JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT TEST -1 EXAMINATION- 2024

M.Tech.-I Semester (CSE/IT/ECE/CE)

Wilterni-1 Semester (CSE/11/ECE/CE)	
COURSE CODE (CREDITS): 21M11EC111 (3)	MAX. MARKS: 15
COURSE NAME: SENSOR AND SMART INSTRUMENTATION	
COURSE INSTRUCTORS: Dr. Harsh Sohal	MAX. TIME: 1 Hour
Note: (a)All questions are compulsory.	
(b) Marks are indicated against each question in square brackets.	
(c) The candidate is allowed to make Suitable numeric assumptions whe	erever required for
solving problems	
Q1. [CO1] Define and explain the following terms (in reference to me	easurement systems) with
suitable examples. [4]	
(a) Sensitivity (b) Transducer (c) Resolution (d) C	Gross errors
Q2. [CO2] The current passing though a resistor of (100 \pm 0.2) Ω is	$s (2.00 \pm 0.01)$ Amperes.
Calculate the limiting error in the computed value of power dissipated. [[2]
Q3. [CO1] (a) You are given two quantities with their tolerances $N_1 =$	$826 \pm 5;$ $N_2 =$
628 \pm 3. Calculate (i) $N_1 + N_2$ (ii) N_1 - N_2 and express the resulting	g error/doubt/tolerance in
percentage terms in both the cases. [2]	
Which of the above two methods (addition or subtraction of quantities)	should be preferred in an
experimental measurement and why? Explain. [1]	
(b) Calculate the voltage drop (up to correct significant figures); i	f a current of 2.12 A is
recorded by an Ammeter in a resistance of 36.68 Ω. [1]	
Q4. [CO2] A voltmeter, having a sensitivity of 2000 Ω/V , reads 40 V	on its 150-V scale when
connected across an unknown resistor in series with a milli-Ammeter	er. When milli-Ammeter
reads 800 mA, calculate	
 i. The <i>apparent</i> resistance of the unknown resistor; [1] ii. The <i>actual</i> resistance of the unknown resistor; [1] iii. The <i>error</i> (in percentage) due to the loading effect of the voltment 	eter. [2]

Also draw circuit diagram(s).