

Brain Tumor Classification using Deep Learning

Frameworks: An Investigative Project

A Major Project Report submitted in partial fulfillment of the requirement

for the award of degree of

Bachelor of Technology

in

Computer Science & Engineering

Submitted by

Akash Kumar Singh (201460)

Ritick (201357)

Under the guidance & supervision of

Dr. Rakesh Kanji

Department of Computer Science & Engineering and

Information Technology

Jaypee University of Information Technology, Waknaghat,

Solan - 173234 (India)

(i)

CERTIFICATE

This is to certify that the work which is being presented in the project report titled “Brain

Tumor Classification using Deep Learning Frameworks: An Investigative Project” in partial

fulfillment of the requirements for the award of the degree of Bachelor of Technology in

Computer Science and Engineering and submitted to the Department of Computer Science

and Engineering, Jaypee University of Information Technology, Waknaghat is an authentic

record of work carried out by “Akash Kumar Singh, 201460” and “Ritick, 201357” during

the period from August 2023 to May 2024 under the supervision of Dr. Rakesh Kanji,

Department of Computer Science & Engineering and Information Technology, Jaypee

University of Information Technology, Waknaghat.

Akash Kumar Singh Ritick

(201460) (201357)

The above statement made is correct to the best of my knowledge.

(Dr. Rakesh Kanji)

Assistant Professor (SG)

Department of Computer Science & Engineering and Information Technology

Jaypee University of Information Technology, Waknaghat

(ii)

CANDIDATE’S DECLARATION

We hereby declare that the work presented in this report entitled ‘Brain Tumor

Classification using Deep Learning Frameworks: An Investigative Project’ in partial

fulfillment of the requirements for the award of the degree of Bachelor of Technology in

Computer Science & Engineering submitted in the Department of Computer Science &

Engineering and Information Technology, Jaypee University of Information Technology,

Waknaghat is an authentic record of our own work carried out over the period from August

2023 to May 2024 under the supervision of Dr. Rakesh Kanji (Assistant Professor - SG,

Department of Computer Science & Engineering and Information Technology).

The matter embodied in the report has not been submitted for the award of any other degree

or diploma.

(Student Signature with Date)

Student Name: Ritick Akash Kumar Singh

Roll No.: 201357 201460

This is to certify that the above statement made by the candidates is true to the best of my

knowledge.

(Supervisor Signature with Date)

Supervisor Name: Dr. Rakesh Kanji

Designation: Assistant Professor (SG)

Department: CSE & IT

Dated:

(iii)

ACKNOWLEDGEMENT

We express our heartiest thanks and gratefulness to almighty God for his divine blessing that

made it possible to complete the project work successfully.

We are really grateful and wish our profound indebtedness to our Supervisor Dr. Rakesh

Kanji, Assistant Professor (SG), Department of CSE & IT, Jaypee University of Information

Technology, Waknaghat. Deep knowledge & keen interest of our supervisor in the field of

Machine Learning and Artificial Intelligence helped us to carry out this project successfully.

His endless patience, scholarly guidance, continuous encouragement, constant and energetic

supervision, constructive criticism, valuable advice, reading many inferior drafts and

correcting them at all stages have made it possible to complete this project.

We would also generously welcome each one of those individuals who have helped us

straight forwardly or in a roundabout way in making this project a win. In this unique

situation, we might want to thank the various staff individuals, both educating and non-

instructing, who have facilitated our undertaking.

Finally, we must acknowledge with due respect the constant support and patience of our

parents.

Ritick Akash Kumar Singh

(201357) (201460)

(iv)

TABLE OF CONTENTS

Title Page No.

Certificate i

Candidate’s Declaration ii

Acknowledgement iii

List of Tables v

List of Figures vi

Abstract x

Chapter – 1 Introduction 1

Chapter – 2 Literature Survey 4

Chapter – 3 System Development 7

Chapter – 4 Testing 39

Chapter – 5 Results and Evaluation 59

Chapter – 6 Conclusions and Future Scope 60

References 62

(v)

LIST OF TABLES

Table no. Caption Page no.

Table 3.1. Dataset details 10

Table 3.2. Details of architectures used 14

Table 4.1. Validation Results at the end of 30 epochs 30

Table 4.2. Test accuracies after 30 epochs of each model 36

Table 4.3. F-1 Scores for all the models at the end of 30 epochs 36

Table 4.4. Training and Validation after fine tuning 39

Table 4.5. Test Accuracies after fine-tuning of each model 41

Table 4.6. F-1 Scores for all the models after fine-tuning 41

Table 4.7. Predictions after 30 epochs 42

Table 4.8. Predictions after fine tuning the models 42

Table 5.1. Analysis based on specific class of tumors 45

Table 5.2. Comparison of Time Consumption 45

(vi)

LIST OF FIGURES

Figure

no.
Caption

Page

no.

Figure 3.1. Glioma – Test Set 12

Figure 3.2. Meningioma – Test Set 12

Figure 3.3. Pituitary Tumor – Test Set 12

Figure 3.4. No tumor – Test Set 13

Figure 3.5. Glioma – Training Set 13

Figure 3.6. Meningioma – Training Set 13

Figure 3.7. Pituitary Tumor – Training Set 14

Figure 3.8. No Tumor – Training Set 14

Figure 3.9. Setting of path for fetching data 16

Figure 3.10.
Carving out of Validation set – Showing number of files in

Training set
16

Figure 3.11.
Carving out of Validation set – Showing number of files in

Validation set
17

Figure 3.12. Testing Set 17

Figure 3.13. Code for visualization of Training set 17

Figure 3.14. Dataset visualization output 18

Figure 3.15. Pre-fetching applied 18

Figure 3.16. Code for data augmentation 19

Figure 3.17. Code to display some augmented images 19

Figure 3.18. Augmented images 20

Figure 3.19. Initialization of pre-trained version of MobileNetV2 20

Figure 3.20.
Initialization of Average Pooling Layer and Dense Layer and

Pre-processing of Inputs for MobileNetV2 model 21

Figure 3.21.
Adding of layers, pre-processing the input, initializing the

model and compiling the model 21

Figure 3.22. Inclusion of Early Stopping and Model Fitting 22

Figure 3.23.
Summary of final model including MobileNetV2 as well as

manually added layers 22

Figure 3.24. Fine tuning of MobileNet model 23

Figure 3.25. Summary of fine-tuned model 23

Figure 3.26. Epochs running for fine-tuned model 24

(vii)

Figure 3.27. Loading of pre-trained EfficientNetB1 24

Figure 3.28. Adding of layers and Model compilation 24

Figure 3.29. Training of EfficientNet model 25

Figure 3.30. EfficientNetB1 model summary 25

Figure 3.31. Fine tuning of EfficientNetB1 26

Figure 3.32. Summary of fine-tuned model 26

Figure 3.33. Fine tuning epochs 27

Figure 3.34. Loading pre-trained NASNetMobile 27

Figure 3.35. Adding of layers and NASNetMobile model compilation 27

Figure 3.36. Fitting of the NASNetMobile model 28

Figure 3.37. Summary of the NASNetMobile model 28

Figure 3.38. Fine tuning and compilation of NASNetMobile 29

Figure 3.39. Summary of the fine-tuned model 29

Figure 3.40. Epochs of fine tuning 30

Figure 3.41. Loading of InceptionV3 model 30

Figure 3.42. Addition of Custom layers on top of pre-trained model 30

Figure 3.43.
Compilation of the model using Adam cost function and Sparse

Categorical Cross Entropy loss function
31

Figure 3.44. Training of 30 epochs of InceptionV3 31

Figure 3.45. Summary of the InceptionV3 model 32

Figure 3.46. Fine tuning initialization of last 61 layers of InceptionV3 32

Figure 3.47. Summary of the fine-tuned version of InceptionV3 model 33

Figure 3.48. Fine tuning epochs of InceptionV3 33

Figure 3.49. Loading of DenseNet121 model 33

Figure 3.50. Adding of custom layers on DenseNet121 34

Figure 3.51. Compilation of DenseNet121 model 34

Figure 3.52. Training of DenseNet121 model using 30 epochs 34

Figure 3.53. Summary of DenseNet121 model 35

Figure 3.54. Fine tuning initialization of DenseNet121 model 35

Figure 3.55. Summary of Fine-tuned DenseNet121 model 36

Figure 3.56. Fine tuning epochs for DenseNet121 model 36

(viii)

