Jaypee University of Information Technology
Solan (H.P.)
LEARNING RESOURCE CENTER

Acc. Num.SPo o b Call Num:

General Guidelines:

¢ Library books should be used with great care.

¢ Tearing, folding, cutting of librery books or making
any marks on them is not permitted and shall lead
to disciplinary action.

¢ Any defect noticed at the time of borrowing books
must be brought to the library staff immediately.
Otherwise the borrower may be required to replace
the book by a new copy.

¢ The loss of LRC book(s) must be immediately
brought to the notice of the Librarian in writing.

Learhing Resource Centre-JUIT

M

Arwen

A Web Browser

Project Report submitted in partial fulfillment of the requirement for
" the degree of ;
Bachelor of Technology
in
Information Technology
By
Vijay Shanker[061436]

Under the Supervision of

Mr. Pradeep Kumar

JAYPEE UNIVERSITY OF
INFORMATICN TECHROLOGY

May 2010

Jaypee University of Information Technology

Waknaghat, Solan - 173 234, Himachal Pradesh

Certificate

K This is to certify that this work belongs to Mr. Vijay
Shanker done under guidance of Mr. Pradeep

Kumar in partial fulfillment of the requirement for the
degree of Bachelor in Technology.

Project Coordinator

Project Guide

Table of Content:

1.Abstract
2.Introduction
3.Methodology
4.Architectural Design
5.Sample Code
6.Conclusion

7.Bibiliography

ABSTRACT

Web browsers began as applications used to view static HTML content.

As web sites evolved into dynamic applications composing content

¢+ from various web sites, browsers have become multi-principal
operating environments responsible for securely managing resources
shared between mutually distrusting web sites.

Reason for me working on a web browser despite being so many open

source browsers already available to web user community was to
educate myself in working of one and to develop an understanding of
web technology in general. As well | thought it would be an interesting
challenge to develop my own browser, which later on could be
customized to specific requirements.

e [—

PROBLEM STATEMENT

| propose a browser to provide application for retrieving, presenting,
and traversing information resources on the World Wide Web. The
outcome of project will be a software application to fetch a web
resource identified by URL that can be a web page, image, video, or
other piece of content. Hyperlinks present in resources enable users to
easily navigate their browsers to related resources.

The product should provide an easier and simpler way of navigation
over resources spread on web.

Scope of the project:

The browser should be able to fetch, parse, display and navigate across
web pages in easy, effective, and efficient way.

T, —

INTRODUCTION:

The primary purpose of a web browser is to bring information
resources to the user. This process begins when the user inputs a
Uniform Resource Identifier (URI), for example
http://en.wikipedia.org/, into the browser. The prefix of the URI
determines how the URI will be interpreted. The most commonly used
kind of URI starts with http: and identifies a resource to be retrieved
over the Hypertext Transfer Protocol (HTTP). Many browsers also
support a variety of other prefixes, such as https: for HTTPS, ftp: for the
File Transfer Protocol, and file: for local files. Prefixes that the web
browser cannot directly handle are often handed off to another
application entirely. For example, mailto: URIs are usually passed to the
user's default e-mail application, and news: URIs are passed to the
user's default newsgroup reader.

In the case of http, https, file, and others, once the resource has been
retrieved the web browser will display it. HTML is passed to the
browser's layout engine to be transformed from markup to an
interactive document. Aside from HTML, web browsers can generally
display any kind of content that can be part of a web page. Most
browsers can display images, audio, video, and XML files, and often
have plug-ins to support Flash applications and Java applets. Upon

encountering a file of an unsupported type or a file that is set up to be

R—

downloaded rather than displayed, the browser prompts the user to
save the file to disk.

e —

Information resources may contain hyperlinks to other information
resources. Each link contains the URI of a resource to go to. When a link
is clicked, the browser navigates to the resource indicated by the link's

target URI, and the process of bringing content to the user begins again.

et ATy r—

The primary purpose of a web browser is to bring information
resources to the user. This process begins when the user inputs a
Uniform Resource ldentifier (URI), for example
http://en.wikipedia.org/, into the browser. The prefix of the URI
determines how the URI will be interpreted. The most commonly used
kind of URI starts with http: and identifies a resource to be retrieved
over the Hypertext Transfer Protocol (HTTP). Many browsers also
support a variety of other prefixes, such as https: for HTTPS, ftp: for the
File Transfer Protocol, and file: for local files. Prefixes that the web
browser cannot directly handle are often handed off to another
application entirely. For example, mailto: URIs are usually passed to the
user's default e-mail application, and news: URIs are passed to the
user's default newsgroup reader.

In the case of http, https, file, and others, once the resource has been
retrieved the web browser will display it. HTML is passed to the
browser's layout engine to be transformed from markup to an
interactive document. Aside from HTML, web browsers can generally
display any kind of content that can be part of a web page. Most
browsers can display images, audio, video, and XML files, and often
have plug-ins to support Flash applications and Java applets. Upon
encountering a file of an unsupported type or a file that is set up to be
downloaded rather than displayed, the browser prompts the user to
save the file to disk.

Information resources may contain hyperlinks to other information
resources. Each link contains the URI of a resource to go to. When a link
is clicked, the browser navigates to the resource indicated by the link's

target URI, and the process of bringing content to the user begins again.

s i ﬁwhmw

et alt

FUNCTIONALITY:

The browser main functionality is to present the web resource you
choose, by requesting it from the server and displaying it on the browser
window. The resource format is usually HTML but also PDF, image and
more. The location of the resource is specified by the user using a URI
(Uniform resource Identifier).

The way the browser interprets and displays HTML files is specified in
the HTML and CSS specifications. These specifications are maintained
by the W3C (World Wide Web Consortium) organization, which is the
standards organization for the web.

The current CSS version is 2 and version 3 is in progress.

For years browsers conformed to only a part of the specifications and
developed their own extensions. That caused serious compatibility issues
for web authors. Today most of the browsers more or less conform to the
specifications.

Browsers' user interface have a lot in common with each other. Among
the common user interface elements are:

« Address bar for inserting the URI

« Back and forward buttons

« Bookmarking options

- A refresh and stop buttons for refreshing and stopping the loading
of current documents

- Home button that gets you to your home page

Strangely enough, the browser's user interface is not specified in any
formal specification, it is just good practices shaped over years of
experience and by browsers imitating each other. The HTML5
specification doesn't define Ul elements a browser must have, but lists
some common elements. Among those are the address bar, status bar and
tool bar.

e

1 pre P

STRUCTURE OF BROWSER:

1. The user interface - this includes the address bar, back/forward button, bookmarking menu etc.
Every part of the browser display except the main window where you see the requested page.

2. The browser engine - the interface for querying and manipulating the rendering engine.

3. The rendering engine - responsible for displaying the requested content. For example if the
requested content is HTML, it is responsible for parsing the HTML and CSS and displaying the parsed
content on the screen.

4. Networking - used for network calls, like HTTP requests. It has platform independent interface and
underneath implementations for each platform.

5. Ul backend - used for drawing basic widgets like combo boxes and windows. It exposes a generic
interface that is not platform specific. Underneath it uses the operating system user interface methods.

