToProcess = files;
download = down;
currentSession = session;
totalsize = size;

dir = directory;

——

#endregion Constructors

#region Public Properties

94

Fornd domnsiuentAres e)

public int FilesUploaded

{ |
gel
{
return filesProcessed;
}
}

#endregion Public Properties

#region Private Methods

private void FileForm_FormClosing(object sender,

n

{ \
if (bgwWorker.CancellationPending) i ‘

{ #

e.Cancel = truc;

relurn;

if (bgwWorker.IsBusy)

if (MessageBox.Show("Cancel operation?”, “Confirm",
“esssecoxButens, OKCancel, MessageRoxican.Question) == DisiogResult.OK)

bgwWorker.CancelAsync();
IbIFileCount. Text = "Canceling...";
while (bgwWorker.IsBusy)

{
System.Threading. { hread. Sleep(2000);

95

}
clse

e.Cancel = true;

private void FileForm_Shown(object sender, FventArgs €)

{
if (download)

{

IbIFileCount.Text = string.Format("Downloading File | of ‘

{017, filesToProcess.Count);
IbICurrentFile. Text = string.Format("Downloading ;0! ",

filesToProcess[0]); ‘
!

this. Text = "Downloading..."; ‘

}

else

{

IbIFileCount.Text = string.Format("Uploading File | of {0}",

filesToProcess.Count);
IbiCurrentFile.Text = string. Format("Uploading {0}",

filesToProcess[0]);

this.Text = "Uploading...™;

bgwWorker.RunWorkerAsync();

——

private long ProcessStreams(sirennt source, Streiun destination, long progress,

string filename)

96

byte[] buffer = new byie[1024 * 4];
while (true) I
{

JlReport downloaded Bile size

bgw W orker.ReportProgress((int)(({progress * 100) /

totalsize)), progt:ess);

if (bgwWorker.CancellationPending)
d

currentSession. Abort();

return O

}

iy i‘1‘1

{ .
int length = source.Read(buffer, 0, buffer.Length); *"

if (length == 0) break;
destination. Write(bufter, 0, length),
progress += length;
}
FReturn @ as Hoperatton was canceled so that processedtiles
1s st
catch (FOException ex)
{
exceptionoccured = true;
ExceptionMethod(ex);
return 0;
}
cateh (OboxResponselyception exX)
{
exceptionoccured = 1true;

ExceptionMethod(ex);

97

return 0

) ‘.

return progress,

N

private void bgwWorker_DoWork(object sender, [JoWorkbventArgs)
{
long progress = 0;

Drncd e start = Date Time Now;

for (int i =0; i < filesToProcess.Count; i++)

{

string currentfile = filesToProcess|i]; .‘\|

FReport that we started dowaloading noew file
bgwWorker.ReportProgress((int)(((progress * 100) /

totalsize)), 1 + 1);

string filename = download ? Path.Combine(dir, currentfile)

: currentfile;

“ilesiream hoststream = download 7 new
Fiissreean(filename, Fiieaiede. Create, FileAcoess. Write, IileShacre None)
:new FileStream(filename, fileMode.Open,

e Acoess, Read, Filebhare.None);

Abortablestrean remotestream = null;
y
remotestream = download ?

y (AlorabicSamn)currentSession. Get(currentfile, null)

98

i b

(Abartabiosiesu)currentSession. Put(Madh. GetFileName(currentfile), nult); .
} ¥
catch (FOExcoption ex)

{
exceptionoccured = true;
ExceptionMethod(ex);
return,
j
cateh (ObexBesponseierption ex)
{
exceptionoccured = true;
ExceptionMethod(ex);
return; .
W
} 3
using (hoststream) ' ‘
{ /
using (remotestream)
]
1
fong result = download ? ProcessStreams(remotestream,
hoststream, progress, currentfile)

: ProcessStreams(hoststream, remotestream, progress,

currentfile);

Shven i we are canceled we need o report how many flies we have
sircady uplondad

“so that they are added to the Jistview, O it s download we need to

dpartiatly downloaded last fite.

filesProcessed = i;

it (result == 0)

{

99

e.Cancel = true;
return,
else

progress = result;

Pt Dime end = Date'ime Now;

e.Result = end - start;

private void bgwWorker_ProgressChanged(object sender,

Beogress hungedlb ventvgs e)

