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ABSTRACT 

 

In data analysis, missing values pose a significant challenge, potentially leading to 

biased results and reduced statistical power. Various methods for imputing missing 

values have been developed to address this issue, ranging from simple imputation 

techniques to sophisticated algorithms based on machine learning. This thesis 

comprehensively reviews the existing literature on missing values imputation, 

discussing the advantages and limitations of different approaches. Additionally, it 

explores recent advancements in the field and identifies promising directions for 

future research. Researchers and practitioners can make informed decisions when 

handling missing data in their analyses by understanding the strengths and 

weaknesses of various imputation methods. 

The primary aim of the first objective is to formulate a framework for an extensive 

period; data mining has persisted as a pivotal and compelling realm of research, 

accompanied by numerous challenges. Among these challenges, missing values 

within datasets emerge as a significant hurdle. This objective delves into the 

taxonomy of missing data, exploring diverse handling techniques.  

The second objective is to tackle the challenges associated with Missing data, 

which is pervasive across various research fields, introducing uncertainty into data 

analysis. It can arise from diverse sources such as mishandling of samples, 

unavailability of observations, measurement errors, deletion of outliers, or simply 

gaps in the study. The realm of nutrition is no exception to this issue. Due to gaps 

in food consumption data, knowledge still needs to be completed, limiting its 

utility for dietary assessment, which typically requires complete datasets. 

Commonly, this challenge is addressed through manipulative techniques or 
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borrowing data from similar databases, introducing significant errors. Our study 

explores missing data imputation methods, including Recurrent Neural Networks, 

Iterative KNN imputation, K-nearest neighbors, and Artificial Neural Networks. It 

compares them with traditional techniques such as mean and median imputation. 

We utilize datasets from national Food Composition Databases collected by 

OpenMV.net.  

The study's third and final objective aims to provide missing values, which poses a 

significant challenge in time-series datasets and profoundly impacts dataset 

analysis. Effective handling of missing values is crucial for robust analysis in 

ubiquitous computing. Typically, missing values are approximated using Non-

linear Principal Component Analysis, with room for improvement. Utilizing the 

Kalman filter with the ARIMA model for imputation presents a promising 

approach, which can be further enhanced through Extended Kalman filtering. 

Additionally, rainfall prediction employing LSTM with various optimizers, 

including stochastic gradient descent (SGD), RMSProp, and ADAM, is conducted. 

Comparative predictions demonstrate that the combination of Extended Kalman 

imputation, LSTM, and ADAM optimizer outperforms others. This research 

proposes an enhanced Extended Kalman Filter (EKF) for missing values 

imputation, leveraging its robust predictive capabilities initially developed for the 

Apollo Mission. The proposed EKF accurately estimates rainfall patterns even 

without data, aiding in weather prediction. 
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Chapter-1 Introduction 

1.1 Introduction to Missing Values Imputation 

Missing Values Imputation is a method used in data mining and investigation to 

handle missing or imperfect data in the dataset. Missing values can arise for 

several reasons, such as mistakes in the data collection time, malfunctions in 

equipment, or simply due to the nature of the data itself. When dealing with 

missing data, addressing them appropriately is imperative if ignoring or 

mishandling missing values can lead to discriminatory or inaccurate results. 

Missing values can disrupt the analysis and modeling process since many 

algorithms and statistical methods require complete data to function effectively. 

Imputation refers to the process of estimating or imputing missing values with 

plausible values based on the available facts. The goal is to create a more complete 

dataset while reducing the effect of the missing values on the examination. 

Data mining and data analysis and processing are recognized as essential and 

stimulating accountability for various applications in daily life, where a specific 

database aimed at a preferred problem is accrued to conduct such as examination. 

A database is essential to any understandable decision-making system for 

automated regression or classification tasks. However, real-world databases often 

come with challenges, such as a notable proportion of missing values, redundancy 

in one or more attributes, and irregular patterns (outliers). These issues need to be 

addressed to enhance the effectiveness of generic trained techniques. The missing 

values within the dataset can manifest as NaNs, blank cells, 'nan,' or occasionally 

as placeholders like '-999,' undefined, null, among other conventions. 

Numerous factors contribute to the presence of missing values stemming from 

diverse sources within datasets. These may include inappropriate and erroneous 
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data entries, data unavailability, challenges in data gathering, lost sequences, 

imperfect features, missing files, incomplete information, and various other 

sources. Addressing these challenges is crucial to ensuring the robustness and 

reliability of data for meaningful observations and analyses. 

Figure 1.1 displays the experimental block diagram illustrating the generic Missing 

value Imputation (MVI) technique. This technique separates each incomplete 

dataset into complete and missing sets. The full dataset is then employed for 

parameter learning and estimation, using one of several MVI techniques (refer to 

Figure 1.2), to substitute missing values in the incomplete dataset. Subsequently, a 

straightforward assessment involves estimating the disparities between the actual 

and imputed values to evaluate the imputation methods. An alternative approach 

employs the resulting complete dataset for tasks such as classification or 

clustering, followed by examining the attained metrics. The literature review 

reveals numerous MVI methods, broadly categorized into statistical and Machine 

Learning (ML)-based techniques, as illustrated in Figure 1.2. These categories are 

further subdivided into various algorithm types (as seen in Figure 1.2), facilitating 

comparative discussions. 

 

Fig. 1.1 A standard experimental setup for Missing Imputation (MVI) procedures involves filling in missing 

values within various attributes. 
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Figure1.2 The organized tree exhibition of the commonly used MVI methods. 

 

1.2 Analysis of Missing Value Imputation and their Assessment 

Figure 1.3 shows the top twelve statistical and ML-based methods for Missing 

Value Imputation (MVI), highly applied in literature from 2010 to August 2021. 

EMMVI, MMVI, LLSMVI, BPCAMVI, and LRMVI consistently emerge as the 

top-5 statistical MVI techniques, featured in 34, 34, 12, 11, and 11 articles, 

respectively. Notably, EMMVI and MMVI are the most heavily employed, with 

their usage approximately three times higher than the third-ranked LLSMVI. These 

methods are favored for their ease of implementation, memory efficiency, 

resilience to outlier imputation, and minimal time requirements for missing value 

prediction. They operate independently of prior data knowledge and maintain 

unbiased attribute means. 
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Figure 1.3 Analysis of Missing Value Imputation and their assessment 

1.3 Missing data mechanisms 

The term "missing data" indicates the absence of values in a dataset, and this can 

happen for various reasons, including errors during data collection, incomplete 

surveys, participant dropouts, or technical issues. Understanding and handling 

missing data is crucial for correct and meaningful data examination. Several 

mechanisms describe how missing data can occur: 

a) Missing Completely at Random (MCAR): This happens when the 

missingness is unconnected to observed and unobserved data. In other 

words, the probability of missing data is the same for all observations, 

regardless of different variables. It implies that the missingness is random 

and not influenced by any underlying factors. MCAR is ideal but rarely 

occurs in practice. 

b) Missing at Random (MAR): In this scenario, the lack of data is associated 

with the observed data rather than the specific missing values. The 

probability of missing data is contingent upon observed variables, making it 

potentially predictable. While MAR might introduce bias, it can often be 

adjusted if the variables causing the missingness are included in the analysis. 
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c) Missing Not at Random (MNAR) is the most problematic scenario. 

Missing data is not random and is related to unobserved data or reasons not 

included in the dataset. If not appropriately handled, this can introduce 

significant bias into analyses. Addressing MNAR requires careful 

consideration and, in some cases, specialized techniques. 

1.4 Why do we need to care about handling hissing data?  

Handling missing data is a crucial aspect of data analysis and modeling for several 

reasons: 

a) Preserving Data Integrity: Missing data can introduce bias and distort the 

authentic relationships within the data. Ignoring missing data can lead to 

inaccurate results and faulty conclusions. Proper handling of disappeared 

data helps maintain the integrity of the dataset and ensures that analyses and 

models are based on accurate information. 

b) Accurate Statistical Analysis: Many statistical analyses require complete 

data for accurate and meaningful results. Missing data can lead to skewed 

distributions, incorrect estimates of variability, and biased parameter 

estimates. Addressing missing data ensures that the statistical analyses are 

valid and reliable. 

c) Avoiding Biased Results: If the missing data are not appropriately handled, 

the observed patterns in the remaining data can be misleading. Certain 

groups or variables might be disproportionately affected by missing data, 

leading to biased results that do not accurately represent the population or 

phenomenon being studied. 

d) Effective Modeling: Models built using incomplete data can be less 

accurate and less robust. Whether you're creating predictive models, 

machine learning algorithms, or simulations, the quality of the model's 
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predictions and generalizations depends on the quality of the input data. 

Proper handling of missing data helps improve the performance of models. 

e) Ethical Considerations: In some cases, missing data might not be MAR, 

which means that the reason for the missingness could be related to the 

underlying characteristics being studied. Failing to account for this can result 

in unfair and discriminatory outcomes. Proper handling of missing data 

helps mitigate ethical concerns and ensures fairness in analyses. 

f) Complete Information: Missing data can lead to losing valuable 

information that might be important for decision-making. Properly handling 

missing data allows you to make more informed decisions based on a more 

complete understanding of the data. 

g) Regulatory and Compliance Requirements: In certain domains, such as 

healthcare, finance, and research, there are strict regulatory and compliance 

requirements regarding data quality and integrity. Properly handling missing 

data is necessary to meet these standards. 

Numerous techniques for addressing missing data include imputation approaches 

(where missing values are replaced with estimated values), deletion methods 

(which involve removing instances with missing values), and advanced approaches 

like employing machine learning algorithms to predict missing values. The 

selection of a specific method hinges on factors such as the characteristics of the 

data, the root causes of missing values, and the objectives of the analysis or 

modeling process. 
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1.5 Process of Missing Data Imputation 

Imputing missing data in a dataset involves filling in or estimating the missing 

values to ensure the dataset is complete and suitable for analysis. Here's a general 

step-by-step guide on how to impute missing data in a dataset: 

a) Identify Missing Values: Begin by identifying which variables in your 

dataset contain missing values. This can be done by examining summary 

statistics or using functions in programming languages like Python (e.g., is 

null() in pandas). 

b) Understand the Nature of Missingness: Determine if the missing data is 

missing completely at random (MCAR), missing at random (MAR), or 

missing not at random (MNAR). Understanding the nature of missingness 

can help guide the imputation approach. 

c) Select Imputation Method: Choose an appropriate imputation method 

based on the nature of the data, the extent of missingness, and assumptions 

about the missing data mechanism. Common methods include mean/median 

imputation, mode imputation, regression imputation, KNN imputation, 

multiple imputation, and deep learning imputation. 

d) Preprocess Data: Before imputing missing values, preprocess the data as 

needed. This may involve scaling numerical variables, encoding categorical 

variables, or performing other transformations. 

e) Impute Missing Values: Apply the chosen imputation method to fill in the 

missing values in the dataset. This can be done using built-in functions in 

data analysis libraries or custom code. 

f) Validate Imputed Data: After imputation, it's crucial to validate the 

imputed data to ensure that the imputation process has not introduced bias or 

affected the distribution of the variables. This can involve visualizing the 
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imputed data, comparing summary statistics before and after imputation, or 

conducting sensitivity analyses. 

g) Perform Analysis: Once the missing values have been imputed and 

validated, you can proceed with your data analysis as usual. 

h) Document Imputation Process: It's essential to document the imputation 

process, including the methods used, any assumptions made, and any 

decisions taken during the imputation process. This documentation helps 

ensure the analysis's transparency and reproducibility. 

i) Consider Sensitivity Analyses: In some cases, it may be appropriate to 

perform sensitivity analyses to assess the robustness of the results to 

different imputation methods or assumptions about the missing data 

mechanism. 

j) Report Results: When reporting the results of your analysis, clearly state 

the imputation methods used and any potential limitations associated with 

the imputed data. 

By following these steps, one can effectively impute missing data in a dataset and 

ensure that the analysis is based on complete and reliable data. 

1.6 How to Handle Missing Values 

Handling missing values involves various techniques that aim to address the gaps 

in the data caused by missing observations. The selection of a technique depends 

on factors like the data's characteristics, the causes of missing values, and the 

objectives of the analysis.  

Deep learning is one of the critical machine learning active research fields; it is 

also a subset of machine learning and has achieved great success in the spectrum of 

scientific and technological domains, including image classification, speech 
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recognition, language processing, missing data imputation, big data analytics, and 

many more. Deep learning techniques are at the forefront of artificial intelligence 

research and application, revolutionizing various fields such as computer vision, 

natural language processing, and robotics. At its core, deep learning is a subset of 

machine learning that involves training artificial neural networks with vast 

amounts of data to learn and make predictions or decisions.  

Here's a brief introduction to some vital deep-learning techniques: 

a) Artificial Neural Networks (ANNs):  ANNs are the building blocks of 

deep learning. They are inspired by the structure and function of the human 

brain, consisting of interconnected nodes (neurons) organized in layers. Each 

neuron receives input signals, processes them, and passes the output to the 

next layer. 

b) Convolutional Neural Networks (CNNs): CNNs are specialized neural 

networks designed for processing grid-like data, such as images. They use 

convolutional layers to apply filters to input data, capturing spatial patterns 

and hierarchies of features. CNNs are widely used in tasks like image 

classification, object detection, and image segmentation. 

c) Recurrent Neural Networks (RNNs): RNNs are designed to handle 

sequential data by maintaining a memory of previous inputs. Their 

connections form directed cycles, allowing information to persist over time. 

RNNs are effective in language modeling, speech recognition, and time 

series prediction. 

d) Long Short-Term Memory (LSTM) Networks: LSTMs are a type of RNN 

architecture designed to address the vanishing gradient problem, which 

hinders the training of deep networks on long sequences. LSTMs use a 
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gating mechanism to regulate the flow of information, enabling them to 

learn long-term dependencies in sequential data. 

e) Generative Adversarial Networks (GANs): GANs consist of two neural 

networks, a generator and a discriminator, which are trained simultaneously 

through a competitive process. The generator learns to generate synthetic 

data samples that are indistinguishable from accurate data, while the 

discriminator learns to differentiate between real and fake samples. GANs 

have applications in image generation, data augmentation, and style transfer. 

f) Autoencoders: Autoencoders are neural networks trained to reconstruct 

input data, typically used for unsupervised learning and dimensionality 

reduction. They consist of an encoder, which compresses the input into a 

latent representation, and a decoder, which reconstructs the input from the 

latent representation. Variants like denoising autoencoders and variational 

autoencoders (VAEs) have been developed for various applications. 

These are just a few examples of deep learning techniques, and the field is 

continuously evolving with new architectures, algorithms, and applications. 

Deep learning has shown remarkable success in various domains, driving 

advancements in technology and reshaping industries across the globe. 

1.7 Problem Statement  

Missing data is a prevalent issue in various real-world datasets across industries, 

and its presence can significantly impact the quality and accuracy of data mining 

tasks. The problem of missing values imputation involves devising effective 

strategies and algorithms to replace missing data with estimated or predicted 

values, thereby enhancing the overall integrity of the dataset and facilitating more 

reliable data analysis. 
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Detecting issues with missing data can be challenging, as it is often unpredictable. 

Data professionals may find it difficult to determine when missing data will impact 

results, and it is only sometimes clear when it will pose a problem. While each 

variable or question might have only a few missing responses individually, the 

cumulative effect of missing values can be significant. Assessing the impact of 

missing data has traditionally been time-consuming and error-prone, requiring 

systematic analysis. 

Machine learning (ML) and data mining algorithms are widely employed to predict 

results from extensive datasets. While these procedures often generate accurate 

predictions, their effectiveness hinges on the quality of the dataset used for 

training. An integral step in the data analysis and mining process involves refining 

the data that will serve as the training foundation for the algorithms. This data 

mining process is known as data preprocessing, which is known as the most 

challenging part for data analysts. In many cases, data must either be included or 

correctly entered by humans, resulting in incorrect predictions. One of the main 

problems regarding data quality is that values need to be included. Missing values 

in the dataset may significantly increase computational cost, skew the outcome, 

and frustrate researchers. 

In data analytics, missing data poses a challenge that can impair performance. 

Erroneous imputation of missing values has the potential to result in inaccurate 

predictions. In the current era of big data, where a colossal amount of data is 

generated every second and stakeholders emphasize optimizing the utilization of 

this data, effective handling of missing values becomes increasingly critical. This 

research introduces a novel technique for missing data imputation, presenting a 

hybrid approach that combines multiple imputation techniques. Additionally, we 
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propose extensions for imputing categorical and numeric data, encompassing two 

variations. 

Missing data is an issue that lowers performance in data analytics. An erroneous 

prediction could result from an incorrect imputation of missing values. Effectively 

addressing missing values becomes more crucial in the significant data era, where 

enormous amounts of data are produced each second. Exploiting these data is a 

substantial problem for the stakeholders. We have developed a novel technique for 

the imputation of missing data in this study that combines many imputation 

strategies. We have presented an extension of two versions for imputed categorical 

and numerical data. 

We have associated the presentation of our suggested algorithm with the existing 

methods and found that our proposed algorithm produces higher accuracy than the 

existing algorithm. I am putting my effort here, hoping it will be helpful to any data 

practitioner or enthusiast aims and Objectives of the Research. 

