

Visage Verify

A major project report submitted in partial fulfilment of the requirement

for the award of degree of

Bachelor of Technology

in

Computer Science & Engineering / Information Technology

Submitted by

DEVANSH BATRA (201447)

MALAY ACHARYA (201476)

Under the guidance & supervision of

Dr. Maneet Singh

Department of Computer Science & Engineering and

Information Technology

Jaypee University of Information Technology,

Waknaghat,

Solan - 173234 (India)

CERTIFICATE

This is to certify that the work which is being presented in the project report titled “VISAGE

VERIFY” in partial fulfilment of the requirements for the award of the degree of B.Tech in

Computer Science And Engineering and submitted to the Department of Computer Science

And Engineering, Jaypee University of Information Technology, Solan is an authentic record

of work carried out by Devansh Batra & Malay Acharya with Roll Number 201447 &

201476 respectively during the period from August 2023 to May 2024 under the supervision

Dr. Maneet Singh (Assistant Professor(SG), Department of Computer Science &

Engineering And Information Technology).

Devansh Batra Malay Acharya

(201447) (201476)

The above statement made is correct to the best of my knowledge.

Dr. Maneet Singh

Assistant Professor (SG)

Computer Science and Engineering and Information Technology

Jaypee University of Information Technology, Solan

I

 II

DECLARATION

I hereby declare that the work presented in this report entitled “VISAGE VERIFY” in

partial fulfilment of the requirements for the award of the degree of Bachelor of Technology

in Computer Science & Engineering / Information Technology submitted in the

Department of Computer Science & Engineering and Information Technology, Jaypee

University of Information Technology, Solan is an authentic record of my own work carried

out over a period from August 2023 to May 2024 under the supervision of Dr. Maneet Singh

(Assistant Professor (SG), Department of Computer Science & Engineering and Information

Technology).

The matter embodied in the report has not been submitted for the award of any other degree

or diploma.

Devansh Batra Malay Acharya

(201447) (201476)

This is to certify that the above statement made by the candidate is true to the best of my

knowledge.

Dr. Maneet Singh

Assistant Professor (SG)

Computer Science and Engineering and Information Technology

Jaypee University of Information Technology, Solan

III

ACKNOWLEDGEMENT

Firstly, we express our heartiest thanks and gratefulness to almighty God for His divine

blessing makes it possible for us to complete the project work successfully.

We are really grateful and wish my profound indebtedness to Supervisor Dr. Maneet Singh,

Assistant Professor, Department of CSE Jaypee University of Information Technology,

Solan. Deep Knowledge & keen interest of my supervisor to carry out this project. Her

endless patience, scholarly guidance, continual encouragement, constant and energetic

supervision, constructive criticism, valuable advice, reading many inferior drafts and

correcting them at all stages have made it possible to complete this project.

We would like to express our heartiest gratitude to Dr. Maneet Singh, Associate Professor,

Department of CSE, for his kind help to finish this project.

We would also generously welcome each one of those individuals who have helped us

straightforwardly or in a roundabout way in making this project a win. In this unique

situation, we might want to thank the various staff individuals, both educating and

noninstructing, which have developed their convenient help and facilitated our undertaking.

Finally, we must acknowledge with due respect the constant support of our parents.

Devansh Batra Malay Acharya

(201447) (201476)

IV

TABLE OF CONENTS

Certificate...I

Declaration..II

Acknowledgement...III

Table of Contents...IV

List of Figures..VI

Abstract...VIII

Chapter(s)

 1 Introduction...1

 1.1 Introduction...1

 1.2 Problem Statement..2

 1.3 Objective...4

 1.4 Significance & Motivation of the Project Work.....................................5

 1.5 Organisation of Project Report..6

 2 Literature Survey...9

 2.1 Overview of Relevant Literature...9

 2.2 Key Gaps in the Literature Review..21

 3 System Development...31

 3.1 Requirements & Analysis..31

 3.2 System Design..32

 3.3 Data Warehousing...36

V

 3.4 Implementation...37

 3.5 Key Challenges..43

 4 Testing...45

 4.1 Testing Strategy..45

 5 Results & Evaluation...51

 5.1 Results..51

 5.2 Comparison with Existing Solutions.......................................57

 6 Conclusion & Future Scope...59

 6.1 Conclusion...59

 6.2 Future Scope..60

References..63

VI

LIST OF FIGURES

Figure 3.1 Segregation faces and names from input faces.......................................37

