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ABSTRACT

In this project, we propose to develop an approach for image noise cancellation
based on the B-spline wavelets. The discussed B-spline based multiscale/resolution
representation is based upon a perfect reconstruction analysis/synthesis point of
view. We also present a straightforward computationally efficient approach for B-
spline basis calculations that is based upon matrix multiplication and avoids any
extra generated basis.The B-spline analysis discussed here can be utilized for
different imaging applications such as compression, prediction, and denoising.

(viii)
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Chapter I

Introduction

1.1 Objective

In this project, the technique for image noise cancellation based on the B-
spline wavelets is proposed and implemented using MATLAB. The
proposed B-spline based multiscale/resolution representation is based upon a
perfect reconstruction analysis/synthesis point of view. Our proposed B-
spline analysis can be utilized for different imaging applications such as
compression, prediction, and denoising. We also present a straightforward
computationally efficient approach for B-spline basis calculations that is
based upon matrix multiplication and avoids any extra generated basis.

1.2 Methodology

The proposed B-spline wavelets are used in Image noise cancellation, as
follows:

1) Decompose the received noisy image using the proposed B-spline wavelet
to an arbitrary n decomposition level.

Denote the resulting detail and approximation coefficients by dl, &2, . . .,
dn,an, respectively.

2) As the next step, The Matlab software/function wavedec2 under 2-D Discrete
Wavelets Toolbox category mainly implements the wavelet decomposition of
the obtained matrix X representing the noised image at level N, using the
wavelet named in string 'wname' as described below,

[C,S] = wavedec2(X,N,'wname'")

Outputs are the decomposition vector C and the corresponding
bookkeeping matrix S.

3) Finally, Image noise cancellation is achieved using the denoised detail
coefficients obtained during the second step as given above, together with




the synthesis cocefficient matrix obtained at the first step using the proposed
B-spline reconstruction system.

i
I
E
E
|
;

‘ We have used Matlab 7.0 for implementation of our image noise cancellation
| method. Some of the functions we used are:

1.3 Resources and Limitations

e wavedec2 function : Multilevel 2-D wavelet decomposition

e wfilters : Wavelet filters

1:, [Lo_D,Hi_D,Lo_R,Hi_R] = wfilters(‘wname') computes four filters
associated with the orthogonal or biorthogonal wavelet named in the
string 'wname'.

:
|
} e appcoef2 : 2-D approximation coefficients

appcoef2 is a two-dimensional wavelet analysis function. It computes
the approximation coefficients of a two-dimensional signal. The
i syntaxes allow you to give the wavelet name or the filters as inputs.

e detcoef2 : 2-D detail coefficients

detcoef2 is a two-dimensional wavelet analysis function. D =
: detcoef2(O,C,S,N) extracts from the wavelet decomposition structure
\7 [C,S] the horizontal, vertical, or diagonal detail coefficients for O =
'h'(or 'v' or 'd', respectively), at level N

; Limitations:

: We didn’t have the B-spline wavelet related functions available in the
matlab so we designed our own functions for the same to apply the B-
| - spline filter scheme on the image for the cancellation of the noise.

Our Approach didn’t remove the noise completely but to an extent that is
sufficient to further process the image.

|
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Chapter 11
B-Splines

2.1 SPLINES

Splines are piecewise polynomial curves that are differentiable up to a
prescribed order. The simplest example is a piecewise linear C, spline, i.e.,a
polygonal curve

The name spline is derived from elastic beams, so-called splines, used by
draftsmen to lay out broad sweeping curves in ship design. Held in place by a
number of heavy weights, these physical splines assume a shape that minimizes

the strain energy. This property is approximately shared by the mathematical
cubic (, splines.

A curve s(u) is called a spline of degree » with the knots 0....... am, where
ai<=ai+1 and ai < gi+n+1 for all possible i, if

s(u) is n- r times differentiable at any r-fold knot, and s(u) is a polynomial of
degree<=n over each knot interval [ai,ai+1], for i =0......m-1.

It is also common to refer to a spline of degree » as a spline of order n+1.

Figures 2.1 and 2.2 show examples of splines with simple knots obtained by
Stark’s construction.

The inner and end B'ezier points are marked by hollow and solid dots,
respectively.
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Fig 2.1 : B-Splines Functions of degree 1,2 & 3

2.2 B-SPLINES

As with the B’ezier representation of polynomial curves, it is desirable to write
a spline s(u) as an affine combination of some control points ¢;, namely

where the N," (u) are basis spline functions with minimal support and certain

continuity properties. Schoenberg introduced the name B-splines for these
functions [Schoenberg *67]. Their B’ ezier polygons can be constructed by
Stark’s theorem.
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Fig 2.2:Parametric splines of degree 1,2 and 3.

2.3 A recursive definition of B-splines

To define B-splines, let (a,) be a, for simplicity, biinfinite and strictly increasing
sequence of knots, which means a; < a;+1, for all i. We define the B-splines

N;" with these knots by the recursion formula

otherwisge

-f\';.,”!fii} g { E]1 if ne [ﬂ’t‘&”ivi-!)

And

i e v ; i rii—1
.'5\‘:“‘.(!'1\'; pn I’t;._i li?\”;l l{l’f-} “';“ {1 T “?_+ ‘1){‘1{:;1 {_'H.}
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Fig 2.3.1:Bezier points of the B-Spline Ny *(u)

where
= (ul=ta Vi Aipn = A7)

is the local parameter with respect to the support of N,” ~*. Figure 2.3.2 shows
B-splines of degree 0, 1 and 2.

=1

Fig 2.3.2:B-Splines of degree 0,1,2

In case of multiple knots, the B-splines N," are defined by the same recursion
formula and the convention |

Ay-+—1 xr-r—4 - >
f\gz'? Te A'rz' /( Qigy - CLQ =0 lfai = Qiygy




Figure 2.4 shows B-splines with multiple knots.From the definition above, the
following properties of B-splines are evident.

N, (u) is piecewise polynomial of degree n,

o N,"(u) is positive in (a; a;ypeq)

o N;"(u) is zero outside of (a; @y

o N(u) isrightside continuous

i
Ny

iy == {1y

g_ Fig 2.4: Some B-Splines with Multiple Knots

| 2.4 B-SPLINE PROPERTIES

® The B-splines of degree n with a given knot sequence that do not vanish
over some knot interval are linearly independent over this interval.




o A dimension count shows that the B-splines Np".......... N, with the
knots g......... Uy +n+1 TOrm a basis for all splines of degree n with
support [¢g, @pnen+1) and the same knots.

o Similarly, the B-splines N,™.......... N,™ over the knots

o U +n+1 testricted to the interval [@g, @pqpn+1] form a basis for
all splines of degree » restricted to the same interval.

e The B-splines of degree »n form a partition of unity, i.e.,

Tre
L NMuy=1lor we [Brs @irn }

e § ]

e A spline s[ay,a,,,] of degree n with n-fold end knots,

(g =)y == ... =ty 8anl ape = ... = (an;s.,,fm fim—x,n.“}

has the same end points and end tangents as its control polygon.

o The end knots @y and @y,454; have no influence on N, ™ and N,,”
over the interval [@g, @mpnst]

e The B-splines are positive over the interior of their support

N u) >0 for uée€(aiaipnit)

e The B-splines have compact support :

suppN} = [e:, 0ipni1]

e The B-splines satisfy the de Boor, Mansfield, Cox recursion
formula
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where

n—1—

(74 (u-a;)/(ay,- a)represents the local parameter over the
support of N;"~*

e The derivative of a single B-spline is given by:

3 e iy = n o
; —NMu) = ——— NP ) — NP u)
: du Wigg — Uy Widopd = gy

e The B-spline representation of a spline curve is invariant under
: affine Maps

 Anysegment s [q; a;,,) of an nth degree spline lies in the convex
hull of its n + 1 control points ¢;_,,...... s

2.5 B-spline basis functions

Bézier basis functions are used as weights. B-spline basis functions will be used
the same way; however, they are much more complex. There are two interesting
properties that are not part of the Bézier basis functions, namely: (1) the domain
. is subdivided by knots, and (2) basis functions are not non-zero on the entire
interval. In fact, each B-spline basis function is non-zero on a few adjacent
subintervals and, as a result, B-spline basis functions are quite "local".

S —

Let U be a set of m + 1 non-decreasing numbers, uy <= uy <= yy <= ., <= Up,
The u/'s are called knots, the set U the knot vector, and the half-open interval [u,,

Uiv1) the i-th knot span. Note that since some u;'s may be equal, some knot spans
9
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may not exist. If a knot u; appears k& times (i.e., ;= uj = ... = Uiir.1), Where k >
1, u; is a multiple knot of multiplicity k, written as u,(k). Otherwise, if appears
only once, it is a simple knot. If the knots are equally spaced (e, upy -u;is a
constant for 0 <= i <= m - 1), the knot vector or the knot sequence is said
uniform; otherwise, it is non-uniform.