1.8 Challenges: 

The challenges associated with missing values imputation in data mining are 

multifaceted and require comprehensive solutions: 

a) Accuracy Preservation: The imputed values should be as close to the actual 

values as possible to ensure the accuracy of downstream data analysis, 

modeling, and decision-making. 

b) Data Distribution: Imputed values should reflect the data's central tendency 

and preserve its underlying distribution characteristics. 

c) Feature Interactions: Some features may have complex relationships with 

one another, and imputing missing values should consider these interactions 

to avoid introducing unrealistic patterns. 



15 
 

d) Dimensionality: High-dimensional datasets pose challenges in terms of 

selecting appropriate imputation techniques that can effectively handle 

various data types and relationships. 

e) Bias and Outliers: Imputed values should not introduce bias or amplify the 

presence of outliers in the dataset. 

f) Temporal and Contextual Information: For time-series or context-

dependent data, missing values imputation should consider temporal and 

contextual factors to ensure accurate representation. 

g) Scalability: The proposed imputation methods should be scalable to handle 

large datasets efficiently without sacrificing imputation quality. 

h) Incorporating Domain Knowledge: Imputation techniques should allow 

for integrating domain-specific knowledge or constraints to ensure that 

imputed values align with expert insights. 

1.9 Objectives of the Research 

The research objectives are to develop advanced and effective missing values 

imputation techniques for enhancing the quality and reliability of data mining 

processes. There by permitting more accurate analysis and decision-making in 

various domains. The research aims to achieve the following objectives: 

The primary objectives of addressing the missing values imputation problem are: 

 Identification of significant attributes to deal with missing values handling. 

 To Analyze existing datasets for missing values using various ML 

approaches 

 To develop a time series-based model for handling missing values. 

 Utilization of optimization technique to address the challenge of MVI 
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1.10 Contributions 

In this thesis, the researcher's contribution to the current research work is absorbed 

in two aspects, as deliberated below. 

This research employs multiple imputation techniques, generating numerous values 

for imputing a single missing value through various simulation models. These 

techniques introduce various imputed data types to capture a diverse range of 

acceptable responses. Despite their complexity, multiple imputation techniques 

offer an advantage over single imputation by avoiding bias values. 

The multiple imputation process replaces each missing data point with n values 

derived from n iterations. Researchers opt for a multiple imputation approach to 

impute missing values, assuming that the data are missing at random (MAR). This 

algorithm predicts the likelihood of missing values based on observed data, 

providing multiple values for a single missing value through a series of regression 

models, each dependent on its technique parameter. In this approach, each missing 

variable serves as a dependent variable, with other data in the record acting as 

independent variables. 

The proposed algorithm predicts missing data by leveraging existing data from 

other variables, subsequently replacing missing values with the expected values to 

create an imputed dataset. The iterative technique generates multiply imputed 

datasets; each analyzed using standard statistical methods, yielding multiple 

analysis results. The research introduces a technique that seamlessly imputes 

missing values in a dataset by examining values from other columns and 

estimating the best forecast for each missing value. 

In this research researcher has developed a new approach with integration of mice 

and ANN algorithm. To understand dietary patterns and addressing challenges 

regarding food security, the prediction of food consumption is essential. The 

integration of missing value imputation methods with an Extended Artificial 
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Neural Network (EANN) for future predictions is a novel approach. Such a study 

could provide valuable insights into food consumption trends while addressing the 

issue of missing data, potentially leading to more accurate and reliable predictions 

in this vital field. 

Our proposed algorithm employs linear calculations to approximate a nonlinear 

function. The result of this approximation is an Extended Kalman Filter (EKF). 

Specifically, we select a point and execute a cluster of derivatives on it. In the 

context of an EKF, we compute the mean of the Gaussian distribution on the 

nonlinear curve and conduct multiple derivatives to estimate it. 

The Extended Kalman Filter (EKF) is based on the premise that a local linear 

approximation of the system adequately captures nonlinearities. Consequently, the 

linearized model is utilized instead of the original nonlinear function. These 

calculations are notably straightforward, contributing to the filter's widespread use. 

Nevertheless, when confronted with highly nonlinear systems, the EKF estimates 

encounter significant challenges, including unstable and rapidly divergent 

behaviors, suboptimal linearization, and erratic responses. 

The Kalman filter is used to determine optimal approximations and is anticipated to 

conform to a normal distribution. Its critical function is to calculate the conditional 

mean and variance of the distribution for observed conditions up to a given time. 

This research aims to enhance the Kalman Filter (KF) by introducing an adaptive 

structure that seeks neighboring derivative outcomes and multiplies them by the 

rate of change in the extended Kalman filter. 

1.11 Thesis Organization  

That sounds like a comprehensive approach, but addressing missing value 

imputation and prediction through machine learning and deep learning techniques 
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can enhance the robustness of data analysis. This thesis consists of the following 

chapters: 

Chapter-1 Introductory Information          

This chapter explores the study's background regarding missing values, including 

imputation techniques and data mechanisms, which sets a solid foundation. 

Defining the problem statement and outlining the contributions of your study helps 

focus the research objectives. 

Chapter-2 Related Literature 

This chapter presents the literature surrounding missing values imputation, which 

is rich and diverse, covering various techniques and approaches. Here are some 

key areas and methods often explored in related literature. When delving into the 

related literature, it's beneficial to examine recent publications, comparative 

studies, and research papers focusing on the study's specific context. 

Chapter-3 Missing Values Imputation Predictive Modelling 

This chapter highlights the challenge missing values pose in predictive modeling 

and emphasizes the pivotal role of imputation techniques in setting the stage well. 

Emphasizing the importance of selecting an imputation method that optimizes 

predictive power while minimizing information loss aligns with best practices in 

this field. Exploring the impact of imputation on model performance and 

comparing various strategies could provide valuable insights. 

Chapter-4 Futuristic Prediction of Food Consumption with Missing Value 

Imputation Methods Using Extended ANN 

This chapter argues that predicting food consumption is crucial to understanding 

dietary patterns and addressing food security challenges. Integrating missing value 

imputation methods with an Extended Artificial Neural Network (EANN) for 

futuristic prediction sounds innovative. Such a study could offer valuable insights 
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into predicting food consumption trends while addressing the challenges of 

missing data, potentially contributing to more accurate and reliable futuristic 

predictions in this critical domain. 

 

 

Chapter-5 MVI and Forecast Precision Upgrade of Time Series Precipitation 

This chapter presents how the study can significantly contribute to advancing 

precipitation forecasting techniques by addressing missing values and improving 

the reliability and accuracy of predictions, which is crucial for informed decision-

making in various sectors dependent on weather forecasts. 

Forecasting precipitation is vital for various sectors, especially agriculture, water 

resource management, and disaster preparedness. Combining missing values 

imputation with an Extended Kalman Filter (EKF) to enhance the precision of time 

series precipitation forecasting is fascinating. 

 

Chapter-6 Conclusion and Future work 

This chapter provides the conclusion and future directions to the research scholars 

for carrying out the work in future.  
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Chapter-2 Literature Review 

2.1 Introduction 

Data mining is extracting valuable patterns and knowledge from large datasets. It 

encompasses a range of techniques, including classification, clustering, regression, 

association rule mining, and anomaly detection [1]. For instance, in the field of 

marketing, data mining can be used to identify customer segments and tailor 

marketing strategies accordingly. In finance, it can help predict stock market 

trends. In healthcare, it can aid in disease diagnosis and treatment planning. And in 

cyber security, it can detect and prevent potential threats. These techniques, 

powered by machine learning algorithms and statistical methods, enable 

organizations to uncover insights, make informed decisions, and gain competitive 

advantages in various fields [2]. 

Data mining techniques are invaluable in missing value imputation, aiding in 

predicting and estimating absent data points. Through pattern recognition, 

regression analysis, clustering, and neural networks, these methods enhance data 

completeness, ensuring the reliability of datasets for subsequent analysis and 

decision-making 

2.2 Data mining 

Data mining is a transformative process that turns raw data into meaningful and 

actionable insights. It involves exploring patterns, relationships, and valuable 

insights within large and complex datasets. Employing various techniques, 

algorithms, and methodologies, it aims to unearth meaningful information and 

knowledge from data sets that might otherwise remain obscure or challenging to 

uncover [3]. The primary goal of data mining is to transform raw data into 

meaningful and actionable insights that can inform decision-making for predicting 
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future outcomes and optimizing various domains. By exploring and analyzing data 

from multiple perspectives, often using advanced computational and statistical 

methods, data mining opens up a world of possibilities and potential for 

organizations [4]. 

 

Figure 2.1: Architecture of a data mining system. 

The data mining methods can be applied to various kinds of data, including 

databases, text documents, data warehouses, social media data, multimedia files, 

etc [5]. Here are some standard data mining techniques are included: 

Data mining is usually divided into two parts: 

(i) Descriptive data mining  

(ii) Predictive data mining. 

2.2.1Descriptive data mining 

Descriptive data mining, also known as descriptive analytics, focuses on presenting 

and summarizing existing data to provide insights and understanding about the 

patterns and characteristics within the data[6]. This form of data mining does not 
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involve making predictions or extrapolations about future consequences; instead, it 

proposes to describe and visualize the data in a meaningful technique. On the other 

hand, predictive data mining, also called predictive analytics, involves using 

historical datasets and statistical procedures to predict forthcoming events or 

results. It is widely used in numerous fields to help organizations make informed 

decisions, optimize procedures, and anticipate upcoming trends [7]. 

There are some critical aspects of descriptive data mining: 

a) Data Visualization:  Data Visualizations, such as diagrams, graphs, and plots, 

are commonly used in descriptive data mining to present data patterns in a visually 

appealing and informative way. Examples include histograms, bar charts, pie 

charts, scatter plots, and line graphs [8]. 

b) Data Summarization: Descriptive data mining involves summarizing large and 

complex datasets into more manageable and understandable forms. This can 

include calculating basic statistics like mean, median, mode, standard deviation, 

and range for numerical variables. Categorical variables involve calculating 

frequencies and proportions [9]. 

c) Data Exploration: Exploring the data involves interacting with it to discover 

interesting patterns or relationships that might not be immediately obvious. This 

could involve interactive visualizations, filtering, and drilling down into subsets of 

the data [10]. 

d) Data Profiling: Data profiling involves examining the structure and content of 

the data to understand its quality, completeness, and integrity. This can help 

identify missing values, outliers, and inconsistencies [11]. 

e) Pattern Recognition: In descriptive data mining, pattern recognition identifies 

recurring trends, anomalies, and patterns within the data. This can be particularly 
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useful for understanding customer behavior, market trends, or other regularities in 

the data [12]. 

f) Segmentation: Descriptive data mining often involves segmenting the data into 

meaningful groups based on specific characteristics. This segmentation can help 

businesses tailor their strategies to different customer segments [13]. 

g) Data Presentation: The results of descriptive data mining are typically 

presented in reports, dashboards, or presentations. These presentations can help 

stakeholders understand the current state of the data and make informed decisions 

based on the insights. 

h) Data Cleaning: While not the primary focus, data cleaning is often a part of 

descriptive data mining. It's crucial to ensure that the data used for analysis is 

accurate, complete, and reliable [14]. 

Descriptive data mining is the foundation upon which further analyses, such as 

predictive modeling or prescriptive analytics, can be built. By thoroughly 

understanding the data's characteristics, patterns, and distributions, analysts can 

make informed choices about how to proceed with more advanced analyses to 

address specific business questions or objectives. 

2.2.2 Predictive data mining 

Predictive data mining, also called predictive analytics, involves using historical 

datasets and statistical procedures to predict forthcoming events or results. It is 

widely used in numerous fields to help organizations make informed decisions, 

optimize procedures, and anticipate upcoming trends. 

This kind of data mining drives beyond descriptive analysis, which focuses on 

understanding and summarizing existing data and purposes of predicting what 
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might occur based on patterns and relations identified in the past data. Here are 

some key features of predictive data mining [15]: 

a) Classification and Regression: Predictive data mining involves 

classification tasks (categorizing data into predefined classes) and regression 

tasks (predicting continuous numeric values) [16-17]. 

Predictive data mining can provide valuable insights into customer behavior, 

market trends, risk assessment, and more. It empowers organizations to anticipate 

potential outcomes and make proactive decisions, leading to improved efficiency, 

better resource allocation, and enhanced strategic planning. 

2.3 History of data mining 

The history of data mining can be traced back to the 1960s and 1970s when early 

attempts were made to extract knowledge from large datasets.[18,19] Here is a 

brief overview of the key milestones and developments in the history of data 

mining: 

 Early Origins (1960s-1970s): The foundations of data mining were laid 

during this period with the emergence of techniques such as clustering, 

regression analysis, and exploratory data analysis. Researchers and 

statisticians began exploring ways to extract useful information from large 

datasets [20]. 

 Birth of Artificial Intelligence (1980s): In the 1980s, the field of Artificial 

Intelligence (AI) experienced significant advancements, directly impacting 

data mining. Researchers started developing algorithms and techniques to 

discover patterns and relationships within data automatically [21, 22]. 

  Knowledge Discovery in Databases (KDD) (1990s): The term "Knowledge 

Discovery in Databases" (KDD) was coined to describe the process of 
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extracting knowledge from data. KDD encompassed various stages, 

including data cleaning, integration, selection, transformation, mining, 

pattern evaluation, and knowledge presentation. It became a popular 

framework for data mining research [23, 24]. 

 Machine Learning and Data Mining Convergence (1990s): Machine learning 

and data mining began to converge in the 1990s. Machine learning 

algorithms, such as decision trees, neural networks, and support vector 

machines, were adapted and applied to data mining problems [25]. 

 Rapid Growth and Commercialization (2000s): In the early 2000s, data 

mining gained significant momentum as technologies advanced, 

computational power increased, and data storage became more affordable. 

Data mining tools and platforms became more accessible, increasing 

adoption across industries [26]. 

 Big Data and Advanced Techniques (2010s): With the exponential growth of 

data generated from various sources, including social media, sensors, and the 

Internet of Things (IoT), the focus shifted to handling and mining big data. 

Advanced techniques, such as deep learning, ensemble methods, and natural 

language processing, were developed to extract insights from vast and 

complex datasets[27,28]. 

 Current Trends: In recent years, data mining has become an integral part of 

numerous domains, including finance, healthcare, marketing, cybersecurity, 

and more. Techniques like data visualization, text, and graph mining have 

gained prominence. Additionally, ethical considerations and privacy 

concerns associated with data mining have received increased attention [29]. 



24 
 

Data mining continues to evolve as technology advances and new challenges 

emerge. It plays a crucial role in leveraging today's vast data, enabling 

organizations to gain valuable insights and make data-driven decisions. 

2.4 Techniques of data mining 

Data mining encompasses various techniques and algorithms to extract patterns, 

relationships, and insights from large datasets. Figure 2.2 explores the diverse array 

of data mining techniques applicable across various fields. Here are some 

commonly used data mining techniques [30]: 

Figure 2.2 Data Mining Technique 

a) Association Rule Mining: This technique is used to identify relationships and 

associations between items in a dataset. It helps discover co-occurrence patterns, 
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such as "people who buy X also tend to buy Y." The widely used algorithm for 

association rule mining is the Apriori algorithm. 

b) Classification: Classification involves building models that can classify data 

into predefined classes or groups based on specific attributes or features. 

Algorithms like Decision Trees, Naive Bayes, Random Forests, and Support 

Vector Machines (SVM) are commonly used for classification tasks [31, 32]. 

c) Clustering: Clustering groups similar data points based on their characteristics 

or attributes. It helps identify natural clusters or patterns within a dataset. Popular 

clustering algorithms include K-means, Hierarchical Clustering, and DBSCAN 

[33, 34]. 

d) Regression Analysis: Regression analysis identifies and models the 

relationships between variables to predict numerical values. It helps in 

understanding how one variable affects another. Linear regression, logistic 

regression, and polynomial regression are standard regression techniques [35, 36]. 

e) Anomaly Detection: Anomaly detection focuses on identifying unusual patterns 

or outliers in the data that deviate significantly from the norm. It helps detect 

anomalies or abnormalities that may indicate fraudulent activities, system failures, 

or anomalies in sensor readings. Techniques like statistical methods, clustering-

based approaches, and outlier detection algorithms are employed for anomaly 

detection [37, 38]. 

f) Text Mining: Text mining involves extracting helpful information and insights 

from unstructured text data, such as documents, emails, social media posts, and 

customer reviews. It includes techniques like text classification, sentiment analysis, 

named entity recognition, and topic modelling [39, 40]. 
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g) Sequential Pattern Mining: This technique is used to discover sequential 

patterns or frequent sequences of events in data that occur over time. It finds 

patterns in temporal or sequential data, such as customer browsing behavior, 

market basket analysis, or DNA sequences. The GSP (Generalized Sequential 

Pattern) algorithm is widely used for sequential pattern mining [41]. 

h) Decision Trees: Decision trees are graphical models that represent decisions 

and their possible consequences. They are widely used for classification and 

regression tasks. Decision trees recursively split the dataset based on different 

attributes to create a tree-like structure that can be used for decision-making [42, 

43]. 

These are just a few examples of data mining techniques. Depending on the 

specific requirements and nature of the data, many more advanced and specialized 

algorithms and methods are available. 

2.5 Data Mining Process 

Data mining architecture refers to the overall structure or framework of systems 

and processes used to perform data mining tasks effectively. It encompasses 

various components, including Data integration, Data Collection, data pre-

treatment, data translation, data mining method collection, data mining algorithm 

collection, data mining information expression and analysis, and decision [44, 45]. 