Figure 3.2 Using OpenCV and face recognition to recognise faces.........................37

Figure 3.3 Record attendance of the student using V1 of the model........................38

Figure 3.4 Dataflow Diagram of the mobile application..38

Figure 3.5 Register Student Endpoint using V1 of the Model.................................39

Figure 3.6 Nginx proxy configuration for the python backend................................39

Figure 3.7 Unit Test for registering student in V1 of the model...............................40

Figure 3.8 Unit Test for marking attendance in V1 of the model.............................40

Figure 3.9 Redis setup on port 6379 in V1 of the model..41

Figure 3.10 MongoDB Connection uri..41

Figure 3.11 URI Parsing for MongoDB Connection..41

Figure 3.12 Connection Established with S3 bucket..42

Figure 3.13 S3 Bucket..42

Figure 4.1 HTTP health check teste...48

Figure 4.2 HTTP Testing File...48

Figure 4.3 Health Test...49

Figure 4.4 Signup Test..49

Figure 4.5 Student Login Test..49

Figure 5.1 Test Results of Unit Tests..53

Figure 5.2 Single Face Detection...53

VII

Figure 5.3 Faces Detected in each Image...54

Figure 5.4 Proportion of Recognized vs Unrecognised Faces.................................54

Figure 5.5 Distribution of Face Recognition Confidence Scores.............................55

Figure 5.6 Cumulative Faces Recognized Over Time..56

Figure 5.7 Flask Backend Running Successfully...56

VIII

ABSTRACT

Visage Verify, a pioneering mobile application developed in React Native, is poised to

transform attendance recording in educational settings. This novel solution seamlessly

integrates Flask, Redis, Azure Virtual Machines, Nginx, and powerful machine

learning/deep learning techniques to boost speed, accuracy, and accessibility in the

traditional process of recording student attendance.

Visage Verify leverages Flask as the backend framework, a choice inspired by its

lightweight nature and extensibility. Flask serves as the sturdy foundation for the server-side

logic, effortlessly handling data processing and communication between the front-end and

other components of the system. Its simplicity and flexibility make it a perfect platform for

Visage Verify, allowing for rapid development and easy connection with other technologies.

With Flask, the backend of Visage Verify is not only responsive and scalable but also enables

the installation of custom routes and endpoints to respond to the specific needs of attendance

tracking and data administration.

Utilizing AWS API Gateway, Visage Verify's attendance recording system gains a potent

hosting solution. With AWS API Gateway's robust features and scalability, Visage Verify

ensures seamless handling of varying workloads, effectively meeting the dynamic demands

of a university setting. This integration underscores the system's adaptability and reliability

in managing attendance records with precision and efficiency.

1

CHAPTER 1: INTRODUCTION

1.1 INTRODUCTION

In the dynamic domain of higher education, the convergence of pedagogy and technology is

important, and our product stands as a beacon of innovation. We propose an all-

encompassing attendance recording tool meticulously built to fulfil the particular needs of

modern universities. Recognizing the deep link between student involvement and

administrative efficiency, our initiative intends to change conventional attendance tracking,

ushering in an era of seamless integration, precision, and heightened security.

Our product stands out as an innovative example in the fast-paced world of higher education,

where the pedagogical and technological nexus is crucial. It is an all-inclusive attendance

recording application that has been painstakingly designed to satisfy the particular

requirements of contemporary universities. Understanding the complex relationship that

exists between student participation and administrative efficiency, our project aims to

transform the conventional approaches to attendance tracking and usher in a new era of

harmonic integration, precision, and security.

1.1.1 TECHNOLOGICAL FOUNDATION

Our project is based on the smart combination of React Native and Flask, two great

technologies woven with professionalism into a dynamic and user-responsive

system. The reason behind this is because cross-platform power of react native

creates uniform and eye-catching experience across different devices and flask

establishes a solid backbone from backend architecture due to its flexibility and

robustness. Synergy ensures elegance for backend that copes with complexity of

attendance tracking and elegant UI.