The knots can be considered as division points that subdivide the interval [240,
u,;] into knot spans. All B-spline basis functions are supposed to have their
domain on [ug, u,]. In this note, we use #, = 0 and u,, = 1 frequently so that the
domain is the closed interval [0,1].

To define B-spline basis functions, we need one more parameter, the degree of
these basis functions, p. The i-th B-spline basis function of degree p, written as
N, (1), is defined recursively as follows:

1 if 20, < © < w504
N olw)
0 otherwise
L Uy Thfgppp1 e U
Nig(ae) - — N1 (W) b Nig1,p—-1(u)
Uy ™ Uy TR TS Bl 7 7 0 |

The above is usually referred to as the Cox-de Boor recursion formula. This definition
looks complicated; but, it is not difficult to understand. If the degree is zero (i.e., p =
0), these basis functions are all step functions and this is what the first expression
says. That is, basis function N;y(u) is 1 if u is in the i-th knot span [u;, u;y;). For
example, if we have four knots uy = 0, u; = 1, uy = 2 and uz = 3, knot spans 0, 1 and 2
are [0,1), [1,2), [2,3) and

the basis functions of degree 0 are Nyo(#) = 1 on [O,l) and 0 elsewhere, N o(u) =
l on [1,2) and 0 elsewhere, and N, o(x) = | on [2,3) and 0 elsewhere. This is
shown below:

Figure 2.5.1

10




To understand the way of computing N; (u) for p greater than 0, we use the
triangular computation scheme. All knot spans are listed on the left (first)
column and all degree zero basis functions on the second. This is shown in the
following diagram.

Figure 2.5.2

To compute N;(u), Nio(u) and Ny, o(u) are required. Therefore, we can compute
No,i(u), Ny, (1), N, 1(u), N3,1(u) and so on. All of these N;;(u)'s are written on the
third column. Once all N;,(u)'s have been computed, we can compute N;,(u)'s
and put them on the fourth column. This process continues until all required
N;,(1)'s are computed.

In the above, we have obtained Ny o(), N; o(#2) andN, o(u) for the knot vector U
={0,1,2,3}. Let us compute Ny, () and Ny (). To compute Ny (%), since i =
0 and p = 1, from the definition we have

2 U~ T
No () s ——— Ny () -} ——
0 ( . U — UG e — U

Since uy = 0, u; = 1 and u, = 2, the above becomes

No,i(u) = uNoo(u) + (2 — u) Ny o(u)

11




Since Noo(u) is non-zero on [0,1) and N, o(u) is non-zero on [1,2), if  is in [0,1)
(resp., [1,2) ), only Noo(2) (resp., N, o(u) ) contributes to No.i((u). Therefore, if u
is in [0,1), No,1(u) is uNoo(u1) = u, and if u is in [1,2), No1(u) is (2 - u)N; o(u) = (2
- »). Similar computation gives Ny (v) =u - 1 ifu is in [1,2), and N (w)=3-u
if u is in [2,3). In the following figure, the black and red lines are No,1(u) and
Ni.(u), respectively. Note that Ny, (u) (resp., Ny (1)) is non-zero on [0,1) and
[1,2) (resp., [1,2) and [2,3)).

Figure 2.5.3

Once No(u) and Ny ,(u) are available, we can compute Noa(u). The definition
gives us the following:

- Uy Uy — U

i\f[]_g(‘{ﬁ) o

ty = Up Ug — Uy

|
I
f\;{‘;. 1 ('T.l,) -4 Nfll 1 (u) '
Plugging in the values of the knots yields
Npo ( ?L} st () 5%1“\"})3 (U} + 0. 5(3 o 'H.) _[?\,r_[ 1 (’h‘.)

Note that Ny, (u) is non-zero on [0,1) and [1,2) and N, ;(«) is non-zero on [1,2)
and [2,3). Therefore, we have three cases to consider:

I uisin[0,1):

In this case, only Ny () contributes to the value of Ny,(«). Since No.i (1)
is u, we have ,

Noo(u) = 0.5u%
2. wisin[1,2):

In-this case, both Ny (u) and N ((u) contribute to No(2). Since Ny (1) = 2 - u
and Ny (u) = u - 1 on [1,2), we have ,

: 1‘\?;[_3‘2(3'{,} e ((]_.3'“,)(2 'H,.) 'f 0.5(3 ey ?1)(3 S 'u) S 05("“3 ”i"" 6'?.{, T 2?,&2)

12




3 yisin[2,3): ; :
In this case, only N, ;(u) contributes to Ny ,(u). Since Ny ;(#) =3 - u on [2,3), we
have ,

If we draw the curve segment of each of the above three cases, we shall see that !
two adjacent curve segments are joined together to form a curve at the knots. !
More precisely, the curve segments of the first and second cases join together at
u = 1, while the curve segments of the second and third cases join at # = 2. Note
that the composite curve shown here is smooth. But in general it is not always
the case if a knot vector contains multiple knots.

Figure 2.5.4

2.6 Two Important Observations

Since N;(u) is computed from N;o(u) and Ny, o(u) and since Njo(u) and Ny o(2)
are non-zero on span [u;, u;y;) and [u;4, U;12), respectively, N; () is non-zero on
~ these two spans. In other words, N; () is non-zero on [u;, #;,). Similarly, since
Nia(u) depends on N;(u) and Ny 1(u) and since these two basis functions are
noN-zero on [u;, u;iz) and [u;4, ui3), respectively, N, (u) is non-zero on [u;, u;3).
In general, to determine the non-zero domain of a basis function N, (), one can
trace back using the triangular computation scheme until it reaches the first
column. The covered spans are the non-zero domain of this basis function. For
example, suppose we want to find out the non-zero domain of N, 3(«). Based on
| the above discussion, we can trace back in the north-west and south-west
' directions until the first column is reached as shown with the blue dotted line in
' the following diagram. Thus, N, 3(u) is non-zero on [uy, uy), [uz, u3), [us, uy) and
[t4, us). Or, equivalently, it is non-zero on [u), us).

T T

s
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Figure 2.6.1

In summary, we have the following observation;

Basis function N, ,(u) is non-zero on [u;, Uiipr1)- Or, equivalently, N, ,(u) is
non-zero on p+1 knot spans [u;, 4, [, Uiss), ..., [i4ps Uiipir)-

Next, we shall look at the opposite direction. Given a knot span [u;, 1), we
want to know which basis functions will use this span in its computation. We
can start with this knot span and draw a north-east bound arrow and a south-east
bound arrow. All basis functions enclosed in this wedge shape use N, o(x)
(why?) and hence are non-zero on this span. Therefore, all degree p basis
functions that are non-zero on [u;, u;;,) are the intersection of this Wedge and the I,
column that contains all N;,(#)'s. In fact, this column and the two arrows form
an equilateral triangle with this column being the vertical side. Counting from
Nio(u) to N; () there are p+1 columns. Therefore, the vertical side of the
equilateral triangle must have at most p+1 entries, namely N; (), N, 1p(U), N
20), ..oy Nipiop(u), Nipet (1) and Nipp(u).

o, uly N0

Tulu2  NLO

82, u3)

u3, ud)

(ud, u5)
[u5, ucy

-Figure 2.6.2

Let us take a look at the above diagram. To find all degree 3 basis functions that
are non-zero on [uy, us), draw two arrows and all functions on the vertical edges
are what we want. In this case, they are N, 3(u), Nas(u), N3 3(u), and Ny 3(u). This

14




is shown with the orange triangle. The blue (resp., red) triangle shows the
degree 3 basis functions that are non-zero on [us, us) (resp., [u,, u3) ). Note that
there are only three degree three basis polynomials that are non-zero on [u,, u3).

In summary, we have observed the following property.

On any knot span [u;, u;.), at most p+1 degree p basis functions are
non-zero, namely: N, ,(#), N;pi1,(26)y Nipr2p(#)s «es Ni1p(40) and N; (),

What Is the Meaning of the Coefficients?

Finally, let us investigate the meaning of the coefficients in the definition of
N;p(). As N; () is being computed, it uses N;,.;(u) and Nj; .1 (). The former
is non-zero on [u;, u;,). If u is in this half-open interval, then u - u; is the
distance between u and the /eft end of this interval, the interval length is u;, - u;,
and (v - u;) / (44, - u;) is the ratio of the above mentioned distances and is
always in the range of 0 and 1. See the diagram below. The second term, N ..
(1), is non-zero on [u;y1, U;1p1). If 2 1s in this interval, then u;,,, - u is the
distance from u to the right end of this interval, ;1 - ;1 is the length of the
interval, and (u;1p11 - 1) / (Uirpe1 - i) is the ratio of these two distances and its
value is in the range of 0 and 1. Therefore, N, ,(u) is a linear combination of ;.
((#) and Niiy .1 () with two coefficients, both linear in , in the range of 0 and 1.