6. JavaScript interpreter. Used to parse and execute the JavaScript code.

7. Data storage. This is a persistence layer. The browser needs to save all sorts of data on the hard disk,
for examples, cookies. The new HTML specification (HTML5) defines 'web database' which is a complete
(although light) database in the browser.

Each tab is a separate process.

The rendering engine

The responsibility of the rendering engine is well... Rendering, that is display of the requested contents
on the browser screen. By default the rendering engine can display HTML and XML documents and
images. It can display other types through a plug-in (a browser extension). An example is displaying PDF
using a PDF viewer plug-in. We will talk about plug-ins and extensions in a special chapter. In this
chapter we will focus on the main use case - displaying HTML and images that are formatted using CSS.

The rendering engine will start getting the contents of the requested document from the networking
layer. This will usually be done in 8K chunks. After that this is the basic flow of the rendering engine:

i

Rendering engine basic flow.

The rendering engine will start parsing the HTML document and turn the tags to DOM nodes in a tree
called the "content tree". It will parse the style data, both in external CSS files and in style elements. The

styling information together with visual instructions in the HTML will be used to create another tree -
the render tree.

The render tree contains rectangles with visual attributes like color and dimensions. The rectangles are
in the right order to be displayed on the screen.

After the construction of the render tree it goes through a "layout" process. This means giving each

node the exact coordinates where it should appear on the screen. The next stage is painting - the render
tree will be traversed and each node will be painted using the Ul backend layer.

It's important to understand that this is a gradual process. For better user experience, the rendering
engine will try to display contents on the screen as soon as possible. It will not wait until all HTML is
parsed before starting to build and layout the render tree. Parts of the content will be parsed and

displayed, while the process continues with the rest of the contents that keeps coming from the
network.

Parsing

Since parsing is a very significant process within the rendering engine, we will go into it a little more
deeply. Let's begin with a little introduction about parsing.

Parsing a document means translating it to some structure that makes sense - something the code can

understand and use. The result of parsing is usually a tree of nodes that represent the structure of the
document. It is called a parse tree or a syntax tree.

Example - parsing the expression "2 + 3 - 1" could return this tree:

Grammars

Parsing is based on the syntax rules the document obeys - the language or format it was written in.
Every format you can parse must have deterministic grammar consisting of vocabulary and syntax rules.

Itis called a context free grammar. Human languages are not such languages and therefore cannot be
parsed with conventional parsing techniques.

R

T S ey W

e s e e

Parser - Lexer combination

Parsing can be separated into two sub processes - lexical analysis and syntax analysis,

Lexical analysis is the process of breaking the input into tokens. Tokens are the language vocabulary -

the collection of valid building blocks. in human language it will consist of all the words that appear in
the dictionary for that language.

Syntax analysis is the applying of the language syntax rules.

Parsers usually divide the work between two components - the lexer(sometimes called tokenizer) that is
responsible for breaking the input into valid tokens, and the parser that is responsible for constructing
the parse tree by analyzing the document structure according to the language syntax rules. The lexer
knows how to strip irrelevant characters like white spaces and line breaks.

The parsing process is iterative. The parser will usually ask the lexer for a new token and try to match
the token with one of the syntax rules. If a rule is matched, a node corresponding to the token will be
added to the parse tree and the parser will ask for another token.

If no rule matches, the parser will store the token internally, and keep asking for tokens until a rule
matching all the internally stored tokens is found. If no rule is found then the parser will raise an
exception. This means the document was not valid and contained syntax errors.

Translation

Many times the parse tree is not the final product. Parsing is often used in translation - transforming the
input document to another format. An example is compilation. The compiler that compiles a source

code into machine code first parses it into a parse tree and then translates the tree into a machine code
document,

Syntax:
1. The language syntax building biocks are expressions, terms and operations.

2. Our language can include any number of expressions.

3. A expression is defined as a "term" followed by an "operation" followed by another term

4. An operation is a plus token or a minus token

5.Aterm is an integer token or an expression

Types of parsers

There are two basic types of parsers - top down parsers and bottom up parsers. An intuitive explanation
is that top down parsers see the high level structure of the syntax and try to match one of them. Bottom

up parsers start with the input and gradually transform it into the syntax rules, starting from the low
level rules until high level rules are met.

Generating parsers automatically

There are tools that can generate a parser for you. They are called parser generators. You feed them
with the grammar of your language - its vocabulary and syntax rules and they generate a working parser.
Creating a parser requires a deep understanding of parsing and its not easy to create an optimized
parser by hand, so parser generators can be very useful.

HTML Parser

The job of the HTML parser is to parse the HTML markup into a parse tree.

The vocabulary and syntax of HTML are defined in specifications created by the w3c organization. The
current version is HTML4 and work on HTMLS5 is in progress.

Not a context free grammar As we have seen in the parsing introduction, grammar syntax can be
defined formally using formats like BNF. Unfortunately all the conventional parser topics do not apply to
HTML (I didn't bring them up just for fun - they will be used in parsing CSS and JavaScript). HTML cannot
easily be defined by a context free grammar that parsers need. There is a formal format for defining
HTML - DTD (Document Type Definition) - but it is not a context free grammar. This appears strange at

first site - HTML is rather close to XML .There are lots of available XML parsers. There is an XML variation
of HTML - XHTML.

Apparently this seemingly small difference makes a world of a difference. On one hand this is the main
reason why HTML is so popular - it forgives your mistakes and makes life easy for the web author. On
the other hand, it makes it difficult to write a format grammar. So to summarize - HTML cannot be

parsed easily, not by conventional parsers since its grammar is not a context free grammar, and not by
XML parsers.

HTML DTD

HTML definition is in a DTD format. This format is used to define languages of the SGML family. The

format contains definitions for all allowed elements, their attributes and hierarchy. As we saw earlier,
the HTML DTD doesn't form a context free grammar.

There are a few variations of the DTD. The strict mode conforms solely to the specifications but other
modes contain support for markup used by browsers in the past. The purpose is backwards
compatibility with older content. The current strict DTD is here: http://www.w3.org/TR/html4/strict.dtd

DOM

The output tree - the parse tree is a tree of DOM element and attribute nodes. DOM is short for

Document Object Model. It is the object presentation of the HTML document and the interface of HTML
elements to the outside world like JavaScript.

The root of the tree is the "Document" object.

The DOM has an aimost one to one relation to the markup. Example, this markup:

<html>
<body>
<p>
Hello World
</p>
<div> </div>
</body>
</html>

Would be translated to the DOM tree:

B

When| say the tree contains DOM nodes, | mean the tree is constructed of elements that implement

one of the DOM interfaces. Browsers use concrete implementations that have other attributes used by
the browser internally.

The parsing algorithm

As we saw in the previous sections, HTML cannot be parsed using the regular top down or bottom up
parsers.

The reasons are:

1. The forgiving nature of the language.

2. The fact that browsers have traditional error tolerance to support well known cases of invalid HTML.

3. The parsing process in reentrant. Usually the source doesn't change during parsing, but in HTML,

script tags containing "document.write" can add extra tokens, so the parsing process actually modifies
the input.

Unable to use the regular parsing techniques, browsers create custom parsers for parsing HTML.