1.1.2 FACIAL RECOGNITION WITH AWS REKOGNITION

Our project stands out by leveraging AWS Rekognition for facial recognition,

marking a significant technological advancement beyond conventional attendance

tracking methods. AWS Rekognition, a powerful tool in the realm of computer

vision, enhances the precision and reliability of our application. Not only does facial

recognition bring practical advantages, but it also introduces an unmatched level of

security, ensuring that attendance processes are seamless and exceptionally secure.

With AWS Rekognition, both teachers and students can easily and swiftly verify their

attendance, streamlining the process and providing individualized recognition.

2

1.1.3 CLOUD-POWERED PERFORMANCE

In the age of cloud computing, our app manages a complex dance of technologies in

addition to taking attendance. An Azure Virtual Machine serves as the home base for

the machine learning model, which is the brains behind facial recognition. This

calculated decision guarantees both peak performance and flexibility in response to

changing attendance processing requirements. Our programme can now offer results

in real time thanks to the ML model hosted on Azure, guaranteeing fast and accurate

attendance data.

1.1.4 ENHANCED FLUIDITY WITH REDIS

We used Redis, a powerful data caching technology, to improve the application's

fluidity. Redis integration maximises data retrieval, speeding up the process of

registering attendance while also reducing resource consumption. This clever

caching solution not only increases productivity but also sets the stage for a

responsive system with rapid access to attendance data and a new level of user

experience.

1.1.5 RELIABLE SCALABLE INFRASTRUCTURE

The integrity of our product requires it to be hosted on a reliable, flexible

infrastructure. The cloud infrastructure basis of Amazon web services underpins our

project. The choice provides a flexible and resistant infrastructure for universities

that can safely work with attendance data on the cloud. The outcome is an

environment where the expansion and safety of attendance tracking seamlessly

interoperate with the suite of other AWS capabilities.

1.2 PROBLEM STATEMENT

1.2.1 INEFFICIENCIES IN TRADITIONAL TRACKING SYSTEMS

Attending college has always been a problematic affair considering it mainly relied

on manual operations that took too much time and money. The outdated systems are

prone to mistakes hence leaving all the administrators as well as educators struggling

with faulty information. There is an obvious demand for a less cumbersome and

computerised system of recording attendance in the era of modern education, which

ought to be developed.

1.2.2 SECURITY AND PRECISION CHALLENGES

The common techniques of attendance tracking lack the sophistication required to

fulfil the rising security and precision needs of educational institutions. With worries

developing regarding the integrity of attendance data and the vulnerability of manual

3

processes to fraudulent activities, there is an urgent need for a system that not only

ensures accuracy but also boosts security. Current technologies sometimes fall short

in delivering a strong solution that can respond to the unique demands of varied

university environments, demanding a comprehensive and technologically advanced

approach to attendance management.

1.2.3 INTEGRATION CHALLENGES IN TECHNOLOGICAL LANDSCAPES

Technology meets education comes with both advantages and disadvantages. To this

end, there is a huge challenge in implementing different technologies as colleges try

to develop new strategies. This lack of an integrated system that connects different

means of attendance tracking makes the processes fragmented and weak.

Universities must bridge this gap in technology in order to exploit the merits of

emerging tech, but in a way that remains easy to use for both the teacher and student.

1.2.4 DATA ACCESSIBILITY AND DECISION-MAKING BOTTLENECKS

The standard attendance tracking solutions can cause obstacles in data accessibility

and decision-making. Educators and administrators suffer with delayed access to

attendance data, impeding their capacity to make prompt and informed decisions. A

solution that gives real-time data, paired with analytical insights, is crucial to equip

universities to proactively solve attendance-related concerns, maximise resources,

and enhance the entire educational experience

1.2.5 ADAPTING TO EVALOVING EDUCATIONAL LANDSCAPES

The rapid growth of educational techniques and the rising diversity in learning

contexts bring significant problems to traditional attendance tracking systems. With

institutions embracing blended learning methods, meeting varying attendance

requirements becomes complicated. An innovative solution must be agile enough to

adapt to these developing educational settings, assuring its relevance and efficacy

across a spectrum of academic scenarios.