{ y

prbProgress.Value = e.ProgressPercentage;

if (download)
{

if (e.UserState is long

{
IbiSize. Text = string.Format("Downloaded {0} of {1}
bvtes”, (fong)e.UserState, totalsize);
}
else
{
IblFileCount.Text = string. Format({"Downloading File 10}

af {1}, (int)e.UserState, filesToProcess.Count);
IblCurrentFile. Text = string. Format("Downioading {037,
filesToProcess[(int)e.UserState - 1]);

}

else

100

it (e.UserState is iong)
{
IblSize. Text = string.Format("Uploaded {0} ol {1} bytes",
(long)e. UserState, totalsize);

}
¢lse
{
IbIFileCount. Text = string.Format("Uploading File {0} of
11 (int)e.UserState, tilesToProcess.Count);
IblCurrentFile. Text = string.Format("Uploading {0}",
filesToProcess[(int)e.UserState - 1]);
}

private void bgwWorker RunWorkerCompleted(object sender, M !
PoWorkeCompleedbventAres €)
{
if (exceptionoccured}
{
if (download) !'iic.Delete(Path. Combine(dir,
filesToProcess[filesProcessed]));
this.Close();

rerur;

if (e.Cancelled)
] {
if (download) i':ic.Delete(Path.Combine(dir,

fitesToProcess[filesProcessed]));

3 IblFileCount. Text = "Canceled"™;

101

‘i
_,é

IblCurrentFile. Visible = false;

btnCancel. Text = "Canceled™;
this. Text = "Canceled™;

H

else

{

Covespan elapsed = (inwSpan)e.Result;

iblFileCount. Text = “Done”;
IblCurrentFile. Text = string. Format("Downioad time: {0}
hours 11} minutes (21 seconds. Average speed: {31 KB/sec",
elapsed.Hours,
elapsed.Minutes,
elapsed.Seconds,
Math. Round(totalsize /
clapsed. TotalSeconds/1024,2));
prbProgress.Value = 100;
btnCancel, Text = "Done";

this. Text = "Done";

——t

private void btnCancel_Click(object sender, FveniArgs €)

{

if' (bgw Worker.CancellationPending) return;

it (bgwWorker.IsBusy)

{
bgwWorker.CancelAsync();
this.Text = blFileCount.Text = "Canceling...";

102

™

¢lse

this.Close(};

#endregion Private Methods

#iregion Other

public delegate void Dsvaptivni elegmte(Bxeception ex);

#endregion Other

12.3. SENDING SMS

The following code is used by the SMS Application. The code snippet is a class which
manages opening and closing of communication ports, execution of AT commands,

receive and send date from port.

using Systen;

using System.Collections.Generic;
using System.ComponentModel;
using System.Data;

using System.Drawing;

using System.Text;

1 using System.10.Ports;

using System.Threading;

using System.Text.RegularkExpressions;

namespace WindowsFormsApplication|

103

public class ¢ 13438

{

#region Open and Close Ports
SO Pont
public Seriati'ort OpenPort(string p_strPortName, int p_uBaudRate, int
p_uDataBits, int p_uReadTimeout, int p_uWriteTimeout)
{ .
receiveNow = new Autoloseiizveni(false);

SefdPoct port = new Sorisitory();

iy
{
pott.PortName = p_strPortName; HUOMI El
port.BaudRate = p_uBaudRate; 9600
port.DataBits = p_uDataBits; /8 f
port.StopBits = “iopiits,One; i
port.Parity = {"2ivw . None; /None
port.ReadTimeout = p_uReadTimeout; /300
port. WriteTimeout = p_uWriteTimeout; 7300

port.Encoding = {"ncading. GetEncoding("iso-8859-1");
port.DataReceived += new
Serintlataieccivediverad andler(port_DataReceived);

port.Open();
port.DitrEnable = true;
port.RtsEnable = tiue;

)

calch (Foxeention)

{
Shrow exs

}

return port;,

PN]

104

|
j
E|

Hlose Port |
public void ClosePort(Seriatlort port)
{
ty
{ .
port.Close();
port.DataReceived -= new
seradDataReceivedbventriindler(port_DataReceived);

port = null;