The parsing algorithm is described in details by the HTMLS specification. The algorithm consists of two
stages - tokenization and tree construction.

Tokenization is the lexical analysis, parsing the input into tokens. Among HTML tokens are start tags, end
tags, attribute names and attribute values.

The tokenizer recognizes the token, gives it to the tree constructor and consumes the next character for
recognizing the next token and so on until the end of the input.

The tokenization algorithm

The algorithm's output is an HTML token. The algorithm is expressed as a state machine. Each state
consumes one or more characters of the input stream and updates the next state according to those
characters. The decision is influenced by the current tokenization state and by the tree construction
state. This means the same consumed character will yield different results for the correct next state,

depending on the current state. The algorithm is too complex to bring fully, so let's see a simple example
that will help us understand the principal.

Basic example - tokenizing the following HTML:

<html>

<body>

Hello world

e

E
4
#
§

</body>

</html>

The initial state is the "Data state". When the "<" character is encountered, the state is changed to "Tag
open state". Consuming an "a-z" character causes creation of a "Start tag token", the state is change to

"Tag name state". We stay in this state until the ">" character is consumed. Each character is appended
to the new token name. In our case the created token is an "html" token.

When the ">" tag is reached, the current token is emitted and the state changes back to the "Data
state". The "<body>" tag will be treated by the same steps. So far the "html" and "body" tags were
emitted. We are now back at the "Data state". Consuming the "H" character of "Hello world" will cause

creation and emitting of a character token, this goes on until the "<" of "</body>" is reached. We will
emit a character token for each character of "Hello world".

We are now back at the "Tag open state". Consuming the next input "/" will cause creation of an "end

tag token" and a move to the "Tag name state". Again we stay in this state until we reach ">".Then the

new tag token will be emitted and we go back to the "Data state". The "</html>" input will be treated
like the previous case.

Tree construction algorithm

When the parser is created the Document object is created. During the tree construction stage the DOM
tree with the Document in its root will be modified and elements will be added to it. Each node emitted
by the tokenizer will be processed by the tree constructor. For each token the specification defines
which DOM element is relevant to it and will be created for this token. Except of adding the element to
the DOM tree it is also added to a stack of open elements. This stack is used to correct nesting

mismatches and unclosed tags. The algorithm is also described as a state machine. The states are called
"insertion modes".

Let's see the tree construction process for the example input:

<html>
<body>
Hello world
</body>

</html>

e

The input to the tree construction stage is a sequence of tokens from the tokenization stage .The first
mode is the "initial mode". Receiving the html token will cause a move to the "before html" mode and a
reprocessing of the token in that mode. This will cause a creation of the HTML Element and it will be
appended to the root Document object.

The state will be changed to "before head". We receive the "body" token. An HTML Head element will
be created implicitly although we don't have a "head" token and it will be added to the tree.

We now move to the "in head" mode and then to "after head". The body token is reprocessed, an HTML
Body Element is created and inserted and the mode is transferred to "in body".

The character tokens of the "Hello world" string are now received. The first one will cause creation and
insertion of a "Text" node and the other characters will be appended to that node.

The receiving of the body end token will cause a transfer to "after body" mode. We will now receive the

html end tag which will move us to "after after body" mode. Receiving the end of file token will end the
parsing.

Actions when the parsing is finished:

At this stage the browser will mark the document as interactive and start parsing scripts that are in

"deferred" mode - those who should be executed after the document is parsed. The document state will
be then set to "complete" and a "load" event will be fired.

Browsers error tolerance:

You never get an "Invalid Syntax" error on an HTML page. Browsers fix an invalid content and go on.
Take this HTML for example:
<html>

<mytag>

</mytag>

<div>

<p>

</div>

Really lousy HTML

</p>

</html>

-
1
4
4

The error handling is quite consistent in browsers but amazingly enough it's not part of HTML current
specification. Like bookmarking and back/forward buttons it's just something that developed in
browsers over the years. There are known invalid HTML constructs that repeat themselves in many sites
and the browsers try to fix them in a conformant way with other browsers.

The HTMLS5 specification does define some of these requirements.

The parser parses tokenized input into the document, building up the document tree. If the document is
well-formed, parsing it is straightforward.

Unfortunately, we have to handle many HTML documents that are not well-formed, so the parser has
to be tolerant about errors.

We have to take care of at least the following error conditions:

1. The element being added is explicitly forbidden inside some outer tag.

In this case we should close all tags up to the one, which forbids the element, and add it afterwards.
2. We are not allowed to add the element directly.

It could be that the person writing the document forgot some tag in between (or that the tag in
between is optional).

This could be the case with the following tags: HTML HEAD BODY TBODY TR TD LI (did | forget any?).

3. We want to add a block element inside to an inline element. Close all inline elements up to the next
higher block element.

4. If this doesn't help, close elements until we are allowed to add the element or ignore the tag.

Nested form elements

In case the user puts a form inside another form, the second form is ignored.
The code:

if (!m_currentFormElement) {

m_currentFormElement = new HTMLFormElement(formTag, m_document);

}
A too deep tag hierarchy

The comment speaks for itself.

Misplaced html or body end tags
Again - the comment speaks for itself.
support for really broken html.

We never close the body tag, since some stupid web pages close it before the actual end of the doc.

Let's rely on the end() call to close things.

if (t->tagName == htmlTag | | t->tagName == bodyTag)

return,

CSS parsing

Remember the parsing concepts in the introduction? Well, unlike HTML, CSS is a context free grammar
and can be parsed using the types of parsers described in the introduction. In fact the CSS specification '
defines CSS lexical and syntax grammar

Let's see some examples:

The lexical grammar (vocabulary) is defined by regular expressions for each token:

comment VATIASIE (872][22] 2N 2y
num [0-9]+][0-9])*"."[0-9]+

nonascii [\200-\377]

nmstart [_a-z]|{nonascii}| {escape}

nmchar [_a-z0-9-]|[{nonascii}|{escape}

name {nmchar}+

ident {nmstart{nmchar}*

“ident" is short for identifier, like a class name. "name" is an element id (that is referred by "#")

The syntax grammar is described in BNF.

ruleset
: selector [',' S* selector |*
{' S* declaration [';' S* declaration]* '}' S*
selector
: simple_selector [combinator selector | S+ [combinator selector]]
simple_selector
: element_name [HASH | class | attrib | pseudo]*

| [HASH | class | attrib | pseudo]+

class

:"'"IDENT

element_name

: IDENT | '*'

attrib

:'['S* IDENT S* [['=' | INCLUDES | DASHMATCH] S*
[IDENT | STRING] $* 1]’

pseudo

"Y' [IDENT | FUNCTION S* [IDENT S*]')']

Explanation: A ruleset is this structure:

div.error, a.error {
color:red;

font-weight:bold;

div.error and a.error are selectors. The part inside the curly braces contains the rules that are applied by
this ruleset. This structure is defined formally in this definition:

ruleset
: selector [',' S* selector |*

Y'S* declaration [';' S* declaration]* '} S*

This means a ruleset is a selector or optionally number of selectors separated by a coma and spaces (S
stands for white space). A ruleset contains curly braces and inside them a declaration or optionally a
number of declarations separated by a semicolon. "declaration" and "selector" will be defined in the
following BNF definitions.