In tackling these problems, our attendance recording application strives to change the

paradigm of university attendance management, giving a complete, secure, and

technologically sophisticated solution suited to satisfy the specific needs of contemporary

higher education institutions.

4

1.3 OBJECTIVES

In response to the various issues faced by modern institutions in attendance tracking, our

purpose is to develop a revolutionary mobile application that transforms the landscape of

university attendance management. Rooted in the fusion of innovative technologies, our

solution strives to eliminate the inefficiencies of old attendance systems and raise the entire

experience for educators, administrators, and students alike.

1.3.1 EFFICIENCY ENHANCEMENT

Our primary purpose is to boost the efficiency of attendance tracking at institutions.

By replacing manual processes with a smooth, automated solution, we hope to

reduce the time and resources spent on attendance recording. The application will

give educators a user-friendly interface, allowing for rapid and accurate attendance

management, eventually optimising their time and enabling a more concentrated

teaching experience.

1.3.2 PRECISION AND SECURITY

We intend to create new benchmarks in attendance precision and security by

combining facial recognition technology utilising OpenCV. This new approach not

only provides a higher level of accuracy in tracking attendance but also introduces

an unequalled layer of protection. The programme will enable quick and

individualised recognition, simplifying the attendance procedure for both teachers

and students while ensuring the integrity of the data.

1.3.3 TECHNOLOGICAL INTEGRATION

It is our mission to seamlessly integrate technologies like the React Native and Flask

in making a robust and reliable framework. By using React Native, which is cross-

platform, you will obtain uniform experience for end users on different gadgets. At

the same time, Flask can be considered as an adaptable and scalable backend. This

attempt to plug the technology gap offers a universal remedy that resonates with the

current goals of today’s higher education institutions.

1.3.4 REAL-TIME DATA AND ANALYTICS

We aspire to empower educators and administrators with real-time attendance data

and relevant analytics. Leveraging the power of Azure for hosting machine learning

models, our application will give rapid and accurate attendance reports. This real-

time functionality ensures that decision-makers have immediate access to attendance

insights, allowing for proactive measures in addressing challenges and optimising

resource allocation.

5

1.3.5 ENAHNCED USER EXPERIENCE

Our purpose is to enhance the overall user experience by employing Redis for data

caching. This strong technology will improve application fluidity, maximising data

retrieval speed and decreasing resource consumption. The result is a responsive

system with instant access to attendance data, contributing to an upgraded user

experience for both instructors and students.

1.3.6 SCALABLE AND SECURE INFRASTRUCTURE

We seek to construct a robust and extendable solution by employing the cloud basis

of Amazon Web Services (AWS). This solution guarantees a flexible and resilient

architecture, enabling colleges to securely handle attendance data in the cloud. Our

purpose is to establish an ecosystem where attendance tracking's scalability and

security smoothly connect with the broader range of functions offered by AWS.

1.4 SIGNIFICANCE AND MOTIVATION OF PROJECT WORK

In fact, our attendance recording application is indispensable in a changing setting in today’s

higher education. The problem of inefficiency and riskiness had plagued university

attendance tracking for many years. We, therefore, have a revolutionary response that not

only overcomes existing challenges but also initiates technology, productivity, and security

in modern educational institutions.

Significance:

1. Streamlining Administrative Processes: This application illustrates an exit from labour

intensive and inaccurate manual attendance checks. Institutions also can automate the

critical administrative process of payment so that they focus on significant academic

objectives, vital for the institution.

2. Enhancing Educator Focus: In a nutshell, the significance of the project resides in granting

teachers an opportunity to concentrate on key issues such as teaching. Simplification of a

teacher-based attendance system enhances teachers’ concentration on lesson delivery,

interacts with students, formulates lesson plans, and mentors students in order to promote a

fun learning environment.

3. Security and Integrity: With respect to facial recognition, this technology solves the

problem of security and validity in attendance data. It is a quantum leap in technological

sophistication. In addition, it guarantees correct information and counterfeiting.

6

4. Technological Integration: The use of technologies like React Native, Flask, OpenCV

Azure, and Redis is a deliberate move toward an all-encompassing outcome. First, colleges

trying to change pedagogy and technology have to be in harmony via this fusion.