}
catch (Fxeepiion ex)
{
throw ex; N
}
f

Hendregion

Fhxecute AT Command
public string ExecCommand(SerialPort port,string command, int
response’ltmeout, string errorMessage)

{

ry

port.DiscardOutBuffer();
port.DiscardInBuffer();

receiveNow.Reset();

e b

port. Write{command + "u"};

- string input = ReadResponse(port, responseTimeout);

105

3

! i ((input.Length == 0) || ((!input.Ends With("\r\in> ")) &&
| (linput. EndsWith("uinOKwin"))))
throw new A pplicationt sception("No success message was received.”);
return input;
}
catch (ncopiion ex)

{

throw new Agpplastonixeeption(errorMessage, ex);

SHevetve dat from port

public void port_DataReceived(object sender, ScrinlDalaReccivediventirgs e)

il (e.EventType == suriaiiuin.Chars)

receiveNow.Set();

| }

cately (hxeepiions ex)

{

throw ex;

}

public string ReadResponse(sariall®ort port,int timeout)

{

string buffer = string. Empty;

il (receiveNow. WaitOne(timeout, falsc))
) {
106

i
4
-+
3

string t = port.ReadExisting();
buffer +=1;

1

else

{

if (buffer.Length > 0)

|
i throw new Apphostiontacepton(Response received is
incomplete,"y;
else
! throw new Appiicationbxeepton("Na data received from phone.");
| }
i
4 while (!buffer. EndsWith("winOKwn") && buffer. EndsWith("rn> ") &&
buffer. EndsWith("'«w\n ERRORwn"));
} b
catch (Foveepuion ex) |
throw ex;
return buffer;
#region Read SMS
public Auicizeseiiovon: receiveNow:
public “heniosangotolleetion ParseMessages(string input)
shopthdessageCoiivedan messages = new ShorthessapeCollection();
try
107

docen r=new Repex(a W FOMGL:

R R I PE B B R P T GRS TRV TR It IR T

vinecdtm = r.Match(input);

while (m.Success)

{
\ shoriviessars msg = new shortvessage()s
Fose dndex o inParse(m Groups{ 1. Value)y
msg.Index = m.Groups[1].Value;

| msg.Status = m.Groups[2].Value;

: msg.Sender = m.Groups[3].Value;
' msg.Alphabet = m.Groups[4].Value;
] msg.Sent = m.Groups[5].Value;

msg.Message = m.Groups[6].Value;
messages. Add{msg);

m = m.NextMatch();

}

catch (I xueption ex)

{

throw ex;

1

reftin messages,

#endregion

h jvegion Send SMS

static AuicHesaiivon readNow = new AutoResctl vent(false);

mublic bool sendMsg(n«riait’ort port, string PhoneNo, string Message)

108

bool isSend = false;

try

string recievedData = ExecCommand(port,"A'T", 300, "No phone
connected);
recievedData = ExecCommand(port," A'T+CMGE=1", 300, "Failed to set
message format,");
Sering command = "ATHCMGS="" + PhoneNo + """,
recievedData = ExecCommand(port,command, 300, "Failed 1o accept
phoneNo");
command = Message + char.ConvertFromUtf32(26) + ™u";
recievedData = ExecCommand(port,command, 5000, “"IFailed to send
message’); 3 secomds
it (recievedData. EndsWith("rinOKirin"))
{
isSend = true;
} ‘
¢lse if (recievedData.Contains("ERROR™))
{
isSend = false;
3
return isSend;
}
catch (Bxcention)
{
return isSend,

Ahrow new Exceptiontex. Messave)

108

static void DataReceived(object sender, SeriafllYataReceivedbventArps e)
{

iy

{

it (e.EventType == Seriaillata.Chars)
readNow.Set();
;
catel (wepiion ex)

{

throw ex;

#endregion

——

12.4. BACKEND CODE_FOR VARIOUS COMPONENTS-BUTTONS,
MENU, VIDEO SPACE, ETC.

The backend code developed by the visual studio tool which has information about

the main form. The various components, buttons, menu, video space, etc.

namespace WindowsFormsApplication]
{
partial class Fovssld
{
S T PR
U Required designer varable,
S SUaALY

110

private System.ComponentModel.iContaiier components = null;

|

CEsunminary
£ Clean up any resources being used.
lsuninary
PR B PRI L SO A LER. i . . - | N g
S eparam mames ™ disposing Frue f managed resourees should be disposed:
otherwise, fabsesJpuram -
protected override void Dispose(bool disposing)
if (disposing && (components != null))

components.Dispose();