The model of the web is synchronous. Authors expect scripts to be parsed and executed immediately
when the parser reaches a <script> tag. The parsing of the document halts until the script was executed.
If the script is external then the resource must be first fetched from the network - this is also done
synchronously, the parsing halts until the resource is fetched. This was the model for many years and is
also specified in HTML 4 and 5 specifications. Authors could mark the script as "defer" and thus it will
not halt the document parsing and will execute after it is parsed. HTMLS adds an option to mark the
script as asynchronous so it will be parsed and executed by a different thread.

Speculative parsing

while executing scripts, another thread parses the rest of the document and finds out what other
resources need to be loaded from the network and loads them. These way resources can be loaded on
parallel connections and the overall speed is better. Note - the speculative parser doesn't modify the
DOM tree and leaves that to the main parser, it only parses references to external resources like
external scripts, style sheets and images.

Style sheets

Style sheets on the other hand have a different model. Conceptually it seems that since style sheets
don't change the DOM tree, there is no reason to wait for them and stop the document parsing. There is
an issue, though, of scripts asking for style information during the document parsing stage. If the style is
not loaded and parsed yet, the script will get wrong answers and apparently this caused lots of
problems. It seems to be an edge case but is quite common. Render tree construction

While the DOM tree is being constructed, the browser constructs another tree, the render tree. This
tree is of visual elements in the order in which they will be displayed. It is the visual representation of
the document. The purpose of this tree is to enable painting the contents in their correct order. ‘

A renderer knows how to layout and paint itself and it's children.

class RenderObject{ "
virtual void layout(); |
virtual void paint(Paintinfo);
virtual void rect repaintRect();
Node* node; //the DOM node
RenderStyle* style; // the computed style
RenderlLayer* containglayer; //the containing z-index layer

}

Each renderer represents a rectangular area usually corresponding to the node's CSS box, as described
by the CSS2 spec. It contains geometric information like width, height and position.

The box type is affected by the "display" style attribute that is relevant for the node (see the style

computation section).

The render tree relation to the DOM tree.The renderers correspond to the DOM elements, but the
relation is not one to one. Non visual DOM elements will not be inserted in the render tree. An example
is the "head" element. Also elements whose display attribute was assigned to "none" will not appear in
the tree (elements with "hidden" visibility attribute will appear in the tree).

There are DOM elements which correspond to several visual objects. These are usually elements with
complex structure that cannot be described by a single rectangle. For example, the "select" element has
3 renderers - one for the display area, one for the drop down list box and one for the button. Also when
text is broken into multiple lines because the width is not sufficient for one line, the new lines will be
added as extra renderers.

Another example of several renderers is broken HTML. According to CSS spec an inline element must
contain either only block element or only inline elements. In case of mixed content, anonymous block
renderers will be created to wrap the inline elements.

Some render objects correspond to a DOM node but not in the same place in the tree. Floats and
absolutely positioned elements are out of flow, placed in a different place in the tree, and mapped to
the real frame. A placeholder frame is where they should have been. '

The flow of constructing the tree

The presentation is registered as a listener for DOM updates. The presentation delegates frame creation
to the "Frame Constructor" and the constructor resolves style(see style computation) and creates a
frame. Processing the html and body tags results in the construction of the render tree root. The root
render object corresponds to what the CSS spec calls the containing block - the top most block that
contains all other blocks. lts dimensicns are the viewport - the browser window display area dimensions.
This is the render object that the document point to. The rest of the tree is constructed as a DOM nodes
insertion.

Style Computation

Building the render tree requires calculating the visual properties of each render object. This is done by
calculating the style properties of each element.

The style includes style sheets of various origins, inline style elements and visual properties in the HTML
(like the "bgcolor" property).The later is translated to matching CSS style properties.

The origins of style sheets are the browser's default style sheets, the style sheets provided by the page
author and user style sheets - these are style sheets provides by the browser user (browsers let you

define your favorite style. In Firefox, for instance, this is done by placing a style sheet in the "Firefox
profile" folder).

Style computation brings up a few difficulties:

1. Style data is a very large construct, holding the numerous style properties, this can cause memory
problems.

2. Finding the matching rules for each element can cause performance issues if it's not optimized.
Traversing the entire rule list for each element to find matches is a heavy task. Selectors can have
complex structure that can cause the matching process to start on a seemingly promising path that is
proven to be futile and another path has to be tried.

For example - this compound selector:

div div div div{

Means the rules apply to a "<div>" who is the descendant of 3 divs.Suppose you want to check if the
rule applies for a given "<div>" element. You choose a certain path up the tree for checking. You may
need to traverse the node tree up just to find out there are only two divs and the rule does not apply.

— . 3 .

You then need to try other paths in the tree.

3. Applying the rules involves quite complex cascade rules that define the hierarchy of the rules.

Sharing style data

1. The elements must be in the same mouse state (e.g., one can't be in :hover while the other isn't)
2. Neither element should have an id
3. The tag names should match
4. The class attributes should match
5. The set of mapped attributes must be identical
6. The link states must match

7. The focus states must match

o

8. Neither element should be affected by attribute selectors, where affected is defined as having any
selector match that uses an attribute selector in any position within the selector at all

9. There must be no inline style attribute on the elements

The style contexts contain end values. The values are computed by applying all the matching rules in the .
correct order and performing manipulations that transform them from logical to concrete values. For

example - if the logical value is percentage of the screen it will be calculated and transformed to

absolute units. The rule tree idea is really clever. It enables sharing these values between nodes to avoid

computing them again. This also saves space.

All the matched rules are stored in a tree. The bottom nodes in a path have higher priority. The tree
contains all the paths for rule matches that were found. Storing the rules is done lazily. The tree isn't
calculated at the beginning for every node, but whenever a node style needs to be computed the
computed paths are added to the tree.

The idea is to see the tree paths as words in a lexicon. Lets say we already computed this rule tree: ﬁ

Suppose we need to match rules for another element in the content tree, and find out the matched
rules (in the correct order) are B - E - I. We already have this path in the tree because we already
computed path A-B-E - | - L. We will now have less work to do.

Let's see how the tree saves as work.

Division into structs

The style contexts are divided into structs. Those structs contain style information for a certain category
like border or color. All the properties in a struct are either inherited or non -inherited. Inherited
properties are properties that unless defined by the element, are inherited from its parent. Non
inherited properties (called "reset" properties) use default values if not defined.

The tree helps us by caching entire structs (containing the computed end values) in the tree. The idea is
that if the bottom node didn't supply a definition for a struct, a cached struct in an upper node can be
used.

ot eB0Urog T,
-,‘\\\";’qur l: (‘9
B g o>

o,

A C- i\'}omtma ‘*
ot
,,,.”f-’ghul._jgl‘,w

1

Computing the style contexts using the rule tree

When computing the style context for a certain element, we first compute a path in the rule tree or use
an existing one. We then begin to apply the rules in the path to fill the structs in our new style context.
We start at the bottom node of the path - the one with the highest precedence (usually the most
specific selector) and traverse the tree up until our struct is full. If there is no specification for the struct
in that rule node, then we can greatly optimize - we go up the tree until we find a node that specifies it
fully and simply point to it - that's the best optimization - the entire struct is shared. This saves
computation of end values and memory.