Motivation:

1. Meeting Contemporary issues: Our project is driven by the realisation of the pertinent

problems in most colleges today. This new system must be innovative and dynamic enough

for the changing landscape of contemporary education which entails blended learning

models and flexible attendance requirements as well as immediate access to live data.

2. Empowering Educators and Students: Empowerment of both teachers and learners’ have

been at the heart of our passion. Our programme aims at offering a user-friendly interface

and up to date information that provides meaningful participation rather than only being a

bureaucratic procedure.

3. Pushing Technological Frontiers: It shows keenness in using current technologies like face

recognition, machine learning and cloud computing in taking the education technology

frontier even further. This is an example on how technology can improve critical aspects of

school administration.

4. Striving for perfection: In essence, our drive to undertake such an exercise was motivated

by a thirst for being perfect. Our aim is to develop a new level of attendance tracking

including quality of service and convenience to our users. This spurs us towards breaking

borders and developing a solution that defies traditional laws.

To conclude then, our project is about more than simply marking attendance; it represents a

commitment to changing education. Solving current problems, adopting technological

innovations, and being committed to our excellence positions our project to have a lasting

impact on the way college registration will be done in future. Hello to a new age of

efficiency, safety, and creativity among universities.

1.5 ORGANIZATION OF PROJECT REPORT

1.5.1 CHAPTER 1: INTRODUCTION

The opening chapter of our project report, contains the overview of the whole

project. The Introduction chapter includes the complete overview of the project, the

opening chapter also contains the problem statement, it also contains the main usage

of the project, its advantages, use cases. The motivation for the team to work on this

7

project is also mentioned in the Introduction chapter highlighting its significance as

well.

1.5.2 CHAPTER 2: LITERATURE SURVEY

The opening chapter of our project report, contains the overview of the whole

project. The Introduction chapter includes the complete overview of the project, the

opening chapter also contains the problem statement, it also contains the main usage

of the project, its advantages, use cases. The motivation for the team to work on this

project is also mentioned in the Introduction chapter highlighting its significance as

well.

1.5.3 CHAPTER 3: SYSTEM DEVELOPMENT

The required technological stacks, deployment servers, programming languages etc

are covered in this chapter. This chapter covers the major infrastructure details of the

system, including the hardware, software, and networking components. It also

provides a pseudo code of the system's main functions and a diagram of the database

structure. The necessary images needed for understanding the flow of data,

networking etc. are displayed in this chapter of the report. It gives us the in depth

understanding of the whole technological need of the project.

1.5.4 CHAPTER 4: TESTING

This chapter covers the testing details of the system, including the methodology used

and the results of the tests.

1.5.5 CHAPTER 5: RESULTS AND EVALUATION

The results of the project are shown in this section of the report. It contains all the

findings and the progress of the report. In this section we have also compared our

findings and work with already existing applications to give an outline of what else

needs to be done in the project.

1.5.6 CHAPTER 6: CONCLUSIONS AND FUTURE SCOPE

In this part of the report the conclusion that can be derived from the work are

discussed, all the findings and results are discussed here. The future scope of this

project discusses what else is left to be done and the improvements that can be done

in the already created project.

8

9

CHAPTER 2: LITERATURE SURVEY

2.1 Overview of Relevant Literature

In today's digital landscape, the ubiquity of smartphones and tablet PCs has led to a surge

in demand for mobile applications facilitating remote data experimentation. React Native

has emerged as a prominent cross-platform mobile app development framework, catering to

the need for versatile solutions compatible with both iOS and Android devices. This

conceptualization and implementation of an electronic mobile application for conducting

online experiments using React Native present a seamless avenue for individuals to engage

in experimental pursuits conveniently. [1]

The design ethos of this application revolves around simplicity, ensuring accessibility for

users of varying technical proficiencies. Its core functionalities encompass:

1. User Login and Registration: Providing a secure gateway for users to create accounts,

enabling them to save and manage their experimentation data effectively.

2. Experiment Selection: Offering a menu-driven interface for users to browse and select

experiments of interest, facilitating a streamlined user experience.