Figure 2.4 is an overview of the typical data mining process. 
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Figure 2.3: Data Mining Process Diagram  

2.6 Missing Values Imputation is an essential tool for data quality 

Missing values imputation is a fundamental technique for enhancing data quality 

and is crucial for accurate and reliable data analysis [46-48]. Here are some 

reasons why missing values imputation is an essential tool for maintaining data 

quality: 

a) Prevents Data Loss: Incomplete datasets with missing values may exclude 

valuable information, which could potentially impact the accuracy and 

comprehensiveness of analyses [49]. 

b) Maintains Data Integrity: Imputing missing values helps maintain the dataset's 

overall integrity by ensuring that it is complete and representative of the real-world 

context it aims to model[51,52]. 

c) Supports Reliable Analysis: Data analysis and modeling techniques often 

require complete datasets. Imputation ensures that these techniques can be applied 

without bias or underrepresentation due to missing data [52]. 
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d) Reduces Bias: If missing values are not handled properly, they can introduce 

bias into analyses, leading to incorrect conclusions and predictions. Imputation 

aims to minimize this bias [53]. 

e) Enhances Predictive Modeling: Missing values in predictor variables can 

adversely affect the accuracy of predictive models. Imputation helps build more 

reliable models by preserving relationships between variables [54, 55]. 

f) Preserves Data Relationships: Many datasets contain interrelated features. 

Imputing missing values while considering these relationships helps maintain the 

consistency and accuracy of data patterns [56, 57]. 

g) Improves Statistical Power: Imputation increases the sample size by filling in 

missing values, leading to better statistical power and more reliable results [58, 

59]. 

h) Facilitates Comparative Analysis: When multiple datasets are compared or 

merged, imputation ensures compatibility and consistency by making them more 

comparable [60]. 

i) Supports Longitudinal Studies: In research involving time-series or 

longitudinal data, missing values imputation helps maintain the continuity of the 

data over time [61-63]. 

j) Enables Cross-Domain Utilization: High-quality imputed datasets can be more 

easily shared and utilized across different research or application domains [64]. 

k) Enhances Data Mining and Machine Learning: Complete datasets are 

essential for accurate feature selection, pattern recognition, and building robust 

machine learning models [65-67]. 
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l) Contributes to Decision-Making: Accurate and complete data are vital for 

informed decision-making in various domains, such as healthcare, finance, and 

marketing [68,69]. 

However, it is essential to note that imputation methods should be chosen 

carefully, as poorly executed imputation can introduce unintended biases or distort 

the underlying data distribution. The choice of imputation technique should align 

with the nature of the data, the patterns of missingness, and the specific analysis 

goals. 

2.7 Missing Values Imputation Methodologies 

In this part of the research, we provide an overview of previous research in data 

analysis, focusing on areas such as missing data, imputation methods, and 

clustering algorithms [70]. The significance of data quality in both Data Mining 

and Business Intelligence cannot be overstated because incomplete or noisy data 

can significantly hamper analysis and result in flawed statistical conclusions and 

decision-making processes. Consequently, addressing missing values prior to 

analysis is paramount [71, 72]. We present a summary of prevalent techniques for 

handling missing values in Table 2.1 

Table 2.1 Overview of Related Techniques Missing Data Imputation 

Summary of Related Approaches Missing Data Imputation 
Reference Related Work    Description 
[73]  
[74] Factors contributing to missing values in surveys 
[75] Imputation techniques for improving data analysis 
[76] Challenges posed by missing data in analysis 
[77] Impact of missing data on decision-making 
[78] Imputation as a solution for replacing missing dat 
[79] Uninformed patterns of absent data in real-world 
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datasets 

[80] 
UCI Machine Learning Repository for benchmark 
datasets 

[81] 
Critique of discarding data vectors with missing 
values 

[82] R-language as an open-source tool for data analysis 

[83] 
Artificial Neural Networks for model-based 
imputation 

[84] 
Evaluation of -Nearest Neighbors imputation 
method 

[85] Missing data imputation using predictive models 

[86] 
Impact of removing samples with high missing values 
proportion 

[87] 
Determining the acceptable threshold for missing 
values 

[88] 
Limitations of simple statistical imputation 
approaches 

[90] 
Systematic review of data imputation methods in data 
mining 

[91] 
Data imputation for missing values and ensuring data 
integrity 

[92] Regression techniques for model-based imputation 
[93] Deep Learning-based imputation approaches 

[94] Comparison of dynamic imputation techniques 
 

Various techniques have been developed for addressing missing values in numeric 

datasets, though their applicability to ordinal data sets may differ [94]. Several 

frequently used techniques are worth noting when addressing missing values. 

The Case Deletion (CD) must remove records containing missing data, thereby 

generating a revised dataset for subsequent analysis. Nevertheless, this approach 

may not be suitable for datasets with a substantial proportion of missing values. 

Even in cases with fewer missing entries, it is essential to assess the potential bias 

introduced by the modified dataset [95] 
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Random Value Imputation is a method for filling in missing values, resulting in a 

complete dataset. Although simple, this approach does not utilize figures from the 

dataset and may introduce randomness that impacts further analysis[96]. 

The Mean Imputation (MI) involves filling in missing values with the mean 

value of the respective feature or attribute from the complete dataset [97]. This 

method, also referred to as complete mean imputation, has limitations [98]. It may 

not be ideal for datasets with many missing values, as it reduces variance and can 

inflate the apparent sample size [99].  

The Most Common Imputation (MCI) technique replaces missing values with 

the most frequently occurring value in the dataset [100,101]. This approach 

assumes that the most common value symbolizes a plausible estimate for the 

missing data. 

The Median Imputation fills in missing values by using the dataset's median 

value of the respective feature [102]. Alternatively, class median imputation 

replaces missing values with the median of the feature within a particular class 

[103]. The class should correspond to the class variable of the vector containing 

the missing value. 

Various strategies have been suggested for managing missing data in ordinal 

datasets. Decision trees have proven effective in classifying ordinal data by 

organizing data into splits or branches [104[. Traditional methods for handling 

missing values might introduce bias and diminish or amplify statistical power. 

Removing missing instances is often favored for simplicity and is commonly the 

default procedure in statistical data analysis tools. However, this approach may 

lead to the loss of a substantial portion of the data in practical scenarios [105,106.] 



32 
 

Neural networks provide a viable solution for handling missing values in ordinal 

data. They offer a classifier-based imputation method inspired by the functioning 

of the brain. Neural networks usually comprise an input, hidden, and output layer, 

with training algorithms enabling them to tackle intricate mathematical problems. 

The hidden layer adjusts dynamically during the training process [107,108]. 

Another classifier-based approach for addressing missing data is Support Vector 

Machines (SVM) [109,110]. 

Classification-based imputation methods have emerged as effective strategies for 

estimating and filling missing values within datasets [111, 112]. These approaches 

utilize diverse classification techniques, including neural networks, decision trees, 

and similar methods, to address the challenge of missing values. However, 

previous research has primarily concentrated on managing numerical or nominal 

missing data values [113]. In contrast, this study seeks to address this research gap 

by focusing on the treatment of missing values in ordinal data and examining the 

effects of these treatments on unsupervised learning techniques, particularly 

clustering 

2.8 Present Trends in Missing Value Imputation 

As of my last knowledge update in January 2024, I can provide some insights into 

emerging trends in the field of missing value imputation [114]. Keep in mind that 

these trends have evolved since then. Here are some trends that were observed: 

a) Machine Learning-Based Imputation: Machine learning techniques, such 

as intense learning, were being applied to missing value imputation [115]. 

Neural networks and advanced algorithms were used to learn complex 

relationships within the data and impute missing values more accurately 

[116]. 
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b) Multiple Imputations: Multiple imputation techniques were gaining 

popularity due to their ability to account for uncertainty in imputed values. 

They were used to generate multiple plausible imputed datasets, which were 

combined to provide more reliable results [117]. 

c) Integration of Domain Knowledge: Researchers focused on incorporating 

domain knowledge into the imputation process. This involves using domain-

specific information to guide imputation decisions and make the imputed 

values more contextually relevant [118]. 

d) Sequential Data Imputation: With the increasing prevalence of time-series 

and sequential data in various fields, there was a growing interest in 

developing imputation techniques that consider such data's temporal 

dependencies and patterns [119]. 

e) Nonparametric Imputation: Traditional imputation methods often assume 

specific distributions or relationships. Nonparametric approaches were 

gaining attention for their ability to handle a wide range of data types 

without solid assumptions [120]. 

f) Imputation for Big Data: As more organizations deal with massive 

datasets, there was a focus on developing scalable and efficient imputation 

techniques to handle big data settings without compromising accuracy [121]. 

g) Missing Data in Deep Learning: Researchers were exploring ways to make 

deep learning models more robust to missing data, allowing the models to 

learn from partially observed data effectively [122]. 

h) Evaluation Metrics: It was becoming more important to develop new 

metrics to assess the quality of imputed data and the impact of imputation on 

downstream tasks. Researchers were looking beyond simple imputation 

accuracy to capture the practical utility of imputed data [123]. 
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i) Imputation Uncertainty: Researchers were working on methods to 

quantify and communicate the uncertainty associated with imputed values. 

This was particularly relevant for decision-making scenarios where 

understanding the reliability of imputed data was crucial [124]. 

j) Automated Imputation Pipelines: As data analysis workflows became 

increasingly complex, a trend toward developing automated pipelines that 

seamlessly integrated missing value imputation with other data pre-

processing and analysis steps emerged [124]. 

It is essential to consult more recent literature and resources to understand the 

current trends in missing values imputation as the field evolves with new research 

and advancements. 

2.9 Summary of the Chapter 

Data mining is the process of analyzing large data sets to discover patterns, trends, 

correlations, or other valuable information. It involves using various statistics, 

machine learning, and artificial intelligence techniques to sift through vast amounts 

of data and extract meaningful insights. 

Data mining is commonly used in various fields, such as marketing, finance, 

healthcare, and scientific research. For example, companies might use data mining 

techniques to identify customer purchasing behaviors and preferences to improve 

targeted advertising campaigns. In healthcare, data mining can help identify 

patterns in patient data to aid in diagnosis, treatment planning, and predicting 

outcomes. 

Some standard data mining techniques include clustering, classification, 

regression, association rule mining, and anomaly detection. These techniques can 

be applied to structured data (e.g., databases) and unstructured data (e.g., text 
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documents, images) to uncover hidden patterns and relationships that can inform 

decision-making and drive innovation. 

Present trends in missing value imputation encompass the evolution towards more 

advanced techniques tailored to specific domains. Traditional methods like mean 

or median imputation are supplemented by sophisticated approaches such as K-

nearest neighbours and deep learning. Integration with machine learning models is 

growing, ensuring seamless incorporation of imputation into analysis pipelines. 

Uncertainty estimation is gaining importance, providing insights into the reliability 

of imputed values. Sequential techniques and integration of auxiliary information 

are improving accuracy by capturing complex dependencies and incorporating 

external context. Moreover, modern imputation methods are designed to handle 

different missingness mechanisms, enhancing their applicability in various 

scenarios. These trends collectively aim to address the challenges posed by 

complex datasets and elevate the robustness and effectiveness of missing value 

imputation processes. 
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Chapter-3 Missing Values Imputation Predictive Modelling 

3.1 Introduction 

Missing values imputation in predictive modeling refers to filling in or estimating 

missing data points in a dataset before using it to build predictive models. Missing 

values are typically encountered in real-world datasets, often stemming from 

incomplete data collection, errors, or intentional omissions. 

Predictive modeling involves creating models that can make predictions or 

decisions based on input data. These models learn patterns and relationships from 

historical data to predict new, unseen data. However, most machine learning 

algorithms and statistical techniques require complete data to work effectively. 

When missing values are present in the dataset, they can lead to biased, 

incomplete, or inaccurate predictions if not handled properly. 

Missing values can be handled using various techniques, including imputation. 

Imputing missing values entails replacing those missing data points with estimated 

or predicted values derived from the available information within the dataset. The 

goal is to make the dataset more complete and representative of the real-world 

scenario so that the predictive model can learn meaningful patterns and 

relationships. 

3.2 Approach of Missing Data Mechanism  

Understanding these mechanisms helps in selecting the appropriate methods to 

handle missing data and ensure valid statistical inferences. In statistics, dealing 

with missing data is crucial as it can significantly impact the results of an analysis. 

The way missing data is handled often depends on the mechanism causing the data 

to be missing. 

The most straightforward approach to infer a missing data mechanism from the 

data is by understanding the data collection process and leveraging substantive 
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scientific knowledge, which is crucial for assessing randomness in missing data. 

Statistical testing is the method to ascertain the type of missing data mechanism. 

This approach is primarily employed when determining whether the mechanism is 

Structurally Missing Data, MCAR, MAR, and MNAR. 

 

3.2.1 Structurally Missing Data 

This type of missing data arises when certain variables only apply to all 

observations. For instance, if a survey asks about marital status but only to 

respondents above a certain age, marital status would be structurally missing for 

younger respondents. 

Information that is missing because it makes sense logically should not be there 

and is referred to as structurally missing. The first and third entries in Table 3.1 do 

not have any data for the "Age of the youngest child" characteristic. These people 

do not have any kids, so their absence makes sense. Similarly, more examples of 

structurally missing information are in the "Number of soft drinks consumed in the 

past 12 hours" column. Under such circumstances, assuming that the correct 

answer is 0 seems sensible. For our analysis, we should thus replace these missing 

values with 0. 

TABLE 3.1: MISSING DATA OF A STRUCTURAL NATURE 

SL_No. Kids Age of the 
youngest child 

Have you consumed a soft 
drink in the past 12 hours? 

How many soft drinks have you 
consumed in the last 12 hours? 

1 X X 
2  18  4 

3 X X 
4  13 X 

5  8  3 
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3.2.2 Missing Completely at Random (MCAR): We must think about the tenable 

income of the fourth observation, as shown in Table 3.2 below. A simple way to start 

is to see that half of the other people have high earnings and the other half have 

poor incomes. It is reasonable to infer that she has a 50/50 chance of having a high 

or low income. Treating the missing value as missing entirely at random (MCAR) 

is the term used to describe this presumption. Little's MCAR test is a useful 

technique for verifying this assumption. 

The MCAR assumption is only sometimes reliable. It is only likely to hold when 

the missing data occurs due to genuinely random phenomena (e.g. if survey 

respondents were randomly asked 10 out of 15 questions). In such cases, there is 

no discernible pattern in the missing data across various factors. This represents the 

best-case scenario in terms of our confidence in the assumption. 

Table 3.2 Data are missing completely at random (MCAR). 

SL. No. Gender Age Earnings 

I ME Less then30 L 

II FE Less than 30 L 

III FE Greater than or equal to 30 H 

IV FE Greater than or equal to 30 

V FE Greater than or equal to 30 H 
*ME signifies Male, FE indicates Female, L denotes Low, and H signifies High. 
 

3.2.3 Missing at Random (MAR) 

The assumption in the case of missing completely at random was that there was no 

discernible pattern. An alternative assumption, somewhat confusingly termed 

missing at random (MAR), instead posits that we can predict the missing value 

based on other data. 

We apply this assumption to revisit the issue of estimating the value of income for 

the fourth observation. A straightforward predictive model assumes that income 

can be predicted based on gender and age. Looking at Table 3.3 below, which 
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mirrors the one above, we observe that our missing data pertains to a Female aged 

30 or older and other females in the same age group with high income. Therefore, 

we predict that the missing data should be categorized as High. It is important to 

note that the probability of prediction does not guarantee perfect accuracy in 

predicting a relationship. All that is required is a probabilistic relationship (i.e., that 

we have a better than random chance of predicting the actual value of the missing 

data) 

Table-3.3 missing at random (MAR) 

ID Gender Age Earnings 

I ME Less then30 L 

II FE Less than 30 L 

III FE Greater than or equal to 30  H 

IV FE Greater than or equal to 30    

V FE Greater than or equal to 30  H 
ME signifies Male, FE indicates Female, L denotes Low, and H signifies High. 

3.2.4 Missing not at random (non-ignorable) 

We may be unable to confidently make any assumptions about the potential value 

of missing data. For instance, individuals with low and exceptionally high incomes 

tend not to respond, or there could be some other unknown reason. This scenario is 

termed missing not at random data or non-ignorable missing data. 

Consider the following study on homelessness. Data was collected from 31 

women, of whom 14 were located six months later. Among them, three were found 

to have exited homelessness, resulting in an estimated proportion of 3/14 = 21%. 

Since there is no data available for the remaining 17 women who could not be 

reached, it is possible that none, some, or all of these 17 individuals may have also 

exited homelessness. This implies that the proportion of women who have exited 

homelessness in the sample could range from 3/31 = 10% to 20/31 = 65%. 

Therefore, reporting 21% as the correct outcome would be misleading. 
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A pattern in the missing data impacts the vital demographic factors. For instance, 

lower-income individuals are less likely to respond, which could skew the findings 

regarding income and likelihood to recommend. In this scenario, missing not at 

random represents our worst-case scenario. 

