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Abstract

Filters have numerous applications in communication be it transferring data on a communication
channel or storing and retrieving information. Signal processing techniques involves methods to
extract information from various types of signal sources but also methods to protect, store, and
retrieve the information at a later date. In, for example, a radio system, we need to generate
different types of signals and modify the signals so that the information can be transmitted over a
radio channel, e.g., by frequency modulation of a high frequency carrier. Analog filters are key
compenents in these applications, In a telecommunication system we are interested in
transmitting information from one place to another, whereas in other applications, e.g., MP3
players etc., we are interested in efficient storing and retrieving of the information, In Mp3
players it is the analog filters that are used to remove non audible signals. A biquad filter is a
filter of second order which has two poles. It is very useful block to realize'high-order filters. So,
in this project we have designed three basic types of biquad filters namely the high pass filter, the
tow pass and the band pass filter. Using these biquad filters, filters of higher order can be

designed.




CHAPTER 1
INTRODUCTION

Signal processing techniques involves methods to extract information from various types
of signal sources but also methods to protect, store, and retrieve the information at a later
date. In, for example, a telecommunication system we are interested in transmitting
information from one place to another, whereas in other applications, e.g., MP3 players,
we are interested in efficient storing and retrieving of information... Note that storing
information for later retrieval can be viewed as transmitting the information over a
transmission channel with an arbitrary long time delay. In many cases, for example in
MP3 format, signal processing techniques have been used to remove non audible
(redundant) information in order to reduce the amount of information that needs to be

stored.

In, for example, a radio system, wg need to generate different types of signals and modify
the signals so that the information can be transmitted over a radio channel, e.g., by
frequency modulation of a high frequency carrier. Analog filters are key components in

these applications.

In circuit theory, a filter is an electrical network that alters the amplitude and/or phase
characteristics of a signal with respect to frequency. Ideally, a filter will not add new
frequencies to the input signal, nor will it change the component frequencies of that
signal, but it will change the relative amplitudes of the various frequency components
and/or their phase relationships. Filters are often used in electronic systems to emphasize
signals in certain frequency ranges and reject signals in other frequency ranges. Such a
filter has a gain which is dependent on signal frequency. As an example, consider a
situation where a useful signal at frequency f1 has been contaminated with an unwanted
signal at 2. If the contaminated signal is passed through a circuit (Figure 1) that has very
low gain at f2 compared to f1, the undesired signal can be removed, and the useful signal

will remain. Note that in the case of this simple example, we are not concerned with the

1
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gain of the filter at any frequency other than fl and f2. As long as f2 is sufficiently
attenuated relative to fl, the performance of this filter will be satisfactory. In general,
however, a filter's gain may be specified at several different frequencies, or over a band
of frequencies. Since filters are defined by their frequency-domain effects on signals, it
makes sense that the most useful analytical and graphical descriptions of filters also fall
into the frequency domain. Thus, curves of gain vs. frequency and phase vs. frequency
are commonly used to illustrate filter characteristics, and the most widely-used

mathematical tools are based in the frequency domain.

1.1 The Transfer Function

The frequency-domain behavior of a filter is described mathematically in terms of its
transfer function or network function. This is the ratio of the Laplace transforms of its
output and input signals. The voltage transfer function H(s) of a filter can therefore be

written as:

Vou
H(s) = "T:((?S)l (.1

Where Vin (s) and Voyc(s) are the input and output signal voltages and s is the complex

frequency variable.

The transfer function defines the filter's response to any arbitrary input signal, but we are
most often concerned with its effect on continuous sine waves, Especially important is

the magnitude of the transfer function as a function of frequency, which indicates the

- effect of the filter on the amplitudes of sinusoidal signals at various frequencies.

Knowing the transfer function magnitude (or gain) at each frequency allows us to
determine how well the filter can distinguish between signals at different frequencies.
The transfer function magnitude versus frequency is called the amplitude response or
sometimes, especially in audio applications, the frequency response. Similarly, the phase

response of the filter gives the amount of phase shift introduced in-sinusoidal signals as a

function of frequency. Since a change in phase of a signal also represents a change in



time, the phase characteristics of a filter become especially important when dealing with
complex signals where the time relationships between signal components at different

frequencies are critical.

By replacing the variable s in (1.1) with jo, where jo is equal to bl, and o is the radian
frequency (2qf), we can find the filter's effect on the magnitude and phase of the input
signal. The magnitude is found by taking the absolute value of (1.1):

1 Vouto)) |
and the phase is:
? ; Vout(jo)
arg H(jo) = arg —\-{:% (1.3)

1.2 The Second Order Filter

As an example, the network of Figure 1.1 has the transfer function:

This is a 2nd order system. The order of a filter is the highest power of the variable s in

its transfer function. The order of a filter is usually equal to the total number of capacitors

s fl

H(S) T sZ4s41 ”
|

i

14

YN tH tF Your .‘:.

f

i‘

Figure 1.1 I[
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and inductors in the circuit. (A capacitor built by combining two or more individual it

capacitors is still one capacitor.) Higher-order filters will obviously be more expensive to

build, since they use more components, and they will also be more complicated to design.
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However, higher-order filters can more effectively discriminate between signals at

different frequencies.

Before actually calculating the amplitude response of the network, we can see that at very
low frequencics (small values of's), the numerator becomes very small, as do the first two
terms of the denominator. Thus, as s approaches zero, the numerator approaches zero, the
denominator approaches one, and H(s) approaches zero, Similarly, as the input frequency
approaches infinity, H(s) also becomes progressively smaller, because the denominator
increases with the square of frequency while the numerator increases linearly with
frequency. Therefore, H(s) will have its maximum value at some fréquency between zero
and infinity, and will decrease at frequencies above and below the peak.

To find the magnitude of the transfer function, replace s with jw to yield:

A(w) = [H(S)| = | | (1.4)
A(w) = [H(5)| = g (1.5)

Yo+ (1-w?)?
The phase is:

Z .>
9(w) = argH(s) = 90° — tan’1&2— (1.6)
The above relations are expressed in terms of the radian frequency @, in units of
radians/second. A sinusoid will complete one full cycle in 2q radians. Plots of magnitude
and phase versus radian frequency are shown in Figure 1.2. When we are more interested
in knowing the amplitude and phase response of a filter in units of Hz (cycles per

second), we convert from radian frequency using o e 2qf, where f is the frequency in Hz.

The variables f and @ are used more or less interchangeably, depending upon which is

more appropriate or convenient for a given situation,
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Figure 1.2(a) shows that, as we predicted, the magnitude of the transfer function has a
maximum value at a specific frequency (wg)} between 0 and infinity, and falls off on
either side of that frequency. A filter with this general shape is known as a band-pass
filter because it passes signals falling within a relatively narrow band of frequencies and
attenuates signals outside of that band. The range of frequencies passed by a filter is
known as the filter's passband. Since the amplitude response curve of this filter is fairly
smooth, there are no obvious boundaries for the passband. Often, the passband limits will
be defined by system requirements. A system may require, for example, that the gain
variation between 400 Hz and 1.5 kHz be less than 1 dB. This specification would
effectively define the passband as 400 Hz to 1.5 kHz. In other cases though, we may be
presented with a transfer function with no passband limits specified. In this case, and in
any other case with no explicit passband limits, the passband limits are usually assumed
to be the frequencies where the gain has dropped by 3 decibels (to 02/2 or 0.707 of its
maximum voltage gain). These frequencies are therefore called the -3dB frequencies or
the cutoff frequencies. However, if a passband gain variation (i.e., 1 dB) is specified, the

cutoff frequencies will be the frequencies at which the maximum gain variation

Specification is exceeded.
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Figure 1.2

The precise shape of a band-pass filter's amplitude response curve will depend on the
particular network, but any 2nd order band-pass response will have a peak value at the

filter's center frequency. The center frequency is equal to the geometric mean of the -3dB
frequencies: o

f. = 1,1, (1.7)

Amplitude (a) and phase (b) response curves ;




where f is the center frequency
f1 is the lower b3 dB frequency
fr is the higher b3 dB frequency

1.3 The Quality Factor Q

Another quantity used to describe the performance of a filter is the filter's **Q", This is a
measure of the '“sharpness" of the amplitude response. The Q of a band-pass filter is the
ratio of the center frequency to the difference between the -3 dB frequencies (also known
as the -3 dB bandwidth).