3. Experiment Observation: Empowering users to track and monitor their experimental

endeavours in real-time, fostering a deeper engagement with the process.

4. Experiment Documentation: Furnishing comprehensive documentation for each

experiment, including detailed descriptions, methodologies, and results, aiding users in

understanding and analysing their findings.

5. Algorithm Download and Configuration: Facilitating the download and customization of

algorithms tailored to users' research requirements, enhancing the flexibility and

adaptability of the application to diverse experimental scenarios.

By leveraging the capabilities of React Native, this application not only bridges the gap

between traditional experimentation methods and modern mobile technology but also

democratizes access to scientific inquiry by providing a user-friendly platform for

conducting experiments remotely. Its intuitive design and robust feature set position it as a

valuable tool for researchers, educators, and enthusiasts alike, facilitating the seamless

integration of digital experimentation into everyday workflows.

10

React Native emerges as a beacon of innovation in the realm of app development, offering

a compelling alternative for crafting robust applications that seamlessly traverse the diverse

landscape of operating systems, notably iOS and Android. This paper delves into the

intricacies of React Native specifically tailored for Android development, conducting a

meticulous examination of its foundational elements, discernible strengths, and potential

weaknesses, thereby providing invaluable insights for developers navigating the ever-

evolving terrain of mobile app creation. [2]

Central to the allure of React Native is its adoption of a declarative programming paradigm,

imbuing the development process with a sense of clarity and conciseness that fosters code

maintainability and enhances developer productivity. Leveraging JavaScript, a ubiquitous

programming language renowned for its versatility and ease of use, further augments the

accessibility of React Native, lowering the entry barrier for developers and catalysing the

adoption of this framework across the development community.

At the core of React Native's architecture lies its component-based structure, heralding a

paradigm shift in app development methodology. By encapsulating discrete functionalities

into reusable components, React Native not only expedites the development process but also

engenders a modular ecosystem conducive to code reuse and extensibility. This inherent

modularity not only enhances development efficiency but also augments code

maintainability, facilitating seamless collaboration among developers.

A distinguishing hallmark of React Native is its incorporation of hot reloading functionality,

a game-changing feature that revolutionizes the iterative development workflow. By

enabling instantaneous updates to the application state without the need for manual

recompilation, hot reloading streamlines the code debugging process and expedites iteration

cycles, thereby fostering a more iterative and agile development methodology.

Furthermore, React Native's seamless integration with native Android modules empowers

developers to harness the full spectrum of platform-specific capabilities, transcending the

confines of cross-platform development frameworks. This symbiotic relationship with

native Android APIs bestows developers with unprecedented flexibility and versatility,

enabling the creation of immersive and feature-rich applications that leverage the full

potential of the Android ecosystem.

In summary, React Native emerges as a transformative force in the realm of Android app

development, offering a potent blend of efficiency, accessibility, and versatility that

empowers developers to craft immersive and feature-rich applications with unparalleled

ease and agility. While its strengths are undeniable, a nuanced understanding of its potential

limitations is essential for developers to navigate the complexities of app development

effectively and harness the full potential of this groundbreaking framework.

11

The realm of geolocation in React Native is a rich landscape, offering developers a plethora

of options to tailor location-based functionalities to their specific application needs. This

article provides a comprehensive overview of various geolocation APIs, ranging from the

foundational native Geolocation API to third-party libraries like React Native Geolocation

Service and React Native Background Geolocation, each catering to distinct use cases and

requirements. [3]

At its core, the native Geolocation API serves as a foundational tool for fulfilling simple

location-based tasks, offering essential functionalities to retrieve device location data.

However, for developers seeking more advanced features such as background geolocation

tracking and geofencing, third-party libraries like React Native Geolocation Service and

React Native Background Geolocation emerge as indispensable allies. These libraries

augment the capabilities of the native API, providing developers with a robust suite of tools

to implement complex geolocation functionalities seamlessly.

The selection of a geolocation API hinges upon the specific needs and objectives of the

application. For simple location-based tasks, the native Geolocation API may suffice,

offering a lightweight and straightforward solution. Conversely, for applications requiring

advanced features such as continuous background geolocation updates or geofencing

capabilities, third-party libraries offer a more comprehensive and feature-rich alternative.