}

base.Dispose(disposing);

#region Windows Form Designer generated code

S SURUTELS

< Required method Tor Designer support - do not modily

Sothe contents of tivs method with the code editor,
SOl

private void InitializeComponent()

{
this.components = new System.ComponentModel.Contamer();
System.ComponentModel.ComponeniRuesourceManager resources = new

System.ComponentModel.¢ smponentRescurceManager(typeof(Form 1));

this.pictureBox | = new System.Windows, Forms.Picture3on();
this.groupBox | = new System.Windows.Forms.Groupl3ox();
this.label2 = new System.Windows.Forms.i.abei();
this.start = new System. Windows.Forms. Hutien();
ihis.rfsh = new System. Windows.Forms.3uiton();
this.labell = new System. Windows. Forms.[.abel();

111

el L

i
o

this.comboBox1 = new System. Windows.Forms.CombaBax();

: this.timerl = new Systemn.Windows.Forms. Timer(this.components);
this.pictureBox2 = new System.Windows.Forms.Picture Box();
this.button] = new System. Windows.Forms.Button();
this.button2 = new System.Windows.Forms.Button();
this.timer2 = new System. Windows.Forms. Uimer(this.components);
this.button3 = new System.Windows. Forms.Buiton();
this.label3 = new System.Windows.Forms.L.abel();
this.label4 = new System. Windows,Forms.t.abi();
this.comboBox2 = new System. Windows.Forms.{ambotios();
this.button4 = new System. Windows.Forms.Bution();
this.button5 = new System. Windows.Forms.Bution();
this.button6 = new System. Windows.Forms.Buiten();
this.opdOpenDialog = new System.Windows.Forms.Upenkileidiatog();
((System.ComponentModel.! Suppot fnidatize)(this.pictureBox 1)).Beginlnit();
this.groupBox |.SuspendLayout();
((System.ComponentModel. s upportinisiatize)(this.pictureBox2}). Begininit();
this.SuspendLayout(};

opictureBox|

this.pictureBox 1.BorderStyle =

System. Windows.Forms. orderbeyvie Fixed3D;
{his.pictureBox | .Location = new System.Drawing.Poini(338, 10);
this.pictureBox1.Margin = new System.Windbws.Forms.I-’add511;;(2, 5,2, 5)%
this.pictureBox | .Name = "pictureBox1";
this.pictureBox1.Size = new System.Drawing.S:z¢(319, 240);
this.pictureBox 1. Tablndex = 0;

this.pictureBox 1. TabStop = false;
A aroupBost

this.groupBox1.Controls.Add(this.label2);
112

i‘

this.groupBox [.FlatStyle = System.Windows.Forms.[-lat5tvie . System;
this.groupBox1.Location = new System.Drawing.Vomni(72, 150);
this.groupBox1.Margin = new System. Windows.Forms.Padding(2, 5, 2, 5);
this.groupBox | .Name = "groupBox 1",

this.groupBox 1.Padding = new System.Windows.Forms.Padding(2, 5, 2, 5);

thissgroupBox1.Size = new System.Drawing.Size(181, 32);
this.groupBox1.Tablndex = 1 1;
this.groupBox1.TabStop = false;

Y label

this.fabel2.AutoSize = true;

this.label2.Location = new System.Drawing.Point(2, 13);
this.label2.Margin = new System.Windows.Forms.Padding(2, 0, 2, 0);
this.label2. Name = *'label2";

this.label2.Size = new System.Drawing.5i7¢(83, 15);
this.label2.Tablndex = §;

this.label2. Text = "Device ready..”;
ikt

this.start.Enabled = lalse;

this.start.FlatStyle = System. Windows.Forms.['latStyvle.System;

this.start.Font = new System.Drawing.l-ont("Microsott Sans Serif™, 9F, |
System.Drawing. ! oni%iv ic. Regular, System.Drawing.GraphicsUinit.Point,
((byteX0)));

this.start.Location = new System.Drawing.Point(187, 111},

this.start.Margin = new System. Windows.Forms.Padding(2, 5, 2, 5);

this.start.Name = "siart";

this.start.Size = new System.Drawing.Size(61, 25);

this.start. TabIndex = 10;

this.start, Text = "&Star"; !