Figure 3.57. Prediction using Flask UI 37

Figure 3.58. Prediction using Tkinter UI 37

Figure 4.1
Training and Validation Accuracy for MobileNetV2 after 30

epochs 40

Figure 4.2. Training and Validation Loss for MobileNetV2 after 30 epochs 40

Figure 4.3.
Predictions for random images of testing set using

MobileNetV2 model 40

Figure 4.4. Test Accuracy for MobileNetV2 model 41

Figure 4.5. Classification report for MobileNetV2 model 41

Figure 4.6. Training and Validation Accuracy for EfficientNetB1 model 41

Figure 4.7. Training and Validation Loss for EfficientNetB1 model 42

Figure 4.8. Predictions for random test images with confidence 42

Figure 4.9. Test Accuracy for EfficientNetB1 model 42

Figure 4.10. Classification Report for EfficientNetB1 model 43

Figure 4.11. Training and Validation Accuracy for NASNetMobile model 43

Figure 4.12. Training and Validation Loss for NASNetMobile model 43

Figure 4.13. Predictions for test images with confidence 44

Figure 4.14. Test Accuracy for NASNetMobile model 44

Figure 4.15. Classification report for NASNetMobile model 44

Figure 4.16. Training and Validation Accuracy for InceptionV3 45

Figure 4.17. Training and Validation Loss for InceptionV3 45

Figure 4.18. Test accuracy of InceptionV3 45

Figure 4.19. Prediction of random MRIs using InceptionV3 46

Figure 4.20. Classification Report of InceptionV3 46

Figure 4.21. Training And Validation Accuracy of DenseNet121 model 46

Figure 4.22. Training and Validation Loss for DenseNet121 model 47

Figure 4.23. Test Accuracy for DenseNet121 model 47

Figure 4.24. Predictions using DenseNet121 model 47

Figure 4.25. Classification Report of DenseNet121 model 47

Figure 4.26.
Training and Validation Accuracy after Fine-Tuning of

MobileNetV2 48

Figure 4.27.
Training and Validation Loss after Fine-Tuning of

MobileNetV2 49

(ix)

Figure 4.28.
Training and Validation Accuracy after Fine-Tuning of

EfficientNetB1 49

Figure 4.29.
Training and Validation Accuracy after Fine-Tuning of

EfficientNetB1 49

Figure 4.30.
Training and Validation Accuracy after Fine-Tuning of

NASNetMobile 50

Figure 4.31.
Training and Validation Loss after Fine-Tuning of

NASNetMobile 50

Figure 4.32.
Training and Validation Accuracy after fine-tuning of

InceptionV3 50

Figure 4.33. Training and Validation Loss after fine-tuning InceptionV3 51

Figure 4.34.
Training and Validation Accuracy after fine-tuning

DenseNet121 51

Figure 4.35. Training and Validation Loss after fine-tuning DenseNet121 51

Figure 4.36. Prediction of test images using fine-tuned MobileNetV2 model 52

Figure 4.37.
Test Accuracy for fine-tuned MobileNetV2 model

52

Figure 4.38. Classification report for MobileNetV2 fine-tuned model 53

Figure 4.39. Prediction for test images with confidence 53

Figure 4.40. Test Accuracy of fine-tuned EfficientNetB1 model 53

Figure 4.41. Classification report for fine-tuned EfficientNetB1 model 53

Figure 4.42. Predictions for test images with confidence 54

Figure 4.43. Test Accuracy of fine-tuned NASNetMobile model 54

Figure 4.44. Classification report of fine-tuned NASNetMobile model 54

Figure 4.45. Predictions using fine-tuned InceptionV3 54

Figure 4.46. Test Accuracy of fine-tuned InceptionV3 55

Figure 4.47. Classification Report of fine-tuned InceptionV3 55

Figure 4.48. Predictions using fine-tuned DenseNet121 55

Figure 4.49. Test Accuracy of fine-tuned DenseNet121 55

Figure 4.50. Classification report of fine-tuned DenseNet121 55

Figure 4.51. Test image – Pituitary class 57

Figure 4.52. Test image – No Tumor class 58

Figure 4.53. Test image – Meningioma Class 58

Figure 4.54. Test image – Glioma class 58

(x)

ABSTRACT

Abnormal formation and growth of cell within the brain gives rise to the Brain Tumors.

Tumors can be Benign i.e. Non-cancerous or Malignant i.e. Cancerous. Tumors may also be

classified on the basis of their origin into Primary and Secondary Tumors. Primary tumors

are those which start to originate from within the brain itself, whereas Secondary are those

that start to develop outside the brain and then move into the brain.

Primary Brain tumors are further classified into Meningioma which is generally benign,

Glioma that is malignant 80% of the times and Pituitary tumors.

In the present world, Computer Aided Diagnosis systems are powerful means that assist the

doctors and other experts in the detection and identification of various kinds of diseases that

include heart diseases, tumors, cancer, etc. using medical images or other data. There have

been several path breaking researches in this domain concerning different diseases, tools,

aspects and specifications. This project is motivated and aimed to create a deep learning

based model using Light-weight architecture to detect the presence of brain tumors from

MRI images and classify the tumor into Meningioma, Glioma and Pituitary. In the recent

past, there have been several works for the same task but most of the works have focused on

using models having huge number of parameters, learning layers and large size for storage

as well as high time consumption. This project aimed at efficiently performing the said task

in less time and by using less storage space.

To achieve the proposed task, light-weight CNN architectures have been used in this project.

These include MobileNet, EfficientNet, NASNetMobile, InceptionV3 and DenseNet121.

Apart from using these pre-trained models, fine-tuning of these models has also been done

to increase the performance. Hence, the best result was obtained by the fine-tuned version of

EfficientNet, which achieved an accuracy of 94.25%.

1

CHAPTER 1: INTRODUCTION

1.1 INTRODUCTION

Development of unwanted mass lesions and abnormal growth of cells in the brain results into

brain tumors. Under the scope of this project work, the classification of brain tumors into

Meningioma (generally benign), Glioma (malignant 80% of the times) and Pituitary tumors

has been dealt with. When a tumor is said to be benign, it means that the tumor is not

cancerous, whereas malignant tumor refers to cancerous tumor. It is noteworthy to mention

here that the mentioned classification falls under the category of Primary Tumors, i.e. the

tumors that are developed in the brain itself [1]. Apart from these, there are Secondary

Tumors, which originate from some other body organ and then enter the brain [2]. The

malignant tumors range across Grade 1 to 4 with Grade 4 being the deadliest. The cancerous

tumor, starting from Grade 1, gradually get transformed into higher grade tumors. In the

grade 4 survival of the patient becomes quite difficult [3]. Thus, it becomes increasingly

important to detect brain tumor at the earliest. [4]

The role of doctors, radiologists and other experts definitely cannot be ruled out in the

detection, classification and all the other subsequent actions in the cases of any disease.