Therefore:
fe
frh—f1

Q =

When evaluating the performance of a filter, we are usually interested in its performance

(1.8)

over ratios of frequencies. Thus we might want to know how much attenuation occurs at
twice the center frequency and at half the center frequency. (In the case of the 2nd-order
band pass above, the attenuation would be the same at both points). It is also usually
desirable to have amplitude and phase response curves that cover a wide range of
frequencies. It is difficult to obtain a usefu] response curve with a linear frequency scale
if the desire is to observe gain and phase over wide frequency ratios. For example, if f0 e
I kHz and we wish to look at response to 10 kHz, the amplitude response peak will be
close to the left-hand side of the frequency scale. Thus, it would be very difficult to
observe the gain at 100 Hz, since this would represent only 1% of the frequency axis. A
logarithmic frequency scale is very useful in such cases, as it gives equal weight to equal
ratios of frequencies. .

Since the range of amplitudes may also be large, the amplitude scale is usually expressed
in decibels (20loglH (jw) 1). Figure 4 shows the curves of Figure 3 with logarithmic

frequency scales and a decibel amplitude scale. Note the improved symmetry in the

curves of Figure 4 relative to those of Figure 3.
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CHAPTER 2

PASSIVE FILTERS

2.1 Approach to implement Passive filters

Passive implementations of linear filters are based on combinations of resistors (R),
inductors (L) and capacitors (C). These types are collectively known as passive filters,
because they do not depend upon an external power supply and/or they do not contain

active components such as transistors,

Inductors block high-frequency signals and conduct low-frequency signals, while
capacitors do the reverse. A filter in which the signal passes through an inductor, or in
which a capacitor provides a path to ground, presents less attenuation to low-frequency
signals than high-frequency signals and is a low-pass filter, If the signal passes through a
capacitor, or has a path to ground through an inductor, then the filter presents less
attenuation to high-frequency signals than low-frequency signals and is a high-pass filter.
Resistors on their own have no frequency-selective properties, but are added to inductors
and capacitors to determine the fime-constants of the circuit, and therefpre the

frequencies to which it responds,

The inductors and capacitors are the reactive elements of the filter, The number of
elements determines the order of the filter. In this context, an LC tuned circuit being used
in a band-pass or band-stop filter is considered a single element even though it consists of

w0 components.

At high frequencies (above about 100 megahertz), sometimes the inductors consist of
single loops or strips of sheet metal, and the capacitors consist of adjacent strips of metal.

These inductive or capacitive pieces of metal are called stubs.




2.2 The Basic Filter Types

2.2.1Bandpass

A band-pass filter is a device that passes frequencies within a certain range and rejects
(attenuates) frequencies outside that range. An example of an analogue electronic band-
pass filter is an RLC circuit (a resistor—inductor—capacitor circuit). These filters can also

be created by combining a low-pass filter with a high-pass filter.

Band pass is an adjective that describes a type of filter or filtering process; it is frequently
confused with passband, which refers to the actual portion of affected spectrum. The two
words are both compound words that follow the English rules of formation: the primary
meaning is the latter part of the compound, while the modifier is the first part. Hence, one

may correctly say 'A dual band pass filter has two passbands.

An ideal band pass filter would have a completely flat passband (e.g. with no
gain/attenuation throughout) and would completely attenuate all frequencies outside the
passband. Additionally, the transition out of the passband would be instantaneous in
frequency. In practice, no band pass filter is ideal. The filter does not attenuate all
frequencies outside the desired frequency range completely; in particular, there is a
region just outside the intended passband where frequencies are attenuated, but not
rejected. This is known as the filter roll-off, and it is usually expressed in dB of
attenuation per octave or decade of frequency. Generally, the design of a filter seeks to
make the roll-off as narrow as possible, thus allowing the filter to perform as close as
possible to its intended design. Often, this is achieved at the expense of pass-band or

stop-band ripple.

The bandwidth of the filter is simply the difference between the upper and lower cutoff
frequencies. The shape factor is the ratio of bandwidths measured using two different

attenuation values to determine the cutoff frequency, e.g., a shape factor of 2:1 at 30/3 dB

10
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means the bandwidth measured between frequencies at 30 dB attenuation is twice that

measured between frequencies at 3 dB attenuation.

Outside of electronics and signal processing, onc example of the use of band-pass filters
is in the atmospheric sciences. It is common to band-pass filter recent metcorological data
with a period range of, for example, 3 to 10 days, so that only cyclones remain as

fluctuations in the data fields.

In neuroscience, visual cortical simple cells were first shown by David Hubel and Torsten

Wiesel to have response properties that resemble Gabor filters, which are band-pass.

The number of possible band pass response characteristics is infinite, but they all share
the same basic form. Several examples of band pass amplitude response curves are shown
in Figure 2.1, The curve in 2.1(a) is what might be called an ideal band pass response,
with absolutely constant gain within the passband, zero gain outside the passband, and an
abrupt boundary between the two. This response characteristic is impossible to realize in
practice, but it can be approximated to varying degrees of accuracy by real filters.
Curves 2.1(b) through 2.1(f) are examples of a few band pass amplitude response curves
that approximate the ideal curves with varying degrees of accuracy. Note that while some
band pass responses are very smooth, other have ripple (gain variations in their
passbands. Other have ripple in their stopbands as well. The stop band is the range of
frequencies over which unwanted signals are attenuated. Band pass filters have two

stopbands, one above and one below the passband.

11
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FIGURE 2.1

Just as it is difficult to determine by observation exactly where the passband ends, the
boundary of the stop band is also seldom obvious. Consequently, the frequency at which
a stop band begins is usually defined by the requirements of a given system for example,
a system specification might require that the signal must be attenuated at least 35 dB at

1.5 kHz. This would define the beginning of a stop band at 1.5 kHz.

The rate of change of attenuation between the passband and the stop band also differs
from one filter to the next. The slope of the curve in this region depends strongly on the
order of the filter, with higher-order filters having steeper cutoff slopes. The attenuation
slope is usually expressed in dB/octave (an octave is a factor of 2 in frequency) or
dB/decade (a decade is a factor of 10 in frequency). Band pass filters are used in
electronic systems to separate a signal at one frequency or within a band of frequencies
from signals at other frequencies. In 1.1 an example was given of a filter whose purpose
was to pass a desired signal at frequency fl, while attenuating as much as possible an
unwanted signal at frequency f2. This function could be performed by an appropriate
band pass filter with center frequency f1. Such a filter could also reject unwanted signals
at other frequencies outside of the passband, so it could be useful in situations where the

signal of interest has been contaminated by signals at a number of different frequencies.
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2.2.2 Low-Pass

A third filter type is the low-pass. A low-pass filter is a filter that passes low-
frequency signals but attenuates (reduces the amplitude of) signals with frequencies
higher than the cutoff frequency. The actual amount of attenuation for each frequency
varies from filter to filter. It is sometimes called a high-cut filter, or treble cut

filter when used in audio applications. A low-pass filter is the opposite of high, and

a band-pass filter is a combination of a low-pass and a high-pass.

The concept of a low-pass filter exists in many different forms, including electronic
circuits (like a hiss filter used in audio), digital algorithms for smoothing sets of data,
acoustic barriers, blurring of images, and so on, Low-pass filters play the same role

in signal processing that moving averages do in some other fields, such as finance; both
tools provide a smoother form of a signal which removes the short-term oscillations,

leaving only the long-term trend.