this.start.UseVisualStyleBackColor = true;

113

this.start.Click += new System.iventblandler(this.start_Click);

i vtsh

this.rfsh.Enabled = false;

this.rfsh.FlatStyle = System. Windows.Forms.!'tatstyie. System;

this.rfsh.Font = new System.Drawing.i ont("Microsoft Sans Serif", 9F,
System.Drawing.b-oiistic.Regular, System. Drawing. Graphicsiinit Point,
((byte)(0)));

this.rfsh.Location = new System.Drawing. Pemni(85, 111);

this.rfsh.Margin = ncw System. Windows.Forms.Padding(Z2, 5, 2, 5);

this.rfsh Name = "rtsh";

this.rfsh.Size = new System.Drawing.%izu(61, 25);

this.rfsh. Tablndex = 9;

this.rfsh. Text = "&Refresh"”;

this.rfsh.UseVisualStyleBackColor = true;

this.rfsh.Click += new System.Fvond landler(this.rfsh_Click);

/i labeil

this.labell.AutoSize = true;

this.labell.FlatStyle = System. Windows, Forms.}-latStyic.System;

this.labell.Font = new System.Drawing.{"ont("Microsofl Sans Serif”, 9F,
System.Drawing.i-onistvic.Regular, System. Drawing.CeaphicsUnit Point,
((byte)(O)));

this.labell.Location = new System.Drawing.Poini(69, 35);

this.labell . Margin = new System. Windows.Forms.adding(2, 0, 2, 0);

this.labell.Name = "labei{™;

this.label1.Size = new System.Drawing, ~ize(113, 15);

this.labell. Tablndex = 8;

this.labell, Text = "Select video souree”;

i comboBox!

114

this.comboBox1.Enabled = false;

% this.comboBox1.FlatStyle = System. Windows.Forms.Flaistyle. System;

i this.comboBox1.FormattingEnabled = true;

i* : this.comboBox1.Location = new System.Drawing.Poini(71, 67);

) this.comboBox | .Margin = new System. Windows.Forms.ladding(2, 5, 2, 5);
this.comboBox1.Name = "comboBox1";
this.comboBox1.Size = new System.Drawing.5i2e(201, 23);
this.comboBox 1. Tablndex = 7;

; A umerd

!

this.timerl.Interval = 1000;

this.timer}.Tick += new System.t:ventHandier(this.timer1_Tick);

A opiclureBox

this.pictureBox2.BorderStyle =

System. Windows.Forms.|i~edersivle.Fixed3D;
this.pictureBox2.Location = new System.Drawing.Poini(12, 224);
this.pictureBox2.Margin = new System.Windows.Forms. Padding(2, 5, 2, 5);
this.pictureBox2.Name = "pictureBox2";
this.pictureBox2.Size = new System.Drawing.3i7¢(319, 240},
this.pictureBox2 . Tablndex = 12;
this.pictureBox2. TabStop = false;

i burtond

- this.button}.Enabled = false;
this.button1.FlatStyle = System.Windows.Forms. [iatStyle.System;
this.button1.Font = new System.Drawing.) ont("Micrasoft Sans Serif”, 9F,

System.Drawing.FontStyie.Regular, System.Drawing.GraphicsUnit.Point,

((byte)(0)));

115

this.button1.Location = new System.Drawing.>eint(338, 290},
this.buttonl.Margin = new System.Windows.Forms.Padding(2, 5, 2, 5);
this.button!.Name = "button 1",

this.button1.Size = new System.Drawing.Size(63, 25);

tl‘wis.button 1.TabIndex = 13;

this.buttonl.Text = "&Capture";
this.buttonl.UseVisualStyleBackColor = true;

this.button1.Click += new System.l.ventHandler(this.buttonl_Click);
Zbyten?

this.button2.Enabled = fals¢;

this.button2.FlatStyle = System. Windows.Forms.lFlatis iy]c.System;

this.button2.Font = new System.Drawing.Fount("Microsoft Sans Serif™, 9F,
System.Drawing.Fonisis o Regular, System.Drawing. GiraphicsUnit. Point,
((byre)()));

this.button2.Location = new System.Drawing.Point(338, 385);

this.button2.Margin = new System. Windows.Forms.Padding(2, 5, 2, 5}

this,button2. Name = "button2”;

this.button2.Size = new System.Drawing.5i,2(65, 25);

this.button2.TabIndex = 14;

this.button2.Text = "S&ave™;

this.button2.UseVisualStyleBackColor = true;

this.button2.Click += new System.[-vond landler(this.button2_Click);