However, apart from conventional methods used for the purpose, which are very time

consuming, there is a need of such a system which is very fast, is accessible, viable in terms

of economy and scalability and is accurate enough to support the doctors and experts in

taking the decisions related to the subject. In the normal course, doctors and experts detect

and classify brain tumors with the help of MRI scans and CT scans that come under the

domain of medical imaging. Thus, Computer Aided Diagnosis (CAD) is the system which

can serve the purpose of classification of brain tumors in an effective manner. CAD makes

use of the medical images and using the modern computerized techniques to serve the

purpose of detection and classification of the diseases. The insights obtained from CAD are

then referred to by the doctors and experts to take further calls related to the disease and

necessary treatment. Under the domain of Artificial Intelligence, Deep Learning plays a very

significant role in detection and classification of diseases. Deep convolutional neural

network is a very adapt tool for classification of images [5].

2

This project uses the dataset of Brain MRI Scans and applies light-weight convolutional

neural network architectures for detection and classification of brain tumors. Unlike the very

well-known CNN models that consume a lot of time and need huge amount of disk space

[6], the models used in this project are quite fast and reliable at the same time. The models

are robust, give desired results and have very less storage requirements. Hence, the result of

this project quite robustly serves the purpose of Brain Tumor Classification at minimal cost

as well as very good accuracy.

1.2 PROBLEM STATEMENT

The process which doctors and experts use is the examination of the medical images like

MRI scans of the brains to detect and classify brain tumors. This process consumes

significant amount of time. There is a need to develop some automated system that can assist

the doctors and experts in their work.

The task of this project is to develop a Computer Aided Diagnosis system using Light-

Weight architectures of the deep learning domain to effectively detect and classify Brain

Tumors. Such system, while consuming very less time and requiring very less amount of

storage due to the light-weight architecture, can in turn assist the doctors and experts in

decision making process. Thus, the task of Brain Tumor Detection and Classification can be

performed at much enhanced pace.

1.3 OBJECTIVES

a) To develop a Computer Aided Diagnostics (CAD) system to detect and classify brain

tumors from the brain MRI scans.

b) The Computer Aided Diagnostics system should be built in such a way that it costs way

less than the present systems in place.

c) To use deep learning techniques and architectures to build a predictive model for the said

CAD system with high accuracy and low cost.

3

1.4 SIGNIFICANCE AND MOTIVATION OF THE PROJECT WORK

The gravity of the problem can be understood by the fact that the average five year survival

rate is just 33% in the US in case of brain cancers. Even benign tumors can be fatal depending

upon their size and location. The best possible way to deal is to detect the brain tumor and

classify it at the earliest possible stage, i.e. minimum grade possible. This warrants the

detection and classification system to be very fast and viable in all terms. As a result, there

is a need of a system to assist the doctors and experts in their work, so that time frame can

be reduced as much as possible. This provides the Motivation for this project work.

This project work will make immense contribution to the medical domain of image based

brain tumor detection and classification. The significance will be in terms of a system which

will consume less time and occupy less space as compared to the present system without

compromising on the performance part.

1.5 ORGANIZATION OF THE PROJECT REPORT

The rest of the project report is organized in such a way that Chapter 2 represents the

Literature Survey, Chapter 3 corresponds to System Development, Chapter 4 is dedicated to

Testing, Chapter 5 is of Results and Evaluation and Chapter 6 gives the Conclusions and

Future Scope.

4

CHAPTER 2: LITERATURE SURVEY

2.1 OVERVIEW OF RELEVANT LITERATURE

Abhiwinanda et al. [7] implemented simple architecture of CNN that consisted of one layer

each of convolution, max pooling and flattening followed by full connection. The objective

of brain tumor classification into Meningioma, Glioma and Pituitary was achieved with

training accuracy of 98.51% and validation accuracy of 84.19%. This work was implemented

using Figshare dataset [8].

Ahmad et al. [9] did rigorous augmentation of brain MRI scans using Generative Adversarial

Networks coupled with Variational Autoencoders to increase the size of the dataset.

ResNet50 model was applied. Without augmentation, the classification accuracy was

72.63% and after augmentation, the same improved to 96.25%. For most severe class of brain

tumor, glioma, results were 0.769, 0.837, 0.833 and 0.80 corresponding to recall, precision,

specificity and F1 score respectively.

Afshar et al. [10] proposed a CapsNet architecture that uses both, raw MRI brain images as

well as tumor course boundaries. With this method, the need of annotation of tumor is

eliminated and architecture is able to focus on main area. The proposed model achieved an

accuracy of 90.89%.

Chelghoum et al. [11] used nine different pre-trained models of deep learning domain for the

purpose. AlexNet, VGG19, GoogleNet, ResNet18, VGG16, ResNet50, ResNet-Inception-

v2, ResNet101 and SENet were used for the task and an accuracy of 98% was achieved. In

all the pre-trained models, the end three layers were modified after which a fully connected

layer was added according to the size of required output.

Kokkalla et al. [12] used Inception Resnet v2 with customised output layer on a brain tumor

dataset of 3064 images.

Gumaei et al [13] proposed a Regularized Extreme Learning Machine (RELM) model along

with feature extraction in a hybrid manner to classify the brain tumors. An accuracy of

94.233% was achieved in the said approach. RELM can be used for both classification as

well as regression and in advantageous in terms of speed of training and low complexity. It

5

also tends to overcome some disadvantages of backpropagation method [18]. Guamei et al.

[16], [17] proposed Normalized GIST descriptor for feature extraction, which is an improved

version of traditional GIST descriptor proposed by Oliva and Torralba [15]. NGIST solves

the issues related to illumination and shadowing by normalizing the data using L2 norm. The

NGIST was coupled with Principal Component Analysis (PCA) to form PCA-NGIST [13]

that was efficiently used to extract features from brain images.

Ari and Hanbay [14] used ELM-LRF i.e. Extreme Learning Machine Local Receptive Fields

to classify brain tumor into cancerous or non-cancerous. The concept of ELM was introduced

by Huang et al. [19] for multiclass classification by making use of RELM.

Anaraki et al. [20] proposed a CNN architecture consisting of six convolutional and max

pooling layers and then FC (fully connected) layer. The model achieved an accuracy of 94%.

Sajjad et al. [21] developed a deep CNN with data augmentation for multi-grade tumor

classification. The pre-trained CNN model is refined for classification. Similarly, Swati et

al. [22] proposed a method for brain tumor image classification using fine-tuned transfer

learning. These deep transfer learning methods have shown a slight increase in accuracy. On

the other hand, Deepak and Ameer [23] proposed deep transfer learning and a support vector

machine (SVM) for three-class classification. The authors used a pre-trained GoogleNet to

extract features from brain MR images. The SVM classifier was then used for classification.

Afshar et al. [24] came out with an approach to ascertain uncertain predictions as well, so as

to improve the performance. For this task, the authors used Bayesian Capsule Network, also

called BayesCap. Togacar et al. [25] proposed a new model called BrainMRNet for brain

tumor classification. The model worked better than the pre-trained models like VGG-16,

GoogleNet and AlexNet. The classification accuracy was 96%.

2.2 KEY GAPS IN THE LITERATURE

Ahmad et al [9] have performed extensive preprocessing of the data by rigorous

augmentation. Also, in the form of ResNet50, a heavy-weight model has been used that

consumes fairly good amount of time. These factors have been adequately addressed in our

project work.

6

The work carried out Afshar et al [10] leaves behind a future scope interpretability of

CapsNet architecture for brain tumor classification.

In [7], [9], [10], there is much scope of performance improvement in terms of validation

accuracy.

Majority of the works carried out largely leave behind a scope to experiment with light-

weight CNN architectures to save the cost. The same has been considered the prime objective

of this project work.