' %
-1, \Iui+p | i+p+l
e L e " e
. |
ui+p+1 Sal ]
Uipsr ~ Uin
Figure 2.6.3

2.7 B-spline Basis Functions: Computation Examples

2.7.1 Simple Knots

Suppose the knot vector is U = {0,0.25,0.5,0.75, 1 }. Hence, m =4 and up = 0,
Uy =0.25, u, = 0.5, u; = 0.75 and w4 = 1. The basis functions of degree 0 are
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y. They are Noo(u), N1 o(u), Nao(u) and N; o(u) defined on knot span [0,0.25,),
[0 25 0.5), [0.5,0.75) and [0.75,1), respectively, as shown below

Fig 2.7.1.1

The following table gives the result of all N;;(u)'s:

Basis Function Range Equation
No,i(u) [0, 0.25) 4u
10.25:.0.5) 2(1 - 2u)
Ni,i(u) [0:25, 0:0) 4u -1
[0.5, 0.75) 3-4u
Na,i(u) [0.5,0.75) 2QQu-1) .
[0.75, 1) 4(1 - u)

The following shows the graphs of these basis functions. Since the internal
knots 0.25, 0.5 and 0.75 are all simple (i.e., k=1)and p =1, there are p - k + 1
= | non-zero basis function and three knots. Moreover, Ny (¢), Ny ,1(¢) and

Ny, (u) are C° continuous at knots 0.25, 0.5 and 0.75, respectively.

Eigs 27112

From N, (u)'s, one can conipute the basis functions of degree 2. Since m =4, p
=2,andm =n +p + 1, we have n = | and there are only two basis functions of
degree 2: N »(u) and N, o(u). The following table is the result:

‘ Basis Function

Range Equation

16




Noa() [0,0.25) %
’ [0.25, 0.5) T ED
[0.5, 0.75) TR
Nia(u) [0:25..0.5) 0.5 - 44 + 817
[0.5,0.75) -1.5 + 8u - 8
[0.75, 1) 8(1 - u)?

The following figure shows the two basis functions. The three vertical blue lines
indicate the positions of knots. Note that each basis function is a composite
curve of three degree 2 curve segments. For example, Ny,(«) is the green curve,
which is the union of three parabolas defined on [0,0.25), [0.25, 0.5) and
[0.5,0.75). These three curve segments join together forming a smooth bell
shape. Please verify that No,(u,) (resp., Ni,(u)) is C' continuous at its knots
0.25 and 0.5 (resp., 0.5 and 0.75). As mentioned on the previous page, at the
knots, this composite curve is of C' continuity.

i
2
i |

O, 2

Big2.7:1:3

2.7.2 Knots with Positive Multiplicity

If a knot vector contains knots with positive multiplicity, we will encounter the
case of 0/0 as will be seen later. Therefore, we shall define 0/0 to be O.
Fortunately, this is only for hand calculation. For computer implementation,
there is an efficient algorithm free of this problem. Furthermore, if u; is a knot
of multiplicity & (i.e., u; = u;i) = ... = Ujii.1), then knot spans [u;,u;41), [Ui1 i),
vy [Uis40,i041) do not exist, and, as a result, N;o(u), Niv1 o(#), ..., Niss10(t) are
all zero functions.

Consider a knot vector U = {0,0,0,0.3,0.5,0.5,0.6,1,1, 1 }. Thus, 0 and 1
are of multiplicity 3 (i.e., 0(3) and 1(3)) and 0.5 is of multiplicity 2 (i.e., 0.5(2)).
As aresult, m = 9 and the knot assignments are

17
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Let us compute N;p(u)'s. Note that since m = 9 and p = ( (degree 0 basis
functions), we have n=m - p - 1 = 8. As the table below shows, there are only
four non-zero basis functions of degree 0: N o(u), N3 o(u), Ns,o(u1) and N o(x).

[ Basis Function Range Equation Comments

Noo(u) all u 0 since [ug, u;) =
[0,0) does not
exist

Nio(u) all u 0 since [uy, uy) =
[0,0) does not
exist

N o(ur) [0, 0.3) 1

N o(u) [0.3,0.5) 1

Ny ou) all u 0 | since [uy, us) =
[0.5,0.5) does not
exist

Ns o(u) [0.5, 0.6) 1

N6,0(u) [06, 1) 1

N7 o(u) all u 0 since [uy, ug) =
[1,1) does not
exist

Ny o(u) all u 0 since [ug, ug) =
[1,1) does not

fi exist

- Then, we proceed to basis functions of degree 1. Since pis 1, n=m St L e
The following table shows the result:

Basis Function Range Equation
all u 0
[0,0.3) 1 -(10/3)u
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Do [0,0.3) (10/3)u

[0.3,0.5) 2.5(1 - 2u)
N3’|(”) [0.3, 0.5) S5u-1.5
Na, i) [0.5, 0.6) 6 - 10u
Ns. 1) [0.5, 0.6) 10u - 5

[0.6, 1) 2.5(1 - )
Ne,1() [0.6, 1) 2.5u-1.5
N7,|(u) all u 0

The following figure shows the graphs of these basis functions:

Fig 2.7.2.1

Let us take a look at a particular computation, say N, ;(«). It is computed with
the following expression:

T Ug — U
i 1 f‘e’m(%) it -J—Ng,u('iﬂ)

}r\}r’_ 5 '-”) ok
l..l( ) o = U g — TL?
Plugging u; = u, = 0 and u; = 0.3 into this cquation yields the following;

: g. ; 10
.f‘\’f]“[('“) i %N-lau(u-) A (1 ?u) 5\52,[‘)(71')
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gince Ny o() is zero everywhere, the first term becomes 0/0 and is defined to be
zero. Therefore, only the second term has an impact on the result. Since N, o(x)
is 1 on [0,0.3), Npi(u) is 1 - (10/3)u on [0,0.3).

Next, let us compute all N»(u)'s. Since p = 2, we have n =m - p - 1 = 6. The
following table contains all N;,(u)'s:

[Basis Function Range Equation
Noa(®) [0, 0.3) (1 - (10/3)u)’
Ny (u) [0, 0.3) (20/3)(u - (8/3)u”)
[0.3, 0.5) 2.5(1 - 2u)’
Nao(u) [0, 0.3) (20/3)u°
[0.3,0.5) -3.75 + 25u - 354
Nso(u4) [0.3,0.5) (Su - 1.5)°
[0.5, 0.6) (6 - 10u)*
Nio(u) [0.5, 0.6) 20(-2 + Tu - 6u°)
[0.6, 1) 51 - u)?
Nso(u) [0.5, 0.6) 12.5Qu - 1)
[0.6, 1) 2.5(-4 + 11.5u - 7.54%)
Ne () [0.6, 1) 2.5(9 - 30u + 25u°)

The following figure shows all basis functions of degree 2.

Fig 2.7.2.2

Let us pick a typical computation as an example, say N3 (x). The expression for
computing it is

U~ Uy g — U

Nae o(2g) == Naq(u) + N (42
Ny olu) e ‘u.;;j 3 (u) A e 11 (u)

1
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plugging in u3 = 0.3, u4 = us = 0.5 and us = 0.6 yields

4"\”'3:2{"(14} (5“ 1.5)4"\[;;?1 (u.) - (6 s 10?.&)1'\"4}1 ‘('U,)

Since Ns,1(u) is non-zero on [0.3, 0.5) and is equal to 5u - 1.5, (5u - 1.5)2 is the
non-zero part of N3 »(u) on [0.3, 0.5). Since Ny, (x) is non-zero on [0.5, 0.6) and
is equal to 6 - 10u, (6 - 101«:)2 is the non-zero part of N; () on [0.5, 0.6).

Let us investigate the continuity issues at knot 0.5(2). Since its multiplicity is 2
and the degree of these basis functions is 2, basis function Nio(u) is (6
continuous at 0.5(2). This is why N;,(u) has a sharp angle at 0.5(2). For knots
not at the two ends, say 0.3, C' continuity is maintained since all of them are
simple knots.

2.8 Adding Control points

It is possible to add control points to a curve without changing it’s shape. This
process is called refinement or knot insertion. Knot insertion is a way of adding
more flexibility to a curve, and also restricting the effects of moving a particular
control point. If a particular curve has more control points, the effect of moving
any one of them is smaller. Remember in the rules section that the total number
of knots is equal to the order plus the number of control points. So each time
you add (“insert”) a knot, another control point is added to the curve. The
placement of the new point depends on the value of the new knot. Curve
refinement moves the other control points near the new one to preserve the
shape of the curve. As you add more knots, the control points get closer and
closer to the actual curve.