 

3.3 Exploring Data Missingness 
 

In this analysis, I employed the datasets from Zillow's Home Value Prediction 

Competition on Kaggle, offering a $1.2 million prize. Utilizing the Python package 

named missing, a versatile missing data visualization tool integrated with 

matplotlib, I visualized missing data patterns. This tool seamlessly handles any 

pandas data frame provided. The Kaggle/Zillow dataset comprises a training set 

and a properties dataset detailing the properties of all homes. By merging these 

datasets, I created a missing value matrix plot using Python Notebook 3, following 

the code outlined in Figure 3.1. 

 
Figure 3.1 The Python Notebook 3 code merged both datasets and generated a plot illustrating the missing 
value matrix. 
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The nullity matrix provides a small-scale representation that helps quickly find 
patterns in the dataset that contain missing data. Furthermore, the sparkling 
situated on the right offers a summary of the completeness of the data and indicates 
the rows that have the greatest and least number of entries. 

 
Fig 3.2 The Missingno. bar chart visually represents the nullity within the dataset. 

Figure 3.2 the missing no. bar chart visually represents the nullity within the 

dataset. The nullity in the dataset is shown visually in the bar chart produced by the 

code in Figure 3.2. To improve the visibility of features with large missing values, 

we transformed the data on the y-axis using a logarithmic function, as shown in 

Figure 3.3. 

A simple correlation heatmap produced by the code in Figure 3.2 is shown in 

Figure 3.4. The degree of nullity association between various features is displayed 

in this heatmap, which ranges from -1 to 1 (-

that have no missing data are not included. No correlation data is shown when the 

nullity correlation is near zero (-0.05 < R < 0.05). While a perfect negative nullity 

correlation (R=-1) implies one feature is missing more than the other, a perfect 

positive nullity correlation (R=1) indicates both features have comparable missing 

values in Figure 3.5 
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Figure 3.3: The Nullity matrix provides a data-dense display to identify the dataset's missing patterns. 

 

 
Figure 3.4: Y-axis data to enhance the visualization of characteristics with significantly high missing values 
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Figure 3.5: A basic heatmap of correlation that illustrates the degree of nullity in the correlation between the various 

features 

3.4 Treating Missing Values 

Various techniques have been developed for addressing missing values in numeric 

datasets, though their applicability to ordinal data sets may differ [11]. When 

addressing missing values, it is worth noting several frequently used techniques. 

There are several strategies for imputing missing values in predictive modeling: 

 The Case Deletion (CD) must remove records containing missing data, 

thereby generating a revised dataset for subsequent analysis. Nevertheless, 

this approach may not be suitable for datasets with a substantial proportion 

of missing values. Even in cases with fewer missing entries, it is essential to 

assess the potential bias introduced by the modified dataset [9] 

 Random Value Imputation is a method for filling in missing values, 

resulting in a complete dataset. Although simple, this approach does not 
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utilize figures from the dataset and may introduce randomness that impacts 

further analysis. 

 The Mean Imputation (MI) involves filling in missing values with the 

mean value of the respective feature or attribute from the complete dataset. 

This method, also referred to as complete mean imputation, has limitations. 

It may not be ideal for datasets with many missing values, as it reduces 

variance and can inflate the apparent sample size.  

 The Most Common Imputation (MCI) technique replaces missing values 

with the most frequently occurring value in the dataset. This approach 

assumes that the most common value symbolizes a plausible estimate for the 

missing data. 

 The Median Imputation fills in missing values by using the dataset's 

median value of the respective feature. Alternatively, class median 

imputation replaces missing values with the median of the feature within a 

particular class. The class should correspond to the class variable of the 

vector containing the missing value. 

Various strategies have been suggested for managing missing data in ordinal 

datasets. Decision trees have proven effective in classifying ordinal data by 

organizing data into splits or branches. Traditional methods for handling missing 

values might introduce bias and diminish or amplify statistical power. Removing 

missing instances is often favored for simplicity and is commonly the default 

procedure in statistical data analysis tools. However, this approach may lead to the 

loss of a substantial portion of the data in practical scenarios. 

Neural networks provide a viable solution for handling missing values in ordinal 

data. They offer a classifier-based imputation method inspired by the functioning 

of the brain. Neural networks usually comprise an input, hidden, and output layer, 
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with training algorithms enabling them to tackle intricate mathematical problems. 

The hidden layer adjusts dynamically during the training process. Another 

classifier-based approach for addressing missing data is Support Vector Machines 

(SVM). 

Classification-based imputation methods have emerged as effective strategies for 

estimating and filling missing values within datasets. These approaches utilize 

diverse classification techniques, including neural networks, decision trees, and 

similar methods, to address the challenge of missing values. However, previous 

research has primarily concentrated on managing numerical or nominal missing 

data values. In contrast, this study seeks to address this research gap by focusing 

on the treatment of missing values in ordinal data and examining the effects of 

these treatments on unsupervised learning techniques, particularly clustering. 

a) Mean/Median/Mode Imputation: This involves replacing missing values 

with the mean, median, or mode of the observed values for that variable. 

This is a simple approach, but it might not capture complex relationships in 

the data. 

b) Regression Imputation: This technique involves using other variables in 

the dataset to predict and fill in the missing values. Regression models can 

be used for numerical variables, while classification models can be 

employed for categorical variables. 

c) K-Nearest Neighbors (KNN) Imputation: KNN imputation entails 

identifying the k-nearest data points with complete information and then 

averaging or employing their values to fill in missing data points. 

d) Multiple Imputations: Multiple imputations generates several imputed 

datasets, each with a different set of imputed values, to account for 
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uncertainty in imputation. These datasets are then used to build models, and 

their predictions are combined for more robust results. 

e) Interpolation and Extrapolation: For time-series data, missing values can 

be estimated using interpolation (estimating values within the observed 

range) or extrapolation (estimating values outside the observed range). 

It is important to note that the choice of imputation method depends on the nature 

of the data, the extent of missing values, and the specific goals of the predictive 

modeling task. Incorrect imputation can introduce biases or distort the relationships 

in the data, leading to poor model performance. 

3.5 Impact of Missing Data on Predictive Models 

The issue of missing values is pervasive across all data-driven domains, posing 

numerous challenges such as diminished performance, analytical hurdles, and the 

risk of biased outcomes due to disparities between incomplete and complete data. 

Enhancements are necessary in managing and disclosing missing data within 

predictive modeling studies. A widely endorsed approach to mitigate bias involves 

employing multiple imputation techniques. Additionally, exploring machine 

learning algorithms equipped with innate mechanisms for addressing missing data 

presents another promising avenue for consideration. 

3.6 How missing Data can affect model Performance and accuracy 

 

Missing values can significantly impact the performance and accuracy of 

predictive models. Here is how missing data can affect models: 

a) Bias in Model Parameters: When data is missing not at random (MNAR), 

meaning that the probability of missing data depends on unobserved factors, 

imputing missing values with simple methods like mean or median can 

introduce bias in the model's parameters. This bias can lead the model to 

misrepresent the relationships between variables. 
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b) Reduced Sample Size: Missing data effectively reduces the dataset size 

available for model training. With fewer data points, the model may need 

more information to learn complex patterns, leading to overfitting the 

available data. 

c) Loss of Information: Missing data can result in the loss of valuable 

information and insights that those variables could have provided. This loss 

of information can lead to less informed decisions and predictions. 

d) Incorrect Relationships: Imputing missing values improperly can distort 

the relationships between variables. If the imputed values are systematically 

different from the true values, the model will learn relationships that don't 

accurately reflect reality. 

e) Increased Variability: Imputing missing values can artificially increase the 

variability in the dataset, as imputed values often introduce variability that 

might not exist in the actual data distribution. This can lead to increased 

uncertainty in model predictions. 

f) Inflated Significance: In some cases, imputed values might introduce noise 

that gets incorporated into the model. This noise can lead to falsely 

significant relationships and features in the model, impacting its 

generalization to new data. 

g) Incorrect Outcomes: In specific scenarios, missing data can cause incorrect 

outcomes. For example, in medical studies, missing data on treatment 

outcomes could lead to incorrect medical decisions. 

h) Model Instability: Models built on datasets with missing values can be less 

stable. Small changes in the imputed values or the handling of missing data 

can lead to different model outcomes, reducing the model's reliability. 

To mitigate these issues and minimize the impact of missing data on model 

performance and accuracy: 
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3.7 Model Implementation Process  

a) Choose Appropriate Imputation Methods: Select imputation methods 

suitable for the data type and context. More advanced imputation techniques 

that incorporate relationships between variables can help mitigate biases and 

inaccuracies. 

b) Evaluate Imputation Quality: When available, assess the quality of 

imputed values by comparing them to the observed values. If imputed values 

deviate significantly from observed values, they might not accurately 

represent reality. 

c) Consider Multiple Imputations: Implement multiple imputations to 

account for the uncertainty introduced by imputed values. This involves 

creating several imputed datasets and aggregating results for more robust 

model training and evaluation. 

d) Use Feature Engineering: Create additional features that capture the 

missing data for a particular variable. This can help the model learn from the 

missingness pattern. 

e) Analyse Missing Data Mechanism: Understand why data is missing and 

whether the missing data mechanism is random, missing at random (MAR), 

or MNAR. This can guide the imputation strategy. 

f) Assess Model Sensitivity: Test the model's sensitivity to missing data by 

analyzing its performance on complete cases and different imputation 

scenarios. This can give the insights into the model's robustness to missing 

data. 

3.8 Bias and potential pitfalls introduced by missing data 

Missing data can introduce bias and pitfalls into data analysis and modeling 

processes. Here are some ways bias can arise and potential pitfalls associated with 

missing data: 
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a)  Selection Bias: When the missing data is not completely random, it can 

lead to selection bias. This occurs when the probability of data being missing 

depends on the unobserved value itself or another variable. This bias can 

distort the relationships between variables and lead to incorrect conclusions. 

b) Underestimation or Overestimation of Relationships: If missing data is 

not handled correctly, it can lead to underestimation or overestimation of 

relationships between variables. Imputed values might not accurately 

represent the actual values, leading to incorrect correlations, coefficients, 

and impact assessments. 

c)  Bias in Imputation Methods: Imputing missing values using inappropriate 

methods or models can introduce bias. For instance, using a linear regression 

model to impute missing data in a nonlinear relationship can lead to biased 

imputations. 

d)  Impact on Model Generalization: Models trained on datasets with 

imputed values can need help to generalize to new, unseen data. If imputed 

values introduce noise or distort relationships, the model's performance on 

real-world data may suffer. 

e) Artificial Inflation of Statistical Significance: Imputing missing values 

can introduce variability, and this artificially increased variability can lead to 

falsely significant p-values in statistical tests, making some relationships 

appear statistically significant when they are not. 

f) Misleading Interpretations: Missing data can lead to misleading 

interpretations of results. Analysts might draw conclusions based on 

incomplete or biased data, leading to decisions that must be grounded in 

reality. 
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g) Inaccurate Insights: Missing data can lead to accurate insights and 

informed decisions. Models and analyses based on complete data may 

provide reliable recommendations or predictions. 

h) Inconsistent Comparisons: If different subsets of data have varying levels 

of missingness, comparisons between groups can become problematic. The 

missingness can disproportionately affect one group, leading to incorrect 

comparisons. 

i)  Propagation of Error: If imputed values are used as inputs for subsequent 

analyses, any errors in imputation can propagate throughout the analysis 

pipeline, leading to further inaccuracies. 

j)  Model Instability: Models built on datasets with missing values can be less 

stable. Small changes in imputed values or handling of missing data can lead 

to different model outcomes, reducing confidence in the results. 

Adopting careful data preprocessing and imputation strategies is essential to 

mitigate these biases and pitfalls associated with missing data. 

3.9 Machine Learning-Based Imputation 

Machine learning-based imputation techniques leverage machine learning 

algorithms' power to predict and fill in missing values in datasets. These techniques 

can be instrumental when dealing with complex and high-dimensional datasets 

where traditional imputation methods may need to perform better. Machine 

learning has been the angled stone in studying and extracting information from 

data, and often, a problem of missing values is encountered. Instead of using 

traditional statistical methods or simple imputation strategies like mean or median, 

machine learning models are used to predict the missing values based on the 

patterns and relationships present in the data.  

After thorough discussions, it has been determined that Machine Learning (ML) 

models can be categorized into five different groups: Classification, Regression, 
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Clustering, Association rule learning, and Reinforcement learning. Figure 3.6 

shows the ML models featured in the selected articles for this review. 

 

Figure 3.6 A hierarchical diagram illustrating various ML models categorized into five groups based on their 

similarities. 

Here is the description of five different groups of machine learning-based 

imputation techniques: 

a)  Clustering based imputation 

Clustering-based imputation is a machine-learning technique for filling in missing 

values in datasets by grouping similar data points together and imputing missing 

values within each cluster. This approach assumes that data points within the same 

cluster share similar characteristics, and missing values can be estimated based on 

the values of other data points within the same cluster. 

b)  Regression-based imputation 

Regression-based imputation is a technique used to estimate and fill in missing 

values in a dataset by creating regression models to predict the missing values 

based on the relationship between the variable with missing data and other relevant 
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variables. This approach is beneficial when there is a meaningful correlation or 

association between the variable with missing values and other variables in the 

dataset. 

c)  Classification-based imputation 

Classification-based imputation is a technique for filling in missing values in a 

dataset by predicting and assigning class labels to the instances with missing data. 

This method is precious when dealing with categorical or discrete variables. It 

involves building a classification model to forecast the missing categorical values 

based on other obtainable features. 

d)  Reinforcement learning-based imputation 

Reinforcement learning-based imputation is a novel approach that uses 

reinforcement learning techniques to fill in missing values in a dataset. Unlike 

traditional imputation methods that rely on statistical or machine learning models, 

reinforcement-based imputation treats imputation as a sequential decision-making 

problem. It uses reinforcement learning agents to learn how to impute missing 

values by interacting with the dataset over multiple iterations. 

e) Association rule learning-based imputation. 

Association rule learning-based imputation fills in missing values in a dataset by 

leveraging association rule mining algorithms. This approach is particularly 

suitable for categorical data and relies on identifying associations between 

variables to impute missing values. 

3.9.1 Process of machine learning-based imputation 

a) Feature Selection and Engineering: The first step is identifying relevant 

features (variables) to help predict the missing values. Sometimes, additional 

features must be created or engineered to capture the relationship between 

variables better. 
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b) Data Splitting: The dataset is split into two parts: one with complete data 

and another with missing values. The complete data portion is used to train 

the machine learning model, and the portion with missing values is used to 

test the imputation. 

c) Model Training: A machine learning model is chosen based on the 

characteristics of the data. Common choices include regression models 

(linear regression, decision trees, random forests), k-nearest neighbors 

(KNN), support vector machines (SVM), or even neural networks. 

d) Prediction: The model is trained on the complete data, using the available 

features as inputs and the variable with missing values as the target. Once 

trained, the model is used to predict the missing values in the test portion of 

the dataset. 

e) Evaluation: The imputed values are compared to the observed values for the 

missing entries. Various metrics, such as mean squared error, mean absolute 

error, or correlation coefficients, can be used to assess the quality of the 

imputations. 

f) Application to Entire Dataset: If the imputation model performs well on 

the test portion, it can be applied to the entire dataset to fill in all the missing 

values. 

3.9.2 Leveraging predictive modeling for imputing missing values 

Leveraging predictive modeling for imputing missing values involves using 

machine learning algorithms to predict missing values based on the observed data. 

This approach is beneficial when there are complex relationships between 

variables, and traditional imputation methods may need to capture these 

relationships more effectively. Here is how predictive modeling can be applied for 

missing value imputation: 
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a) Feature Selection: Identify relevant features (variables) correlated with the 

variable containing missing values. Feature selection techniques such as 

correlation analysis or feature importance from tree-based models can help 

identify these variables. 

b) Model Training: Based on the characteristics and nature of the missing 

values' data, select an appropriate machine learning algorithm. Common 

choices include regression models (e.g., linear regression, decision trees, and 

random forests), support vector machines (SVM), or deep learning models 

(e.g., neural networks). 

c) Train-Test Split: Split the dataset into a training set (with non-missing 

values) and a test set (with missing values). The training set is used to train 

the predictive model, while the test set is used to evaluate its performance. 

d) Model Training and Evaluation: Train the predictive model using the 

training data, treating the variable with missing values as the target variable. 

Evaluate the model's performance using appropriate metrics (e.g., mean 

squared error for regression models) on the test set to ensure its accuracy and 

generalization capability. 

e) Prediction: Based on the observed data, use the trained model to predict 

missing values in the test set. These predictions serve as imputed values for 

the missing entries. 

f) Model Validation: Validate the imputation results by comparing the 

predicted values with the true values (if available) or by assessing the impact 

of imputation on downstream analyses or predictive tasks. 

 

g) Integration with Imputation Pipelines: Integrate predictive modeling into 

imputation pipelines alongside other imputation techniques. Ensemble 
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methods or multiple imputations can combine predictions from multiple 

predictive models for enhanced imputation accuracy. 

Predictive modeling for missing value imputation offers several advantages, 

including the ability to capture complex relationships and interactions between 

variables, handle nonlinearity, and adapt to the dataset's specific characteristics. 

However, careful model selection, feature engineering, and validation are required 

to ensure reliable imputation results. 