If the components of our example circuit are rearranged as in Figure 9, the resultant

transfer function is;

Hyp(s) = 2.1

s2ts+1

iy 319 Your

o

Exampie of a Simple Low-Pass Filter

FIGURE 2.2
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It is easy to see by inspection that this transfer function has more gain at low frequencies
than at high frequencies. As w approaches 0, HLP approaches 1; as o approaches infinity,
HLP approaches 0.
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Examples of Low-Pass Filter Amplitude Response Curves
FIGURE 2.3

Amplitude and phase response curves are shown in Figure 2.4, with an assortment of
possible amplitude response curves in Figure 2.4. Note that the various approximations
to the unrealizable ideal low-pass amplitude characteristics take different forms, some

being monotonic (always having a negative slope), and others having ripple in the

passband and/or stop band.

Low-pass filters are used whenever high frequency components mﬁst be removed from a
signal. An example might be in a light-sensing instrument using a photodiode. If light
levels are low, the output of the photodiode could be very small, allowing it to be
partially obscured by the noise of the sensor and its amplifier, whose spectrum can extend
to very high frequencies. If a low-pass filter is placed at the output of the amplifier, and if
its cutoff frequency is high enough to allow the desired signal frequencies to pass, the

overall noise level can be reduced.
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2.2.3 High-Pass
The opposite of the low-pass is the high-pass filter, which rejects signals below its cutoff
frequency. A high-pass filter can be made by rearranging the components of our example

network as in Figure 2.5. The transfer function for this filter is:

SZ
sZ+s+1

Hyp(s) =

2.2)

o——-—"F o

Vin 1H 1o Vour

< Q

Exampie of Simple High-Pass Filter

FIGURE 2.5

and the amplitude and phase curves are found in Figure 2.6. Note that the amplitude
response of the high-pass is a mirror image of the low-pass response. Further examples of
high-pass filter responses are shown in Figure 2.6, with the “*ideal" response in 2.6(a) and

various approximations to the ideal shown in 2.6(b) through 2.6(f).

15
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High-pass filters are used in applications requiring the rejection of low-frequency signals.
One such application is in high-fidelity loudspeaker systems. Music contains significant
energy in the frequency range from around 100 Hz to 2 kHz, but High-frequcncy drivers
(tweeters) can be damaged if low-frequency audio signals of sufficient energy appear at
their input terminals. A high-pass filter between the broadband audio signal and the
tweeter input terminals will prevent low-frequency program material from reaching the
tweeter. In conjunction with a low-pass filter for the low-frequency driver (and possibly

other filters for other drivers), the high-pass filter is part of what is known as a crossover

network.
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FIGURE 2.7
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CHAPTER 3
ACTIVE FILTERS

3.1 Approach to implement Active Filters

An active filter is a type of analog electronic filter, distinguished by the use of one or
more active components i.e. voltage amplifiers or buffer amplifiers. Typically this will be

a vacuum tube, or solid-state (transistor or operational amplifier).

VIH v,
i
Your - H?
L "
(b) Multiple-Feedback 4th-Order Active High-Pass Filter.

Note that there are more capacitors than poles.

(a) Sallen-Key 2nd-Order Active L.ow-Pass Filter

iy l—] Your Vi A [

vy
Vir Yo Yo
(¢) Multiple-Feeclback 2nd-QOrder Bandpass Fllter

{d) Universal State-Variable 2nd-Qrder Active Fliter
Examples of Active Filter Circults Based on Op Amps, Resistors, and Capacitors

FIGURE 3.1

Active filters have three main advantages over passive filters:

¢ Inductors can be avoided. Passive filters without inductors cannot obtain a high Q
(low damping), but with them are often large and expensive (at low frequencies),
may have significant internal resistance, and may pick up surrounding

electromagnetic signals.




* The shape of the response, the Q (Quality factor), and the tuned frequency can :
often be set easily by varying resistors, in some filters one parameter can be il
adjusted without affecting the others. Variable inductances for low frequency
filters are not practical.

o The amplifier powering the filter can be used to buffer the filter from the
electronic components it drives or is fed from, variations in which could
otherwise significantly affect the shape of the frequency response.

Other characteristics of active filters are:

e Active filters use amplifying elements, especially op amps, with resistors and
capacitors in their feedback loops, to synthesize the desired filter characteristics.

* Active filters can have high input impedance, low output impedance, and virtually

f any arbitrary gain, They are also usually easier to design than passive filters. il

* Their most important attribute is that they lack inductors, thereby reducing the

problems associated with those components. Still, the problems of accuracy and

— T ——

value spacing also affect capacitors, although to a lesser degree. Fﬁ“
e Performance at high frequencies is limited by the gain-bandwidth product of the ‘%i :
amplifying elements, but within the amplifier’s operating frequency range, the op i |

amp-based active filter can achieve very good accuracy, provided that low- !

tolerance resistors and capacitors are used.

minimized by the use of low-noise amplifiers and careful circuit design. |

e  Active filters will generate noise due to the amplifying circuitry, but this can be ‘
!
|

|
I
l

The figure above shows a few common active filter configurations (There are several i

other useful designs; these are intended to serve as examples). ; ‘ : |
* The second-order Sallen-Key low pass filter in (a) can be used as a building block

for higher order filters. By cascading two or more of these circuits, filters with i |

orders of four or greater can be built. ‘
o The two resistors and two capacitors connected to the op amp's non-inverting

input and to VIN determine the filter's cutoff frequency and affect the Q; the two ; IH

resistors connected to the inverting input determine the gain of the filter and also i
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affect the Q. Since the components that determine gain and cutoff frequency also
affect Q, the gain and cutoff frequency can't be independently changed.

Figures 3.1(b) and 3.1(c) are multiple-feedback filters using one op amp for each
second-order transfer function. Note that each high-pass filter stage in Figure
3.1(b) requires three capacitors to achieve a second-order response. As with the
Sallen-Key filter, each component value affects more than one filter
characteristic, so filter parameters can't be independently adjusted.

The second-order state-variable filter circuit in Figure 3.1(d) requires more op
amps, but provides high-pass, low-pass, and band pass outputs from a single
circuit. By combining the signals from the three outputs, any second-order
transfer function can be realized. When the center frequency is very low
compared to the op amp's gain- bandwidth product, the characteristics of active
RC filters are primarily dependent on external component tolerances and
temperature  drifts. Predictable results in critical filter circuits, external
components with very good absolute accuracy and very low sensitivity to
temperature variations must be used, and these can be expensive.

When the center frequency ‘multiplied by the filter's Q is more than a small

fraction of the op amp's gain-bandwidth product, the filter's response will deviate
P p  Iesp

from the ideal transfer function. The degree of deviation depends on the filter

topology; some topologies are designed to minimize the effects of limited op amp
bandwidth,




3.2 ACTIVE REALIZATIONS
3.2.1Low pass

Vin Ri

o—MN

"~ FIGURE 3.2
An active low-pass filter

Another type of electrical circuit is an active low-pass filter.

In the operational amplifier circuit shown in the figure, the cutoff frequency (in hertz) is

defined as:
1
Je=55=
2w Ry : (3.1
or equivalently (in radians per second):
1
We = .
RO (3.2)
— RQ

The gain in the passband is Ry , and the stop band drops off at —6 dB per octave as it is
a first-order filter.

Sometimes, a simple gain amplifier (as opposed to the very-high-gain operation
amplifier} is turned into a low-pass filter by simply adding a feedback capacitor C. This
feedback decreases the frequency response at high frequencies via the Miller Effect, and

helps to avoid oscillation in the amplifier. For example, an audio amplifier can be made
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into a low-pass filter with cutoff frequency 100 kHz to reduce gain at frequencies which
would otherwise oscillate. Since the audio band (what we can hear) only goes up to 20
kHz or so, the frequencies of interest fall entirely in the passband, and the amplifier

behaves the same way as far as audio is concerned.

3.2.2 HIGH PASS

The simple first-order electronic high-pass filter shown in Figure 1 is implemented by
placing an input voltage across the series combination of a capagitor and a resistor and
using the voltage across the resistor as an output. The product of the resistance and
capacitance (RxC) is the time constant (t); it is inversely proportional to the cutoff

frequency fc, at which the output power is half the input power. That is,

1 1
Je= 2rr  2nRC' (3.3)

where f; is in hertz, 7 is in seconds, R is in ohms, and C is in farads.