Humer?

this.timer2.Interval = 3000;

this.timer2.Tick += new System.izventiiandler(this.timer2_Tick);
butlon3

this.button3.Enabled = false;
116

this.button3 FlatStyle = System.Windows.Forms.Flathiyie. System;

this,button3.Font = new System.Drawing. " ont{("Microsoft Sans Serif”, OF,
System.Drawing.t oni®iy ie.Regular, System.Drawing. CrraphicsUnit.Point,
((by1e)(0));

this.button3.Location = new System.Drawing.Point(443, 301);

this,button3.Margin = new System. Windows.Forms.I’adding(2, 5, 2, 5);

this.button3.Name = "buiton3";

this.button3.Size = new System.Drawing.5iz¢(83, 38);

this.button3.Tablndex = 15;

this.button3. Text = "&Open Image Folder™;

this.button3,UseVisualStyleBackColor = true;

this.button3.Click += new System.tventHandler(this.button3_Click);
/7 fabels

this.label3.AutoSize = true;

this.label3.FlatStyle = System.Windows.Forms.i latSivic. System;
this.label3,Location = new System.Drawing.Poiii (464, 369);
this,label3 Margin = new System. Windows.Forms.Padding(2, 0, 2, 0);
this.label3.Name = "{abel3";

this.label3.Size = new System.Drawing.5ize(151, 15);

this.label3. Tablndex = 16;

this.label3.Text = "Set Image Capture Interval®,
labeld

this.label4.AutoSize = true;
this.label4.FlatStyle = System. Windows.Forms.l latStvic System;
this.label4.Location = new System.Drawing.Point(553, 391);
this.label4 . Margin = new System.Windows.Forms.Padding(2, 0, 2, 0);
this.labeld Name = "labeid”;
this,label4.Size = new System.Drawing.i7¢(32, 15);
this.label4. Tablndex = 18;

117

this.label4. Text = "secs";

I comboBox?

this.comboBox2.AllowDrop = true;

this.comboBox2,.Enabled = false;

this.comboBox2.FlatStyle = System. Windows.Forms.tVlatSiyvle.System;
this.comboBox2.FormattingEnabled = truc;
this.comboBox2.items.AddRange(new object]] {

H]l!
*

e
.
g
"9";
this,comboBox2.Location = new System.Drawing. Point(513, 388);
this.comboBox2.Margin = new System. Windows.Forms.Padding(2, 5, 2, 5);
this.comboBox2.Name = "comboBox2";
this.comboBox2.Size = new System,Drawing.Si2c(31, 23);
this.comboBox2. Tablndex = 19;
this.comboBox2.SelectedIndexChanged += new
System.lzvenitHandler(this.comboBox2_SelectedIndexChanged);

i

A buttonst

this.button4.FlatStyle = System.Windows.Forms.FlatStyle,System;
this.button4.Font = new System,Drawing. [ont("Microsoft Sans Serif”, 9F,
System.Drawing. FontStvie.Regular, System, Drawing.GraphicstUnit.Point,
((byteX0D);
this.button4.Location = new System.Drawing.?¢iy(603, 430);
118

this.buttond . Margin = new System.Windows.Forms."adding(2, 5, 2, 5);
this.button4.Name = "buttond";

this.button4.Size = new System.Drawing.512¢(56, 32);

this.button4. TabIndex = 20;

E‘[1is.butt0114.Text ="A&dmin";

this.buttond.UseVisualStyleBackColor = true;

this.button4.Click += new System.[venthiandler(this.button4_Click);

fbutlond

this.buttonS.Enabled = false;

this.button5.FlatStyle = System.Windows.Forms.|‘latStyle. System;

this.button5.Font = new System.Drawing.]'ont("Microsoit Sans Serif”, 9F,
System.Drawing.FoniSivie.Regular, System,.Drawing.Grapliicstinit.Point,
((byte)(0)));

this.button5.Location = new System.Drawing.Point(546, 301);

this.button5.Margin = new System.Windows.Forms.Padding(2, 5, 2, 5);

this.button5.Name = "button3";

this.button3,Size = new System.Drawing.Siz¢(87, 38);

this.button5.Tablndex = 21;

this.button3. Text = "O&pen Video Folder";

this.button5.UseVisualStyleBackColor = true;

this.button5.Click += new System.b-vonttlandles(this.button5_Click);