In conclusion, the breadth of geolocation APIs available to React Native developers

underscores the versatility and adaptability of the framework in catering to diverse

application requirements. While each API comes with its own set of pros and cons, the

optimal choice ultimately depends on the nuanced needs and objectives of the application

at hand. By leveraging the appropriate geolocation API, developers can unlock the full

potential of location-based functionalities in their React Native applications, enriching the

user experience and enhancing the overall functionality of their creations.

In today's dynamic landscape of React Native development, geolocation functionalities play

a pivotal role in enhancing the user experience and expanding the capabilities of mobile

applications. This article offers a comprehensive exploration of the diverse array of

geolocation APIs available to React Native developers, encompassing both native solutions

and third-party libraries such as react-native-geolocation-service and React Native

Background Geolocation. [4]

The native Geolocation API serves as a fundamental building block for incorporating basic

location-based features into React Native applications. With its simplicity and efficiency, it

caters to straightforward use cases, providing developers with essential tools for retrieving

device location data and implementing simple location-related tasks.

However, for applications requiring more advanced geolocation functionalities, third-party

libraries emerge as invaluable assets. React Native Geolocation Service and React Native

Background Geolocation extend the capabilities of the native API, offering a myriad of

12

advanced features such as background geolocation tracking and geofencing. These libraries

empower developers to create immersive and feature-rich applications that leverage the full

potential of geolocation technology.

The selection of a geolocation API hinges upon the specific needs and objectives of the

application. While the native Geolocation API suffices for simple location purposes, third-

party libraries provide a more extensive suite of functionalities tailored to diverse use cases.

Developers must carefully assess the requirements of their application and choose the most

appropriate API to meet their needs effectively.

In conclusion, the breadth of geolocation APIs available to React Native developers

underscores the platform's flexibility and adaptability in catering to diverse application

requirements. Each API comes with its unique set of advantages and limitations,

necessitating thoughtful consideration in the selection process. By leveraging the vast array

of geolocation APIs at their disposal, developers can unlock new possibilities and elevate

the functionality of their React Native applications to new heights.

In the ever-evolving landscape of web development, the utilization of RESTful APIs has

become increasingly indispensable, facilitating seamless communication between client-

side applications and server-side resources. This comprehensive guide delves into the

intricacies of building and harnessing RESTful APIs using Flask, a lightweight and flexible

Python web framework renowned for its simplicity and versatility. [5]

At the heart of effective RESTful API design lies a deep understanding of fundamental

concepts such as resource-oriented URIs, standardized interfaces, and adherence to the

stateless protocol. By adhering to these principles, developers can create APIs that are not

only simple and intuitive but also highly manageable and scalable, laying the foundation for

robust and resilient applications.

The guide delves into the nuances of Flask API development techniques, offering insights

into designing APIs, creating routes, processing requests, and delivering results. From

defining endpoints to handling HTTP methods and status codes, developers are equipped

with the knowledge and tools necessary to architect APIs that meet the diverse needs of

modern web applications.

In addition to exploring the mechanics of API development, the guide delves into best

practices for designing strong and scalable APIs. Concepts such as error handling,

documentation, and versioning are elucidated, providing developers with strategies for

mitigating errors, enhancing API usability, and ensuring compatibility across different

iterations.

Despite the myriad of frameworks available for API development, Flask has emerged as a

standout choice for its lightweight nature and flexibility. Its minimalist approach empowers

developers to focus on crafting elegant and efficient APIs without unnecessary overhead,

13

making it particularly well-suited for building RESTful APIs that prioritize simplicity and

performance.

In conclusion, this guide serves as an invaluable resource for software engineers seeking to

delve into the intricacies of designing and implementing RESTful APIs with Flask. By

providing a comprehensive overview of design principles, development techniques, and best

practices, it equips developers with the knowledge and skills necessary to create robust and

scalable APIs that meet the demands of modern web applications. With a straightforward

outline and practical case studies, developers are empowered to embark on their journey of

API development with confidence and proficiency.

