JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT TEST -1 EXAMINATION- 2024

MSc Semester-3 (PMS)

COURSE CODE (CREDITS): 24MSWPH331 (3)	MAX. MARKS: 15
COURSE NAME: Thin Films	\sim
COURSE INSTRUCTORS: HAZ	MAX. TIME: I Hour
Note: (a) All questions are compulsory.	w/V
(b) Marks are indicated against each question in square brackets.	
(c) The candidate is allowed to make suitable numeric assumptions wherever re-	quired for solving problems
Q1. Calculate the surface energy of the lattice planes (100), (110), and (111) for a simple cubic lattice.	
	[3 marks]
Q2. What is Homogenous Nucleation? Derive the expression for the critical radius of a nucleus.	
	[3 marks]
Q3. What are the different types of thin film growth? Discuss with examples.	[3 marks]
Q4. Discuss the effect of substrate temperature on the nucleating islands during thin film growth.	
	[3 marks]
Q5. Derive Fick's second law of diffusion.	[3 marks]