3.10 Deep Learning-Based Imputation: 

Deep learning-based imputation is a technique for filling in missing data in a 

dataset using deep neural networks. Deep learning models, a subset of machine 

learning models, have gained popularity for their ability to learn complex patterns 

and relationships in data, making them suitable for handling missing data in 

various applications. 

In recent years, deep learning (DL) methods have increasingly addressed missing 

value challenges and showcased improved imputation accuracy [10, 11]. These DL 

models can be modified to handle complicated missing patterns [12, 13] and 

diverse data structures, such as time-series data with sequential arrangements and 

image data with spatial characteristics. Their superior performance and adaptable 

design have propelled their adoption across various domains, including in-patient 

mortality prediction [14, 15] and early Alzheimer's disease detection [12, 16]. 

Despite existing reviews on missing value imputation, many either focus on non-

DL methods or treat neural networks as a monolithic approach, needing more 

specificity to guide researchers in applying DL models to their unique datasets [17-

19]. To fill this void, we introduce a systematic review encompassing DL-based 

missing value imputation methods across diverse datasets [20-24]. Our evidence 

map analysis examines model usage based on data types, offering valuable insights 
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and guidance for researchers leveraging DL methodologies to address missing data 

challenges effectively [25]. 

Here are the key steps and considerations when using deep learning-based 

imputation. 

a) Autoencoders: Autoencoders are a type of neural network architecture used 

for unsupervised learning. They consist of an encoder network that maps 

input data to a lower-dimensional representation (encoding) and a decoder 

network that reconstructs the input data from this encoding. Autoencoders 

can be used for imputation by training them on the complete data and then 

using the decoder to generate imputed values for missing data points. 

b) Variational Autoencoders (VAEs): VAEs are variants of autoencoders that 

can capture the probabilistic distribution of data in the encoding space. They 

are helpful for imputation because they provide not only a point estimate for 

the missing values but also an estimate of uncertainty. This can be 

particularly valuable when dealing with noisy or uncertain data. 

c) GANs): GANs consist of a generator network that produces data samples 

and a discriminator network that distinguishes between accurate and 

generated data. GANs can be adapted for imputation by training them on the 

complete data and using the generator to generate imputed values for 

missing data points. GANs can produce realistic imputations that are 

consistent with the underlying data distribution. 

d) Recurrent Neural Networks (RNNs) and Long Short-Term Memory 

(LSTM): RNNs and LSTMs are specialized neural network architectures for 

sequence data. They can be used for imputation in time series or sequential 

data by learning temporal dependencies and filling in missing values based 

on the context of nearby observations. 
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e) Transformers: Transformers, known for their success in natural language 

processing tasks, can also be adapted for imputation. They excel at capturing 

long-range dependencies in data and can be used for imputation in various 

structured or unstructured datasets. 

f) Data Augmentation: Deep learning models can also be used to perform 

data augmentation, where synthetic data is generated to supplement the 

existing dataset. This can help balance class distributions or increase the 

amount of training data for imputation tasks. 

Deep learning-based imputation methods have the advantage of being able to 

capture intricate patterns and dependencies in the data. However, they also require 

large amounts of data and computational resources for training and hyperparameter 

tuning to achieve optimal performance. Additionally, depending on the dataset size 

and complexity, they may only sometimes be necessary or suitable for all 

imputation tasks;  

 

 

3.11 Introduction to using neural networks for imputation. 

Using neural networks for imputation is a practical and powerful approach to fill in 

missing data in datasets. Neural networks, a subset of deep learning techniques, 

can capture complex patterns and relationships in data, making them well-suited 

for imputation tasks. Here is an introduction to using neural networks for 

imputation: 

a) Understanding the Imputation Problem: 

Imputation is the Process of filling in missing values in a dataset. Missing data can 

arise for various reasons, including sensor errors, data collection issues, or 

incomplete records. 
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Accurate imputation is crucial because missing data can lead to biased analyses, 

reduced model performance, and incomplete insights. 

b)  Data Preprocessing: 

Before using neural networks for imputation, it's essential to preprocess the data: 

Identify missing values: Determine which features or variables have missing data. 

Handling categorical data: Convert categorical variables into numerical 

representations, such as one-hot encoding. 

Normalize/standardize numerical features: Scaling numerical features can help 

neural networks converge faster. 

c)  Choosing the Right Neural Network Architecture: 

The choice of neural network architecture depends on the nature of the data and the 

imputation task. Common architectures include: 

Feed forward Neural Networks (FNN): Suitable for tabular data and structured 

datasets. 

Recurrent Neural Networks (RNN) or Long-Short-Term Memory (LSTM) are 

ideal for sequential data with temporal dependencies. 

Autoencoders: Effective for capturing complex relationships in data for 

imputation. 

d)  Data Splitting: 

Divide the dataset into training, validation, and test sets. The training set is used to 

train the neural network, the validation set is used to tune hyperparameters and 

monitor model performance, and the test set is used for final evaluation. 

e)  Training the Neural Network: 

During training, the neural network learns to predict missing values based on the 

available data. Define a loss function quantifying the error between predicted 

imputations and actual values. Choose an optimization algorithm (e.g., Adam, 
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SGD) to minimize the loss function. Train the neural network on the training data 

for sufficient epochs. 

f)  Hyperparameter Tuning: 

Experiment with various hyperparameters, such as the number of layers, neurons 

per layer, learning rate, batch size, and activation functions. Use the validation set 

to fine-tune hyperparameters and avoid overfitting. 

g)  Evaluation: 

Assess the imputation performance using appropriate metrics, such as Mean 

Absolute Error (MAE), Mean Squared Error (MSE), or others relevant to the 

specific problem. Evaluate the model on the test set to ensure it generalizes well to 

new, unseen data. 

h)  Post-processing: 

Depending on the application, one may need to post-process the imputed values, 

e.g., by rounding to integers, converting back to categorical values, or applying 

domain-specific rules. 

 

 

i) Deployment: 

Once the neural network model demonstrates satisfactory imputation performance, 

it can be deployed to handle missing data in real-world applications. 

Using neural networks for imputation can be a valuable data preprocessing and 

analysis tool. However, when applying these techniques, it's essential to choose the 

right architecture, perform rigorous validation, and consider the specific 

characteristics of the dataset and problem. 

3.12 Auto encoders and their role in imputing missing values 

Autoencoders are a type of neural network architecture that can be valuable in 

imputing missing values in datasets. They are instrumental when dealing with 
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high-dimensional data or data with complex dependencies between variables. Here 

is how autoencoders work and their role in imputing missing values: 

a)  Autoencoder Architecture: 

An autoencoder consists of two main parts: an encoder and a decoder. 

Encoder: The encoder network takes the input data and maps it to a lower-

dimensional representation, often referred to as the "encoding" or "latent space." 

This Process reduces the data's dimensionality while capturing its essential 

features. 

Decoder: The decoder network takes the encoded representation and attempts to 

reconstruct the original input data. 

b) Training an Autoencoder: 

Autoencoders are typically trained unsupervised, meaning they learn to encode and 

decode data without explicit labels. During training, the goal is to minimize the 

reconstruction error, which measures how well the autoencoder can reconstruct its 

input data. 

The loss function used for training is often a measure of dissimilarity between the 

input and reconstructed data, such as Mean Squared Error (MSE). 

c)  Role in Imputing Missing Values: 

Autoencoders can be used for imputation by leveraging their ability to capture data 

patterns and relationships. When dealing with a dataset containing missing values, 

one can use the autoencoder to predict or impute the missing values based on the 

available data. 

Here is a common approach to using autoencoders for imputation: 

 Input Preparation: Encode the dataset with missing values such that missing 

values are replaced with zeros or other placeholders. 
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 Training: Train the autoencoder using the complete data (i.e., data without 

missing values). The encoder learns a compact representation of the data, 

and the decoder learns to reconstruct it. 

 . Encoding: Use the trained encoder to encode the dataset with missing 

values, generating the encoded representations for all data points. 

  Imputation: Replace the encoded values corresponding to missing entries 

with zeros or placeholders. 

 Decoding: Pass the modified encoded data through the decoder to obtain the 

imputed data, including the values for previously missing entries. 

d)  Benefits of Autoencoders for Imputation: 

Autoencoders can capture complex relationships and patterns in the data, making 

them suitable for imputing missing values even in high-dimensional datasets. They 

can learn a lower-dimensional data representation that often highlights the most 

critical features, helping reduce dimensionality. Autoencoders can handle various 

data types, including numerical, categorical, and mixed data. 

e)  Considerations: 

When using autoencoders for imputation, it is essential to preprocess the data 

appropriately and choose an appropriate loss function and hyperparameters. The 

choice of architecture (e.g., the number of layers and units) can significantly 

impact imputation performance. Autoencoders may need help imputing missing 

values for extremely rare or novel patterns in the data. 

Autoencoders can be a powerful tool in the data preprocessing toolbox for 

imputing missing values, especially when dealing with complex datasets where 

traditional imputation methods may be less effective. However, they require 

careful tuning and validation to provide accurate and meaningful imputations. 

 

3.13 Summary of the Chapter 
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In summary, missing values imputation in predictive modeling is a crucial step to 

ensure that the model learns from a complete and representative dataset. This, in 

turn, leads to more accurate and reliable predictions of new, unseen data. 

Missing data can introduce various challenges and biases to predictive modeling. 

Proper handling and imputation strategies are essential to maintain the model's 

predictions' integrity, accuracy, and reliability. 

Understanding the potential biases and pitfalls introduced by missing data and 

taking appropriate measures to handle them is crucial for producing reliable and 

accurate analyses and models. 

Machine learning-based imputation leverages the power of machine learning 

algorithms to predict missing values in a dataset. While it can offer improved 

accuracy over traditional methods, it also requires proper data preprocessing, 

feature engineering, and model selection to ensure effective results. 
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Chapter-4 Futuristic Prediction of Food Consumption with Missing Value 

Imputation Methods Using Extended ANN 

 

4.1 Introduction 

Missing data is a pervasive challenge encountered across various research 

domains, contributing to the approach of uncertainty in data analysis. Missing data 

imputation strategies concentrate on arithmetical prediction algorithms to replace 

missing values. Recurrent Neural Networks, Iterative KNN Imputation, K-Nearest 

Neighbors, and Artificial Neural Networks are some methods used in research for 

missing value imputation and prediction. We compared these methods by filling in 

the mean and median. We used a dataset from national FCDBs that OpenMV.net 

collected. The dataset shows different food items used in Scandinavian and 

European countries. The results show that state-of-the-art imputation 

methodologies produce significantly better results than traditional methods. 

Predicting futuristic food consumption with our proposed missing value imputation 

methods using an Extended Artificial Neural Network (EANN) is an exciting 

application of machine learning and data analysis. Extended ANN refers to neural 

network architectures that handle more complex data and tasks.  

4.2 Conventional techniques for borrowing food consumption databases 

Conventional techniques for borrowing food consumption databases typically 

involve several steps: 

a) Data Collection and Preprocessing: 

Gather historical food consumption data, including time, location, demographics, 

and dietary habits. Researchers used data from national FCDBs that collected 



63 
 

OpenMV.Net. In this thesis, the researchers try to handle missing values in the 

dataset. The missing value imputation methods one can use include: 

b) Mean/Median Imputation: Replace missing values with the mean or 

median of the respective feature. 

c) RNN Imputation: Imputing missing values using Recurrent Neural 

Networks can be a powerful technique when dealing with sequential data where 

the missing values depend on previous values. 

d) KNN Imputation: Imputing missing values using the K-Nearest 

Neighbors (KNN) algorithm is a straightforward and effective technique, mainly 

when dealing with tabular data. KNN imputation involves estimating missing 

values by considering the values of the nearest neighbors in the dataset. 

e) ANN Imputation: Train a neural network model for imputing missing 

values. Normalize or standardize the data to ensure all features have the same 

scale. This can be part of the Extended ANN.  

4.3 Proposed Phenomenon 

Create relevant features that influence food consumption. This could include 

economic indicators, weather, cultural events, and more. The researcher considers 

using techniques like one-hot encoding for categorical variables. 

a) Data Splitting: 

Here, we split our dataset into training, validation, and test sets. The training set 

should contain historical data, the validation set can be used for hyperparameter 

tuning, and the test set can be used to evaluate the final model. 
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b) Extended Artificial Neural Network (EANN): 

Design an Extended ANN architecture that can capture the complexity of the food 

consumption prediction task. Researchers may consider using deep neural 

networks with multiple layers and different activation functions, including dropout 

layers, to prevent overfitting. Experiment with various imputation techniques and 

neural network architectures, such as K-Nearest Neighbors (KNNs), artificial 

neural networks (ANNs), and recurrent neural networks (RNNs), for missing value 

imputation and prediction in food consumption datasets. 

c) Training and Hyperparameter Tuning: 

Train the Extended ANN on the training dataset using appropriate loss functions 

(e.g., mean squared error for regression). Tune hyperparameters like learning rate, 

batch size, number of layers, and neurons per layer using the validation set. 

d) Missing Value Imputation within the ANN: 

Implement a specific component within the ANN to handle missing value 

imputation. This can be completed using methods like autoencoders. A neural 

network architecture where the input and output layers are the same and an 

intermediate bottleneck layer encrypts information about the missing values. 

ANN trains a generator network to produce imputed values, while a discriminator 

network assesses imputation quality. Moreover, use attention mechanisms within 

the neural network to focus on relevant information when imputing missing values. 

Evaluate the Extended ANN's performance on the test set using appropriate 

evaluation metrics (RMSE for regression tasks). Analyze the quality of the 

imputed missing values and their impact on the overall predictions. 

e)  Futuristic Predictions: 
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Once we have a well-trained model, we can use it to predict future food 

consumption by providing relevant input data for the future period. Continuously 

monitor and retrain the model's performance as new data becomes available. Be 

aware of concept drift, where the relationships between features and food 

consumption may change. Consider techniques to make the model's predictions 

more interpretable, significantly if the results impact decision-making. 

f)  Ethical Considerations: 

Be mindful of ethical considerations related to food consumption predictions, such 

as privacy and data biases. This approach leverages the power of extended ANN 

architectures to handle complex patterns and relationships in data while addressing 

missing values. However, remember that building and training such models can be 

computationally intensive, and we may need access to substantial computing 

resources for successful implementation. 

4.3.1 Data searching and analysis

Data searching and data analysis for missing values imputation is exploring, 

classifying, and preparing food consumption datasets to handle the missing data 

effectively. This critical step sets the foundation for choosing the most suitable 

imputation technique and ensuring the data is accurate and reliable. Here are the 

essential aspects of data searching and data analysis for missing values imputation. 

The collection of the national FCDBs dataset of countrywide constituents used to 

determine potassium supply is shown in Table 4.1. 

 

 

 

Table 4.1: Data containing potassium values for various foods sourced from multiple national FCDBs 
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Country 
Germ

any 

Ita

ly 

Fra

nce 

Holl

and 

Belg

ium 

Luxem

bourg 

Engl

and 

Port

ugal 

Aus

tria 

Switze

rland 

Swe

den 

Den

mark 

Nor

way 

Finl

and 

Sp

ain 

Irel

and 

Real coffee 91 81 87 98 93 98 28 73 56 74 98 97 91 98 70 31 

Instant 

coffee 
48 11 41 61 39 62 87 27 32 73 14 18 18 13 41 51 

Tea 89 61 63 97 49 87 98 78 62 86 94 91 84 85 44 98 

Sweetener 19 4 5 31 12 29 23 3 16 26 32 36 14 21 62 12 

Biscuits 56 54 76 63 75 80 92 23 30 32 44 67 63 65 41 81 

Powder 

soup 
52 42 51 68 38 72 54 35 33 70 44 31 52 28 3 76 

Tin soup 20 4 12 42 24 13 75 2 2 11 38 18 5 11 15 19 

Potatoes 21 3 23 8 10 8 18 6 6 18 55 12 18 9 24 3 

Frozen fish 27 4 12 15 14 27 21 21 16 20 46 52 31 19 8 6 

Frozen 

veggies 
22 3 6 15 13 24 25 4 12 16 55 41 16 13 58 4 

Apples 82 68 88 84 77 86 77 21 50 80 79 82 62 51 78 58 

Oranges 76 72 85 90 77 95 90 52 43 71 54 72 71 58 31 52 

Tinned 

fruit 
45 10 41 60 43 82 89 9 15 47 76 51 35 21 39 47 

Jam 72 47 46 82 58 21 92 17 42 63 10 65 51 38 87 90 

Garlic 21 81 87 16 28 93 12 88 52 65 69 12 12 16 45 6 

Butter 92 67 95 33 85 95 96 66 53 81 33 91 64 96 52 98 

Margarine 86 25 48 98 81 95 95 79 74 49 49 92 95 95 92 26 

Olive oil 75 95 37 14 84 85 58 93 29 63 3 31 29 18 17 32 

Yogurt 31 6 58 54 22 32 12 7 14 49 94 12 3 65 14 4 

Crispbread 27 19 4 16 6 25 30 8 12 31 35 61 10 

 

a) Identify Missing Values: 

First, the process starts by identifying which columns or features in the dataset 

contain the missing values. Depending on the dataset format, missing values can be 

represented as "NaN," "null," "NA," blank, or any other placeholder. 
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Here, we describe and understand the Nature of Missing Data. We analyze why the 

data is missing. Missing data can be categorized mainly into three categories: 

Missing completely at Random (MCAR): The Data is missing randomly across 

observations. Missing at Random (MAR): The Data is missing depending on the 

values of other variables. Missing not at Random (MNAR): The Data is missing 

based on unobserved factors, and the mechanism is not related to other variables. 

a) Determine Missing Data Patterns: 

Identify any patterns or dependences in the missing data. For instance, do certain 

variables tend to have missing values together? 

b) Data Exploration and Visualization: 

Explore the dataset visually and statistically. Generate summary statistics, 

histograms, box plots, and correlation matrices to understand the distribution and 

relationships among variables. 

c) Imputation Strategy Selection: 

Choose an appropriate imputation strategy based on the nature of the missing data 

and the specific goals of analysis. Standard imputation methods include mean 

imputation, median imputation, mode imputation, K-nearest neighbors imputation, 

MICE imputation, RNN imputation, ANN imputation, or Consider Multiple 

Imputation and other machine learning-based imputation techniques. In some cases 

required, multiple imputation techniques, such as MICE (Multiple Imputation by 

Chained Equations), can be beneficial. This involves creating multiple imputed 

datasets and combining their results to obtain more accurate estimates. 
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d) Evaluate the Impact of Imputation: 

Before and after the imputation, assess how the imputation process affects the data 

distribution, statistical properties, and any relationships between variables. This 

helps safeguard that imputed values are reasonable and do not introduce bias. 

e) Assess Imputation Quality: 

If we have access to the ground truth (e.g., by using synthetic missing data for 

testing), evaluate the quality of the imputed data using appropriate metrics like 

RMSE (Root Mean Squared Error). 

f) Document the Process: 

Keep detailed documentation of the data searching, analysis, and imputation steps. 