7

CHAPTER 3: SYSTEM DEVELOPMENT

3.1 REQUIREMENTS AND ANALYSIS

The proposed brain tumor classification system aims to accurately classify brain tumors from

magnetic resonance imaging (MRI) scans. The system should meet the following

requirements:

 Accuracy:

The system should achieve high accuracy in classifying brain tumors into different types,

i.e. glioma, meningioma, and pituitary tumor.

 Generalizability:

The system should be able to generalize well to unseen data, ensuring its effectiveness in

real-world clinical settings.

 Efficiency:

The system should be computationally efficient, allowing for real-time or near-real-time

classification.

 Ease of use:

The system should have a user-friendly interface that is accessible to medical

professionals with varying levels of technical expertise.

 Data Requirements:

The performance of deep learning models is highly dependent on the quality and quantity

of training data. The proposed system will require a large dataset of labeled MRI scans

of brain tumors, with accurate annotations for tumor type and grade. The dataset should

be diverse and representative of the real-world distribution of brain tumors.

8

 Performance:

The system should be able to handle large volumes of data and provide predictions in a

timely manner. It should also be able to scale up to accommodate increasing data volumes

as needed.

 Reliability:

The system should be reliable and able to provide accurate predictions consistently.

 Scalability:

The system should be scalable and able to handle increasing data volumes.

 Maintainability:

The system should be easy to maintain and update, with clear documentation and

modular design.

 Compatibility:

The system should be compatible with a wide range of operating systems and web

browsers.

 Performance Efficiency:

The system should use system resources efficiently and minimize response times.

 Interoperability:

The system should be able to integrate with other systems and tools as needed, such as

data visualization tools or data analytics platforms.

9

3.2 PROJECT DESIGN AND ARCHITECTURE

START

Figshare dataset Br35H dataset
SARTAJ dataset

Merging and creation of final dataset

Training Set Testing Set Validation Set

Tensorflow Autotune and Prefetching application

NASNetMobile MobileNetV2 EfficientNetB1

Fine tuning last

90 layers

Fine tuning last

169 layers

Fine tuning last

54 layers

Model Building using pre-trained version

(excluding top layer) and fine tuning

Validation along with

epochs

Testing, Performance Evaluation

and Analysis of Results

END

10

The structuring of the pre-trained models with custom layers added by replacing the top layer

is shown below. Global Average Pooling, Dropout Layer, Flattening Layer and Dense layers

have been used.

A general view of the Project Design is shown below.

11

3.3 DATA PREPARATION

For our project, we needed dataset of Brain MR Images. Some popular publicly available

datasets of MRI scans are Figshare dataset [8], SARTAJ dataset [26], Br35H dataset [27].

Figshare dataset consists of 3064 images of MRI scans, SARTAJ dataset consists of 3264

images and Br35H dataset consists 3959 images. For our task, since the CNN architectures

are data dependent, there was a need of ample quantity of data so that model training could

be carried out effectively. Thus, with a view of obtaining increased performance, to avoid

overfitting and to efficiently achieve our goal, all the three mentioned datasets were merged.

In this way, our final dataset consisted of total 10287 files. This combined dataset existed

with images divided into Training Data and Testing Data. Each folder i.e. Training and

Testing further consisted of 4 sub-folders each- meningioma, glioma, pituitary and

no_tumor. Going forward, this division of training and testing was expanded into three sets-

Training set, Validation set and Testing set, during the course of implementation by the way

of programming.

Table 3.1 shows the number of images in each subfolder.

Table 3. 1. Dataset Details

 Training Testing Total

Meningioma 2161 421 637

Glioma 2147 400 2547

Pituitary 2284 374 2658

No Tumor 1990 510 2500

Total 8582 1705 10287

Percentage 83.42% 16.5%

The snapshots of the dataset are as follows-

12

Figure 3. 1. Glioma - Test Set

Figure 3. 2. Meningioma – Test Set

Figure 3. 3. Pituitary tumor – Test Set

13

Figure 3. 4. No tumor – Test Set

Figure 3. 5. Glioma – Training Set

Figure 3. 6. Meningioma – Training Set

14

Figure 3. 7. Pituitary Tumor – Training Set

Figure 3. 8. No tumor – Training Set

15

3.4 IMPLEMENTATION

The aim of the project work was to use light-weight deep learning models to efficiently

classify brain tumors into Meningioma, Glioma, Pituitary and No tumor. Hence, after

carefully evaluating all the possible methods and architectures, it was decided to implement

and test five architectures – MobileNetV2 [28], EfficientNet [29], NASNetMobile [30],

InceptionV3 [32] and DenseNet121 [33].

These architectures have been chosen due to their low time and space requirements. The time

and space requirements and other details of these architectures have been shown in Table

3.2. For implementation of these models, keras open-source library which is a part of

tensorflow was used in python language. The details have been obtained from Keras

Applications documentation [31].

Table 3. 2. Details of the architectures used

Models Size (MB) Parameters Depth Time (ms) per inference step

(CPU)

MobileNetV2 14 3.5M 105 25.9

EfficientNetB1 31 7.9M 186 60.2

NASNetMobile 23 5.3M 389 27

Inception V3 92 23.9M 189 42.2

DenseNet121 33 8.1M 242 77.1

These models have been trained on ImageNet validation dataset.

The network's topological depth is referred to as Depth in the Table 3.2. This covers layers

for batch normalization, activation, etc. Depth keeps track of the number of parameterized

layers.

The average time for 30 batches and 10 repeats is used for each inference step where each

batch is of 32 size, CPU is AMD EPYC Processor (with IBPB) (92 core) and RAM is 1.7T.

16

Figure 3. 9. Setting of path for fetching data

As already shown earlier, the dataset existed divided into Training and Testing data. Now,

while implementation, 20% out of Training data was carved out and a Validation set was

created. So, after this action, 66.74% i.e. 6866 files of the total dataset of 10287 files were

used for Training, 16.68% i.e. 1716 files were used for Validation and 16.5% i.e. 1705 files

were used for Testing. All these details have been shown in below figures.

Figure 3. 10. Carving out of Validation set – Showing number of files in Training set

17

Figure 3. 11. Carving out of Validation set – Showing number of files in Validation set

Figure 3. 12. Testing set

Before proceeding for model creation, the dataset was visualized as shown in Figure 3.13

and 3.14. The visualization was done along with the label names of the images. Batch sizes,

image dimensions and number of channels were checked, Autotune was applied and pre-

fetching was used to optimize the performance as shown in Figure 3.15. Pre-fetching loads

next batch of items parallel to the current execution of predecessor batch.

Figure 3. 13. Code for visualization of Training set

18

Figure 3. 14. Dataset visualization output

Figure 3. 15. Pre-fetching applied

19

An important requirement of deep learning models is enormous amount of data. In the

medical domain, this cannot be ensured automatically or inherently. Thus, Data

Augmentation is the tool widely used to increase the size of the dataset. Using Augmentation,

artificial images of the existing images are created by introducing features like flipping,

rotation, cropping, hazing and de-hazing, changing the contrast, zooming, etc. So, the

Training data was augmented before its use. Rescaling was done, horizontal flips were

introduced, random rotations were introduced, and zoom and contrast were carried out. The

code for such augmentation is shown in Figure 3.16. To display a few augmented images,

code is shown in Figure 3.17 and images have been shown in Figure 3.18.

Figure 3. 16. Code for data augmentation

Figure 3. 17. Code to display some augmented images

Now, the data pre-processing stage was complete. Further, the stage was to create and train

CNN architectures for the classification of brain tumors. In line with our objective, pre-

trained version of MoblieNetV2 on ImageNet dataset was initialized as our Base model as

shown in 3.19. The top layer of the pre-trained version was excluded and the base model was

set to non-trainable.