In the example below, the original knot vector was [0 000 12 3 3 3 3]. In order
to add some flexibility, two control points are added at 1.5 and 2.5, making the
knot vector [0 00 0 1 1.52 2.5 3 3 3 3]. Note how moving a control point in the
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' third picture effects a much smaller portion of the curve than in the second
f picture.

] 3|
Adding two new Moving original Moving new
control points control point control point

Adding control points

Figure 2.8

If you insert multiple knots with the same values, you’ll introduce the
discontinuities described in the previous section (of course, the kink or a break
won’t actually appear until you move the control points).

2.9 Joining Curves

As a final example of using knot vectors, it’s sometimes desirable to join two
adjoining curves and then smooth out the join between them. The knot vectors
provide a straightforward mechanism for doing this. Suppose we have two
pinned uniform cubic curves, with knot vectors starting at zero, that meet at a
common point. Here’s how to hook them up: 1. Add the last value in the first
curve’s knot vector to all the knots in the second curve.2. Remove the first
control point and the & first knots from the second curve (k = order). Remove
the last knot from the first

curve. Concatenate the second curve’s control points and knot vector.3. To
Smooth the join, space apart the knots where the two knot vectors were joined.
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This removes the discontinuity. As they’re moved further apart, the e
becomes less sharp.

I} i f1 I} 1
s = f B 4]
Two curves, knots One curve, knots Smooth curve, knots
[0o001111), [00001112222] [00000811.22222]
f[ooo0tity]
Three steps in joining two curves,

Fig 2.9

2.10 B-spline curves

Important properties

B-spline curves share many important properties with Bézier curves, because

the former is a generalization of the later. Moreover, B-spline curves have more

desired properties than Bézier curves. The list below shows some of the most
“important properties of B-spline curves.

In the following we shall assume a B-spline curve C(u) of degree p is defined
by n+ 1 control points and a knot vector U= { ug, Uy, ..., Uy, } With the first p+1
and last p+1 knots "clamped" (i.e., up = ) = ... =, a0 Uy = Uy pi) = ... = Uy,).

1) B-spline curve C(u) is a piecewise curve with each component a curve
of degree D.
As mentioned in previous page, C() can be viewed as the union of curve
segments defined on each knot span. In the figure below, where n = 10, m
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= 14 and p = 3, the first four knots and last four knots are clamped and
the 7 internal knots are uniformly spaced. There are eight knot spans,
each of which corresponds to a curve segment. In the left figure below,
these knot points are shown as triangles.

This nice property allows us to design complex shapes with lower degree
polynomials. For example, the right figure below shows a Bézier curve
with the same set of control points. It still cannot follow the control
polyline nicely even though its degree is 10!

Fig 2.10.1

In general, the lower the degree, the closer a B-spline curve follows its control
polyline. The following figures all use the same control polyline and knots are
clamped and uniformly spaced. The first figure has degree 7, the middle one has
degree 5 and the right figure has degree 3. Therefore, as the degree decreases,
the generated B-spline curve moves closer to its control polyline




2) Equality m = n + p + 1 must be satisfied.

gince each control point needs a basis function and the number of basis
functions satisfiesm=n+p + 1.

3) Clamped B-spline curve C(«) passes through the two end control points
Py and P,.

Note that basis function Ny ,(u) is the coefficient of control point Py and is non-
zero on [ug,up+1). Since ug = u; = ... = u, = 0 for a clamped B-spline curve,
Noo(), N1o(t), ..., Ny.10(u) are zero and only N, () is non-zero (recall from the
triangular computation scheme). Consequently, if # = 0, then N,(0) is 1 and
C(0) = Py. A similar discussion can show C(1) =P,

4) Strong Convex Hull Property: A B-spline curve is contained in the
convex hull of its control polyline. More specifically, if # is in knot span |
[#;53¢i41), then C(u) is in the convex hull of control points P, P;. .y, ..., P

If u is in knot span [u;, #;1), there are only p+1 basis functions (i.e., N;,(v), ... ,
Nip+1p(1), Nip (1)) non-zero on this knot span. Since Ny ,(u) is the coefficient of
control point P;, only p+1 control points P;, Py, Py, .., Pi, have non-zero
coefficients. Since on this knot span the basis functions are non-zero and sum to
1, their "weighted" average, C(u), must lie in the convex hull defined by control

points P, P.y, P;s, .., Pi,. The meaning of "strong" is that while C(u) still lies in
the convex hull defined by a/l control points, it lies in a much smaller one.

Big 2:10.3
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The above two B-spline curves have 11 control points (i.e., n = 10), degree 3
(i.e., p=3) and 15 knots (m = 14) with first four and last four knots clamped
Therefore, the number of knot spans is equal to the number curve segments. The
knot vector 1s

uo Uy Uz Uz Uy Us Ug U7 U Ug Uy U Uip Uz Uyg (0 0000.12 0.25 0.37 0.5 0.62
085.0.8711.11)

The left figure has u in knot span [uy, us) = [0.12,0.25) and the corresponding
point (i.e. C(u)) in the second curve segment. Therefore, there are p+1 =4 basis
functions non-zero on this knot span (i.e., Ny3(u), N33(u), Ny3(u) and N 3(u) )
and the corresponding control points are P4, P, P, and P;. The shaded area is
the convex hull defined by these four points. It is clear that C(x) lies in this
convex hull.

The B-spline curve in the right figure is defined the same way. However, u is in
[t9, u10) = [0.75,0.87) and the non-zero basis functions are Nos(u), Nss(u),
N73(u) and Ng3(u). The corresponding control points are Py, Pg, P; and Pg.

Consequently, as # moves from 0 to | and crosses a knot, a basis functions ‘
becomes zero and a new non-zero basis function becomes effective. As a result,
one control point whose coefficient becomes zero will leave the the definition of
the current convex hull and is replaced with a new control point whose
coefficient becomes non-zero.

5) Local Modification Scheme: changing the position of control point P;
only affects the curve C(u) on interval [u;, 1;:511).

This follows from another important property of B-spline basis functions.
Recall that ; () is non-zero on interval [u;, #;1,1). If u i not in this interval,
N, ,(u)P; has no effect in computing C(«) since N, ,(u) is zero. On the other hand,
if u is in the indicated interval, N;,(#) is non-zero. If P; changes its position,
N;,(u)P; is changed and consequently C(u) is changed.
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Fig 2.10.4

The above B-spline curves are defined with the same parameters as in the

previous convex hull example. We intent to move control point P,. The

coefficient of this control point is N,3(u) and the interval on which this

coefficient is non-zero is [us, Ur4311) = [y, tg) = [0,0.37). Since u, = u; = 0, only

three segments that correspond to [u3, us) (the domain of the first curve

segment), [u4, us) (the domain of the second curve segment) and [us, ug) (the

domain of the third curve segment) will be affected. The right figure shows the

result of moving P, to the lower right corner. As you can see, only the first,

second and third curve segments change their shapes and all remaining curve i
segments stay in their original place without any change.

This local modification scheme is very important to curve design, because we \
can modify a curve locally without changing the shape in a global way. This

will be elaborated on the moeing control point page. Moreover, if fine-tuning

curve shape is required, one can insert more knots (and therefore more control

points) so that the affected area could be restricted to a very narrow region. We

shall talk about knot insertion later

6) C(u) is C"* continuous at a knot of multiplicity #.

If u is not a knot, C(u) is in the middle of a curve segment of degree p and is
therefore infinitely differentiable, If u is a knot in the non-zero domain of
N (u), since the latter is only C”** continuous, so does C(u).

Fig 2.10.5

27

: =




Y

The above B-spline curve has 18 control points (i.e., n = 17), degree 4, and the
following clamped knot vector

o 0 us Us g and vy g Uy tO Uy Uy U3 O Uy U7 tg tO Uy (0 0.125 0.25 0.375
0.50.6250.75 0.875 1)

Thus, us is a double knot, uy is a triple knot and u;3 is a quadruple knot,
Consequently, C(u) is of C* continuous at any point that is not a knot, C°
continuous at all simple knots, C? continuous at us, C' continuous at uo, &
continuous at #3.

All points on the curve that correspond to knots are marked with little triangles.
Those corresponding to multiple knots are further marked with circles and their
multiplicities. It is very difficult to visualize the difference between C*, C * and
even C° continuity. For the C' case, the corresponding point lies on a leg, while
the C’ case forces the curve to pass through a control point. We shall return to
this issue later when discussing modifying knots.

7) Variation Diminishing Property.
The variation diminishing property also holds for B-spline curves. If the curve

is in a plane (resp., space), this means no straight line (resp., plane) intersects a b
B-spline curve more times than it intersects the curve's control polyline. |

Fig 2.10.6

In the above figure, the blue line intersects both the control polyline and the B-
spline curve 6 times, while the yellow line also intersects the control polyline
and the B-spline curve 5 times. However, the orange line intersects the control
polyline 6 times and the curve 4 times.