If we find partial definitions we go up the tree until the struct is filled.

If we didn't find any definitions for our struct, then in case the struct is an "inherited" type - we point to
the struct of our parent in the context tree, in this case we also succeeded in sharing structs. If its a reset
struct then default values will be used.

If the most specific node does add values then we need to do some extra calculations for transforming it
to actual values. We then cache the result in the tree node so it can be used by children.

In case an element has a sibling or a brother that points to the same tree node then the entire style /
context can be shared between them. ;

Lets see an example: Suppose we have this HTML \

<html>
<body>
<div class="err" id="div1">
<p>
this is a big error
thisis also a
 very big error error
</p>
</div>
<div class="err" id="div2">another error</div>
</body>
</html>

And the following rules:

1, div {margin:5px;color:black}
2. .err {color:red}

3. .big {margin-top:3px}

4, div span {margin-bottom:4px}
5. #divl {color:blue}

6. #div 2 {color:green}

To simplify things let's say we need to fill out only two structs - the color struct and the margin struct.
The color struct contains only one member - the color The margin struct contains the four sides.

The resulting rule tree will look like this (the nodes are marked with the node name : the # of rule they

point at):

/
Suppose we parse the HTML and get to the second <div> tag. We need to create a style context for this
node and fill its style structs.

We will match the rules and discover that the matching rules for the <div>are 1,2 and 6. This means
there is already an existing path in the tree that our element can use and we just need to add another
node to it for rule 6 (node F in the rule tree).

We will create a style context and put it in the context tree. The new style context will point to node F in
the rule tree.

We now need to fill the style structs. We will begin by filling out the margin struct. Since the last rule
node(F) doesn't add to the margin struct, we can go up the tree until we find a cached struct computed
in a previous node insertion and use it. We will find it on node B, which is the uppermost node that
specified margin rules.

We do have a definition for the color struct, so we can't use a cached struct. Since color has one
attribute we don't need to go up the tree to fill other attributes. We will compute the end value (convert
string to RGB etc) and cache the computed struct on this node.

The work on the second element is even easier. We will match the rules and come to the
conclusion that it points to rule G, like the previous span. Since we have siblings that point to the same
node, we can share the entire style context and just point to the context of the previous span.

For structs that contain rules that are inherited from the parent, caching is done on the context tree (the
color property is actually inherited, but Firefox treats it as reset and caches it on the rule tree).

R s

For instance if we added rules for fonts in a paragraph:

p {font-family:Verdana;font size:10px;font-weight:bold}

Then the div element, which is a child of the paragraph in the context tree, could have shared the same
font struct as his parent. This is if no font rules where specified for the "div".

So to summarize - sharing the style ohjects(entirely or some of the structs inside them) solves issues 1
and 3. Firefox rule tree also helps in applying the properties in the correct order.

There are several sources for style rules:
* CSS rules, either in external style sheets or in style elements.
p {color:blue} ;i
* Inline style attributes like
<p style="color:blue" />
* HTML visual attributes (which are mapped to relevant style rulés)
<p bgcolor="blue" />

The last two are easily matched to the element since he owns the style attributes and HTML attributes
can be mapped using the element as the key.

As noted previously in issue #2, the CSS rule matching can be trickier. To solve the difficulty, the rules
are manipulated for easier access.

After parsing the style sheet, the rules are added one of several hash maps, according to the selector.
There are maps by id, by class name, by tag name and a general map for anything that doesn't fit into
\ those categories. If the selector is an id, the rule will be added to the id map, if it's a class it will be
added to the class map etc.

This manipulation makes it much easier to match rules. There is no need to look in every declaration -
we can extract the relevant rules for an element from the maps. This optimization eliminates 95+% of
the rules, so that they need not even be considered during the matching process(4.1).

Let's see for example the following style rules:

\ p.error {color:red}
#messageDiv {height:50px}

div {margin:5px}

The first rule will be inserted into the class map. The second into the id map and the third into the tag
map.

For the following HTML fragment;

<p class="error">an error occurred </p>

<div id=" messageDiv'>this is a message</div>

We will first try to find rules for the p element. The class map will contain an "error" key under which
the rule for "p.error" is found. The div element will have relevant rules in the id map (the key is the id)
and the tag map. So the only work left is finding out which of the rules that were extracted by the keys
really match.

For example if the rule for the div was

table div {margin:5px}

T e

|
,avt\!

J
ﬁfb

it will still be extracted from the tag map, because the key is the rightmost selector, but it would not
match our div element, who does not have a table ancestor.

Applying the rules in the correct cascade order

The style object has properties corresponding to every visual attribute (all css attributes but more
generic). If the property is not defined by any of the matched rules - then some properties can be
inherited by the parent element style object. Other properties have default values.The problem begins
when there is more than one definition - here comes the cascade order to solve the issue.

Style sheet cascade order

A declaration for a style property can appear in several style sheets, and several times inside a style
sheet. This means the order of applying the rules is very important. This is called the "cascade" order.
According to CSS2 spec, the cascade order is (from low to high):

1. Browser declarations

2. User normal declarations

3. Author normal declarations

4. Author important declarations
5. User important declarations

The browser declarations are least important and the user overrides the author only if the declaration
was marked as important. Declarations with the same order will be sorted by specifity and then the
order they are specified. The HTML visual attributes are translated to matching CSS declarations . They
are treated as author rules with low priority.

Specifity
The selector specifity is defined by the CSS2 specification as follows:

* count 1 if the declaration is from is a 'style' attribute rather than a rule with a selector, 0 otherwise (=

a)
* count the number of ID attributes in the selector (= b)

* count the number of other attributes and pseudo-classes in the selector (= c)

* count the number of element names and pseudo-elements in the selector (= d)

Concatenating the four numbers a-b-c-d (in a number system with a large base) gives the specificity.The
number base you need to use is defined by the highest count you have in one of the categories.

For example, if a=14 you can use hexadecimal base. In the unlikely case where a=17 you will need a 17
L digits number base. The later situation can happen with a selector like this: html body div div p ... (17 '
‘ tags in your selector.. not very likely).

Some examples:

x {} /* a=0 b=0 c=0 d=0 -> specificity = 0,0,0,0 */

li {} /* a=0 b=0 c=0 d=1 -> specificity = 0,0,0,1 */
li:first-line {} /* a=0 b=0 c¢=0 d=2 -> specificity = 0,0,0,2 */
\ ul li {} /* a=0 b=0 (520 d=2 -> specificity = 0,0,0,2 */
ulol+li {} /* a=0 b=0 c=0 d=3 -> specificity = 0,0,0,3 */
h1 + *[rel=up]{} /* a=0 b=0 c=1 d=1 -> specificity = 0,0,1,1 */ ﬂﬂ:“.\
ul ol li.red {} /* a=0 b=0 c=1 d=3 -> specificity = 0,0,1,3 */ :;J‘
li.red.level {} /* a=0 b=0 c=2 d=1 -> specificity = 0,0,2,1 */

#x34y {} /* a=0 b=1 c=0 d=0 -> specificity = 0,1,0,0 */

style="" /* a=1 b=0 c=0 d=0 -> specificity = 1,0,0,0 */

Sorting the rules

After the rules are matched, they are sorted according to the cascade rules.