R,
M
G R,

u,
n l RN i Vout
+ )

Figure 3.3 An active high-pass filter
1

RyC (3.4)

We =

~R,
The gain in the passband is Ry , and the stop band drops off at —=6 dB per octave as it is

a first-order filter.
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Figure 2 shows an active electronic implementation of a first-order high-pass filter using

an operational amplifier. In this case, the filter has a passband gain of -Ry/R; and has a

corner frequency of

1 1

fe= o = TR (3.5)

Because this filter is active, it may have non-unity passband gain. That is, high-frequency
signals are inverted and amplified byRy/R;.

3.2.3 BAND PASS

A band pass Filter allows signals with a range of frequencies (pass band) to pass
through and

Attenuates signals with frequencies outside this range.

A TH(Gw) I

wy Lower cut-off frequency;
iy Upper cut-off frequency;
Wy = gy, Center frequency; Pass
e O Band
B=w,—w: DBand width; -
wo o o) o, ®
Q= T Quality factor,

With practical low- and high-pass filters, upper and lower cut-off frequencies of practical
Band pass Filter are defined as the frequencies at which the magnitude of the voltage

transfer function is reduced by 1=p2 (or -3 dB) from its maximum value.

In a band pass filters we have high pass filter and a low pass filter cascaded to produce

the resulting band pass output.
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FIGURE 3.4

The gain of the band pass filter is equal to the multiplication of the gain of the high pass
and the low pass filters cascaded.
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CHAPTER4
FILTER APPROXIMATIONS

Amplitude response curves for various filter types include an “‘ideal" curve with a
rectangular shape, indicating that the boundary between the passband and the stop band
was abrupt and that the roll-off slope was infinitely steep. This type of response would be
ideal because it would allow us to completely separate signals at different frequencies
from one another. Unfortunately, such an amplitude response curve is not physically
realizable. We will have to settle for the best approximation that will still meet our
requirements for a given application. Deciding on the best approximation Involves

making a compromise between various properties of the filter's transfer function.

4.1 PROPERTIES

The important properties are listed below.

4.1.1 Filter Order

The order of a filter is important for several reasons. It is directly related to the number
of components in the filter, and therefore to its cost, its physical size, and the complexity
of the design task. Therefore, higher-order filters are more expensive, take up more
space, and are more difficult to design. The primary advantage of a higher order filter is

that it will have a steeper roll-off slope than a similar lower-order filter.

4.1.2 Roll- off Rate

Usually expressed as the amount of attenuation in dB for a given ratio of frequencies. The
most common units are ““dB/octave" and “*dB/decade". While _

the ultimate roll-off rate will be 20 dB/decade for every filter pole in the case of a low-
pass or high-pass filter and 20 dB/decade for every pair of poles for a band pass filter,
some filters will have steeper attenuation slopes near the cutoff frequency than others of

the same order.
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4.1.3 Attenuation Rate Near the Cutoff Frequency
If a filter is intended to reject a signal very close in frequency to a signal that must be
passed, a sharp cutoff characteristic is desirable between those two frequencies. Note that

this steep slope may not continue to frequency extremes.

4.1.4 Transient Response

Curves of amplitude response show how a filter reacts to steady-state sinusoidal input
signals. Since a real filter will have far more complex signals applied to its input
terminals, it is often of interest to know how it will behave under transient conditions. An
input signal consisting of a step function provides a good indication of this. Figure 1
shows the responses of two low-pass filters to a step input. Curve (b) has a smooth
reaction to the input step, while curve (a) exhibits some ringing. As a rule of thumb,
filters will sharper cutoff characteristics or higher Q will have more pronounced ringing.
FIGURE 1. Step response of two different filters. Curve (a) shows significant ringing",

while curve (b) shows none. The input signal is shown in curve (c).”

E w’ {a)
Sl
|

1 (e)

TIKE —~

FIGURE 4.1. Step response of two different filters.
Curve (a) shows significant ““ringing", while curve (b)

shows none. The input signal is shown in curve (c).

4.1.5 Monotonicity

A filter has a monotonic amplitude response if its gain slope never changes sign in other
words, if the gain always increases with increasing frequency or always decreases with
increasing frequency. Obviously, this can happen only in the case of a low-pass or high-
pass filter. A band pass or notch filter can be monotonic on either side of the center

frequency.
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4.1.6 Passband Ripple

If a filter is not monotonic within its passband, the transfer function within the passband
will exhibit one or more “*bumps". These bumps are known as “ripple". Some systems
don't necessarily require monotonicity, but do require that the passband ripple be limited
to some maximum value (usually 1 dB or less) although band pass and notch filters do

not have monotonic transfer functions, they can be free of ripple within their passbands.

4.1.7 Stopband Ripple

Some filter responses also have ripple in the stopbands. We are normally unconcerned
about the amount of ripple in the stop band, as long as the signal to be rejected is
sufficiently attenuated. Given that the ideal filter amplitude response curves are not
physically realizable, we must choose an acceptable approximation to the ideal response.
The word acceptable may have different meanings in different situations. The
acceptability of a filter design will depend on many interrelated factors, including the
amplitude response characteristics, transient response, and the physical size of the circuit
and the cost of implementing the design. The ideal low pass amplitude response is shown
again in Figure 4.2(a) .If we are willing to accept some deviations from this ideal in order
to build a practical filter, we might end up with a curve like the one in Figure 4.2(b),
which allows ripple in the pass-Amax is the maximum allowable change in gain within
the passband. This quantity is also often called the maximum passband ripple, but the

word ripple implies non-monotonic behavior, while
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FIGURE 4.2

Aaxcan obviously apply to monotonic response curves as well.

Apin 1s the minimum allowable attenuation (referred to the maximum passband gain)
within the stopband. fc is the cutoff frequency or passband limit. fs is the frequency at
which the stop band begins. If we can define our filter requirements in terms of these
parameters, we will be able to design an acceptable filter using standard cookbook design
methods. It should be apparent that an unlimited number of different amplitude response

curves could fit within the boundaries determined by these parameters, as illustrated in
Figure 4.2(c) and4.2 (d) .

Filters with acceptable amplitude response curves may differ in terms of such
characteristics as transient response, passband and stop band flatness, and complexity.
How does one choose the best filter from the infinity of possible transfer functions?
Fortunately for the circuit designer, a great deal of work has already been done in this
area, and a number of standard filter characteristics have already been defined. These
usually provide sufficient flexibility to solve the majority of filtering problems. The
classic filter functions were developed by mathematicians (most bear their inventors

names), and each was designed to optimize some filter property. The most widely used of
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these are discussed below. No attempt is made here to show the mathematical derivations

of these functions, as they are covered in detail in numerous texts on filter theory.

4.2 Butterworth Filters

The first and probably best-known filter approximation is the Butterworth or maximally-
flat response. It exhibits a nearly flat passband with no ripple. The roll-off is smooth and
monotonic, with a low-pass or high-pass roll off rate of 20 dB/decade (6 dB/octave) for
every pole. Thus, a Sth-order Butterworth low-pass filter would have an attenuation rate
of 100 dB for every factor of ten increases in frequency beyond the cutoff frequency. The

general equation for a Butterworth filter's amplitude response is

1

1+ | —
Wy

H{w) =

4.1)
Where n is the order of the filter, and can be any positive whole number (1, 2, 3,), and 0

is the b3 dB frequency of the filter.

Figure 4.3 shows the amplitude response curves for Butterworth low-pass filters of
various orders. The frequency scale is normalized to f/fb3 dB so that all of the curves

show 3 dB attenuation for f/fc e 1.0.
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FIGURE 4.3 Amplitude Response Curves for Butterworth Filters of Various Orders
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The coefficients for the denominators of Butterworth filters of various orders are shown
in Table 1(a). Table 1(b) shows

the denominators factored in terms of second-order polynomials.