8) Bézier Curves Are Special Cases of B-spline Curves.

If n = p (i.e., the degree of a B-spline curve is equal to », the number of control

points minus 1), and there are 2(p + 1) = 2(n + 1) knots with p + 1 of them
clamped at each end, this B-spline curve reduces to a Bézier curve.
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9) Affine Invariance.

The affine invariance property also holds for B-spline curves. If an affine
transformationis applied to a B-spline curve, the result can be constructed from
the affine images of its control points. This is a nice property. When we want to
apply a geometric or even affine transformation to a B-spline curve, this
property states that we can apply the transformation to control points, which is
quite easy, and once the transformed control points are obtained the transformed
B-spline curve is the one defined by these new points. Therefore, we do not
have to transform the curve.

2.11 The Advantage of Using B-spline Curves

B-spline curves require more information (i.e., the degree of the curve and a
knot vector) and a more complex theory than Bézier curves. But, it has more
advantages to offset this shortcoming. First, a B-spline curve can be a Bézier
curve Third, B-spline curves provide more control flexibility than Bézier curves
can do. For example, the degree of a B-spline curve is separated from the
number of control points. More precisely, we can use lower degree curves and
still maintain a large number of control points. We can change the position of a
control point without globally changing the shape of the whole curve (local
modification property). Since B-spline curves satisfy the strong convex hull
property, they have a finer shape control. Moreover, there are other techniques
for designing and editing the shape of a curve such as changing knots.
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Chapter III
B-SPLINE WAVELET MATRICES

This appendix presents the matrices required to make use of endpoint-
interpolating B-spline wavelets of low degree. The Matlab code used to
generate these matrices appears in Appendix C. These concrete examples
should serve to elucidate the ideas presented in Section 7.3.2. In order to
emphasize the sparse structure of the matrices, zeros have been omitted.
Diagonal dots indicate that the previous column is to be repeated the appropriate
number of times,shifted down by two rows for each column. The P matrices
have entries relating unnormalized B-spline scaling functions, while the Q
matrices have entries defining normalized, minimally

supported wavelets. Columns of the O matrices that are not represented exactly
) with integers are given to six decimal places.

Fig.3.1 The B-spline constant B spline scaling functions and wavelet for j=3
30
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3.11 Haar Wavelets

The B-spline wavelet basis of degree 0 is simply the haar basis described in
chapter 2.Some examples of the box scaling functions and Haar wavelets are
described in figure 3.1.The synthesis matrices P' and Q' are given below
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Fig.3.2 The linesr B-spline scaling functions and wavelets for j=3

3.2 Endpoint-interpolating B-spline wavelets

Fig.3.2 shows a few typical scaling functions and wavelets for linear B-
splines. The synthesis matrices P' and Q' for endpoint- interpolating linear B-
spline wavelets arc given below.
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3.3 Endpoint-interpolating quadratic B-spline wavelets

Figure 3.3 shows some of the quadratic B-spline scaling functions and wavelets.
The synthesis matrices P' and Q' in the quadratic case are given below.
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The quadratic B-spline scaling functions and wavelets for j=3
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3.4 Endpoint interpolating cubic B-spline wavelets

Figure 3.4 shows some of the cubic B-spline scaling functions and wavelets.
The synthesis matrices P* and Q' for endpoint interpolating cubic B-spline
wavelets are given below.
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The cubic B-spline scaling functions and wavelets for j=3
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Chapter IV

Image Noise cancellation using B-SPLINE wavelets

4.1) Introduction

B-splines have been long introduced and analyzed by which caught interest of
many engineering applications and image processing experts . Due to their
merits of being flexible and providing a large degree of differentiability and
cost/quality trade off relationship, B-splines can represent the next generation of
wavelets for signal/image multiresolution analysis. By changing the B-spline
function order we move from a linear representation to a high-order bandlimited
} representation. The wavelet theory for image noise cancellation introduced was
our main reason for using B-splines for non-band limited signals. B-splines
were utilized for image noise cancellation using polynomial equations. A new
set of fractional B-splines were introduced for different degrees. We note here
that in spite of the long history of B-splines in engineering applications, they
have not been fully analyzed from a image noise cancellation
(analysis/synthesis) or perfect reconstruction (PR) point of view. B-splines have
been utilized to build wavelets from any two sequences as long as they are non
perpendicular.Another set of wavelets has been constructed using shifted B-
splines.B-splines were used for signal/image zooming,interpolation and image

T————

noise cancellation .

The primary objective of our work is to design and develop B-spline based
multiscale representations of signals/images that are based on a PR frame work,
like the wavelet analysis introduced. Our proposed technique for calculating the
B-spline basis is a straightforward approach that is based on matrix
multiplications (Toeplitz); it avoids inverse filtering and unstable filter
calculations that are first proposed. It also calculates the B-spline basis for a |
batch of input image samples in a concurrent process without any extra basis or |

overlaps.

We note here that in spite of the long history of the use of B-splines in signal
representation, classification, and interpolation applications ,they have not been

fully investigated in a image noise cancellation applications.We propose a
36
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method for improved noise cancellation method through some B-spline basis.
Due to the selective nature of the B-spline semi-orthogonal decomposition, a
distinctive type of data correlation (that is usually around edges) is captured and
removed from this pre-processing process.

This would further reduce the data correlation and would achieve better

cancellation of noise in the image as evident by our adopted correlation measure

with and without the proposed technique and by the enhanced PSNR/bpp i
curves.We tested our generated B-spline wavelets in image noise cancellation

and compared our approach with the well-known 9/7 Antonini et al. filter using

the SURE technique.

4.2) Background

4.2.1) Mathematical background

| The mth order B-spline function Bm(?), satisfies the following basic properties:

—a——

1. Bm(t) is of finite support and equals zeros at £ < 0 and 7 > m. Between the
knots7=1,2,...,m— 1, it is represented by a polynomials of order (m — 1) in ¢
It satisfies the recurrence relation:

! : m—1
By )+ ——By-1(t = 1)

By(t) = Ty

wr ~ |
A B

o !

=8By 1(¢4) = By 11 = 1)

2. The Fourier transform Bm(w) is given by

it {&.,} "
cmw § S0 ES 2
!.g(j“ ((U:l =g --.,-—'_.-- ( o 2 ) = B;}:{!}

(7]
= B Byt Bin

A wi times — —» (2)

3. Bm(t) is symmetric around m/2 ,

Le. By {% +f) = By (%r— - t)
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The discrete B-spline basis Bm(n) is obtained by sampling Bm(?) at its knots ¢ =
0, L, ...,m. The Lth interpolated discrete B-spline basis BLm(n) is obtained by
sub-sampling the sampling

interval into L equal intervals i.e

T
Bf:;(,‘]= Bm[LJ'

4.2.2) Signal interpolation using B-spline polynomials.

For a discrete signal g(k) of length N, that

is interpolated using an mth order discrete B-spline Bm(n),we would have

o =2

gky= ) chBuk=D= 3 chBulk=1) (3

I=—00 I=-m+l

where ¢(l)_s are the B-spline decomposition coefficients for the g(k) signal. The
limits in are due to the nonzero values of Bmi(n), This means that a batch of
length N can be expanded by B-spline polynomial having an utmost N +m—2
coefficients.To compute the ¢ swehave toevaluate theC(z),as follows:

Giz)

G =CA)Bn(t) 2 CQ) =2
Ziﬁ:i Bm{k)ﬁ_k

)

Hence, the interpolating coefficients ¢(/) can be viewed as the output of the IIR
filter] Bm(z), when driven by the sequence g(k). However, online computations
of the ¢_s are not possible,

as Bmi(z) has roots outside the unit circle u-c.; as well as inside the u.c. (as a
result of mirror symmetric around 72). Solution of this problem can be achieved
in non-real time as follows: consider the digital system of Fig.1a, as Y (z—1) =
H(z—1)X(z—1), and if H(z) has all its poles outside the u.c,then ¥ (z—1) is
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recursively computable. To evaluate y(n), we apply the following flipping
technique in computing y(n) :

1. Flip the batch of the sequence x(n), to get x f (n).
2. Filter x £ (n) by the now-stable system //(z—1) to yield the output y ' ().