This documentation helps in transparency, reproducibility, and sharing insights 

with other team members or stakeholders. 

     h)  Iterate as Needed: 

If the quality of imputed data could be more satisfactory or if the analysis reveals 

issues, iterate on the imputation strategy or consider alternative approaches. 

Data searching and analysis for missing values imputation is crucial to the data 

preprocessing pipeline. It ensures that the imputed data maintains the integrity of 

the analysis and provides meaningful results. The choice of imputation method 

should align with the nature of the data and the goals of the analysis. 

4.4 Multivariate imputation by chained equations (MICE) 

Multivariate Imputation by Chained Equations (MICE) is a statistical technique for 

handling missing data in multivariate datasets. Its primary role is to provide a 

systematic and statistically sound approach to impute missing values in a way that 
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preserves the relationships and structure within the data. It is also known as Fully 

Conditional Specification (FCS) or Sequential Regression Multiple Imputation. 

MICE is a flexible and widely used method for imputing missing values in a 

dataset by iteratively imputing one variable at a time while considering the 

relationships between variables. 

4.4.1 Here are the critical roles of MICE in missing values imputation: 

Preserving Multivariate Relationships: MICE recognizes that variables in a dataset 

are often interrelated, and it leverages this information to impute missing values. 

By considering the relationships between variables, MICE can produce more 

accurate imputations than univariate methods that treat each variable in isolation. 

Initialization: The process begins by initializing the missing values with some 

initial estimates. This could be mean imputation, random imputation, or any other 

reasonable method. 

Iterative Imputation: MICE operates iteratively, typically using the following steps 

for each variable with missing data: 

Step 1- Choose a variable as the target variable for imputation. 

Step 2- Treat all other variables (including those with imputed values) as predictor 

variables. 

Step 3- Build an imputation model using the target variable as the dependent 

variable and the predictor variables as independent variables. This model estimates 

the missing values of the target variable. 

Step 3- Update the imputed values for the target variable based on the model's 

predictions. 
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Step 4-  Repeat these steps for each variable with missing data until Convergence 

is achieved. 

Multiple imputed datasets are generated once all iterations are completed, each 

representing a plausible set of imputations. These datasets can be used for 

subsequent analyses. After imputing missing values for one variable, the dataset is 

updated, and the imputed values are incorporated into the dataset for the next 

iteration. 

Algorithm 1 presents the method to impute the missing values in the given data set 

using the MICE algorithm. As depicted in Algorithm 1, the missing information is 

processed by computing the Difference and mean of each data for n number of 

rows. Upon identifying the missing values in a given dataset, the missed entries 

can be filled with reshaping or other missing imputation schemes. 

This statement outlines the process of imputing missing values using the MICE 

algorithm. The missing information is processed by calculating differences and 

means for each data point in a specified number of rows. Once missing values are 

identified, they can be filled using reshaping or other imputation techniques. The 

MICE algorithm typically iterates through these steps until Convergence to obtain 

imputed values for the missing entries. 
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Algorithm-I: 

Input: Number of rows containing missing values in a dataset. 

Output: Whether the missing values are imputed using the MICE algorithm 

MICE = [] 

data2 = data 

diff_mat = np.subtract(data2,data1); 

mean2 = diff_mat.mean() 

mean1 = 1000 

while (mean2<=mean1): 

    mean1 = mean2 

    data2 = data1; 

For i in test_missing: 

y_imp = process_fn(data1,i) 

data1[i[0],i[1]] = y_imp 

diff_mat = np.subtract(data2,data1) 

    mean2 = diff_mat.mean() 

For i in test_missing: 

mice.append(data2[i[0]][i[1]]) 

 

Funcprocess() 

defprocess_fn(data, i): 

x_train = np.delete(data, (i[0]), axis=0) 

x_train = np.delete(x_train, (i[1]), axis=1) 

x_test = data[:,i[1]] 

x_test = np.delete(x_test,i[0]) 

x_missing = data[i[0],:] 

x_missing = (np.delete(x_missing,i[1])) 

x_missing = x_missing.reshape((1,19)) 

y_imp = model_fn(x_train,x_train,x_missing) 

returny_imp 

 

 

In summary, Algorithm 2 combines the MICE algorithm for initial imputation and 

an extended version of an Artificial Neural Network for subsequent processing and 

imputation of missing data. The matrix operations and model fitting steps indicate 
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a sophisticated approach to handling missing values in a dataset, leveraging 

statistical and machine learning techniques. 

 

Algorithm-II: Proposed Algorithm 

Input: Number of rows containing missing values in a dataset. 

Output: Whether the missing values are imputed using an extended ANN algorithm 

Extended_ANN  []     //Initialize empty array  

data2 = data      //data is the value of the dataset before applying imputation  

data1  [0]      // initiaze matrix with zero value.  

diff_mat = data2  data1     //take difference of data2 and data1  

mean2 = average(diff_mat)    //mean2 is absolute average of the matrix diff_mat 

mean1  INT_MAX     //initialize mean1 as max integer possible  

while (mean2 <= mean1):    //iterate until error is reducing.  

mean1 = mean2      //make mean1 as the previous value for the next iteration  

data2 = data1;      // make data2 as previous value for the next iteration  

for i  Missing:     // iterate for every missing value  

imputed_value process_fn(data1,i)   //Function for fitting the model  

data1[index][index2] = imputed_value  // update the current value  

diff_mat  data2-data1     // updating difference matrix  

mean2 = diff_mat.mean()    //updating current mean 

 

4.4.2 MICE has several advantages: 

1-It can handle both continuous and categorical variables. 

2-It considers the relationships between variables, making it suitable for complex 

datasets with interdependencies. 

3-It provides multiple imputed datasets, allowing for uncertainty estimation. 

MICE also has some limitations, such as slow Convergence, especially for large 

datasets with complex dependencies. The imputation process may only partially 
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capture non-linear relationships between variables. The quality of imputations 

depends on the appropriateness of the chosen imputation models. 

In practice, MICE is a valuable tool for addressing missing data issues. However, it 

is essential to carefully consider the data and the imputation models used to ensure 

meaningful and reliable results. Additionally, diagnostics and sensitivity analyses 

should be performed to assess the impact of missing data and imputation choices 

on the final analyses. 

4.4.3 Experiment and Performance Analysis 

Now, let us illustrate the concept of missing values and discuss how to address 

them in our research. We will use an example involving food consumption patterns 

across European and Scandinavian countries. This study focuses on predicting 

missing values to analyze the supply of food products required by these regions. 

The dataset includes information on food names and countries for predictive 

analysis. 

Table 4.2. Dataset with missing values 

Country DE IT   ES IE 

Real coffee   82   70 30 

Inst. Coffee 49 10  40 52 

      .     

      .     

Tea 88     40 99 

Olive oil 74 94   16 31 

Yogurt 30 5   13   

Now, the food product supplier is seeking guidance on the types of food products to 

target when approaching markets in European and Scandinavian countries. 

Step 1: The first phase involves filling in the missing values within the collected 

data. In this scenario, the known actual values will be used to impute the missing 
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values, allowing for an analysis of the data gaps. The actual known values, 

highlighted in green, will be utilized to complete the missing entries. 

Table 4.3. Dataset with true values to verify the model output 

Country DE IT   ES IE 

Real coffee 90 82   70 30 

Inst. 

Coffee 49 10  40 52 

      .     

      .     

Tea 88 60   40 99 

Olive oil 74 94   16 31 

Yogurt 30 5   13 3 

We will reserve this data for future reference, using it to cross-verify our model's 

performance and assess its accuracy. 

Step 2: We will solely impute missing values in Germany, Italy, and Ireland for the 

three feature columns - Real coffee, tea, and yogurt, within the provided matrix as 

illustrated below: 

Table 4.4 Dataset with missing values to verify the model output 

Country DE IT   ES IE 

Real coffee   82   70 30 

Inst. Coffee 49 10  40 52 

      .     

      .     

Tea 88     40 99 

Olive oil 74 94   16 31 

Yogurt 30 5   13   

A pertinent question arises after examining the feature matrix above: Why not 

employ univariate methods such as mean, median, mode, frequent values, or 
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constants to impute the missing values? Univariate methods utilize specific column 

statistics, such as mean, mode, or median, to fill in missing values within that 

column. 

In contrast, Extended Artificial Neural Network (EANN) imputation goes beyond 

univariate approaches by considering data from other columns, providing a more 

comprehensive estimation for each missing value. 

To address this inquiry, let us apply the mean imputation method to the feature 

above matrix to address the missing values. The outcome of applying mean 

imputation is as follows: 

Table 4.5 Dataset applying the mean imputation method 

Country DE IT   ES IE 

Real coffee 66.6 82   70 30 

Inst. Coffee 49 10  40 52 

      .     

      .     

Tea 88 75.6   40 99 

Olive oil 74 94   16 31 

Yogurt 30 5   13 16 

Upon reviewing the results, it becomes apparent that the mean imputation has 

generated values that seem implausible for Italy and Spain. For instance, Italy is 

shown to consume 60 units of tea and 82 units of real coffee, while Spain consumes 

40 units of tea and 70 units of real coffee. Such values are inconsistent with 

Germany's consumption, with tea at 88 units and real coffee at 66.6 units. 

Additionally, Germany's consumption appears higher across other products than 

Italy, Spain, and Ireland. This discrepancy highlights a limitation of mean 

imputation, demonstrating that the method is not yielding expected outcomes. 
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This "brute-force" approach exemplifies one of the shortcomings of single or 

univariate imputation techniques. 

The ANN Extended algorithm effectively addresses the issue encountered with 

mean imputation, which takes into account other variables in the dataset to enhance 

predictions of missing values. In this context, to determine the missing value in the 

Germany column, a regression model is applied to features, with "contrary" and 

"food product" serving as predictors and Germany as the target. Similar procedures 

are followed to obtain missing values for contrary and food product features. 

Now, let us delve into the implementation of the ANN Extended algorithm. This 

algorithm operates iteratively, and we will explore each iteration in detail to observe 

how missing values are computed and assess whether the predictions closely align 

with the actual values. 

Iteration 1 

Table4.6   dataset for iteration 1 

Country DE IT   ES IE 

Real coffee 66.6 82   70 30 

Inst. coffee 49 10  40 52 

      .     

      .     

Tea 88 75.6   40 99 

Olive oil 74 94   16 31 

Yogurt 30 5   13 16 

Dataset: Imputed all missing values using mean imputation 

Step 1: Apply mean imputation to fill in all missing values, utilizing the mean of 

their respective columns. This will be referred to as our "Zeroth" dataset, and the 

imputation process will proceed from left to right across the columns. 
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Table4.6 Missing value dataset for iteration1 

Country DE IT   ES IE 

Real coffee   82   70 30 

Inst. coffee 49 10  40 52 

      .     

      .     

Tea 88 75.6   40 99 

Olive oil 74 94   16 31 

Yogurt 30 5   13 16 

Step 2: Exclude the imputed values for "Real coffee in Germany" and retain the 

imputed values in the other columns, as indicated in the provided data.    

Step 3: The remaining features and rows, specifically the top 4 rows of the country, 

constitute the feature matrix, while "Germany and Real Coffee" serves as the target 

variable. A linear regression model will be executed on the filled rows, where X 

represents the country, and Y represents Real coffee. The row with the missing 

value will be employed as test data to predict the missing real coffee value. 

Consequently, the top 5 rows function as the training data and the first row 

containing the missing Real coffee value in Germany is designated as the test data. 

Utilizing "Country" and "Foods Product" as predictors, the model is employed to 

predict the corresponding "Real coffee in Germany" value, yielding a prediction of 

80 in my analysis. 

Step 4: Update the forecasted Real coffee value in the missing cell within the "Real 

coffee" column. Subsequently, the imputed value for "Tea in Italy" should be 

eliminated. The remaining features and rows form the feature matrix, with "Tea in 

Italy" designated as the target variable. A linear regression model will be applied to 

the filled rows, utilizing X as the country and Y as Tea. To predict the absent Tea 

value in Italy, the row with the missing value will be employed as the test data. The 

forecasted value of tea in Italy is 65. 
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Step 5: Revise the anticipated Tea value in Italy in the absent cell within the "Tea" 

column. Subsequently, eliminate the imputed value for "Yoghurt in Ireland." The 

remaining features and rows now constitute the feature matrix, with "Yoghurt" 

designated as the target variable. They employ age and experience as X variables, 

and Y as Yoghurt, and a linear regression model will be executed on the filled rows. 

To gauge the absent Yoghurt value in Ireland, the row with the missing values 

(white cells) will serve as the test data. The forecasted value for Yoghurt in Ireland 

is 8. 

 First  

This is Iteration 1, done and dusted. 

Step 6: We will subtract the two datasets (zeroth and first). The resultant dataset is 
as follows: 

Table4.7 Difference between the first two datasets 
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Upon examination, it is evident that there is a notable disparity between the two 

datasets, particularly in specific imputed values. We aim to minimize these 

differences, aiming for values close to zero. To accomplish this objective, multiple 

iterations are required. 

The process involves repeating steps 2 6 with the updated dataset initially 

introduced. This cycle is reiterated until we attain a stable model, meaning that the 

disparity between the two most recent imputed datasets becomes extremely small, 

approaching zero. Technically, we conclude the iterations when a predetermined 

threshold is reached, or a predefined maximum number of iterations is achieved. 

Iteration 2: 

Table 4.8 After the first iteration, predict values 

 

 

 

 

Next, we will employ the "first" dataset as our foundational dataset for imputations, 

discarding the "Zeroth" dataset that utilized mean imputations. 

Utilizing the "first" dataset as the starting point, we will again execute steps 2 6 to 

predict imputed values for the initial three missing values. The results of this second 

iteration involve taking the first dataset, performing all imputations, subtracting the 

new dataset values from the original dataset, and obtaining the difference matrix, 

which is illustrated below: 

Country DE IT   ES IE 

Real coffee 80 82   70 30 

Inst. Coffee 49 10  40 52 

      .     

      .     

Tea 88 65   40 99 

Olive oil 74 94   16 31 

Yogurt 30 5   13 8 



80 
 

Table4.9         First Dataset         Second Dataset                Difference Matrix              

Country DE IT   ES IE Country DE IT   ES IE Country DE IT   ES IE 

Real 

coffee 80 82   70 30 

m
in

us
 

Real 

coffee 87 82   70 30 

Real 

coffee 7 0   0 0 

Instant 

coffee 49 10  40 52 

Instant 

coffee 49 10  40 52 

Instant 

coffee 0 0  0 0 

      .           .           .     

      .           .           .     

Tea 88 65   40 99 Tea 88 62   40 99 Tea 0 -3   0 0 

Olive oil 74 94   16 31 

Olive 

oil 74 94   16 31 Olive oil 0 0   0 0 

Yogurt 30 5   13 8 Yogurt 30 5   13 5 Yogurt 30 0   0 -3 

  

Now, utilizing the "Second" dataset as our foundational dataset, we will again 

execute steps 2 6 to predict imputed values for the initial three missing values. The 

outcomes of this third iteration involve taking the Second dataset, conducting all 

imputations, subtracting the new dataset values from the Second dataset, and 

deriving the difference matrix, as illustrated below: 

Table4.10   Second Dataset              Third Dataset              Difference Matrix 

Country DE IT   ES IE Country DE IT   ES IE Country DE IT   ES IE 

Real 

coffee 87 82   70 30 

M
in

im
 

Real 

coffee 89 82   70 30 

Real 

coffee 2 0   0 0 

Instant 

coffee 49 10  40 52 

Instant 

coffee 49 10  40 52 

Instant 

coffee 0 0  0 0 

      .           .           .     

      .           .           .     