Again, all of the coefficients correspond to a corner

frequency of | radian/s (finding the coefficients for a different

cutoff frequency will be covered later). As an example,

the tables show that a fifth-order | ‘

TABLE 1(a), Butterworth Polynomials
Denominator coefficients for polynomials of the form sn + a,..qsn=1 + ap..8"~2 + .., + a3s + ap.
n ap af a2 a3 a4 as ap ay ag a9
i .
21 144 i
31 200 2000 1L
41 2613 3414 2613 i
5 1 323 526 5206 320 i i
6 1 a8t 7461 012 746t 3864 i
7ot 4494 10098 14592 14592 10098 4494 et
§ 1 5126 13437 21846 256688 21846 13437 5126 |
9 1 5759 16582 31163 41986 41986 31163 16562 5759 :
10 1 5392 20432 42802 64882 74230 64882 42802 20432 6392 |
TABLE 1(b). Butterworth Quadratic Factors I ‘ Il
; |
1 (s+1) i
2 (s2 + 14142 + 1) Il
3 (s + 1)(s2 +3+1) I
4 (2 + 0.7654s + 1)(s? + 1.8478s + 1) \
5 (s + 1)(s2 + 0.6180s + 1)(s? + 161805 + 1) it
6 (s2 + 051765 + 1){62 + 141425 + 1)(s2 + 1.9319) -
7 (s + 1)(s + 044508 + 1)(s? + 1.2470s + 1)(s2 + 1.8019 + 1)
8 (s2 +0.39025 + 1)(s + 111118 + 1)(s2 + 166295 + 1)(s2 + 196165 + 1)
9 (s + 1)(c2 + 034735 + 1)(s2 + 1.0000s + 1)(s2 + 153215 + 1)(s2 + 187%4s + 1)
10 (s + 0.31208 + 1)(s2 + 0.9080 + 1)(s2 + 141425 + 1)(s2 + 1.7820s + 1)(s2 + 1.9764s + 1)
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Butterworth low-pass filter's transfer function can be written:

1
Hig) =
= 5+ 3,28654+ 5,23683 + 5.23682 + 3.236s + 1

1
(s + 1)(s2 + 0.61808 + 1)(s2 + 1.6180s + 1)

@2)
This is the product of one first-order and two second-order transfer functions. Note that
neither of the second-order transfer functions alone is a Butterworth transfer function, but

that they both have the same center frequency.

1.2 |
n==2‘" &,
1.0 {
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"y 08 te- n=10
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2 0.4 .': ;
gl /
0.2 f.' .
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] 4 8 12 16 20
TIME {SECONDS)

FIGURE 4.4

Figure 4.4 shows the step response of Butterworth low-pass filters of various orders. Note

that the amplitude and duration of the ringing increases as n increases.

4.3 Chebysheyv Filters
Another approximation to the ideal filter is the Chebyshev or equal ripple response. As
the latter name implies, this sort of filter will have ripple in the passband amplitude

response. The amount of passband ripple is one of the parameters used in specifying a
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Chebyshev filter. The Chebyschev characteristic has a steeper roll off near the cutoff
frequency when compared to the Butterworth, but at the expense of monotonicity in the
passband and poorer transient response. A few different Chebyshev filter responses are
shown in Figure 4.5 . The filter responses in the figure have 0.1 dB and 0.5 dB ripple in
the passband, which is small compared to the amplitude scale in Figure 4.5(a) and 4.5(b)

, so it is shown expanded in Figure 5(c) .
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(a) (b} (<)

FIGURE 4.5. Examples of Chebyshev amplitude
responses. (a) 0.1 dB ripple (b) 0.5 dB ripple. (¢)
Expanded view of passband region showing form of

response below cutoff frequency.

Note that a Chebyshev filter of order n will have nbl peaks or dips in its passband
response. Note also that the nominal gain of the filter (unity in the case of the responses
inFigure 5 ) is equal to The filter's maximum passband gain. An odd order Chebyshev
will have a dc gain (in the low-pass case) equal to the nominal gain, with “*dips" in the
amplitude response curve equal to the ripple value. An even-order Chebyshev low-pass
will have its dc gain equal to he nominal filter gain minus the ripple value; the nominal
gain for an even-order Chebyshev occurs at the peaks of the passband ripple. Therefore,
if you're designing a fourth-order Chebyshev low-pass filter with 0.5 dB ripple and you
want it to have unity gain at dc, you'll have to design for a nominal gain of 0.5 dB. The
cutoff frequency of a Chebyshev filter is not assumed to be the b3 dB frequency as in the

case of a Butterworth filter, Instead, the Chebyshev's cutoff frequency is normally the
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frequency at which the ripple (or A,,4.) specification is exceeded. The addition of
passband ripple as a parameter makes the specification process for a Chebyshev filter a

bit more complicated than for a Butterworth filter, but also increases flexibility.
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(a) 0.1dB Ripple (b) 0.5 dB Ripple

FIGURE 4.6 The step response of 0.1 dB and 0.5 dB ripple Chebyshev filters of

various orders. As with the Butterworth filters, the higher order filters ring more.

4.4 Bessel Filters

All filters exhibit phase shift that varies with frequency. This is an expected and normal
characteristic of filters, but in certain instances it can present problems. If the phase
increases linearly with frequency, its effect is simply to delay the output signal by a
constant time period. However, if the phase shift is not directly proportional to frequency,
components of the input signal at one frequency will appear at the output shifted in phase
(or time) with respect to other frequencies.

The overall effect is to distort non-sinusoidal wave shapes, as illustrated in Figure 4.7 for
a square wave passed through a Butterworth low-pass filter. The resulting waveform
exhibits ringing and overshoot because the square wave's component frequencies are
shifted in time with respect to each other so that the resulting waveform is very different

from the input square wave.
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FIGURE 4.7 Response of a 4th-order Butterworth lowpass

TIME —

(upper curve) to a square wave input (lower curve).

The ringing in the response shows that the nonlinear phase shift distorts the filtered wave
shape. When the avoidance of this phenomenon is important, a Bessel or Thompson filter
may be useful. The Bessel characteristic exhibits approximately linear phase shift with
frequency, so its action within the passband simulates a delay line with a low-pass

characteristic. The higher the filter order, the more linear the Bessel's phase response.

AMPLITUDE

Figure 4.8 shows the square-wave response of a Bessel low-pass filter.

Note the lack of ringing and overshoot. Except for the rounding off of the square wave

due to the attenuation of high-frequency harmonics, the wave shapé is preserved.

Note the lack of ringing in the response. Except for the rounding of the corners due to the
reduction of high frequency components, the response is a relatively undistorted version

of the input square wave.

The amplitude response of the Bessel filter is monotonic and smooth, but the Bessel

filter's cutoff characteristic is quite gradual compared to either the Butterworth or

Chebyshev as can be seen from the Bessel low-pass amplitude response curves in




+10

o

0 o)
~10 n=l] -
=20
=30
- 40

v i
7 4

GAIN {dB)

=50 .
0.1 02 05 1.0 20 50 10 0 2 4 65 8 10

FREQUENCY (RADIANS / SECOND) TIME (SECONDS)

FIGURE 4.9: Amplitude response curves for Bessel filters of various orders. The

nominal delay of each filter is 1 second.
4.5 Elliptic Filters

The cutoff slope of an elliptic filter is steeper than that of a Butterworth, Chebyshev, or
Bessel, but the amplitude response has ripple in both the passband and the stopband, and
the phase response is very non-linear. However, if the primary concern is to pass
frequencies falling within a certain frequency band and reject frequencies outside that
band, regardless of phase shifts or ringing, the elliptic response will perform that function
with the lowest-order filter. The elliptic function gives a sharp cutoff by adding notches
in the stopband. These cause the transfer function to drop to zero at one or more
frequencies in the stopband. Ripple is also introduced in the passband (see Figure 11 ).
An elliptic filter function can be specified by three parameters (again excluding gain and
cutoff frequency): passband ripple, stopband attenuation, and filter order n. Because of
the greater complexity of the elliptic filter, determination of coefficients is normally done

with the aid of a computer.
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FIGURE 4.10 Example of a elliptic low-pass amplitude response.

f
This particular filter is 4th-order with A,,,, =0.5 dB and ;g = 2,

c
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CHAPTER 5
The Biquad Active Filter

A biquad filter is a type' of linear filter that implements a transfer function that is the
ratio of two quadratic functions. The name biguad is short for biguadratic.Biquad filters
are typically active and implemented with a single-amplifier biquad (SAB) or two-

integrator-loop topology.