Layout

When the renderer is created and added to the tree, it does not have a position and size. Calculating
these values is called layout or reflow.

HTML uses a flow based layout model, meaning that most of the time it is possible to compute the
geometry in a single pass. Elements later “'in the flow" typically do not affect the geometry of elements I
that are earlier “'in the flow", so layout can proceed left-to-right, top-to-bottom through the document.

There are exceptions - for example, HTML tables may require more than one pass (3.5).

The coordinate system is relative to the root frame. Top and left coordinates are used.Layout is a
recursive process. It begins at the root renderer, which corresponds to the element of the HTML
document. Layout continues recursively through some or all of the frame hierarchy, computing
geometric information for each renderer that requires it.

The position of the root renderer is 0,0 and its dimensions is the viewport - the visible part of the
browser window. All renderers have a "layout" or "reflow" method, each renderer invokes the layout
method of its children that need layout.

Dirty bit system

In order not to do a full layout for every small change, browser use a "dirty bit" system. A renderer that
is changed or added marks itself and its children as "dirty" - needing layout.

There are two flags - "dirty" and "children are dirty". Children are dirty means that although the
renderer itself may be ok, it has at least one child that needs a layout.

Global and incremental layout

Layout can be triggered on the entire render tree - this is "global" layout. This can happen as a result of:
1. A global style change that affects all renderers, like a font size change.
2. As a result of a screen being resized

Layout can be incremental, only the dirty renderers will be layed out (this can cause some damage
which will require extra layouts).

Incremental layout is triggered (asynchronously) when renderers are dirty. For example when new
renderers are appended to the render tree after extra content came from the network and was added
to the DOM tree.

Asynchronous and Synchronous layout

Incremental layout is done asynchronously. Firefox queues "reflow commands" for incremental layouts
and a scheduler triggers batch execution of these commands. Scripts asking for style information, like
"offsightHeight" can trigger incremental layout synchronously.Global layout will usually be triggered
synchronously.Sometimes layout is triggered as a callback after an initial layout because some attributes
, like the scrolling position changed.

Optimizations

When a layout is triggered by a "resize" or a change in the renderer position(and not size), the renders
sizes are taken from a cache and not recalculated..In some cases - only a sub tree is modified and layout
does not start from the root. This can happen in cases where the change is local and does not affect its

,u‘@\

i

g

)

L)
U

surroundings - like text inserted into text fields (otherwise every keystroke would have triggered a
layout starting from the root).

The layout process

The layout usually has the following pattern:
1. Parent renderer determines its own width.
2. Parent goes over children and:

3. Place the child renderer (sets its x and y).

4. Calls child layout if needed (they are dirty or we are in a global layout or some other reason) - this
calculates the child's height.

5. Parent uses children accumulative heights and the heights of the margins and paddings to set it own
height - this will be used by the parent renderer's parent.

6. Sets its dirty bit to false.

Width calculation

The renderer's width is calculated using the container block's width , the renderer's style "width"
property, the margins and borders.

For example the width of the following div:
<div style="width:30%"/>

* The container width is the maximum of the containers availableWidth and 0. The availableWidth in
this case is the contentWidth which is calculated as:

clientWidth() - paddingLeft() - paddingRight()
clientWidth and clientHeight represent the interior of an object excluding border and scrollbar.

* The elements width is the "width" style attribute. It will be calculated as an absolute value by
computing the percentage of the container width.

* The horizontal borders and paddings are now added So far this was the calculation of the "preferred
width". Now the minimum and maximum widths will be calculated.If the preferred width is higher then

the maximum width - the maximum width is used. If it is lower then the minimum width (the smallest

unbreakable unit) hen the minimum width is used.The values are cached, in case a layout is needed but
the width does not change,

Line Breaking

When a renderer in the middle of layout decides it needs to break. It stops and propagates to its parent
it needs to be broken. The parent will create the extra renderers and calls layout on them.

Painting

In the painting stage, the render tree is traversed and the renderers "paint" method is called to display
their content on the screen. Painting uses the Ul infrastructure component. More on that in the chapter
about the Ul.

Global and Incremental

Like layout, painting can also be glaobal - the entire tree is painted - or incremental. In incremental
painting, some of the renderers change in a way that does not affect the entire tree. The changed
renderer invalidates it's rectangle on the screen. This causes the OS to see it as a "dirty region" and
generate a "paint" event. The OS does it cleverly and coalesces several regions into one. In Chrome it is
more complicated because the renderer is in a different process then the main process. Chrome
simulates the OS behavior to some extent. The presentation listens to these events and delegates the
message to the render root. The tree is traversed until the relevant renderer is reached. It will repaint
itself (and usually its children).

The painting order

€SS2 defines the order of the painting process - http://www.w3.0rg/TR/CS521/zindex.html. This is
actually the order in which the elements are stacked in the stacking contexts. This order affects painting
since the stacks are painted from back to front. The stacking order of a block renderer is:

1. background color
2. background image
3. border

4. children

5. outline

,w-g‘

i
i

Dynamic changes

The browsers try to do the minimal possible actions in response to a change. So changes to an elements
color will cause only repaint of the element. Changes to the element position will cause layout and
repaint of the element, its children and possibly siblings. Adding a DOM node will cause layout and
repaint of the node. Major changes, like increasing font size of the "html|" element, will cause
invalidation of caches, relyout and repaint of the entire tree.

The rendering engine's threads

The rendering engine is single threaded. Almost everything, except network operations, happensin a
single thread. In Firefox and safari this is the main thread of the browser. In chrome it's the tab process
main thread.

Network operations can be performed by several parailel threads. The number of parallel connections is
limited (usually 2 - 6 connections. Firefox 3, for example, uses 6).

Event loop

The browser main thread is an event loop. Its an infinite loop that keeps the process alive. It waits for
events (like layout and paint events) and processes them. This is Firefox code for the main event loop:

while (ImExiting)

NS_ProcessNextEvent({thread);

CSS2 visual model

The canvas

According to CCS2 specification, the term canvas describes "the space where the formatting structure is
rendered." - where the browser paints the content.

The canvas is infinite for each dimension of the space but browsers choose an initial width based on the
dimensions of the viewport.

CSS Box model

The CSS box model describes the rectangular boxes that are generated for elements in the document
tree and laid out according to the visual formatting model.Each box has a content area (e.g., text, an
image, etc.) and optional surrounding padding, border, and margin areas.

Each node generates 0..n such boxes.

All elements have a "display" property that determines their type of box that will be generated.
Examples:

block - generates a block box.

inline - generates one or more inline boxes.

none - no box is generated.

The default is inline but the browser style sheet set other defaults. For example - the default display for
"div" element is block.