3. Flip y f'(n) back to get y(n).

flipping technique of non-real time computation

(b) il Intergolated
dals et Hspding
h 3 6 ,;"'_* '> goifficignts
i i FE—
k\.., . f’. d Bapish T

[ ..refer research paper (21) ]

Bairy, m == 4

Principle of computing
The idea is now exploited int the computations of ¢(1) as follows

I. Enctorize Bmiz) as Bm(z) = 2~'[1.5, (0 — @)
»

(.i - *:-;") = .2y Ho (2. lzxl < 1. Hy, Hy, are the sta-
ble and unstable parts of B™(2), respectively
[ ..refer research paper (21) |
2.) Filter the sequence g(k) by all-pole filter Hs(z), to get y(k), k=0, 1,.., N—1

3.) As C(z) =Y (z)/Hus(z) , apply the proposed flipping technique,to get c¢(}).
Select (N + m — 2) consecutive coefficients of this output. Figure 1b, shows the
B-spline coefficients for a cubic B-spline with an interpolation factor L. B-
splines are known for their energy compaction/
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concentration feature: as will be shown later, this feature was the main reason
for its compression enhancement performance. Figure 2 compares the mean
Eigen values of DCT coefficients (which is best known for energy
concentration) with mean B-spline coefficients of different orders for the 8 x 8
block of the 256 x 256 Cameraman image. Order 7 is the highest Eigen value on
the horizontal axis. As shown in the figure for the first few Eigen values, the
energy concentration for B-splines is higher than DCT, but after a certain order,
the B-spline energy concentration feature will be less than DCT. This justifies
the compression performance improvement for B-splines for low bit rates over
regular orthonormal decompositions.

4.3) B-spline calculation

As shown in the previous sections, a discrete signal g(k) of length N, that is
interpolated using an mth order discrete B-spline Bm(n),we would have N+m—2
resulting samples, which means it will generate extra samples (m samples for N
samples interpolated with a B-spline of order m). It also takes one input sample
at a time. In this section, we proposed our new methodology of B-spline basis
calculations using a batch of input samples without any extra samples. The c’s d
can be calculated if the limits of Eq. 3, are changed to..

Ve

gki= Y el Butk =1 (50)

Ba(3) Bu(5-1) o Bu(l) 0 0
Bu(5+1) Ba(5) Ba(%-1).n Ball) 0
B (5 +1) Bu(%)
B =
0
0
0 0 B (%) B ("5'—1)
0 0 Ba(3+1) Ba(3) |
Ii'.___. .
A Wi = | (5)
E\,_;" .

[ ..refer research paper (21) ]
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Then only N coefficients are needed. The ¢’s are solution to the linear system.

B =8, ¢ =[g0) g1y .. ... 8(N— DY

The solution of this system is much simpler. In case of cubic B-spline, the
matrix B s reduced to Tri-diagonal (Toeplitz) matrix, whose solution is
straightforward and can be implemented online. At this point we can show that,
the interpolation of L —1 new points between every two knots is given by,

N—%—1

Tk - k

= (6)

N—g—1
LR LS g B vl

h #
N —_—

where j is the new interpolation of the input k samples.As far as signal
compression 1s concerned, if a batch of N samples of g(n) is decimated by L,
where N is multiple of L, then the optimum B-spline coefficients "¢, must be
chosen

to minimize the norm of the error signal e(m) = g(n)-where j is the new
interpolation of the input k samples.As far as signal compression is concerned,
if a batch of N samples of g(n) 1s decimated by L, where N is multiple of
L then the optimum B-spline coefficients ~ ¢, must be chosen to minimize the
norm of the error signal e(n) = g(n) —

oy gin) = ‘_LT m :‘(:'}Ii';;f}m SRR =
N1 “

[ ..refer research paper 2]

This means that the optimum c’s are the solution to the following linear
equation:
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b3 (.‘L B — kLY B (n — r 1_;3);1.&;
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.:";" I
= > _ gn) B - rL) I
#hoe )

[ ..refer research paper (21) ]

where v = -m/2,-m/2 + 1,........ N/L - m/2 — 1. As B-spline interpolated basis is
known Bm{!’j(n),the solution can be achieved. Both of the interpolation and

decimation techniques can be applied on images by working on rows and then
columns, or vice versa.

4.3.1) Derivation of B-spline wavelet bases

4.3.1) B-spline Z-scale relation, dual and wavelet functions
The 2-scale property of B, (t),is defined as:

" e——t—

Bu(1) =D ptBu(2t — k) (7
k

M =

Taking the Fourier transform FT, one can show that,

s 1 ik w
Bytew) = P E pre Y By ?)
== 2

I ko By, (o)
2) B N P i e T
Qs Bn (3) (8)
1 4 m & | -+ :_‘ it ;@
— o T — 4 e ..-’ 3
= > ( ;. ) ek = W~;3—-—-) . z=clf
L=0

[ ..refer research paper (21) |

where 724sare the scaling function (low pass filter) of the B-spline wavelet
subband coding system.

The dual B-spline function #.. <->. is defined to satisfy,

/ By (1) By (¢ — &) dt = 8(k) )
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This condition, together with the properties of the B-spline polynomials would
yield

11
Hi=}

Bm “) — Z (o4t lém “ b k) '
ks ! 1()}

Uy = / By (t) By (¢t — k)dt = Bayy(m + k)

So, the Fourier transform of B,,(¢), is given by

B, (w) By (w)
=1 —jke  N(z2)

& v
Lfimm—a+1 e c

B;;; f ) =

(11}

[ ..refer research paper (21) ]

Where N(z?) is the summation of squared absolute shifted B-spline basis.
Figure 4b shows how to compute cubic dual B-spline 5. <>-for a resolution of
L. Thus, Bm(t) belongs to the family of semi-orthogonal wavelets. This means
that a function f (t) can be decomposed by using either Bm(t), or its dual

By (1. , ;€5

T S —

T Z(_.‘,g Byl —k) = Z é& gm (£ — &)
: k

Mi=1

= Cp E Gdies 00, (12)

FERee

[ ..refer research paper (21) ]

where o’s are factors.

The mth order B-spline wavelet ym(t), is constructed to satisfy the relation.

/ Wy (t — K) By ()dt =0 (13)
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for all integer shifts of k. Thus, one can express y (t) as,

Um(t) = D _q Bu (21 — k)

k

Wy () 4 | . = (14)
Q(;j v Q(Z ) = Gk 2

B (4) 2

[ ..refer research paper (21) ]

where gk ’s are the wavelet function basis (high pass filter) of the B-spline
wavelet subband coding system. Moreover, due to the orthogonality between
the scaling andwavelet B-spline functions, we have:

/ wm () _gj;g——(_f;_j_ C_‘H'ml,tw = 0,

where By, (w) isthecomplementof By, (w)
5
w2

i 1 | 57 ;
/ Qi) P(z7) }B”,.(T)l e~ ke = 0,
! r=3

l - [ &
Q@) = Py fo};'f» Sy e BN
]

b d
i

Z 'Q[':)P{Ef-gil

H 0

¥ Y

Bu(=+27m)| ¢ *dw=0  (15)

[ ..refer research paper (21) ]
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However, as in the classical wavelet theory [11], Parseval’s energy theory
yields

/ Bip (13 By (8 — k)pdr = { By f(ifJ}g [kmdw

i

2

|
by /Z Bm(w-{-—znﬂﬂ At L C P

]

= By, (m — k) (16)

Thus, we have the Fourier series expansion

1

Z | By (e + 2nr) 12 Z Ban, (n — k) e~ /K® = N(z?‘).

e Lt

(17)
|
However, since l
N(z2) = ..+ (B (e — 87 "}13 + 1By (e + 6?:‘)@2 ‘
| B (o + 432 + | By (w0 + 21312 + | By ()] '
= By (e — 21 )12
[ By (w — 41)1% + [ Biplw — 67) |
— 1 B, (0 — R?f}%'z S
= ... [ By (e = 8 V2 + [Bylw+ 47 J|2 + [ By (m}l“
b | B (s — A3} 2 ,f;,huu—‘%ﬂf |
— o (e + _’f} + 4} |2 + | Bumlw + 2:{}!2
& 1By (00— 27032 ] By (0= 27t —Am) | oo - (18a)
s . Voo g
Le. Ny = PP Z Ef‘s’m(_aﬂ + anr}i ]
R
£SO LI Y«} et S iz]
A TR R 5 3:’\;,;€F—-—2 4 "“mé
L

ie. N2 = PP WN@) + P(—Pi—z"YN(=z)  (18b)
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Substituting Eq. (18) back in Eq. (15), and in order for 0 (z)
o be a causal FIR, we have

Q@z) P(z" )N + Q(—2) P(—z H)N(=2) =0

ie. Q) =3~ D p— =N (—2)
= (=)~ =D By N(=2), Plzy=z""Pih
= —E(-2)P(—z): E(z)

2in-1
= W=D = N By (kg (19)

k=l

[ ..refer research paper (21) ]

Figure 4 shows the generated P(z),0(z), and E(z), for a bilinear, cubic,
quadratic, and order eight B-spline based representations. As shown in the
figure, as the B-spline order increases, the overlap between P(z) and Q(z) is
reduced,which makes this B-spline based decomposition more orthogonaland

i . S B

energy concentrated:

4.4) Two-scale relations of dual scaling and wavelet

B-splines

As the 2-scale B-spline scaling relation of Eq. (7), the 2-scale dual scaling ’
relation is defined as !