20

Figure 3. 18. Augmented images

Figure 3. 19. Initialization of pre-trained version of MobileNetV2

21

On the top of the pre-trained base model, an average pooling layer was added, dropout was

included, flattening layer was added and then a dense layer was added with ReLU activation

function. Before passing inputs to the model, pre-processing specific to MobileNetV2 was

done.

Figure 3. 20. Initialization of Average Pooling Layer and Dense Layer and Pre-processing of Inputs for

MobileNetV2 model

The learning rate was set to 0.0001, optimizer used was Adam and Sparse Categorical Cross

Entropy loss function was used. Prediction layer of 4 classes was used since the number of

classes of output is 4.

Figure 3. 21. Adding of layers, pre-processing the input, initializing the model and compiling the model

22

For avoiding overfitting as well as for saving time, Early Stopping was included. Under this,

validation loss was monitored and patience was set to 5. So, after a particular epoch, if for 5

continuous epochs validations would be greater, the model training would stop.

Figure 3. 22. Inclusion of Early Stopping and Model Fitting

Figure 3. 23. Summary of final model including MobileNetV2 as well as manually added layers

23

Now, after using pre-trained model of MobileNetV2, it was decided to fine-tune the model.

Fine tuning is always a good idea to enhance the performance of a deep learning model. Fine

tuning means some layers are made trainable, i.e. pre-defined weights are not used. Some

layers are freshly trained. This sometimes fires back because model gets susceptible to

difficulties of training.

Out of 154 layers of the MobileNetV2 model, last 54 layers were made trainable and were

fine-tuned.

Figure 3. 24. Fine tuning of MobileNet model

 Figure 3. 25. Summary of fine-tuned model

24

For fine-tuning 30 additional epochs were added. Due to early stopping feature included,

fine tuning stopped after total 42 epochs which means 12 epochs of fine tuning ran.

Figure 3. 26. Epochs running for fine-tuned model

Now, EfficientNetB1, another light-weight architecture was chosen to be implemented. Its

implementation details and snapshots follow.

Figure 3. 27. Loading of pre-trained EfficientNetB1

Figure 3. 28. Adding of layers and Model compilation

25

Figure 3.29. Training of EfficientNet model

Figure 3.30. EfficientNetB1 model summary

26

Out of 340 layers of the EfficientNetB1 pre-trained model, the last 90 layers were fine-tuned.

For fine-tuning 30 additional epochs were added. Due to early stopping feature included,

fine tuning stopped after total 39 epochs which means 9 epochs of fine tuning ran.

Figure 3.31. Fine tuning of EfficientNetB1

Figure 3.32. Summary of fine-tuned model

27

Figure 3.33. Fine tuning epochs

A very light-weight architecture, NASNetMobile, was chosen to be utilized for the purpose

of brain tumor classification. Its pre-trained version was downloaded without the top layer.

Also, all other details remained same as in the previously implemented two models.

Figure 3.34. Loading pre-trained NASNetMobile

Figure 3.35. Adding of layers and NASNetMobile model compilation

28

Figure 3.36. Fitting of the NASNetMobile model

Figure 3.37. Summary of the NASNetMobile model

29

The total number of layers in the NASNetMobile model are 769. Out of this, the last 169

layers were made trainable and were fine tuned.

Figure 3.38. Fine tuning and compilation of NASNetMobile

Figure 3.39. Summary of the fine-tuned model

30

Figure 3.40. Epochs of fine tuning

For fine-tuning 30 additional epochs were added. Due to early stopping feature included,

fine tuning stopped after total 43 epochs which means 13 epochs of fine tuning ran.

Next, while exploring the documentation for some light-weight architectures, Inception V3

was found to be applicable for the purpose of this project. Although its size may seem to be

a bit larger as compared to other architectures used in this project, its time consumption is

quite good and lesser than some other models used in this project. Also, from the previous

works, it was clear that Inception V3 can be of good use for this project.

Below are the screenshots for the implementation of Inception V3 model, which was added

with additional layers after replacement of the top layer of the pre-trained model.

Figure 3. 41. Loading of InceptionV3 model

Figure 3.42. Addition of Custom layers on top of pre-trained model

31

Figure 3. 43. Compilation of the model using Adam cost function and Sparse Categorical Cross Entropy loss function

30 initial epochs were initialized for the training of Inception V3 model. Early Stopping

feature was also included on the basis of Validation Loss. This means, if validation loss

increases for 5 consecutive epochs, training stops at the fifth consecutive step and the training

gets reverted to the step before the start of increasing validation loss.

Inception V3 was the only case in which the initial training stopped before the completion

of 30 epochs at 20 epochs.

Figure 3.44. Training of 30 epochs of InceptionV3

32

Figure 3. 45. Summary of the InceptionV3 model

There were total 311 layers in the model. For fine tuning, last 61 layers were made trainable.

20 additional epochs were initialized for fine tuning. Since initial training had stopped at 20

epochs itself, the fine tuning began at 21st epoch and continued till 34 epochs were completed

until getting stopped due to early stopping feature.

Figure 3.46. Fine tuning initialization of last 61 layers of InceptionV3

33

Figure 3.47. Summary of the fine-tuned version of InceptionV3 model

Figure 3.48. Fine tuning epochs of InceptionV3

After getting encouraging results of using light-weight architectures, a fifth light-weight

model, DenseNet121 was chosen to be implemented for the purpose of this project. This

architecture is specifically much optimized in terms of space consumption as well as

performance for various deep learning applications.

Figure 3.49. Loading of DenseNet121 model

34

Figure 3.50. Adding of custom layers on DenseNet121

Figure 3.51. Compilation of DenseNet121 model

Figure 3.52. Training of DenseNet121 model using 30 epochs

35

Figure 3.53. Summary of DenseNet121 model

There were total 427 layers in the DenseNet121 architecture. Fine tuning was done from the

layer 250 onwards. This means, the last 177 layers were fine tuned to enhance the

performance of the model. Out of additional 30 epochs initialized for fine tuning, 17 epochs

ran after which training stopped due to continuous increase in validation loss for 5 epochs

starting from 13th epoch.

Figure 3. 54. Fine tuning initialization of DenseNet121 model

36

Figure 3.55. Summary of Fine-tuned DenseNet121 model

Figure 3.56. Fine tuning epochs for DenseNet121 model

At this point, the model creation and fitting part of the project was complete. Three different

architectures were implemented and their training was done on our dataset of brain MR

images. All these architectures were pre-trained state of the art light-weight models that

consumed very less time and space and at the same time, ensured an uncompromised

performance.

For ease of classification and enhanced user experience, a User Interface has been built using

Flask application in Python programming language. The UI and prediction using the UI has

been shown in Figure 3.57. A UI was also built using tkinter library in Python which is shown

in Figure 3.58.

37

Figure 3.57. Prediction using Flask UI

Figure 3.58. Prediction using Tkinter UI

3.5 KEY CHALLENGES

The key challenges faced during the course of implementation were majorly related to the

difference between the dimensions of the input and the acceptable dimensions of the model’s

38

layers. For addressing this issue, the documentation was read carefully for all the

architectures and the needful was done accordingly.

Another type of problem that was faced was fair validation accuracy but poor testing

accuracy. This problem was addressed by enhancing the dataset and improving the

augmentation.

39

CHAPTER 4: TESTING

4.1 TESTING STRATEGY

Multiple approaches were used for testing the models built for brain tumor classification.

Specifically for better testing strategy, the dataset was split into three subsets. The advantage

of using both, validation and testing set is that validation set is repeatedly used for checking

the performance during multiple experiments. During the course of different experiments,

testing set stays isolated. This avoids the case of overfitting because testing set is used only

once at the end. If we use testing set repeatedly while model building, it becomes prone to

overfitting and we do not get accurate results regarding the performance.