The SAB topology uses feedback to generate complex poles and possibly complex zeros.
In particular, the feedback moves the real poles of an RC circuit in order to generate the
proper filter characteristics.

The two-integrator-loop topology is derived from rearranging a biquadratic transfer
function. The rearrangement will equate one signal with the sum of another signal, its
integral, and the integral's integral. In other words, the rearrangement reveals a state
variable filter structure. By using different states as outputs, any kind of second-order

filter can be implemented.

The SAB topology is sensitive to component choice and can be more difficult to adjust.
Hence, usually the term biquad refers to the two-integrator-loop state variable filter

topology.

5.1 Tow-Thomas Biquad Example

For example, the basic configuration in Figure 5.1 can be used as either a low- pass or
bandpass filter depending on where the output signal is taken from the second-order low-
pass transfer function is given by

Ho?
s? + %Qs + 0w}

H(s) =

where low-pass gain H =R,/ R;. The second-order bandpass transfer function is given
by
H %Qs
H(s) =

s+ =L + o}
S
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with bandpass gain H=—R,/Ro.

R2

,,M,W.WE._ Mz R6
e | i | et .«.IW\’.

R1 c1 R4 R5

input AAAA-—~ AN 3 W -

L fep Low-pass
_]_ Band-pass ..L ..L output
- output iy -

Figure 5.1: The common Tow-Thomas biquad filter topology.

In both cases, the

Natural frequency is |
1 f ot

Wy = ———
0 ™ JRzR4CiC;

RiC1
Q =
RzR4C;

The bandwidth is approximated by B= wo/Q, and Q is sometimes expressed as

Quality factor is

a damping constant { = | / 2Q. If a noninverting low-pass filter is required, the output can
be taken at the output of the second operational amplifier. If a noninverting bandpass
C "/ﬁlter is required, the order of the second integrator and the inverter can be switched, and

the output taken at the output of the inverter's operational amplifier.

5.2 USE OF INTEGRATOR IN BIQUAD

Operational amplifiers can be used to realize a linear system with an arbitrary biquadratic

transfer function, as shown below. The complex variable s = jo, where = 2xf. This
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function is the ratio of two quadratic expressions in s. The denominator specifies the
characteristic frequency wg and the Q-factor Q. The three arbitrary complex constants ao,
aj and apspecify the filter properties in terms of the basic filter types of high pass,
bandpass and lowpass, which occur when only one of the constants is nonzero.

Combinations of these types create further filter types, such as notch and allpass filters,

2
azs8” + ags+agp

T(s) =—=——F——
(5) sz+%‘1s+m5

The parameter Q has an easily appreciated meaning in the case of the bandpass filter. The
gain is maximum at the angular frequency woand falls off at lower and higher
frequencies. Near the centre frequency, the denominator can be written as (o + @)(ao -
®) + jooe/Q, or approximately as 200A® + jwoo/Q. The magnitude of the transfer
function will be down by 1/¥2 when these two terms are equal in magnitude, or Aw =
®0/2Q. Therefore, the total width of the peak at half maximum power (the square of this)
is wo/Q.

e
R R
R F C F C
Re S — 1 —
v } VH } Ve R
1 P vEP vLp
1 s i i

e

Ra
1 1[..R R
g o oReR A 3t RQ] ABP=Rg

Biquad (State-Variable) Active Filter

FIGURE 5.2

A biquad transfer function can be realized straightforwardly with a pair of integrators in
series, each introducing a factor 1/, with-their outputs added to the input signal in a
summer, as illustrated in the circuit at above. This circuit looks complex at first, but if

you carry out a circuit analysis its operation will become clear. Assume that the signal at
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the output of the summer, the leftmost operational amplifier, is x. Then find the signals
that are added at the summer in terms of x, and finally solve for x in terms of the input
signal vi. You will find that the result is in the form of a high pass transfer function. The
outputs of the following two amplifiers will be a bandpass function and a lowpass
function. This amplifier realizes the three basic amplifier types, which can then be

combined as desired.

Integrator

FIGURE 5.3

The effect of an integrator stage is illustrated at the above, to help in the analysis. The
parameters fo, Q and the bandpass gain at the centre frequency are given in terms of the
circuit parameters in the figure. These expressions are sufficient for the design of a filter.
[n any case, resistances should be 5k or greater to avoid overloading the operatonal
amplifiers. The frequency-determining values of Ry and C must be.'caref'ully matched if a

high Q is to be realized.
5.3 ANOTHER BIQUAD FILTER

A different biquad filter is shown below. In this circuit, the first integrator is also used as
the summer. One might think that in this case only two op-amps would be required, but
unfortunately a signal sign change is necessary, so a unity-gain inverting amplifier is
included. The inverting amplifier and the second integrator may be in either order. A
drawback is that the highpass fesponse is not available, only the bandpass and lowpass

functions.
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Biguad (State-Variable) Active Filter

FIGURE 5.4

It is instructive to analyze this circuit, which is straightforward since there is a virtual

ground node at each amplifier. The feedback impedance of the first integrator is Rg/(1 +
JoRgC), which can be used in the usual expressions for the gain of an inverting amplifier.

Some algebra is necessary, but the appropriate biquad transfer function is obtained.

Rrand C determine the centre frequency wo. The value of R is unimportant; 10k is a
usual value. Rg determines Q = Rg/R and the bandpass gain Agp = Rp/Rg. The bandwith
Af'= 1,/Q = 1/2nCRg depends only on R, which can be said to set the bandwidth instead
of Q, independent of frequency. Rr can be varied to change the centre frequency, perhaps

using ganged rheostats. However, to maintain a high Q the resistances must track very

accurately.

5.4 A 2™ ORDER FILTER

| Hwj

T(s) =
() Sz+%gs+a)(z)

1)

v

Vi V2
— Wy, H,Q [—»

Scale Frequency (divide s by wg) , s,=s in subscript
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Hw} 3 H

T(s)= — 1,5 = 1
(m—o)z + (ﬁ)(;;a) +1  sp?+ gt 1

Or (1) divided by w3

RESULT :- same as setting w,=1,50 sometimes refer to frequency scaling as setting w,
to 1.

To make a simpler equation the frequency is scaled. This is a standard technique in filter
design.

Dropping s,, subscript and assuming an invertor

Vi -H
I(g) == = -
Vi sttgs+l

2

V= lowpass filtered version of V,
Rewriting as ( s2 + % s+ 1)V, =-HV, 3)

Go to time domain in Laplace tranform, s becomes differentiation and equation becomes
2™ order differential equation.

d*vi() | 1dVy()
'd—:'z" + 6—";]!;:—4' VL(t) =-H Vl(t)

Need to perform two 2 integrations to get V, from V;.

Rewriting (3) again to identify circuit elements easier

sV, +%VL3+VL=-HV1
S(s+g)Vi=-(HV; +V; )

Rewrite the equation to get it into a form where we can identify circuit elements in s
plane remembering that in the La Place transform 1/s is like a capacitor further develop
equation below
1
sV=-—73(HV; + V) =V, “
s+ =
Q
V., Is obtained by integrating voltage on right side identified here as Vg.
1 1 1

VL=;VB=';{'—1' (HVi+ V)]
S

T

Rewrite equation (4),
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Vi
VB=-1+V1'—E‘T
S+6

identifying V and V; and how to get them

1 1 1
Vg =-— (HV+ ViL+gVe)=-s W

Vp obtained by integrating with a sign inversion to voltage V, .