You can find a default style sheet example here http://www.w3.0rg/TR/CSS2/sample.html
Positioning scheme
There are three schemes:

1. Normal - the object is positioned according to its place in the document - this means its place in the
render tree is like its place in the dom tree and layed out according to its box type and dimensions

2. Float - the object is first layed out like nhormal flow, then moved as far left or right as possible

3. Absolute - the object is put in the render tree differently than its place in the DOM tree

The positioning scheme is set by the "position" property and the "float" attribute.
* static and relative cause a normal flow
* absolute and fixed cause an absolute positioning

In static positioning no position is defined and the default positioning is used. In the other schemes, the
author specifies the position - top,bottom,left,right.

The way the box is layed out is determined by:

* Box type

* Box dimensions

* Positioning scheme

* External information - like images size and the size of the screen

Box types

Block box: forms a block - have their own rectangle on the browser window.

Inline box: does not have its own block, but is inside a containing block.
Blocks are formatted vertically one after the other. Inlines are formatted horizontally.

\ Inline boxes are put inside lines or "line boxes". The lines are at least as tall as the tallest box but can be
' taller, when the boxes are aligned "baseline” - meaning the bottom part of an element is aligned at a
point of another box other then the bottom. In case the container width is not enough, the inlines will

be put in several lines. This is usually what happens in a paragraph.

Y |

ARCHITECTURAL DESIGN:

(i) Web Browser’s main component

K

| User Interface

Rrowser engine

SIURISISIaL BI2(

|
|;|

[. Rendering engine i

\ L e i s e H:f’#

e
T

i:!,.wr: T —

. 4 n

(i) Rendering Engine Basic Flow.

| R B SRR RO

 ParsingHT o
RHTML —-\| Rendertree | § Layoutofthe || Paintingthe

e | constraction | ' § rendertree | ' | rendertree
- anstruction : CROeTTTeR anaertree
the DO tree |

R SR

e

T e

Rendering Engine Main Flow:

- T /
f fioey

C Oantent |/) .

J Content |/ Content /[Reflow

o
AIML et o Model

[Mot /

Frame Frame i fikio i
: 1 -+ Painting -+ Display
Constructoer | I'ree ; i -l: & \ Fed |

LSy

g L O s ;} ql‘
% (CS§ "i(Style Jj ,'J

I Style } ok

Parser

[Rules : j’f

1k

% .
AR = i

=

7 o)

T

4. Source Document to Parse Tree

Cocument

3

Lexical
 Analysis |

Syntax
_ Analysis

Parse
- Trae)

£
¢

:f‘

5. Compilation Flow

[Source Code

S

Parsing

e

Parse

A TFree

P

t Transtation

______ 1

Machine
Codo

T | |

6. DOM Tree

i

 HBofnent

ot fMimigsEenent y

w

7. HTML Parser

_ /
Network

f i
Tokeniser | :
| g' | dacument.writa()

| Script !
| Execution |

Y m

8. Parsing CSS

3 pdivy
z marg n-top:3py;
L |
| rrrard ;
§ L. colorred:.

e g CS5RulR |

{55Rule

| Lplociors Daclaration Soloctors i Dedaration
! | st G b Bt

| p dy Mergntop | dpx | 1.:::rc;r; biocolan . |gred "

T |

9. Render Tree and DOM Tree

i

- R R
e

Sample Code:
1. Httpwidget.ui

from PyQtd import QtWebKit
Erom PyvOedeimbeort (QECore, OtGEuil

class Ui HttpWidget (object) :
def setupldi (self, HttpWidget):
HttpWidget.setObjectName ("HttpWidget")
HttpWidget.resize (636, 336)
sellfeVetticallavout —
QtGui.QVBoxLayout (HttpWidget)

self.verticallayout.setObjectName ("verticallLayou
t")

selt . horirsontalliayout =
QtGui.QHBoxLayout ()

self.horizontallLayout.setObjectName ("horizontallL
ayoust)

selfrback==
QtGui.QPushButton (HttpWidget)

icon = QtGuil.QIcon ()

icon.addPixmap(QtGui.QPixmap("back.png"),

OtGui.Qlcon: Normalh QEGUI Ol con, O L)
self.back.setIcon (icon)
self.back.setObjectName ("back")

self.horizontalLayout.addWidget (self.back)
self.next =

QtGui.QPushButton(HttpWidget)
self.next.setEnabled (True)

1 self.next.setLayoutDirection (QtCore.Qt.RightToLe
1)

iconl = QtGui.QIcon ()

iconl.addPixmap(QtGui.QPixmap("next.png"),

QtGui.QIcon.Normal, QtGui.QIcon.OQff)
selif.next. setilicon (Lconl)
self.next.setObjectName ("next")

self.horizontallLayout.addWidget (self.next)
seliiston =
QtGui.QPushButton(HttpWidget)
icon2 = QtGui.QIcon ()

iconZ.addPixmap (QtGui.QPixmap ("stop.png"),

QtGui.QIcon.Normal, QtGui.QIcon.Off)
self.stopssetlcon(icon?)
self.stop.setObjectName ("stop")

self.horizontallLayout.addWidget (self.stop)
self.reload =

QtGui.QPushButton (HttpWidget)
icon3 = QtGui.QIcon ()

icon3.addPixmap (QtGui.QPixmap ("reload.png"),

OtGul i @TconaNormal, OtGuUi.0Olcon.DET)
self.reload.setIcon(icon3)
self.reload.setObjectName ("reload")

self.horizontallayout.addWidget (self.reload) I
self.url = QtGui.QLineEdit (HttpWidget) v
self.url.setObjectName ("url") '

self.horizontallLayout.addWidget (self.url)

self.verticallayout.addLayout (self.horizontallay
out)

self.webView =
QtWebKit.QWebView (HttpWidget)

selfwebView.setUri(QtCore. QUrl ("about:blank"))
self.webView.setObjectName ("webView")

self.verticallLayout.addWidget (self.webView)
self.retranslateUi (HttpWidget)

QtCore.QMetaObject.connectSlotsByName (HttpWidget
)

def retranslatelUi(self; HebpWicgets .

HttpWidget.setWindowTitle (QtGui.QApplication.tra
nslate(*HttpWidget", "Form!, Nenej
QtGui.QApplication.UnicodeUTF8))

self.back.setToolTip (QtGui.QApplication.translat A
e (UHEEpWa dge bl LBackll —Ndne, i
QtGui.QApplication.UnicodeUTF8))

selfiback.setText (OEGUl, QAppllcatlon translate ("
HttpWidget", "Back", None,
QtGui.QApplication.UnicodeUTF8))

seEtEnes=tse Cloo T D (OEGUIS0ADD S cat ion Eran sl
(Mt tpWidget ", "Next, None;
QtGui.QApplication.UnicodeUTFS8))

self.next.setText (QtGui.QApplication.translate ("
HttpWidget", "Next", None,
QtGui.QApplication.UnicodeUTF8))

self.stop.setToolTip (QtGui.QApplication.translat
e (IHotpWddget!, "Stop!', Nene,
QtGui.QApplication.UnicodeUTF8))

self.stopisetlext (OLtGul, 0Appllication.translate (¥
Hi spWaidae tdlaallStiop e None;,
QtGul.QApplication.UnicodeUTF8))

selfsreloadisetloolTip(OtGuI, QApplication, transl
ate ("HttpWidget", "Reload", None,
QtGui.QApplication.UnicodeUTF8))

self.relcad.setText (QtGul.QApplication.translate
(MHEEpWidgenls, MReloadl,” Nerle,
QtGui.QApplication.UnicodeUTF8))