Tea 88 62   40 99 Tea 88 61   40 99 Tea 0 -1   0 0 

Olive oil 74 94   16 31 

Olive 

oil 74 94   16 31 Olive oil 0 0   0 0 

Yogurt 30 5   13 5 Yogurt 30 5   13 4 Yogurt 30 0   0 -1 

       

Now, utilizing the "Third" dataset as our foundational dataset, we will again 

execute steps 2 6 to predict imputed values for the initial three missing values. The 

results of this fourth iteration involve taking the Third dataset, conducting all 
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imputations, subtracting the new dataset values from the Third dataset, and 

obtaining the difference matrix, as depicted below: 

        Table4.11  Third Dataset                            Forth Dataset           Difference Matrix   

. DE IT   ES IE Country DE IT   ES IE Country DE IT   ES IE 

Real 

coffee 89 82   70 30 

M
in

im
 

Real 

coffee 89.2 82   70 30 

Real 

coffee 0.2 0   0 0 

Instant 

coffee 49 10  40 52 

Instant 

coffee 49 10  40 52 

Instant 

coffee 0 0  0 0 

      .           .           .     

      .           .           .     

Tea 88 61   40 99 Tea 88 60.5   40 99 Tea 0 -0.5   0 0 

Olive 

oil 74 94   16 31 

Olive 

oil 74 94   16 31 

Olive 

oil 0 0   0 0 

Yogurt 30 5   13 4 Yogurt 30 5   13 3.7 Yogurt 30 0   0 

-

0.3 

After the fourth iteration, we can see that the Difference is negligible. 

Table4.12 Final imputed values 

Country DE IT   ES IE 

Real coffee 89.2 82   70 30 

Instant 

coffee 49 10  40 52 

      .     

      .     

Tea 88 60.5   40 99 

Olive oil 74 94   16 31 

Yogurt 30 5   13 3.7 

The imputed values for the fourth dataset are as follows: Real coffee in Germany is 

89.2, Tea in Italy is 60.5, and Yoghurt in Ireland is 3.7. When we compare these 

imputed values with the actual values of the missing data, which are Real coffee in 

Germany = 90, Tea in Italy = 60, and Yoghurt in Ireland = 3, we observe a minimal 

difference. The values are almost identical. We can conclude the process since we 

have achieved nearly identical numbers, or we can continue with additional 

iterations until we reach zero differences. In this particular example, we will 
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conclude the process. Therefore, the values from the second dataset are the final 

imputed values for the missing data, as illustrated in the table above. 

4.4.4 Results and Comparison 

We are using datasets from national FCDBs, which OpenMV.net collects. The 

dataset shows the comparative analysis of convinced food substances in 

Scandinavian and European countries. The consequences show that state-of-the-art 

imputation strategies give way higher outcomes than conventional techniques. 

Our main aim in using the food consumption dataset is to support the decision-

making for food consumption and the type of food requirements in upcoming 

years. The essential capacities were extracted from the century and consumption of 

foods. Missing data imputation methods focus on based techniques for alternate 

missing values with arithmetical prediction. 

Due to the insufficient number of observations for the food Consumption data 

algorithms usage, four algorithms of the imputation of the missing values for 

standard samples were designated for the analysis: 

 Recurrent Neural Network,  

 Iterative KNN imputation method,  

 K-Nearest Neighbors 

 Artificial Neural networks 

To provide a comparison, we utilized the Mean, Median, and Iterative Imputer 

algorithms with the scikit-learn library in Python. The Iterative Imputer, a 

multivariate imputer, gauges each feature's missing values by considering all the 

other features. It models each feature with missing data as a cyclical function of the 

remaining features. While the Iterative Imputer algorithm draws inspiration from 
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the MICE technique, it also furnishes a single imputation rather than multiple 

imputations. 

Implementations of our proposed hybrid Mode using feather MICE and ANN  and 

implementing hybrid algorithm Extended ANN. 

 
Figure 4.1: Imputation of missing values using ANN and KNN approach 

In the initial step of the analysis, two distinct algorithms were applied to identical 

data parameters to discern which one yields superior results. Figure 4.1 illustrates 

the imputation of missing values using both KNN and ANN approaches. The 

depicted results showcase KNN's superiority over ANN, attributed to its more 

effective data searching and analysis, resulting in a more robust comparison than 

the ANN method. Additionally, the ANN approach serves as a benchmark for 

further comparison against alternative schemes. 
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Figure 4.2: Forecasting the consumption of red coffee across various countries 

When the factorization rank becomes excessively high, the NMF algorithm 

produces errors. To address this, we reduce the factorization rank until the NMF 

algorithm runs without errors. This approach is feasible because we are working 

with small-sized datasets, a practice applicable across all instances when dealing 

with FCDBs. As depicted in Figure 4.2, we can showcase the consumption of red 

coffee among citizens of different countries using various algorithms. Predicting 

data across diverse countries through different algorithms allows for analysis by 

comparing results before and after imputing values using KNN, extended KNN, 

and RNN on the original dataset. 

 
Figure 4.3: Values imputed using KNN, extended KNN, and RNN algorithms. 

Figure 4.3 showcases the outcome values post-imputation of missing data in 

columns from the original dataset, employing KNN, extended KNN, and RNN 

methods. As illustrated in Figure 4.2, KNN yields superior results compared to 
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alternative methods. These outcomes can also be compared with our proposed 

extended ANN, a fusion of MICE and ANN techniques. 

 
Figure 4.4: Imputation value using original, extended ANN and ANN 

Figure 4.4 presents the missing values imputation on the given dataset to determine 

product consumption over original data with missing values, ANN, and extended 

ANN. Figure 4 presents better results in the case of extended ANN compared to 

original and ANN. 

 

4.5 Summary of the Chapter 

This thesis introduces multiple machine learning algorithms to handle missing 

values, offering a comparison with existing approaches. It proposes hybrid 

schemes combining MICE and ANN, referred to as extended ANN, designed to 

identify and address missing values within datasets. A thorough evaluation 

contrasts this approach with recent algorithms, showcasing its efficiency. 

Simulated results demonstrate the superior performance of the proposed 

mechanism through graphical representations, including predictions of red coffee 

consumption among citizens and imputations of missing values regarding food 

consumption across different countries.
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Chapter-5 MVI and Forecast Precision Upgrade of Time Series Precipitation 

 

5.1 Information for Ubiquitous Computing 

Introduction 

Pervasive or ubiquitous computing indeed aims to seamlessly integrate 

connectivity and computational capabilities into various objects and environments. 

This integration allows these objects to communicate, share information, and 

execute tasks autonomously, minimizing the need for direct human intervention. 

This vision involves creating environments where technology functions 

harmoniously in the background, enabling automation and smoother interactions 

between devices to enhance efficiency and convenience in our daily lives. 

Mark Weiser, a prominent computer scientist, played a pivotal role in 

conceptualizing and popularizing the idea of ubiquitous computing. At Xerox 

PARC in the late 1980s, Weiser, John Seely Brown, and others began exploring 

the notion of ubiquitous or pervasive computing. Weiser's vision cantered around 

seamlessly integrating computing into the environment, making technology almost 

invisible yet highly functional. He emphasized the idea of computers being 

everywhere and anywhere, woven into the fabric of everyday life. His 

contributions laid the foundation for the evolution of this field and continue to 

influence the development of modern computing paradigms. 

Integrating technologies into these settings enhances user experiences through 

contextual data collection, applications tailored to specific situations, and 

streamlined payment processes. This integration makes these environments more 

engaging and enhances their functionality by leveraging the seamless interaction 

between devices, services, and users. The ultimate goal is to create environments 

where technology seamlessly integrates into our lives, making tasks more 
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convenient and efficient. The interconnectedness allows for a more holistic and 

immersive experience across daily life. 

The aim is to have computer systems and network technology seamlessly blend 

into the background of users' lives, operating without demanding constant 

attention. The key idea is to integrate computers into our daily activities and 

physical environments so smoothly that they become almost imperceptible, 

working autonomously and reacting to their surroundings. This invisibility of 

technology, combined with the ability to detect and respond to their environments 

autonomously, defines the core principle of ubiquitous computing. It is about 

enabling technology to assist without intrusive, making interactions more natural 

and effortless for users. 

Pervasive computing transcends the limitations of traditional desktop computing 

by allowing various devices to connect and operate seamlessly, regardless of 

location or device type. This means users can access data, applications, and 

services from any device, anywhere, and anytime, thanks to interconnected 

networks. The ability to transfer tasks between devices as users move from one 

location to another, such as from a vehicle to the workplace, is a crucial feature of 

pervasive computing. The array of devices encompassing laptops, smartphones, 

tablets, wearables, sensors, and more from the ubiquitous computing ecosystem 

offers diverse ways for users to interact with technology across different contexts. 

This flexibility and adaptability represent the fundamental shift from fixed 

computing environments to a more dynamic and interconnected computing 

paradigm. 

That is an excellent illustration of how ubiquitous computing manifests in 

autonomous vehicles! Such a system seamlessly integrates various functionalities, 

such as user identification via smartphone proximity, self-docking and charging 
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capabilities, and efficient handling of tasks like emergency responses and 

payments through interactions with infrastructure. 

 

This scenario showcases the integration of computing power into everyday objects 

(in this case, the vehicle) to enable autonomy and intelligence. It involves 

embedding microprocessors and connectivity within the vehicle to communicate 

with the environment and infrastructure, ensuring a continuous flow of information 

for optimal performance. The vehicle becomes a part of the more extensive 

interconnected network, always available and fully connected, demonstrating the 

core attributes of ubiquitous computing in action. 

Ubiquitous computing significantly emphasizes simplifying computer complexity 

and improving efficiency to seamlessly integrate technology into everyday life. It 

builds on the concept of utilizing computing power to enhance everyday activities 

without the constraints of traditional computing setups. 

It is often seen as an evolution beyond mobile computing, incorporating wireless 

communication, networking technologies, embedded systems, wearable devices, 

RFID tags, middleware, and intelligent software agents. Integrating these 

technologies allows for a more holistic and interconnected computing experience, 

making interactions smoother and more intuitive for users. The overarching goal 

remains to augment human capabilities by embedding computational power into 

the fabric of our environments and activities. 

Internet connectivity, speech recognition, and artificial intelligence (AI) 

functionalities often play pivotal roles in ubiquitous computing. These features 

significantly enhance the capabilities of everyday objects by enabling them to 

connect to the internet, recognize spoken commands, and employ AI for intelligent 

decision-making or automation. 
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By integrating computers into everyday items, ubiquitous computing aims to create 

a seamless environment where people can effortlessly interact with information-

processing devices regardless of their location or context. This integration 

facilitates more accessible connections and offers more flexibility and freedom in 

how individuals access and utilize information. It ultimately aims to make 

technology more intuitive and responsive to human needs, fostering a more natural 

and efficient interaction between people and their surrounding environment. 

Summary 

Ubiquitous computing represents a significant shift from the era of large, 

cumbersome computers to a landscape where each individual, whether a teacher or 

a student, possesses their own internet-connected, private mobile computing 

device. This device is versatile, portable, and seamlessly integrated into home and 

classroom environments, allowing continuous access to information and resources. 

The essence of ubiquitous computing lies in the miniaturization and integration of 

computer technologies into lightweight, handheld devices, making them 

omnipresent across various emerging contexts. This evolution has transformed 

computing from stationary and bulky machines to devices that can accompany 

individuals wherever they go. The ubiquity of these devices allows for a more 

personalized and flexible computing experience, enabling users to interact with 

technology in a manner that suits their needs and preferences. 

5.2 Missing Value Imputation and Prediction of Rainfall as a Case Study 

Rainfall serves as a fundamental component in various aspects of our ecosystem. 

Its distribution, intensity, and frequency significantly impact agriculture, water 

resource management, ecology, and climate patterns. Understanding rainfall 

patterns helps assess potential flood risks, manage water resources efficiently, 

study climate change effects, and predict agricultural yields. The data gathered 

from rainfall analysis supports decision-making processes across numerous fields, 
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enabling informed choices for sustainability and environmental protection [1]. The 

missing data in rainfall datasets poses a prevalent challenge from the different 

resources [2]. In cases where specific weather stations hold pivotal significance for 

the study area or are integral to understanding local weather dynamics, alternative 

strategies for handling missing data become essential. Advanced imputation 

techniques, such as interpolation methods, statistical modeling, or machine 

learning algorithms, can help estimate missing values based on neighboring station 

data, historical patterns, or other relevant variables. These approaches allow for the 

preservation of critical station data while mitigating the impact of missing values 

on the overall dataset. 

The Indian Administration has conducted several research studies to comprehend 

the effects of global warming, particularly focusing on shifts in climate and rainfall 

patterns within India. The India National Disaster Risk Reduction and 

Management (NDRRMC) framework depends on climate data for delivering 

weather-related information and services, utilizing tools such as automated weather 

stations (AWS) for rainfall measurement. 

However, it appears that an accurate rainfall prediction model might be limited in 

estimating the amount of rainfall expected in a specific month and location. To 

improve this, historical rainfall data collected from various weather stations within 

the region could be utilized to develop a more robust rainfall prediction model. 

This model would integrate the data collected from measurement sensors and past 

campaigns, allowing for a more accurate estimation of expected rainfall in 

different months and locations. 

Developing such a model could significantly enhance the ability to forecast and 

prepare for potential weather-related risks, aiding disaster risk reduction and better 

managing weather-related challenges in India. 
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There is a noticeable trend of increased extreme rainfall events, particularly during 

the June to September rainy season in some areas of India. While there might not 

be direct evidence linking annual or periodic rainfall changes to global warming, a 

growing body of evidence suggests that extreme rainfall could be attributed to 

global warming. The Intergovernmental Panel on Climate Change (IPCC) analysis 

indicates that due to global warming, the frequency of intense rainfall events might 

escalate in the future, specifically over India. 

The Indian Monsoon system, despite being relatively stable, poses challenges for 

statistical models to precisely predict specific data points, especially considering 

the variations in average rainfall. To address this, neural networks have been 

employed to predict average rainfall. These networks create multiple functions that 

assist in predicting data points with enhanced seasonal variations, offering a more 

nuanced approach to forecasting rainfall patterns. 

Visual representation, such as graphical formats showcasing monthly rainfall 

across different states in India measured in millimeters, can provide a clearer 

understanding of these variations and aid in analyzing and predicting future rainfall 

patterns more accurately. 

The Indian government has compiled a comprehensive rainfall dataset spanning 

115 years, from 1901 to 2015, using around 3000 rain-gauge positions distributed 

across the country. This dataset, available on platforms like DataWorld and 

Kaggle, forms the basis for various research studies. This research focuses on 

analyzing rainfall patterns in specific months within particular states over the 

years, showcasing this through graphical representations. 

Dealing with missing data is crucial for the accuracy and reliability of any analysis. 

Proper planning and meticulous data collection are recommended to address this 
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issue and minimize missing values in the dataset. The presence of missing data can 

significantly impact the outcomes of randomized experimental trials if not handled 

appropriately, as depicted in Figure 1. 

Our research centers around the imputation and prediction of missing values based 

on the available rainfall dataset. By employing techniques for imputing missing 

values, we aim to enhance the completeness of the dataset and subsequently 

improve the accuracy of analysis and predictions regarding rainfall patterns. 

Conducting an analysis to quantify the extent of missing information within the 

dataset is a critical step toward understanding the dataset's integrity and ensuring 

the reliability of the research findings. 

 

Figure5.1. Monthly Rainfall Status in India 

A data analysis technique is described using a heatmap to visualize missing values 

in a dataset, mainly focusing on monthly missing values in different columns. 
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Heatmaps are a great way to represent missing data and understand the patterns of 

incompleteness across variables. 

In Figure 5.2, using a heatmap, we can easily identify which months or columns 

have more missing values than others. The color intensity or shading in the 

heatmap typically represents the level of missingness, making it visually apparent 

which areas of the dataset lack information. 

 

Figure 5.2. Display Missing Values in India Rainfall Dataset 

This kind of visualization helps understand the overall structure of missing data, 

allowing for informed decisions on handling or imputing missing values in the 

dataset. Sorting rows or columns in a way that showcases patterns in missing data 

can reveal insights that might not be immediately evident in the raw dataset. 

This study examines the drawbacks of prior investigations into rainfall patterns, 

highlighting their reliance on historical data spanning 115 years, which may 
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overlook recent statistics and contemporary trends. In contrast, this study 

prioritizes a more current timeframe, spanning 35 years from 1981 to 2015. 

Concentrating on this more contemporary dataset, this study aims to capture and 

analyze experiential rainfall patterns, trends, and variations. This updated 

information can provide valuable insights into the current state of rainfall and its 

potential implications for climate change adaptation. 

5.3 Proposed Mechanism to Handle a Mission Value 

This research methodology uses daily rainfall records from this period to derive 

month-to-month rainfall series, ultimately constructing monthly rainfall collections 

by averaging the rainfall values for each month across Bihar. Additionally, we 

have opted to compute the month-to-month rainfall series by incorporating region-

weighted rainfall values from all districts within Bihar. 

The decision to focus on a single state, Bihar, allows for a more localized and 

detailed analysis of rainfall patterns, potentially providing actionable information 

for state-level institutions involved in climate change adaptation and management. 

Missing value imputation is crucial in data preprocessing, particularly in predictive 

modeling tasks like forecasting rainfall. When dealing with meteorological data, 

missing values are common due to factors like sensor errors, equipment 

malfunction, or natural conditions. 