Vi is obtained by summing three scaled voltages
1
VH = HV1+ VL + 'a Vg
This is the double integration to obtain

Vi= Q) X [-C) X Vy |

Basic definitions of voltages needed.

1/Q

H' H 1 -Us s OV

Va Vs

Block Diagram of a Two Integrator loop (using an inverting and a non-inverting integrator)

| FIGURE 5.5 |

‘ Summing Node realizes the weighted of 3 voltagesVy, V,, Vj .
VH = HV1+ VL +% VB

Note : V;; and Vy outputs

Vg obtained by multiplying V;, by s

Vy; obtained by multiplying Vg by —s
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Vi=—1o—V,=T,V;  LOWPASS FILTER

st %—s +1
-H
Vy = ®—V,=TgV,  BANDPASS FILTER |

-——
52+6s+1 ‘

2
Vy=——t——V,=TyV,  HIGHPASS FILTER

s+ és +1
by rewriting the equation to isolate certain terms it can be shown that the same equation
can produce other filter types.
For stability using only negative feedback,use 2 negative integrators,as shown in block

diagram below,

i

Vi Vs

Block diagram of a Two integrator loop (using two inverting integrator and an invertor)

FIGURE 5.6

C, S owm oz

FIGURE 5.7 SUMMER
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FIGURE 5.8 INVERTING INTEGRATOR

FIGURE 5.9 INVERTOR

On combing above three with resistor and capacitor in parallel we get the following
circuit diagram.

L b Bandpass
= output

Vs

FIGURE 5.10 Circuit Diagram of a Biquad Filter
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5.5 SIMULATION RESULTS OF THE BIQUAD FILTERS
° LOW PASS FILTER

° HIGH PASS FILTER

° BAND PASS FILTER

5.5.1 LOW PASS FILTER

5.5.1.1 The circuit diagram of the second order Low Pass Filter.

 Variations ~eemsmmeeeee— |
| Numben 1 ‘l
i

- Component Value spread == |

Inverting Q=1,00 fp=10k
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5.5.1.2 The circuit diagram of the second order low pass filter with values of

resistors and capacitors.

AN
R2 R6
10k 10k RS
e N N m———— <
13661;]? , -—v%,?\lﬁ—-«
c2
) —!E—-"<];_‘ . 180pF
10k %lﬂk 1
Yi O AAN B AAA -
= -l _{>—--—--¢v«
J: 101:

55.1.3 PSPICE CODING OF A SECOND ORDER LOW PASS FILTER

SUBCKT IDEALOP 213
EIO3021 1.0E6

.ENDS IDEALOP

.SUBCKT MAINCCT 14
V110AC1.000
R1 1 2 RMODEL xxxx
R2 2 3 RMODEL xxxx
C1 3 0 CMODEL InF
C2 2 4 CMODEL 10nF
XAl 3 4 4 IDEALOP

ENDS MAINCCT

MODEL RMODEL RES(R=1 DEV=1.00%)
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.MODEL CMODEL CAP(C=1 DEV=1.00%)

X1 12MAINCCT
**% Pts per decade: 100 start freq: 10.233 end freq: 100 k ***

AC DEC 100 1.023E+1 10.000E+4
*x% NOISE V(2) X1.V1 100%%*
PROBE V(2)

*** Monte Carlo runs: 100 ***
#x MC 100 AC V(2) YMAX Remove asterisk and this comment for Monte Carlo***

.END

5.5.1.4 BODE PLOT OF THE SECOND ORDER LOW PASS FILTER

1 : T T I : I I ]

10

08

07

e
»

o
w»

Magnitude (V)
o
=

o
w

0.2

0.1

00 , o s s
100 . 200 L SRE s e oy Skiiiu 0K |

. Frequency (Hz) ey
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5.5.2 HIGH PASS FILTER

5.5.2.1 The circuit diagram of the second order High Pass Filter.

- Varlations
Numban

~ Component Value spread
| iR,

R R
armEEm com

Inverting Q=100 fp=1k
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of the second order high pass filter with values of

3.5..2.2 The circuit diagram

resistors and capacitors

10k
AN
R2 R6
10k 1!:]51
3 :
L8nF 10k A
_l% wo Ll S
- : ]
10k st T ”_ [
> 10k
JATAYA
R4

et
+

5.5..2.3 PSPICE CODING OF A SECOND ORDER HIGH PASS FILTER

.SUBCKT IDEALOP 2 1 3 ; ;
EIO302 1 1.0E6 | |

.ENDS IDEALOP

SUBCKT MAINCCT 1 6
V110AC1.000 ||
R12 0 RMODEL xxxx
R2 3 2 RMODEL xxxx
R3 2 4 RMODEL xxxx
R4 4 5 RMODEL xxxx
R55 6 RMODEL xxxx
R6 7 6 RMODEL xxxx
Cl1 56 CMODEL 1.8nF
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C2 15 CMODEL 1.8nF
C373 CMODEL 1.8nF
XA1 023 IDEALOP
XA2 0356 IDEALOP
XA3704IDEALOP

.ENDS MAINCCT

MODEL RMODEL RES(R=1 DEV=1.00%)
MODEL CMODEL CAP(C=1 DEV=1.00%)

X112 MAINCCT
*** Pts per decade: 100 start freq: 10.233 end freq: 100 k ***

.AC DEC 100 1.023E+1 10.000E+4
#x% NOISE V (2) X1.V1 100%%*

.PROBE V (2)
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5.5.2.4 BODE PLOT OF THE SECOND ORDER HIGH PASS FILTER

e

-10 -

w

(=
o o™

(ap) apnyubep

SRBT

e
5
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5.5.3 BAND PASS FILTER

5531

I

* L Filler Wiz PRO v5

The circuit diagram of the second order Band Pass Filter.

Variations
[ Numben

1

-~ Component Value spread -

Q=0.xx

e
o
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5.5.3.2 The circuit diagram of the second order band pass filter with values of

resistors and capacitors.

10k
R2 Ro6
= 10k | RS
390';)F | ....,,}?5.....
4 i c2
%k_'ﬁ;:_:: 390pF
B
+
I :,/ WH I“>’-m—0 Yo
1 R1
; 10k =
¥i G AN

5.5.3.3 PSPICE CODING OF A SECOND ORDER HIGH PASS FILTER

SUBCKT IDEALOP 213
EIO3021 1.0E6

.ENDS IDEALOP

SUBCKT MAINCCT 1 7
V110AC1.000
R1 12 RMODEL 1000
R2 5 6 RMODEL 1000
R3 6 4 RMODEL 1000
R4 42 RMODEL 1000
R52 7 RMODEL 1000
R6 3 7 RMODEL 1000
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Frms—

C1 3 5 CMODEL 390pF
C2 2 7 CMODEL 390pF
XA1304IDEALOP
XA2 065 IDEALOP
XA3 02 7 IDEALOP

.ENDS MAINCCT

.MODEL RMODEL RES(R=1 DEV=1.00%)
.MODEL CMODEL CAP(C=1 DEV=1.00%)

X112 MAINCCT
##% Pts per decade: 100 start freq: 401.112 end freq: 69.749 k ***

.AC DEC 100 4.011E+2 6.975E+4
X NOISE V (2) X1.V1 100***

PROBE V (2)

*** Monte Carlo runs: 100 ***
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3.5.3.4 BODE PLOT OF THE SECOND ORDER BAND PASS FILTER

_ fr'eﬁuéﬁcyjtl?i'z) i
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CHAPTER 6
PSPICE SIMULATIONS
|

6.1 Low Pass Filter.

VOFFeg

VAP e 10

FREQ = 3000 1
o

(l,‘-iy

= i

Copy and paste the GND_0 circle in

order to connect the Analog GND to che 48
appropriste vires in your circuit, ik b

|

!