At first, with the pre-trained version of the model, 30 epochs were run and at each epoch,

training accuracy, loss, validation loss and validation accuracy were monitored.

Table 4.1 shows the details of monitored parameters for each model at the end of 30 epochs.

Table 4.1. Validation results at the end of 30 epochs

 Loss Accuracy Validation Loss Validation Accuracy

MobileNetV2 0.0248 0.9946 0.0687 0.9808

EfficientNet 0.0263 0.9942 0.0493 0.9825

NASNetMobile 0.0968 0.9681 0.1255 0.9470

InceptionV3 0.6333 0.8024 0.4713 0.8520

DenseNet121 0.2923 0.8870 0.2332 0.8986

Training and Validation Accuracies for all the models were plotted for better visualization.

Also, Training loss and Validation loss were plotted for each model. Then, testing set was

used to obtain predictions using the model built. The Testing Accuracy was obtained for all

the models. Some random images of the test set were used to obtain their predictions for

brain tumor. The possibility of correct prediction in terms of percentage confidence was also

obtained.

40

Figure 4.1. Training and Validation Accuracy for MobileNetV2 after 30 epochs

Figure 4.2. Training and Validation Loss for MobileNetV2 after 30 epochs

Figure 4.3. Predictions for random images of testing set using MobileNetV2 model

41

Figure 4.4. Test Accuracy for MobileNetV2 model

Figure 4.5. Classification report for MobileNetV2 model

Figure 4.6. Training and Validation Accuracy for EfficientNetB1 model

42

Figure 4.7. Training and Validation Loss for EfficientNetB1 model

Figure 4.8. Predictions for random test images with confidence

Figure 4.9. Test Accuracy for EfficientNetB1 model

43

Figure 4.10. Classification Report for EfficientNetB1 model

Figure 4.11. Training and Validation Accuracy for NASNetMobile model

Figure 4.12. Training and Validation Loss for NASNetMobile model

44

Figure 4.13. Predictions for test images with confidence

Figure 4.14. Test Accuracy for NASNetMobile model

Figure 4.15. Classification report for NASNetMobile model

45

Figure 4. 16. Training and Validation Accuracy for InceptionV3

Figure 4. 17. Training and Validation Loss for InceptionV3

Figure 4. 18. Test accuracy of InceptionV3

46

Figure 4. 19. Prediction of random MRIs using InceptionV3

Figure 4. 20. Classification Report of InceptionV3

Figure 4. 21. Training And Validation Accuracy of DenseNet121 model

47

Figure 4. 22. Training and Validation Loss for DenseNet121 model

Figure 4. 23. Test Accuracy for DenseNet121 model

Figure 4. 24. Predictions using DenseNet121 model

Figure 4. 25. Classification Report of DenseNet121 model

48

Test Accuracies of all the models have been summarized in Table 4.2. Later, all the three

architectures were fine-tuned and a similar strategy for testing was used. Classification

Reports for all the models have been summarized in Table 4.3. The training and validation

details of the fine-tuned models have been summarized in Table 4.4.

Table 4.2. Test Accuracies after 30 epochs of each model

 Test Accuracy

MobileNetV2 0.9378

EfficientNetB1 0.9396

NASNetMobile 0.9155

InceptionV3 0.8105

DenseNet121 0.8539

Table 4.3. F-1 Scores for all the models at the end of 30 epochs

 MobileNetV2 EfficientNetB1 NASNetMobile InceptionV3 DenseNet121

Glioma 0.88 0.87 0.84 0.69 0.78

Meningioma 0.91 0.92 0.89 0.76 0.77

No Tumor 0.98 0.98 0.96 0.89 0.92

Pituitary 0.97 0.97 0.95 0.85 0.93

The plots of training and validation accuracy and training and validation loss for fine-tuned

models have been shown in the following figures.

Figure 4.26. Training and Validation Accuracy after Fine-Tuning of MobileNetV2

49

Figure 4.27. Training and Validation Loss after Fine-Tuning of MobileNetV2

Figure 4.28. Training and Validation Accuracy after Fine-Tuning of EfficientNetB1

Figure 4.29. Training and Validation Accuracy after Fine-Tuning of EfficientNetB1

50

Figure 4.30. Training and Validation Accuracy after Fine-Tuning of NASNetMobile

Figure 4.31. Training and Validation Loss after Fine-Tuning of NASNetMobile

Figure 4. 32. Training and Validation Accuracy after fine-tuning of InceptionV3

51

Figure 4. 33. Training and Validation Loss after fine-tuning InceptionV3

Figure 4. 34. Training and Validation Accuracy after fine-tuning DenseNet121

Figure 4. 35. Training and Validation Loss after fine-tuning DenseNet121

52

Additional 30 epochs were initialized for fine tuning of the models. All the models were

already equipped with the early stopping feature with validation loss being monitored with

patience of 5.

Table 4.4. Training and Validation after fine tuning

 Total no.

of layers

Last Layers

fine-tuned
Loss Accuracy

Validation

Loss

Validation

Accuracy

Fine tune

epochs

MobileNetV2 154 54 0.0034 0.9981 0.0406 0.9878 12

EfficientNetB1 340 90 0.0009 0.9975 0.0359 0.9878 9

NASNetMobile 769 169 0.0122 0.9978 0.0798 0.97526 13

InceptionV3 311 61 0.0262 0.9916 0.1508 0.9569 14

DenseNet121 427 177 0.0159 0.9959 0.0506 0.9837 17

Figure 4.36. Prediction of test images using fine-tuned MobileNetV2 model

Figure 4.37. Test Accuracy for fine-tuned MobileNetV2 model

53

Figure 4.38. Classification report for MobileNetV2 fine-tuned model

Figure 4.39. Prediction for test images with confidence

Figure 4.40. Test Accuracy of fine-tuned EfficientNetB1 model

Figure 4.41. Classification report for fine-tuned EfficientNetB1 model

54

Figure 4.42. Predictions for test images with confidence

Figure 4.43. Test Accuracy of fine-tuned NASNetMobile model

Figure 4.44. Classification report of fine-tuned NASNetMobile model

Figure 4. 45. Predictions using fine-tuned InceptionV3

55

Figure 4. 46. Test Accuracy of fine-tuned InceptionV3

Figure 4. 47. Classification Report of fine-tuned InceptionV3

Figure 4. 48. Predictions using fine-tuned DenseNet121

Figure 4. 49. Test Accuracy of fine-tuned DenseNet121

Figure 4. 50. Classification report of fine-tuned DenseNet121

56

The results after fine-tuning of each model have been summarized in Table 4.5 and 4.6.

Table 4.5. Test Accuracies after fine-tuning of each model

 Test Accuracy

MobileNetV2 0.9419

EfficientNetB1 0.9425

NASNetMobile 0.9343

InceptionV3 0.9026

DenseNet121 0.9255

Table 4.6. F-1 Scores for all the models after fine-tuning

 MobileNetV2 EfficientNetB1 NASNetMobile InceptionV3 DenseNet121

Glioma 0.88 0.87 0.87 0.83 0.86

Meningioma 0.91 0.92 0.91 0.89 0.90

No Tumor 0.99 0.98 0.97 0.95 0.95

Pituitary 0.98 0.98 0.97 0.93 0.97

4.2 TEST CASES AND OUTCOMES

Each model was analyzed and tested on the following parameters-

 Training Accuracy and Loss

 Validation Accuracy and Loss

 Testing Accuracy

 Precision, Recall and F-1 Score

The details of the results on the basis of the above parameters have been shown in the

previous section.

On the basis of Test Accuracy. EfficientNetB1 was found to be the best model for

classification of brain tumors. The test accuracy of the pre-trained model was 93.96% and

after fine-tuning it increased to 94.25%.