For rainfall prediction, imputation methods become essential to ensure a 

comprehensive dataset for accurate modeling. Here is a generalized approach using 

a case study: 

a) Understanding the Data: 

Start by examining the dataset, identifying missing values, and understanding their 

distribution across the variables, especially the rainfall data. 
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b) Exploratory Data Analysis (EDA): 

Perform EDA to understand the patterns and relationships in the available data. 

This helps identify the nature of missingness, correlations, and potential predictors. 

c) Missing Value Imputation: 

In this section, we initially delve into the methodology of imputation, exploring 

well-established techniques and their application to the Rainfall dataset. Among 

these approaches are the univariate Kalman filter and the Extended Kalman filter, 

also called the Kalman smoother. Specifically, we employ two models within the 

Kalman filter framework, namely the representation of the ARIMA model and 

StructTS model. This technique is often considered adequate for imputing data in 

highly seasonal univariate datasets. 

This investigation explores the Kalman filter approach in addressing reservoir 

sampling and histogram-based methodologies. Our findings showcase that the 

Extend Kalman and Kalman filters excel in imputing missing values, displaying 

the least pull mean squared error in most cases. We introduce a novel rationale for 

integrating this estimation process, explicitly addressing irregular missing values 

within sensor and device streams. 

To tackle this issue, we propose a technique based on the Kalman filter and Extend 

Kalman filter. We treat data sensor streams and instrument streams as time series 

and utilize the Extend Kalman filter to predict and impute missing values. This 

thesis focuses on univariate time series, encompassing a single recorded perception 

over equivalent time intervals. However, it is worth noting that the methodology 

outlined here can be extended to multivariate time series using specialized 

techniques. 

The Extend Kalman filter, a recursive and numerical evaluation algorithm, excels 

at data assimilation and predicting missing values. It leverages historical data to 

estimate the current values of the variables of interest. Employing a Kalman filter 
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in various state techniques, such as the dynamic linear technique, presents 

advantages like simplicity, requiring certain initializations, and dynamically 

updating its state. 

The dynamic linear technique involves differences in proceeding values over time. 

When coupled with this technique, the extended Kalman filter enables precise one-

pass forecasts, continually predicting and updating as new data streams in. For 

further clarity, we provide the implemented algorithm of the Extend Kalman filter 

used for missing values imputation. 

Proposed Algorithm: 

Algorithm: Proposed Algorithm 

Input: Number of rows containing missing values in a dataset. 

Output: Whether the missing values are imputed using the Extended-KF algorithm 

BEGIN 

Extended_KF  []     //Initialize empty array  

data2 = data      //data is the value of the dataset before applying imputation  

na_mean(x)      // Impute the missing values 

data1  [0]      // initiaze matrix with zero value.  

diff_mat = data2  data1     //take difference of data2 and data1  

mean2 = average(diff_mat)    //mean2 is absolute average of the matrix diff_mat 

mean1  INT_MAX     //initialize mean1 as max integer possible  

for (mean2 <= mean1):                 //iterate until error is reducing.  

mean1 = mean2      //make mean1 as the previous value for the next iteration  

data2 = data1;      // make data2 as previous value for the next iteration  

for i  Missing:                   // iterate for every missing value  

imputed_value  imp <- na_kalman(tsAirgap)            // time series provided by the imputeTS package 

   // The function h delineates the mapping of our location 

data1[index][index2] = imputed_value  // update the current value  

diff_mat  data2-data1     // updating difference matrix  

mean2 = diff_mat.mean()                  //updating current value 

for i in range(len(data) - seq_length)   //Create input-output sequences 

LSTM(units=50, input_shape=(seq_length, 1))           //Model Building  

model.compile(optimizer='adam', loss='mean_squared_error') // Optimizer and Calculate evaluation metrics  RMSE 

END 
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Flow Chart of Proposed Algorithm: 

Figure 5.3 Process of Extended Kalman for Missing Value Imputation 

Figure 5.3 illustrates the flow diagram detailing the algorithm's process. This 

program starts with a dataset containing missing values and implements the 

Extended Kalman filter. Two parameters, X' and Y, are utilized within this process, 

and the equation applied is Y = h(X'). The function h delineates the mapping of our 

the difference between the measured and actual values. 

This mapping function aims to define how our predicted values, initially in 

Cartesian coordinates, are translated into Polar coordinates. This translation is 

crucial since our predictions are made in Cartesian coordinates, while the sensor's 

measurements are provided in Polar coordinates. Therefore, this mapping 

facilitates the conversion between these coordinate systems, ensuring compatibility 

between predicted values and sensor measurements. 

The primary role of the Kalman filter is to determine optimal estimates, operating 

under the assumption of normality. The Kalman filter calculates the conditional 

mean and modifies the distribution based on observations up to a specific time. 
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In this research, an adaptive structure is proposed to enhance the Extended Kalman 

Filter (EKF). This improved EKF takes derivative results that are close to each 

other and multiplies them with the rate of change in the extended Kalman filter. 

This adaptation aims to refine the estimation process by incorporating derivative 

information and optimizing the filter's performance and adaptability. 

5.3.1 Feature Engineering 

Engineer relevant features that might influence rainfall, such as temperature, 

humidity, wind speed, geographical location, etc. Consider lag features or moving 

averages of rainfall to capture temporal patterns. 

a) Modeling and Prediction: 

Utilize machine learning models (e.g., regression, time series models like ARIMA 

and LSTM for deep learning) to predict rainfall based on the available features. 

Split the dataset into training and testing sets, considering the temporal aspect. 

Evaluate the model performance using appropriate metrics (RMSE, MAE, etc.) on 

the test set to assess the accuracy of rainfall predictions. 

b) Validation and Iteration: 

Validate the model's performance over different periods or geographical regions if 

applicable. 

Iterate through the process by refining feature selection, trying different imputation 

methods, or tuning model parameters to improve accuracy. 

Remember, the choice of imputation method and predictive model may vary based 

on the dataset characteristics, domain knowledge, and the specific requirements of 

the rainfall prediction task. 

5.4 Result Analysis of Proposed Mechanism  

This section delineates several graphs employed to assess the proposed 
mechanism's superior performance compared to various existing approaches. 
Figure 5.4 specifically represents six years (2007 to 2012) of observed rainfall data 
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in Bihar state. The X-axis portrays the measured rainfall amount in millimeters at 
different locations, while the Y-axis illustrates the corresponding monthly rainfall 
produced. 
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Figure 5.4 illustrates the variations in rainfall amounts across diverse locations over six years spanning from 

2007 to 2012. Each location depicted in Figures a, b, c, and d exhibits distinct rainfall patterns, while all other 

parameters remain consistent. 

Figure 5.5 presents a graphical comparison of the result analysis showcasing the 
missing values imputation using two approaches with original values, the Kalman 
filter and our proposed extended Kalman filter algorithm. Figure 5.5 presents a 
comparative analysis, year by year, of missing values imputation using original 
values alongside the Kalman filter and extended Kalman filter techniques. This 
analysis spans from 2007 (denoted as A) to 2012 (denoted as F) in Bihar state, 
examining various locations. The imputed results using original values are depicted 
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in blue. Predicted values generated by the Kalman filter are represented in orange, 
while those from the extended Kalman filter are displayed in green. 
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(e)                             (f) 

Figure 5.5 presents a comparative analysis, year by year, of missing values imputation using original values 

alongside the Kalman filter and extended Kalman filter techniques (a) the focus is on the year 2007; (b) it 

shifts to 2008;  (c) centers on 2009;  (d) highlights 2010; (e) centers around 2011, while (f) is directed towards 

2012. This analysis spans from 2007 to 2012 in Bihar state, examining various locations. 

In Figure 5.6, researchers display the comparative result of the proposed 

algorithm's predicted value with the original value and find that the accuracy of 

predicted values is not good. At that stage, optimization techniques are required.   

 
Figure 5.6. Predicted values compare with the original values 
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Here, we are using a stochastic gradient descent (SGD) optimizer. To enhance 

results, our proposed algorithm leverages the SGD optimizer to refine the achieved 

outcomes. 

Moreover, in Figure 5.7, SGD addresses the Gradient Descent problem by 

employing individual records for structure updates. However, despite this 

improvement, SGD's convergence results remain slow. Its iterative nature, 

involving forward and backward propagation for each record, results in a noisy 

path toward reaching the global minima, hindering swift convergence. 

Gradient Descent is a primary optimization method in machine learning and deep 

learning, and it is widely applicable across various learning procedures. It operates 

by utilizing the gradient, which represents the slope of a function, to measure how 

a variable changes relative to changes in another variable. Mathematically, 

Gradient Descent involves navigating a curved function to iteratively adjust a set 

of parameters to minimize the function's output. 

If a researcher fails to achieve the desired results using the stochastic gradient 

descent (SGD) optimizer, an alternative approach involves substituting it with the 

RSMProp optimizer. Upon execution, this change yields superior results compared 

to the SGD optimizer. The subsequent graph depicts a comparison between the 

original values, demonstrating that the accuracy achieved with the new optimizer 

surpasses that of the previous one. 
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Figure 5.7. Predicted values compare with original values using SGD optimizer 

The RMSprop optimizer, illustrated in Figure 5.8, bears similarities to the gradient 

descent procedure with momentum. Unlike standard gradient descent, RMSprop 

curtails fluctuations in a perpendicular direction. This increases the learning rate, 

facilitating more substantial strides in the horizontal direction and faster 

convergence. The critical distinction between RMSprop and gradient descent lies 

in how gradients are computed. The subsequent computation outlines the gradient 

computation processes for RMSprop and gradient descent with momentum. The 

momentum value, denoted by beta, is frequently used. For those less interested in 

the intricacies behind the optimizer, feel free to skip this technical detail. 
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Figure 5.8. Predicted values compare with original values using RMSprop optimizer 

The RMSprop optimizer is a gradient-based optimization technique primarily 

utilized in training neural networks. Initially proposed by Geoffrey Hinton, a 

pioneer in back-propagation, gradients within complex functions like neural 

networks tend to either vanish or explode as data traverses through the network. 

RMSprop was designed as a solution for this issue within mini-batch learning 

scenarios. It tackles the problem by employing a moving average of squared 

gradients, effectively normalizing the gradient. This regularization process adjusts 

the step size, reducing it for large gradients to prevent explosion and increasing it 

for small gradients to prevent vanishing. 

Moreover, Figure 5.9 showcases the comparison between the precise outcomes of 

our proposed algorithm and the performance achieved by the RSMProp optimizer. 

Upon further optimization attempts, employing the ADAM optimizer yielded 

significantly superior results compared to all prior optimization methods. 
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Integrating the ADAM optimizer with our proposed algorithm led to predicted 

values aligning closely with actual values, depicted graphically compared to the 

original values. This amalgamation showcased notably improved accuracy over the 

previous optimization techniques. 

The ADAM optimization technique enhances stochastic gradient descent, offering 

more efficient parameter updates. It computes individual learning rates for each 

parameter, a method developed by its creators to perform effectively in practical 

applications and demonstrate favorable evaluations compared to other adaptive 

learning algorithms. 

 

Figure 5.9. Predicted values compare with original values using ADAM optimizer 

In this figure, our research focuses on missing data imputation through arithmetic 

prediction methods, encompassing four distinct prediction approaches. One is our 

proposed algorithm, while the other three utilize optimization methods. The 

comparison is made against the original values, showcased in Figure 5.10. This 
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study aims to conduct a comprehensive comparative analysis, evaluating for the 

first time the performance of SGD optimizer, RSMProp optimizer, and ADAM 

optimizer in addition to our proposed algorithm for missing data imputation. The 

figure provides a graphical representation depicting the performance of these 

optimizers alongside our proposed algorithm concerning the imputed values 

compared to the original dataset. Use optimization algorithms like stochastic 

gradient descent (SGD), RSMProp optimizer and Adam to minimize the loss 

function. 

 

Figure 5.10. Predicted values compare with the original values 
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Figure 5.11. Predicted ADAM Optimizer values compare with the original values 

Furthermore, Figure 5.11 illustrates the accuracy achieved across all scenarios 

examined in our research. The box plot graph presents the best results obtained by 

different optimizers with algorithms, notably showcasing the ADAM optimizer 

achieving results closely aligned with the actual values. This graph serves as the 

conclusive depiction of the accuracy attained through the various optimization 

techniques employed in our study. 

5.5 Summary of the Chapter 

This thesis introduces a novel approach, employing extended Kalman filter 

methods for missing values imputation. This method utilizes linear relations in the 

imputation process. Assessing the predictive capabilities of LSTM-based models 

holds promise for advancing research in deep learning methodologies tailored for 

addressing rainfall prediction challenges in ubiquitous computing scenarios. Our 

study proposes a comprehensive bidirectional and unidirectional LSTM 

architecture tailored for network-wide rainfall forecasting. Also, the optimization 

technique should be used to improve accuracy.    
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Furthermore, evaluating the forecasting performance of LSTM-based models 

presents numerous opportunities to refine neural network strategies for accurate 

rainfall prediction, ensuring efficacy in ubiquitous computing applications. The 

research utilizes practical rainfall data from Bihar State on the specified date. 

Experiments conducted on a real-world dataset with various missing values 

demonstrate that the proposed architecture achieves exceptional results in 

imputation and prediction tasks.  
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Chapter-6 Conclusion  
 
 
In conclusion, data mining and analysis are indispensable tools in numerous real-

world applications, relying on databases tailored to specific needs. Handling 

challenges like missing values is crucial for accurate results and effective decision-

making systems. This thesis delves into the taxonomy of missing data types and 

proposes structured handling methods to mitigate their impact. Statistical testing 

and substantive knowledge aid in identifying missing data mechanisms, and 

guiding appropriate handling strategies. Techniques like mean imputation and 

advanced methods including deep learning algorithms enhance data completeness 

and analysis accuracy. In ubiquitous computing, precise forecast models heavily 

rely on effective missing data imputation techniques such as machine learning and 

deep learning approaches, ensuring continuity and reliability. Leveraging these 

methods enhances decision-making across diverse domains, emphasizing the 

importance of robust data-handling strategies in maximizing the utility of datasets 

for practical applications. 

In this thesis, we have suggested some improved methods of missing value 

imputation and introduced a range of machine learning algorithms designed to 

address missing data imputation, contrasting them with existing methods. It 

proposes a novel hybrid approach, combining Multiple Imputation by Chained 

Equations (MICE) with Artificial Neural Networks (ANN) into an extended ANN 

model. This hybrid scheme is devised to identify and address missing values within 

datasets. To evaluate its efficacy, the proposed mechanism is benchmarked against 

contemporary algorithms. Simulated results demonstrate the superior performance 

of the proposed method, showcased through graphical analyses. Notably, the 

model excels in scenarios such as predicting red coffee consumption across diverse 
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demographics within a nation and imputing missing values about food 

consumption across various countries. Through these comparisons, this thesis 

underscores the effectiveness of the extended ANN model in addressing missing 

data challenges, offering a promising avenue for data imputation in diverse 

contexts. 

In this thesis, we embark on a pioneering journey employing the extended Kalman 

methodology for the imputation of missing values a novel approach in the realm 

of data completion. Leveraging linear relationships, we aim to fortify the 

imputation process, enriching its efficacy and reliability. 

Furthermore, the evaluation of LSTM-based models holds promise in expediting 

advancements in deep learning methodologies tailored for addressing the 

challenges in rainfall prediction within the context of ubiquitous computing. Our 

proposal introduces a sophisticated architecture, integrating both loaded 

bidirectional and unidirectional LSTM networks, tailored for comprehensive 

rainfall forecasting across network domains. 

Moreover, the appraisal of LSTM-based forecasting models presents myriad 

avenues for refining neural network strategies geared towards precipitation 

prediction, thus fostering optimal performance in ubiquitous computing scenarios. 

Notably, we conduct empirical analyses using real-world rainfall data sourced from 

Bihar State, ensuring the relevance and applicability of our research findings. 

Our experiments, conducted on a genuine dataset featuring varying degrees of 

missing data, underscore the efficacy of the proposed architecture, showcasing its 

prowess in both imputation and prediction tasks 
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In summary, while the Extended Kalman Filter offers a flexible framework for 

handling non-linear systems, its application to missing values imputation is not 

without limitations. Careful consideration of the assumptions, initialization 

procedures, and computational challenges is necessary when using the EKF for 

imputing missing data. 

6.2 Future Directions 
 
In the current landscape, there arises a pressing need for missing data imputation, a 

practice gaining significant traction in recent years, particularly in the domain of 

time sensor data management. Consequently, this research endeavor necessitates 

the exploration of novel approaches to address this imperative. 

Firstly, an exhaustive comparative analysis is essential, juxtaposing various 

imputation techniques with deep learning models to ascertain their efficacy and 

applicability in diverse scenarios. 

Secondly, there is a call for the development of a monitoring and warning system 

aimed at mitigating sensor malfunctions, thereby ensuring the integrity and 

reliability of the data collected. 

Lastly, there is a critical need for the implementation of a real-time Missing Value 

Imputation (MVI) technique within a comprehensive predictive framework. Such 

an approach will empower real-time data-driven decision-making strategies, 

particularly crucial for optimizing the energy-efficient operations of marine 

machinery. 

These proposed avenues for future research not only address the current gaps but 

also pave the way for enhanced efficiency and reliability in time series data 

management practices. 
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