ém () = Zfﬂ; ém (2t — k) (20)
k

Taking the FT of Eq. (15), and using Eq. (11), one can show

that
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BH (‘5%‘:) B,, (m) ] _
AR ==> az*
1\ fu) -‘\ ‘:“J ( ) 2 Zakz 5
k (21)

[}m () = A(z) -

Nifa) oo B(D)
- P(@) =2—5 P(2)

Lc. A7) =
s N (z2) E(M)

Similarly, the dual wavelet v,,(r) is orthogonal to the dual
B-spline wavelet B, (1), and is related by

/@mwmwwmm=ﬂﬂﬁﬂw

= Zf;k fﬁ;_.; (2t — k) for all integer k {22}
P
Taking the FT of Eq. (22), and using Egs. (11, 17), yields
SNETL ] b R S
Y (w) = Py Z bee ™ T By (.,)
L ¢
Lo B %E
,,,,,,,,,,,,,,,,,,,,,,,,,,, "m @) = B(z) m(7) (23)
Z [;D;)‘((I)_}' .JITH 2 f"(f)
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As in Eq. (13), one can show that
> " (Wl + 2nm)i2 = O(2) @z~ N (z)
+ Q(=2)Q(—z" HN(~2)
= P(—2) P(—z" "N (=2)N(2)

+ PPz HN2@IN(—2D)

n (24)
= N((z) N(—z) N(z=)
D>
Bilz) = , 5‘(‘) ‘
N(z=IN(—2)
i1y P (—2)
A 7.."**#}!:-—-;'!M e
R N(z?)
3 P —
o I‘:.C‘.. Ij(::ﬁ*"] f—— :.:hk{' &
El{z=)

Norte that unlike P(z) and Q(z), cach of A(z) and B(z) is an
HR non-causal symmetric function,

3.4 The perfect reconstruction, decomposition,
and reconstruction relations

[ ..refer research paper (21) |

These equations describe PR system. To find its system simulation, multiplying
both sides of the first equation by B, (w/2) e~ ¥%/2 yields:

(an e f iy g Rt () — ke
By (=) e/® =A™ P@By (5) /¥

w3 ; [43] e « Rter
+ B(z ‘)Q(Z)Bm (?) e /7

&
ik v
2

| _ =
= E ty By (w)e™ 2
— r

%
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TR Z b Wiy (w) e

_ | fln
By (2t — k) = 5 Zif,‘ By (f o o : )

! ‘ k—r
e E zbr Y ("' T )
7 2

: I
o E Q=2 By (1 — 1)
!

|
a5 Z br—20m (t — 1)
/

Similarly, multiplying the 2nd equation by B, (%) e /7

vields
B;et..fmafa.]“”‘-“g—‘{?& Bt =D n\
Ao : I
= o ‘:2’3‘ fok 227 ‘3’3}:(’ e {) (2?) L

[ ..refer research paper (21) ]

To relate the preceding relations to data compression, we proceed as in classical
wavelet theory , as follows: Given a function f'(7), its decomposition using mth
B-spline functions in various scales. The relation between the nth and(z ~ 1)th

scales, yields to:

i'rff “) == Z Cy, ;(B,“(Z”; L f\)
=5 Zfﬁws IBH?(‘”J”]

e Z‘[ﬁw; klffm(’”“!! =) (28)
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To relate ¢y £ t0 Cp—1.x & dy—1 4 substitute Eq. (25), back in
Eq. (27), to yield

; |
Sutt) = ZC'&.»‘: Ezf’fkmﬁrf\"m(?-”uil - 7)

k r

]
‘f’;‘ Z D2y Ui (zn_it =5 1)
=i

]
E § : =}
G § Cnklk~2r Bn(2"7 't — ¥)

r k
| { e 1
ot Py E Cr ke Pr—=2r q"’;\i,;(m fie= 1)
oo .
i E .C'fi—é,er(?‘-Hugf il BN \
r l
e
+ T: Ay B2 — 1) E
5
| :
=  Cp=1r = P § Cn b G2y
| o
“‘n«»%.r Te E Cit ke Cn bk’—lr {.*9)

k
[ ..refer research paper (21) ]

Thus, low-resolution coefficients can be recursively computed using high-
resolution coefficients with IIR filters A(z—1)&B(z—1), as shown in Fig. 5a. To
reconstruct the signal using low-resolution scales, we have
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Figure 4.1b) shows the computations of the high-resolution coefficients from ;
low-resolution ofies using partial fractions. Figure 4.2 shows the complete !
decomposition/reconstruction system. Note that, due to Eq. (24), this system
constitutes a PR system.
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The only problem we will find so far is how to realize the unstable IIR functions
' A(z—1), B(z—1). If only one decomposition/reconstruction is needed, there
should be no problem as we can easily avoid processing with

]

E ‘\“2) , which is inherently non-causal unstable function due to Eq. (11), by
| projection to the dual B-spline space. This would be by computing the dual of
the ¢’s, which are ¢ . and then convolving them with ~ . ¢=> to reconstruct f
(t). Figure 6 illustrates this idea, and gives the complete I-level
- analysis/synthesis scheme. If more than one decomposition levels is required,
the following scheme is proposed for implementing A(z—1)

and B(z—1), as summarized below:

I. Expand :;wfw; using partial fractions expansion, i.e.

m—1 ! H

| Z A B3 e

» - -'\ I 3 ¥ :,::( < ||
E(zY) [ vindd

A

[ ..refer research paper (21) ]

Notice that the expansion is symmetric around some hg,not necessary

h,-Moreover, it is stopped when expansion coefficients fall below a specified :
threshold. ’
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Form Fo = (- E(z) ﬁ(z))@h(z), Fy =z2P(—2)®"h(z)
While keeping both of Fy, F/, Symmetric around their 1
centers, truncate both of them to yield almost perfect {
reconstruction and zero aliasing. This is achieved when i
length(P (z)) + length(Fp(z)) = length(Q(z2)) -+ H
length(F;(2))). |

|

W

[ ..refer research paper (21) ] i

({1 FRH '

E(z%)

~ Fig.4.2 Complete input-to-output 1-level decomposition/reconstruction section

4.5 Image noise cancellation procedure:

The proposed B-spline wavelets are used in Image noise cancellation, as
. follows:

1) Decompose the received noisy image using the proposed B-spline wavelet to -i

an arbitrary n decomposition level.

Denote the resulting detail and approximation coefficients by dl, 42, . . .,
. dn,an, respectively.

2) As the next step, The Matlab software/function wavedec2 under 2-D Discrete
Wavelets Toolbox category mainly implements the wavelet decomposition of the
obtained matrix X representing the noised image at level N, using the wavelet
named in string 'wname' as described below,

[C,S] = wavedec2(X,N,'wname')

Outputs are the decomposition vector C and the corresponding bookkeeping
matrix S.

Vector C is organized as

«  C=[AMN)|HN)|V(N)|DN)]...
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e  H(N-1)| VN-1) | D(N-1) | ... | H(1) | V(1) | D(1) ].

where A, H, V, D, are row vectors such that

« A = approximation coefficients

« H = horizontal detail coefficients

« V = vertical detail coefficients

o D = diagonal detail coefficients

« Each vector is the vector column-wise storage of a matrix.

Matrix S is such that
o S(1,:) = size of approximation coefficients(N).
« S ==size lofadetail  coefficients(IN=1+2) for 1 = 2, N+l %and
S(N+2,:) = size(X).

Decomposition Steps :

For images, an algorithm similar to the one-dimensional case is possible for
two-dimensional wavelets and scaling functions obtained from one-dimensional
ones by tensor product.