On the basis of F-1 Score, best models for different classes of tumors were MobileNetV2

and EfficientNetB1 as these both models had competitive F-1 scores.

57

As a part of the testing process, 4 random images were taken from the test set and predictions

for those were obtained. The predictions and their confidence have been summarized in

Table 4.7 and after fine tuning the models, the summary has been presented in Table 4.8.

Table 4.7. Predictions after 30 epochs

Sr.

No.

Original

Class

MobileNetV2 EfficientNetB1 NASNetMobile InceptionV3 DenseNet121

Predicted

Class

Conf.

(%)

Predicted

Class

Conf.

(%)

Predicted

Class

Conf.

(%)

Predicted

Class

Conf.

(%)

Predicted

Class

Conf.

(%)

1. Pituitary Pituitary 99.44 Pituitary 99.71 Pituitary 92.53 No tumor 80.13 Glioma 43.50

2. No tumor No tumor 99.98 No tumor 100 Glioma 100 No tumor 71.22 No tumor 99.58

3. Mening. Mening. 100 Mening. 99.96 Mening. 99.71 Mening. 100 Mening. 99.72

4. Glioma Mening. 94.12 Pituitary 38.62 Pituitary 99.11 No tumor 95.43 No tumor 95.24

Table 4.8. Predictions after fine tuning the models

Sr.

No.

Original

Class

MobileNetV2 EfficientNetB1 NASNetMobile InceptionV3 DenseNet121

Predicted

Class

Conf.

(%)

Predicted

Class

Conf.

(%)

Predicted

Class

Conf.

(%)

Predicted

Class

Conf.

(%)

Predicted

Class

Conf.

(%)

1. Pituitary Pituitary 100 Pituitary 99.26 Pituitary 99.73 Pituitary 98.31 Pituitary 99.43

2. No tumor No tumor 100 No tumor 100 Glioma 100 No tumor 99.85 No tumor 100

3. Mening. Mening. 100 Mening. 100 Mening. 99.98 Mening. 100 Mening. 100

4. Glioma Mening. 99.64 Mening. 33.28 Pituitary 99.54 No tumor 82.97 No tumor 98.93

Images used for the above purpose have been shown through the following figures.

Figure 4.51. Test image – Pituitary class

58

Figure 4.52. Test image – No Tumor class

Figure 4.53. Test image – Meningioma Class

Figure 4.54. Test image – Glioma class

59

CHAPTER 5: RESULTS AND EVALUATION

5.1 RESULTS

On the basis of Testing Accuracy, EfficientNetB1 model proved to be the best out of all the

three models implemented and tested.

The testing was carried out in a rigorous manner and thus, evaluation was not just based on

the accuracy. In terms of class of tumors, i.e. Glioma, Meningioma, Pituitary and No Tumor,

class specific performance analysis was done with the help of Classification Reports. The

summary is presented below in the Table 5.1.

Table 5.1. Analysis based on specific class of tumors

 Best Model w.r.t. F-1 Score

Glioma EfficientNetB1

Meningioma MobileNetV2

No Tumor EfficientNetB1/NASNetMobile

Pituitary Tumor MobileNetV2

The prime objective of this project work was to use light-weight architectures and complete

the task in minimum possible time. Also, it is clear by the findings presented that all the three

models have very competitive performance. So in such a case, it also becomes important to

compare the consumption of time by all the models. This has been presented in Table 5.2.

Table 5.2. Comparison of Time Consumption

 Time per epoch (s)

MobileNetV2 270

EfficientNetB1 600

NASNetMobile 390

InceptionV3 650

DenseNet121 810

60

CHAPTER 6: CONCLUSIONS AND FUTURE

SCOPE

6.1 CONCLUSION

The key findings of this project work are based on two major parameters – Performance and

Cost.

Hence, on the basis of performance in terms of accuracy, EfficientNetB1 has been found to

be the best model for classification of brain tumors. On the other hand, in terms of different

classes and their corresponding F-1 scores, MobileNetV2 and EfficientNetB1 are

comparable.

From the angle of cost, MobileNetV2 were easily outperforms other models in terms of time

as well as space consumption. Time and space requirements of MobileNetV2 are almost near

to 30-35% less than the corresponding highest figures.

Since the MobileNetV2 also gives a tough competition in terms of performance, it can be

considered an appropriate model for deployment if the performance requirements are not

very stringent. Else, EfficientNetB1 is the best model in any case.

This project work has made an immense contribution to the field of medical diagnosis with

the help of CAD systems. Until now, the systems used for such purpose were very costly in

terms of time and space requirements, but this project work eliminates this drawback of the

current systems in place.

A possible limitation of this project works is that the performance of the models can be

enhanced further to the best possible accuracy.

6.2 FUTURE SCOPE

In the presented work through this project, while fine tuning, 54 last layers out of 154 were

made trainable in MobileNetV2, 90 last layers out of 340 in EfficientNetB1, 169 last layers

out of 769 in NASNetMobile, 61 last layers out of 311 in InceptionV3 and 177 last layers

out of 427 in DenseNet121. Future Scope can be to increase the number of trainable layers

61

and try to enhance the performance. The concept of layers freezing, according to which only

specific layers are freezed to use pre-trained weights and others are trainable, can be

leveraged, provided the availability of requisite computational power. Also, as a part of the

future scope, the extensiveness of the dataset can further be enhanced. This particular project

has faced difficulties in the classification of Glioma class of tumors. The dataset related

enhancements can cater to the increased correctness and accuracy in the predictions.

62

REFERENCES

[1] https://www.mayoclinic.org/diseases-conditions/brain-tumor/symptoms-causes/syc-

20350084#:~:text=A%20brain%20tumor%20can%20form,headaches%2C%20nausea

%20and%20balance%20problems.

[2] https://www.hopkinsmedicine.org/health/conditions-and-diseases/brain-tumor

[3] https://en.wikipedia.org/wiki/Brain_tumor

[4] E. Dandıl, M. Çakıroglu, and Z. Ekşi, ‘‘Computer-aided diagnosis of malign and benign

brain tumors on MR images,’’ in ICT Innovations: Advances in Intelligent Systems and

Computing, vol. 311. Cham, Switzerland: Springer, 2015, pp. 157–166

[5] R. Kumar, J. Kakarla, B. Isunuri, M. Singh, “Multi-class brain tumor classification using

residual network and global average pooling” in Multimedia Tools and Applications,

2019, doi: 80. 10.1007/s11042-020-10335-4.

[6] K. Simonyan, A. Zisserman, “Very deep convolutional networks for large-scale image

recognition” in arXiv:1409.1556v6, 2014, https://doi.org/10.48550/arXiv.1409.1556

[7] N. Abhiwinanda, M. Hanif, S.T. Hesaputra, A. Handayani, T.R. Mengko, “Brain Tumor

Classification Using Covolutional Neural Network” in World College on Medical

Physics and Biomedical Engineering IFMBE Proceedings, vol 68/1, Springer, Singapore,

2019, doi: https://doi.org/10.1007/978-981-10-9035-6_33

[8] J. Cheng. “Brain Tumor Dataset (Version 5)”, retrieved from

https://doi.org/10.6084/m9.figshare.1512427.v5

[9] B. Ahmad, J. Sun, Q. You, V. Palade, Z. Mao, “Brain Tumor Classification Using a

Combination of Variational Autoencoders and Generative Adversarial Networks” in

Biomedicines, 2022, 10, 223. https://doi.org/10.3390/biomedicines10020223

[10] P. Afshar, K. N. Plataniotis and A. Mohammadi, "Capsule Networks for Brain Tumor

Classification Based on MRI Images and Coarse Tumor Boundaries," ICASSP 2019 -

2019 IEEE International Conference on Acoustics, Speech and Signal Processing

(ICASSP), Brighton, UK, 2019, pp. 1368-1372, doi: 10.1109/ICASSP.2019.8683759.