. | | onps o ,ME""“,,\E“ | : .. ; | i .
l‘ﬁ = £ &

Output of Low Pass Filter at High Frequency = 5000 Hz

1 I B Th : T T
il M i ;[

|
R HHHA I

Tod
=
e

0.5ms 0. 6ms 0.7ms 0.8ms 0.9%ms 1.0ms
|

0.dms

=1qv
Us 0.1lms o.2ms 0.3ms
B Y{UL:QUTH ¢ ViR1:l}
Time
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ordax to ¢ennaet che Anaiog CND co the
appropriate vires in your cirguit,

1 Gopy and pasta.the GND_O0 circla in :h % R L

Output of Low Pass Filter at Low Frequency = 500Hz

S iov

S 23 [~h 2 - = b [,
| LY AN \ AN i AN \ 1Y \ AN
FANAN NI {0\ 4R A
LA | LA i \
o A TR i A I
V1 4 [ T \L] f ) \ ]S \ VT 3
] \[ ¥ Y / | i | I 1
/ M. [ b / \ i \ / \
i ¥ 1] I i ) v 17
ov / 1 / \ / ! / \ i
A .’ \ [ \ [ ] ’ t i
Al | /) i 441 ! fi )
' \ { | f | i 1 1' 1 i
1.4 i \ / \ | \ f 1 [
I i i | Ty IR / [ i [ /
4 4 \ / \ / X / \ #
VL \ / [ / !
M A Y Vil \i
NV / ¥ f S i N vl A/ /
Loy Lt L v L. 11 v -
0s 1ms 2ms Ims imns Sms ims Tms 8ms Ims 10ma

o VIV1:0UT) » Y{AL:zl}
Time
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6.2 High Pass Filter
Cut Off Frequency 1000Hz

¥

Topy and pasca the C¥D_0 cirels in
order &0 connact the Analog CND to the
appropriate wirses ip your ¢ircuilg, |

\ .
ov A \ /f\ \V \ .- \ ) \

e
-~
—1
i
—

- i

/ Ji
R

—10v M \1/ \ ol \ \ o A A

0s 0. 1ma 0. Ime G.3ma ¢.dms ¢.5nms 9.6me 0.7ms . 9.8ma Q. 9me 1.0me
wVIRZ:T) v VIVILe)

Time
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| Copy. and pasta tha GHD_D eivels in
© wEder £o connact the Analoy GND te vha
approprinte wires in youy cilyeuiv.

Output of High Pass Filter at Low Frequency 500 Hz

s1ev 7Y = ~ - -
L1y TARRA) JAA VAR 7y
I Yl { \ / 1 ] { 1 Y
! ." { ] / -
)L A I J‘ ‘ [ /- -’ \ L f hl
oV f" £ / 7 K
4 4 \ ] 5 | ] ] i LN 17 " ]
LE 1 l 4 i Ve i Y \
\ i 1 ] | ] Y i | T
. | { | / \ / \ /
-10v M L - - s
Ua ima 2mse Ims 4ms Sm3 Sma mE Ema 9ms 16ma
a VIRZ:Z2 ¢ VIVIie}
Time
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6.3 Band Pass Filter
Lower Cut Off Freg 10,000Hz

Y. OrCAD Capl [SCHIMATIC

+{ SCHEMATICT -bpl
Z 1

MAMFLa 1D
FREQ » 500

| : | lﬂl! ” : o

Copy and paste the CND_0 circle in
ardar Lo connect the Anslog GHD-ta tha
appropriate wires in your circuit.

Output of Band Pass Filter at Low Frequency = 500 Hz

s 1w N . ——y
i) i i N FiI\
AN N FANAY JANAY A A /114
” \ ! / ] 7 I I
I 1 ! \ f 1 ! \ { \
f \ / \ / 1 / 4 { 1
[ 1 [ \ I 1 I | I \
oy Jafe A o [ ol
I / \ | I | b f
\ { \ i \ { | ! 1 i
A i 1 / \ / 1 { 1 /
. i) I I Ty ]
AN VLo AL A\ \r S
/ \LIL / I /.
-10v h1 = = e st
s Ima Zna 3ma im3 ma sma Tms Bma oms 10ma
6 VIC2:2) ¢ VIV3:i+} .
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Copy and paste the GND_O aivcle in.
ocdur Lo connect the ﬁnllﬂU‘G“D to the
sppropriste wires in youy cireuit..

Output of Band Pass Filter at High Frequency 15000 Hz

i I 1T 117
| 1 [l 1 | 1] ] | f 1 [ [ ]
i Ll 1 f ] i ] [ fit | | ]

I rp gk 1] ; | i1 ) ] T 1]

W T Hn T CET TR
1] - [T 115 tEL] I
131 R o o !

1] L 0 o1 {
Il p el 1 [ ) | |

R NS SN N L I T RO
N NN IR 11 : hat” [T ITNE ~EE T T

] -1 i 1] | I i 1 | [N
] } / il il 1] 1 1 ] [ o
| | 1Tl (1L i 11
[ 1T [T1 | T
WA, VI NI LIETTALT 1.y
(i | L ! /RN /RN 1 ]
14 | Il o LIt | i | )\ |
L 1 ) | 1 | | | [ | i | ] |

oo TR 4 1 / U f

0.6ms n.7ms 0.8ma 0.9m3 1.0m3

LK)

0,1ms 0.2ms

a ViCz:d] « V(Vi:)

0.3ms

0.4pma

Q.5m3
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CHAPTER 7
CONCLUSION AND FUTURE WORK

7.1 Results
The design of the three basic types of biquad filters namely, the low pass filter, the high

pass ﬁlter,‘ the band pass filter was successfully completed.The simulations of these
designs were carried out using PSPICE and FILTERWIZ softwares,
7.2 Design
The development of the entire project can be broken into three parts:
1. The Design of first order passive filters .
2. The Design of first order active filters,
3. The Design of Biquad ( second order ) filters .

7.3 Difficulties

Although literature we found was very specific and was about a very particular kind of
filter. Another problem we faced was the complex mathematics involved in the designing

of the filters(complex coefficients were involved in the calculations ),

7.4 Future Work

A ot of work has already been done by various people in this field,but a lot needs to be
done.Biquad filters can be implemented by using OTA’s ( operational transconductance
amplfiers) as they offer certain advantages over operational amplifiers such as the output
of an operational tranconductance amplifier is current in contrast to voltage in operational

amplifiers,biquad filters may be implemented by using less number of components.
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APPENDICES

Appendix A
Matlab code for design of filters
n=input('enter the order of filter');
type = input(‘enter the type of filter Ip hp or bp', 's);
if (type == 'bp')
freql=input(‘enter the lower cut off frequency’);
frequ=input('enter the upper cut off frequency’);
w=[freql,frequ];
else
w=input(‘enter the cut off frequency’);
end
if{type == bp’)
type = 'bandpass’;
elseif(type=="lp")
type = 'low',
elseif{type == "hp")
type='high';
end
a=input(enter b for buttorworth filter\nc1 for chebyshev typel filter\nc2 for chebyshev
type2 filter\ne for elliptic filter\nbe for bessel filter','s");
if(a=="b")
[z,p,k]=butter(n,w,type,'s");
ZEros=z,

poles=p

gain=k

elseif{a=='c1")
Rp=input('enter the passband ripple factor");
[z,p.k] = ch_ebyl(n,Rp,w,type,'s‘);

Zeros=z
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poles=p
gain=k
elseif(a=='c2")
Rs=input('enter the stopband ripple factor');
[z,p.k] = cheby2(n,Rs,w,type,'s");
Zeros=z
poles=p
gain=k
elseif(a=='e")
Rp=input(‘enter the passband ripple factor');
Rs=input(‘enter the stopband ripple factor');
[z,p,k] = ellip(n,Rp,Rs,w,type,'s");
ZEros=z
poles=p
gain=k
elseif(a=='be")
[z,p,k] = besself(n,w,type,'s');
Zeros=z
poles=p
gain=k
end
d=poly(p);
n=poly(z);
H=tf(n,d)
figure
grid on
bode(n,d)
title('Frequency response of the system")

clear

aghat, S
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