JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT TEST -2 EXAMINATION- 2024

M. Tech.-I Semester (CSE/IT/ECE/CE/BT/BI)

COURSE CODE (CREDITS): 21M11EC111 (3) MAX. MARKS: 25

COURSE NAME: SENSOR AND SMART INSTRUMENTATION

COURSE INSTRUCTORS: Dr. Harsh Sohal

MAX. TIME: 1 Hour 30 Minutes

Note: (a) All questions are compulsory.

(b) The candidate is allowed to make Suitable numeric assumptions wherever required for solving problems

Q.No.	Question	CO	Marks
Q1	What are the criteria for transducer selection for an application? Why	CO 1	3
	the transducer selection is considered very important in measurement		
	systems? Justify with example(s).		
Q2	Describe the general architecture of a smart sensor with various	CO 5	3
	components using a block diagram. What are the advantages and		
	disadvantages of smart sensors over traditional sensors?		
Q3	What is calibration? What are the three basic types of calibration?	CO 2	4
	Give the detailed description of soft calibration with reference to		
	smart instrumentation systems? Can we reduce Random Errors using		
	calibration?		
Q4	(a) What is a transducer? What are the basic requirements of a	CO 1	2+2
	transducer?		restriction of the second
	(b) Give a comparison of Active and Passive Transducers with		
	examples and working.		
Q5	You are provided with an RTD, a thermister, a radiation pyrometer.	CO4	4
	You are asked to measure the temperature of a furnace (Temperature		
	of the order of 2000 degree Celcius). Which of the above will be the		procession and
	best choice? Answer the question while discussing pros and cons of		
	each of the given devices w.r.t. their characteristics.		
Q6	Near room temperature, the thermo emf generated in a copper-	CO3	3
	constantan couple is $60 \mu V$ per degree Celsius. What is the smallest		

	temperature that can be detected with a single such couple and a	ETI, WVA, € SI	
	galvanometer of 90 Ω resistances capable of detecting current as low		
	as 8 µA.		
Q7	A platinum themometer has a resistance of 100 Ω at 25°C. Find its	CO3	2+2
	resistance at 55 °C		
	(i) if the platinum has a resistance temperature co-efficient of		
	0.00392/°C.		
	(ii) If the thermometer has a resistance of 175 Ω , calculate the		
	temperature.		