—*— coding: Utf -8 k-
import sys

from BPyotd simportiGtCore ;a0 =G
from httpWidget import Ui HttpWidget

class httpWidget (QtGui.QWidget) :
gef Lt s (Sel By parent=None) |
gaber(httpWidget, S syt bl Tl (T e e P)
selfa g = Ui s toWidaget ()
self.ui.setuplUi (self)

set margins

| L= sellfinlavout () \
| 1l.setMargin(0)
self.ui.horizontallLayout.setMargin (5) /

set the default
upls= lhttpsy/localhosti 8080
self vl urlisetText (url)

load page
salstmiiinMivebV lew , setlUrl (OLCoTe . QU ({Ind$)5)

NS Eory-pbutteons:

self.ui.back-SétEnabled(False) |
self.uil.next.setEnabled(False) ’

QtCore.QObject.connect (self.ui.back,QtCore. S
TGNAL ("clickedi(@)h) 7 selfibaclk)

QECorew@Objectuconnectifselifnuisnextt;:0tCore 3
IGNAL ("elicked () "), self.next)

OtCore . .00bject .connecti(self . uiturl iOtCore! ST
GNAL ("returnPressed()"), self.url changed)

QtCore.QO0bject.connect (self.ui.webView, QtCor
e.STGNAL (L lank@licked ‘(const QUrls&) "),
seil-f slinleeelticked)

QtCore.QO0bject.connect (self.ui.webView, QtCor
el s IGNAITEIU T Charngedii(constn OUr L&) 1),
selfidlEa nkealiiaked)

QtCore.QObject.connect (self.ui.webView,QtCor
e.SIGNAL ("loadProgress (int)"),
self.load progress)

SECcre 00 et connecttsel i webView;OtCor
e.SIGNAL("titleChanged (const QStringé&)"),
sel .t ieliemehandead)

lr'”"

QtCore.QObject.connect(Self.ui.reload,QtCore
3 LGNAT (Mo lieked @) self.reload page)

QtCore.Q0bject.connect (self.ui.stop, QtCore. S
HENATERE el Hakad) 1), self.stop page)

QtCore.QMetaObject.connectSlotsByName(self)

cef-lUrlecnangsd (self)

mian N

mwmn

|
Url have been changed by user }
\

page = self.ui.webView.page () |
history = page.history() i
Lithalsteryi, canGeBack (5
self.ui.back.setEnabled (True) l
else: |
self.ul.back.setEnabled (False) J
if history.canGoForward() :-
self.ui.next.setEnabled (True)
else:
self.ui.next.setEnabled (False)

1 U s s ot url . text()
self.ui.webView.setUrl(QtCore.QUrl(url))

def stop page (self):

mrwn

Stop loading the page

mrran

self.ui.webView.stop ()

def title changed(self, title):

minan

Web page title changed - change the tab
name

mirn ‘

self.setWindowTitle(title) j

def reload page (self) :

mian f\

Reload the web page

mmn

| self.ui.webView.setUrl (QtCore.QUrl (self.ui.url.t
[e (DY)

defi linkiclicked(self, uzrl):

Update the URL if a link on a web page
Te=clialiael

page = self.ui.webView.page ()

history = page.history()

if history.canGoBack () :

self.ui.back.setEnabled (True)

else: ‘
self.ul.back.setEnabled (False)

if history.canGoForward() : 1
Self.ui.next.setEnabled(True)

else: |
self.ui.next.setEnabled (False) |

self.ui.url.setText(url.toString()) {

gefi logd progressi(self, load)

ot |
|

Page load progress
|

i cad — 1003)
self.ui.stop.setEnabled(False) !

else:
self.ui.stop.setEnabled (True)

def back(self) :

mwmn

Back button clicked, go one pPage back

mirmn

page = self.ui.webView.page ()

| history = page.history ()

history.back ()

if history.canGoBack() :
self.ui.back.setEnabled (True)

else:
self.ui.back.setEnabled (False)

|
!
i
|

def next (self):

I

mirn

Next button clicked, go to next page
page = self.ui.webView.page ()
history = page.history()
history.forward ()
if history.canGoForward() :
self.ul.next.setEnabled (True)
else:
self.ui.next.setFEnabled (False)

mn

- nalles el dimann
app = QtGui.QApplication(sys.argv)
myapp = httpWidget ()

myapp.show ()

SyELexii(EpRTeRed ()

",
.

Conclusion:

The browser presents the web resource you choose, by requesting it
from the server and displaying it on the browser window. The resource
format is usually HTML but also PDF, image and more. The location of

the resource is specified by the user using a URI (Uniform resource
Identifier)

BIBILIOGRAPHY:

10.

111,

12.

155
14.
15.
16.
17.

18.
19,

Grosskurth, Alan. A Reference Architecture for Web Browsers.
http://grosskurth.ca/papers/browser-refarch.pdf.

.Aho, Sethi, Ullman, Compilers: Principles, Techniques, and Tools (aka the
"Dragon book"), Addison-Wesley, 1986

Rick Jelliffe. The Bold and the Beautiful: two new drafts for HTML 5.
http://broadcast.oreilly.com/2009/05/the-bold-and-the-beautiful-two.html.
L. David Baron, Faster HTML and CSS: Layout Engine Internals for Web

Developers. http://dbaron.org/talks/2008-11-12-faster-html-and-css/slide-6.xhtml.

L. David Baron, Faster HTML and CSS: Layout Engine Internals for Web
Developers(Google tech talk video).
http://www.youtube.com/watch?v=a2 6bGNZ7bA.

L. David Baron, Mozilla's Layout Engine.
http://www.mozilla.org/newlayout/doc/layout-2006-07-12/slide-6.xhtml.
L. David Baron, Mozilla Style System Documentation.
http://www.mozilla.org/newlayout/doc/style-system.html.

Chris Waterson, Notes on HTML Reflow.
http://www.mozilla.org/mewlayout/doc/reflow.html.

Chris Waterson, Gecko Overview. http://www.mozilla.org/newlayout/doc/gecko-
overview.htm.

Alexander Larsson, The life of an HTML HTTP request.
https://developer.mozilla.org/en/The_life_of an HTML HTTP request.
David Hyatt, Implementing CSS(part 1).
http://weblogs.mozillazine.org/hyatt/archives/cat_safari.html.

David Hyatt, An Overview of WebCore.
http://weblogs.mozillazine.org/hyatt/ WebCore/chapter2.html.

David Hyatt, WebCore Rendering. http://webkit.org/blog/114/.

David Hyatt, The FOUC Problem. http://webkit.org/blog/66/the-fouc-probleny/.
HTML 4.01 Specification. http://www.w3.org/TR/html4/.

HTMLS Specification. http://dev.w3.org/html5/spec/Overview.html.
Cascading Style Sheets Level 2 Revision 1 (CSS 2.1) Specification.
hitp://www.w3.org/TR/CSS2/.

Firefox. https://developer.mozilla.org/en/Build Documentation

Webkit. http://webkit.org/building/build.html