Zbutiond

this.button6.FlatStyle = System.Windows. Forms.tlathtvie.System;
this.button6.Location = new System.Drawing.Foini{443, 434);
this.button6.Margin = new System. Windows.Forms. Padding(2, 5, 2. 5):
this,button6. Name = "button6”;
this.button6.Size = new System.Drawing.%i»e(75, 29);
this.button6. Tablndex = 22;
this.button6.Text = "&Backup";

119

this.button6.UseVisualStyleBackColor = true, \
this.button6.Click += new System.l'ventl Iandler(this.button6_Click); i

SapdOnenlhalog
this.opdOpenDialog.Multiselect = truc;

i Formi

this.AutoScaleDimensions = new System.Drawing.Sizel (7F, 15F);

this.AutoScaleMode = System.Windows.Forms.AutohcalcMode.Font;

this.BackColor = System.Drawing,. 5 vstemColors. ButtonHighlight;

this.BackgroundlmageLayout =
System.Windows.Forms.Iimagelavout.Stretch;

this.ClientSize = new System.Drawing.5izc(667, 475);

this.Controls.Add(this.button6);

(his.Controls. Add{this.button5);

this.Controls.Add(this.button4);

this.Controls.Add(this.comboBox2);

this.Controls.Add(this.label4);

this.Controls.Add(this.label3);

this.Controls.Add{this.button3);

this,Controls.Add(this.button2);

this.Controls,Add(this.buttonl);

this.Controls. Add{this.pictureBox2);

this.Controls. Add(this.groupBox 1);

this.Controls. Add(this.start);

this.Controls. Add(this.rfsh);

this.Controls. Add(this.labell);

this.Controls.Add(this.comboBox1);

this.Controls. Add(this.pictureBox1);

120

this.Font = new System.Drawing.i ont("Microsolt Sans Serit", 9F,
System.Drawing.[oniStvic.Regular, System.Drawing. GraphicsUni Point,
((byte)(0)));
this.FormBorderStyle = System.Windows.Forms.['ormBaordersovie . Fixed3D;
" this.Jcon = ((System.Drawing.lcon)(resources.GetObject("$this.fcon")));
this,Margin = new System.Windows.Forms.[Padding(2, 5, 2, 5);
this.MaximizeBox = false;
this.MinimizeBox = false¢;
this.Name = "Form1";
this. Text = "Video Surveillance”,;
this.Load += new System.Dventd landie(this.,Form1_Load);
this.FormClosed += new
System.Windows.Forms.!'crmClosedPventd husdler(this.Form_FormClosed);
((System.ComponentModel.{5upportinitialize)(this.pictureBox 1)). EndInit();

this.groupBox |.ResumeLayout(false);

this.groupBox1.PerformLayout();
((System.ComponentModel.i5upportdnitalize)(this. pictureBox2)). EndInit();
this.ResumeLayout(false);

this.PerformLayout();

S

#endregion

private System.Windows.Forms.PictureBey pictureBox1;

private System. Windows.Forms.GroupBas groupBox|1;
private System.Windows.Forms.}.abel label2;

private System. Windows.Forms.liuios start;

private System. Windows.Forms.iiuiton rfsh;

private System.Windows.Forms.l. abel labell;

private System.Windows.Forms.{ cimbaoliox comboBox1;
private System.Windows Forms. 1iner timerl;

private System. Windows.Forms.ljciureox pictureBox2;

121

orivate System. Windows.Forms.Buiton buttonl;

private System. Windows.Forms.ijuiic:: button2;

private System. Windows.Forms. Tiier timer2;

private System. Windows.Forms.[3utton button3;

private System.Windows.Forms.l zix! label3;

private System.Windows.Forms.iatici labeld;

private System. Windows.Forms.i unibediox comboBox2;
private System.Windows.Forms.i3uiton buttond;

private System. Windows.Forms.uitei buttons;

private System. Windows.Forms,l3utten button6;

private System. Windows.Forms.Opunt ilelialog opdOpenDialog;