[11] R. Chelghoum, A. Ikhlef, A. Hameurlaine, and S. Jacquir, "Transfer learning using

convolutional neural network architectures for brain tumor classification from MRI

images," in 2020 17th International Conference on Information Technology and

Applications (ICITA), 2020, pp. 1-5, doi: 10.1007/978-3-030-49161-1_17.

https://www.mayoclinic.org/diseases-conditions/brain-tumor/symptoms-causes/syc-20350084#:~:text=A%20brain%20tumor%20can%20form,headaches%2C%20nausea%20and%20balance%20problems
https://www.mayoclinic.org/diseases-conditions/brain-tumor/symptoms-causes/syc-20350084#:~:text=A%20brain%20tumor%20can%20form,headaches%2C%20nausea%20and%20balance%20problems
https://www.mayoclinic.org/diseases-conditions/brain-tumor/symptoms-causes/syc-20350084#:~:text=A%20brain%20tumor%20can%20form,headaches%2C%20nausea%20and%20balance%20problems
https://www.hopkinsmedicine.org/health/conditions-and-diseases/brain-tumor
https://en.wikipedia.org/wiki/Brain_tumor
https://arxiv.org/abs/1409.1556v6
https://doi.org/10.48550/arXiv.1409.1556
https://doi.org/10.3390/biomedicines10020223
https://doi.org/10.3390/biomedicines10020223
https://doi.org/10.3390/biomedicines10020223

63

[12] S. Kokkalla, J. Kakarla, I. B. Venkateswarlu, M. Singh, “Three-class brain tumor

classification using deep dense inception residual network” in Soft Computing, 2021,

https://doi.org/10.1007/s00500-021-05748-8

[13] A. Gumaei, M. Hassan, M. Hassan, A. Alelaiwi, G. Fortino, “A Hybrid Feature

Extraction Method With Regularized Extreme Learning Machine for Brain Tumor

Classification” in IEEE Access, 2019, 10.1109/ACCESS.2019.2904145.

[14] A. Ari and D. Hanbay, ‘‘Deep learning based brain tumor classification and detection

system’’ in Turkish J. Elect. Eng. Comput. Sci., vol. 26, no. 5, pp. 2275–2286, 2018.

[15] A. Oliva and A. Torralba, ‘‘Modeling the shape of the scene: A holistic representation

of the spatial envelope,’’ in Int. J. Comput. Vis., vol. 42, no. 3, pp. 145–175, 2001.

[16] A. Gumaei, R. Sammouda, A. Malik, S. Al-Salman, and A. Alsanad, ‘‘An improved

multispectral palmprint recognition system using autoencoder with regularized extreme

learning machine,’’ in Comput. Intell. Neurosci., vol. 2018, May 2018, Art. no. 8041609.

[17] A. Gumaei, R. Sammouda, A. Malik, S. Al-Salman, and A. Alsanad, ‘‘Antispoofing

cloud-based multi-spectral biometric identification system for enterprise security and

privacy-preservation,’’ in J. Parallel Distrib. Comput., vol. 124, pp. 27–40, Feb. 2019.

[18] G. B. Huang, H. Zhou, X. Ding, and R. Zhang, ‘‘Extreme learning machine for

regression and multiclass classification,’’ in IEEE Trans. Syst., Man, Cybern. B. Cybern.,

vol. 42, no. 2, pp. 513–529, Apr. 2012

[19] G. B. Huang, Q. Y. Zhu, and C. K. Siew, ‘‘Extreme learning machine: Theory and

applications,’’ in Neurocomputing, vol. 70, pp. 489–501, Dec. 2006

[20] Anaraki, A. Kabir, M. Ayati and F. Kazemi. “Magnetic resonance imaging-based

brain tumor grades classification and grading via convolutional neural networks and

genetic algorithms.” in Biocybernetics and Biomedical Engineering (2019).

[21] M. Sajjad, S. Khan, K. Muhammad, W. Wu, A. Ullah, S. W. Baik, “Multi-grade brain

tumor classification using deep CNN with extensive data augmentation” in Journal of

Computational Science, Volume 30, 2019, Pages 174-182, ISSN 1877-7503,

https://doi.org/10.1016/j.jocs.2018.12.003.

[22] Z. N. K. Swati, Q. Zhao, M. Kabir, F. Ali, Z. Ali, S. Ahmed and J. Lu, “Brain tumor

classification for MR images using transfer learning and fine-tuning” in Computer

Methods in Medicine and Imaging, 2019, 1-13.

[23] S. Deepak, P.M. Ameer, “Brain tumor classification using deep CNN features via

transfer learning”, in Computers in Biology and Medicine, Volume 111, 2019, 103345,

ISSN 0010-4825, https://doi.org/10.1016/j.compbiomed.2019.103345.

https://doi.org/10.1007/s00500-021-05748-8
https://doi.org/10.1016/j.jocs.2018.12.003
https://doi.org/10.1016/j.compbiomed.2019.103345

64

[24] P. Afshar, A. Mohammadi and K. N. Plataniotis, "BayesCap: A Bayesian Approach

to Brain Tumor Classification Using Capsule Networks," in IEEE Signal Processing

Letters, vol. 27, pp. 2024-2028, 2020, doi: 10.1109/LSP.2020.3034858.

[25] M. Toğaçar, B. Ergen, Z. Cömert, “BrainMRNet: Brain tumor detection using

magnetic resonance images with a novel convolutional neural network model” in

Medical Hypotheses, Volume 134, 2020, 109531, ISSN 0306-9877,

https://doi.org/10.1016/j.mehy.2019.109531.

[26] S. Bhuvaji, A. Kadam, P. Bhumkar, S. Dedge, S. Kanchan, “Brain Tumor

Classification (MRI)” [Dataset]. Kaggle.

https://doi.org/10.34740/KAGGLE/DSV/1183165

[27] Br35H dataset link: https://www.kaggle.com/datasets/ahmedhamada0/brain-tumor-

detection?select=no

[28] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov and L. C. Chen, "MobileNetV2:

Inverted Residuals and Linear Bottlenecks," in 2018 IEEE/CVF Conference on

Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 2018, pp. 4510-

4520, doi: 10.1109/CVPR.2018.00474.

[29] M. Tan and Q. V. Le, “EfficientNet: Rethinking Model Scaling for Convolutional

Neural Networks” in Proceedings of the 36th International Conference on Machine

Learning, ICML 2019, Long Beach, 9-15 June 2019, 6105-6114.

[30] B. Zoph, V. Vasudevan, J. Shlens and Q. V. Le, "Learning Transferable Architectures

for Scalable Image Recognition," in 2018 IEEE/CVF Conference on Computer Vision

and Pattern Recognition, Salt Lake City, UT, USA, 2018, pp. 8697-8710, doi:

10.1109/CVPR.2018.00907.

[31] Keras API reference - https://keras.io/api/applications/

[32] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, "Rethinking the

Inception Architecture for Computer Vision," in Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, June 2016,

pp. 2818-2826.

[33] G. Huang, Z. Liu, L. van der Maaten, and K. Q. Weinberger, "Densely Connected

Convolutional Networks," in Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), Honolulu, HI, USA, July 2017, pp. 2261-2269.

https://doi.org/10.1016/j.mehy.2019.109531
https://doi.org/10.34740/KAGGLE/DSV/1183165
https://www.kaggle.com/datasets/ahmedhamada0/brain-tumor-detection?select=no
https://www.kaggle.com/datasets/ahmedhamada0/brain-tumor-detection?select=no
https://keras.io/api/applications/