This kind of two-dimensional DWT leads to a decomposition of approximation
coefficients at level j in four components: the approximation at level j+1, and
the details in three orientations (horizontal, vertical, and diagonal).The
following chart describes the basic decomposition step for images:
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Two-Dimenslonal DWT

Decomposition step columns

rotws l Lo_D J—‘_“i 1+ 2}*““-* “A}ﬂ’
Iy 1;{
l

— Lo D !«"w columns

Hi D }*""’l 1+ 2{’——'*— "Df‘f.;

horizontal

| L5 e columns e

| rotes '""'I Lo _D i""“"i 1+ 2{”‘_‘" CDJ"‘-'."-; :

| Fr e S
......I LD im-’{ 11 ZE-‘NW— Z-I'th:;"gnol

where Downsample columns: keep the even indexed columns

Downsample rows: keep the even indexed rows

| rows
' l X ] Convolve with filter X the rows of the entry

columns
Convolve with filter X the columns of the entry

l Initialization cAq = ¢ for the decomposition initialization

} So, for J=2, the two-dimensional wavelet tree has the form,

3) Finally, Image noise cancellation is achieved using the denoised detail
coefficients obtained during the second step as given above, together with the
synthesis coefficient matrix obtained at the first step using the proposed B-
spline reconstruction system.
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Chapter V
MATLAB Implementation of Noise Cancellation

5.1 MATLAB Code for B-Spline Wavelets

Here, the code for generating the synthesis matrices P”and Q“ for B-Spline
wavelets of arbitrary degree ‘d’ of hierarchy level ‘j’

(i)  For acting as a Low Pass filter, The matrix ‘P’ can be computed with the
following function findP(d,j) as follows :

functicn p = £indP(d,j)
dsfix{diy
1P da<l0 - fi

error ('must have 4 »=0.%);
end;

=927t
=[p zeros(size(p)); zeros(size(p)) pl;

knots(d,j-1);

greville(d,u);

p=eye (27 (j-1) + d);

for k = 0:2°(j-1)-1

i g | ingertknot{(d,u,g,p, (2*k+1)/2%5);

o
nn

end;

end ;

56




(i)  For acting as a High Pass filter, The matrix ‘Q’ can be computed with the

: . |
following function findQ(d,j) as follows : |
|
function Q = FindQ(d, j, normalization) i
if margin < 3 |
normalization = 'wmin';
elgseif ~strcmp(normalization, 'min') & ~strcmp(normalization, 'max') &
~gstrcmp (normalization, ‘LZ7")
error ('FindQ: normaization nust be '‘min'', ''max'’, or '1iztr i)y, i
end; |
p = findP(d, j); i
i = inner(d, j); |
1 oL &5 B |
[ml, m2] = size(m); d
n = m2 - rank(m); }

g = zeros(m2, n); ?
found = 0; I
start_col = 0; |

while (found < n/2) & (start _col < m2) r
start col = start_col + 1 + (found > d);
width = 0; J
rank _def = 0; 1
| while ~rank def & (width < m2 - start_col +1) |
| width = width +1;
submatrix = m(:,start_col:start_col+width-1);
rank_def = width - rank (submatrix) ;

STy e
and;

if rank_ def
g_col = null (submatrix) ; P
if strcmp(normalization, ‘min') |
g col = g col/min(abs(g_col + le38*(abs(q col) < 1le-10))); m
elgeif strcomp(normalization, ‘wax') }
g col = g col/max(abs(g_col)); W
end;

g col g col*(-1)"(start_col + floor((d+1)/2}) + (g _col(1l,1) > 0));

I

found = found + 1;
g(start col:start_col + width-1,found) = g_col;

g(:,n-found+1l) = flipud(qg(:,found))*(-1)"(d+1);

if strcmp(normalization, "127)
ip = g'*i*q; ,
g = g*diag(l./sqrt(diag(ip)));

end;

return;

The MATLAB code for all the functions called in between the above two
functions can be referred from the appendix at the end of the report.
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5.2 MATLAB Code for wavedec2 Function

[C,8] = wavedec2(X,N,Lo_D,Hi_ D)
Here,

Outputs are the decomposition vector C and the corresponding bookkeeping
matrix S.

N must be a strictly positive integer.
Instead of giving the wavelet name, you can give the filters. T
For [C,S] = wavedec2(X,N,Lo D,Hi D),

Lo _D is the decomposition low-pass filter and Hi_D is the decomposition high-
pass filter.

Vector C is organized as

o« C=[AMN)|HN)|VN)|DMN)|.. \
o  H(N-1) | V(N-1) | D(N-1) | ... [H(1) | V(1) | D(1) ]. )
where A, H, V, D, are row vectors such that

« A = approximation coefficients

« H = horizontal detail coefficients

« 'V = vertical detail coefficients

« D = diagonal detail coefficients

« Each vector is the vector column-wise storage of a matrix.

Matrix S is such that

« S(1,)) = size of approximation coefficients(N).
« S(i,}) = size of detail coefficients(N-i+2) for i = 2, ...N+1 and
S(N+2,:) = size(X).

5.3 ‘Image Noise Cancellation’ Main Function to be applied over the noised
image combining above two approaches’ detailed & approximation coefficients
matrices :

close a
clear a.l
I = imread('lienasizaoler. tifF!);
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figure, imshow(I)
J= rgb2gray(I);
figure, imshow (J)
K = im2double (J) ;

nsd = imnoise(J, 'sait & pepper’,0.3);
figure, imshow (nsd)

Lo D

findP (1, 1);

Hi D = FindQ(1,1);

[c,s] = WAVEDEC2(J,2,Lo D,Hi D)

A = APPCOEF2(c,s,Lo_D,HiﬁD,Z)

[chd2, cvd2,cdd2] = detcoef2('all',c,s,2);
DH=chd2;

DV=cvd2;

DD=cdd2;

for k = 1:1level

A = APPCOEF2(c,s,Lo D,Hi D,2)’
[chd2,cvd2,cdd2] = detcoef2('all',c,s,2);

A{k} = wcodemat (A{k});
H{k} = wcodemat (H{k});
V{k} = wcodemat (V{k})
D{k} = wcodemat (D{k})

i
i

End
level=2;

for k = 1:1evel
subplot (level, 4,aff+1); image (A{k});
title(['approximation A',num2str(k)]);
subplot (level,4,aff+2); image (H{k})
title ([ 'Horizental Detail !,num2str(k)]);
subplot (level,4,aff+3); image (Vv{x});

title(['Vertical Detail ',num2str(k)]);
subplot (level, 4 aff+4}, image (D{k}) ;
title(['Di %) Detail ,num2str(k)]);

aff = aff + 4;
end

The MATLAB code for all the functions called in between the above code can
be referred from the appendix at the end of the report.
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Chapter VI

Conclusion

Through our noise cancellation method using B-Splines wavelets, we are able to
remove the noise from the image to a satisfactory level and thus increasing the
information content in the image which then could be used for the various other
applications. We see that our proposed ‘Noise cancellation’ method which
combines both wavdec2 toolbox method clubbed up with our designed B-spline
filters is better and effective than the other available methods. Thus, B-Splines
wavelets are much better options then the other types of wavelets for image
noise cancellation.
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APPENDIX

Implementations of important functions to be called from the main codes of
generations of B-Spline wavelets and noise cancellation procedure:

® TInsertknot function

function [uret,gret,pret] = insertknot(d,u,g,p,unew)
uret = sort([u unew]) ;
gret = greville(d,uret);
pret = polyeval(g,p,gret);

return H

® BernsteinWeights function

function w = BernsteinWeights(d, 3j)
w = eye(2®j + d);
if di==80

return;

end;

u = knots(d,j);
g = greville(d, u);
for i = 1:273 ='1
foB-r-="0d
[u, g, wl = insertknot(d, u, g, w, 1/2%]);
end;
end;

return;

1]

® Berstinner function

function i = berstinner (d)

k
j
i

ones (d+1, 1)*[0:d];
kil
Choose (d, k) .*Choose(d, j)./(Choose(2*d, k+j)*(2*d + 1));

I

return;
¢ knots function
function ¥ = knotsi(d, j)

x = [zeros(l, d-1 [0;2“j—1]/2"j ones (1,d)];

return;
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® polyeval function

function pret =

polyeval (g,p, gnew)

[m, n] = size(p);
if length(g) ~= m
error('g & p must be same');
end;
for 1 = 1:length(gnew)
row = max(find(g<=gnew(i)));
if row ==
pret{(i,:) = p(m,:);
else
frac =
pret(i,:) = frac*p(row, :)
end;
end;

return;
® Factorial function

function t =
[r,c] = size(m);
t = zeros(r, c);
For i =rilnn

for j = l:c

t(i,3)

end;
and;
return;

e Choose function

function ¢ = Choose(n,r)

c=Factorial (n) ./ (Factorial (r)

return;
e inner function

function i = inner(d,j)
i0 = berstinner(d);

by e 2 ot Sl

1 = zeros(n);
w=BernsteinWeights (d,j);
for k=1:n

Factorial (m

)

= prod(2:m(i,j));

wl=reshape(w(:,k), d+1, 2%9);
for l=k:n
w2=reshape (w(:,1), d+1, 2%7);
i(k,1l) = trace(wl'*iO0*w2) ;
) e kL)
end;
end;
e e b
o e

+
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(g(row+1j - gnew(i))/ (g(row+l) -g(row)) ;

(1-frac) *p(row+1l, :) ;

.*Factorial (n-r));




¢ polyeval function
function pret = polyeval{g,p,gnew)
[m, n] = size(p):

if length(g) ~=m
error('d & p m

be same');

end;

for 1 = 1l:length(gnew)
row = max(find(g<=gnew(i)));

if row == m
pret (i7)Eeepiimitak;
elge
frac = (g(row+l) - gnew(i))/(g(row+l)-g(row));
pret(i,:) = frac*p(row,:) + (l-frac)*p(row+l,:);
end;

end;

return;
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