——t

12.5. CODE FOR PASSWORD AUTHENTICATION

The authentication code snippet. The program authenticates the user and checks for
the correct password, if the password is correct the user gets through and gets

additional privileges.

using System;

using System.Collections.Generic;
using System.ComponentModel;
using System.Data;

using System.Drawing;

using System.Ling;

using System.Text,

using System.Windows.Forms;
fand

namespace WindowsFormsApplication|
s
1

public partial class Adnzin t Form
122

public int key = 0;

private string passwd = "temp";
public Admin()

{

InitializeComponent();

private void textBox1_KeyUp(object sender, KeyliventArgs e)

{
fry
{
it (e.KeyCode == Ke¢vs.Enter)
{
buttonl_Click(sender, e);
}
if (e.KeyCode == Keys.Escape)
i
Hide();
¥
}
catch (Foeeption ex)
{
MessageBox . Show(ex.Message);
}
3

private void button]_Click{object sender, I'ventArgs)
{

if (textBox 1. Text == passwd)

{
123

key = 1;
textBox1. Text="";
Hide(); ‘
) |
else
{
textBox 1.DeselectAll();
textBox . Text="";
Messagebox. Show("Incorrect Password”);
textBox1.Text="";
textBox1.Select();
}
}

12.6. BACKEND CODE FOR VARIOUS BUTTONS, TEXT
BOXES, ETC.

The following code snippet is the visual studio generated code. It deals with the

various buttons and the texts box, etc.

namespace WindowsFormsApplicationl
partial class Audimin
SR RE) (e
7 Reguired desipaer variable.,
SR

private System.ComponentModel.}Container components = null;
124

S lsummiarys
7 Clean up any resourees being used,
G sisummary
7 sparam nanie="disposing"roe i managed resources should be disposed:
odherwise, taisesYparam.
protected override void Dispose(bool disposing)
{
if (disposing && (components 1= null))
{

components.Dispose();

}
base.Dispose(disposing);

firegion Windows Form Designer generated code

CRLVHE Y

S Reguired merhod For Designer support - o not modify
the cantents of this method with the code editor,

S summarye

private void InitializeComponent()

{
this.textBox 1 = new System. Windows.Forms, TextBox(};
this.button] = new System.Windows.Forms. Button();

this.SuspendLayout();
FlextBoxl

this.textBox1.AcceptsReturn = true;

this.textBox 1.Location = new System.Drawing.oiny(5, 8);
this.textBox1.Name = "textBox1";
this.textBox1.PasswordChar = "',

125

this.textBox1.Size = new System.Drawing. Sz (127, 20);
this.textBox1.Tablndex = 0;
this.textBox1.KeyUp += new

System, Windows.Forms. ey venttlandler(this.textBox1_KeyUp);

fbutronl

this.button].Location = new System.Drawing.P¢ing(1335, 8);
this.buttonl Name = "buttoni™;

this.button1.Size = new System.Drawing.5iz¢(39, 20),
this.buttoni.Tablndex = 1;

this.buttonl.Text = "OK™;

this.button1,UseVisualStyleBackColor = true;

this.button1.Click += new System.l'veinthandler(this.buttonl_Click),

Admin

this. AutoScaleDimensions = new System.Drawing.Sizel (6F, 13F);

this. AutoScaleMode = System. Windows.Forms. AutoscaleMode Font;
this.BackColor = System.Drawing.% viiemColors Highlight Text;
this.ClientSize = new System.Drawing.51zc(178, 36);

this.Controls. Add(this.buttonl);

this.Controls. Add(this.textBox1);

this.FormBorderStyle = System,Windows.Forms.FomBorderSiyle.Fixed3Dy;
this.MaximizeBox = false;

this.MinimizeBox = false;

this.Name = "Admin";

this.StartPosition = System.Windows.Forms.l"’urs'n,‘%z-{;;'f?osiii<m.Centel‘Screen;
this. Text ="Admin";

this.ResumeLayout(false);

this.PerformLayout();

126

#endregion

private System. Windows.Forms. TextlB3ox textBox1;

private System. Windows.Forms.Button buttonl;

—

S

127