In the realm of high-performance in-memory databases, Redis++ emerges as a

groundbreaking solution that addresses two critical challenges plaguing its predecessor,

Redis: memory fragmentation and cache misses. By leveraging innovative strategies such

as segmental memory management and a two-level hash index structure, Redis++ achieves

unparalleled efficiency and performance, setting a new standard for in-memory database

systems. [6]

The segmented memory management system employed by Redis++ represents a significant

departure from traditional memory allocation approaches. By dynamically assigning and

removing fixed-size memory blocks, Redis++ optimizes memory utilization and minimizes

fragmentation, ensuring optimal resource allocation and mitigating the risk of memory

waste. This strategic allocation of memory space not only enhances efficiency but also

contributes to the overall stability and robustness of the database system.

The cumulative impact of these advancements is reflected in Redis++'s superior

performance metrics, including enhanced memory efficiency, lower latency response times,

and improved throughput. By outperforming Redis on multiple fronts, Redis++ emerges as

a compelling candidate for building advanced high-speed in-memory databases, capable of

meeting the demanding requirements of modern applications and workloads.

In conclusion, Redis++ represents a significant leap forward in the realm of in-memory

database systems, offering a potent combination of performance, efficiency, and scalability.

Its ability to effectively address memory fragmentation and cache misses positions it as a

formidable contender in the landscape of high-speed database solutions. As organizations

increasingly prioritize speed and efficiency in their data management strategies, Redis++

stands poised to emerge as a leading choice for powering mission-critical applications and

services.

In the pursuit of scalability and reliability within the domain of in-memory key-value

databases, Redis has garnered significant attention. However, as data volumes grow and the

demand for data integrity intensifies, it becomes imperative to augment Redis's capabilities.

14

In this context, this paper delves into two novel techniques: Client-Side Key-to-Node

Caching and Master-slave Semi Synchronisation, aimed at enhancing Redis's scalability and

ensuring data integrity. [7]

The Client-Side Key-to-Node Caching technique represents a paradigm shift in addressing

communication costs between clients and nodes. By embedding key-to-node mappings

within client applications, this technique streamlines request routing, ensuring that each

request is directed to its respective service node. This alleviates the overhead associated with

node discovery routing, thereby enhancing overall system efficiency, particularly in

scenarios involving high request volumes or complex routing configurations.

In parallel, the Master-slave Semi Synchronisation technique leverages the TCP protocol to

bolster data integrity across master-slave nodes within the Redis ecosystem. By

implementing semi-synchronous replication mechanisms, this technique ensures that data

consistency is maintained even in the event of node failures or network disruptions. The use

of TCP protocol facilitates robust data synchronization, thereby mitigating the risk of data

inconsistencies and bolstering overall system reliability.

Experimental validation of these techniques underscores their efficacy in addressing

scalability and reliability concerns within Redis-based systems. While Client-Side Key-to-

Node Caching exhibits a notable increase in request latency and performance, particularly

in resource-constrained environments or during periods of high application load, Master-

slave Semi Synchronisation offers a compelling solution for ensuring data consistency with

reasonable performance overhead.

In conclusion, this paper presents actionable insights into addressing scalability and

dependability challenges within Redis-based systems. By elucidating the principles and

methodologies underlying Client-Side Key-to-Node Caching and Master-slave Semi

Synchronisation, it equips practitioners with tangible strategies for improving the

performance and reliability of Redis deployments, especially in the context of large-scale

and mission-critical applications. As organizations strive to harness the power of in-memory

databases for their data-intensive workloads, the adoption of these techniques represents a

significant step towards realizing the full potential of Redis in modern computing

environments.

Redis Enterprise stands as the commercial evolution of the renowned open-source Redis

datastore, offering a suite of advanced features tailored to meet the demands of enterprise-

grade use cases. By augmenting Redis's core functionalities, Redis Enterprise enhances

scalability, reliability, and security, making it an ideal choice for organizations with stringent

performance and latency requirements. [8]

At the forefront of Redis Enterprise's capabilities is its clustering feature, which enables

horizontal scaling by orchestrating multiple Redis nodes into a cohesive cluster. This

15

distributed architecture not only expands available memory but also accelerates data

processing speeds, ensuring optimal performance even under heavy workloads.

In addition to scalability, Redis Enterprise prioritizes high availability through robust data

replication and failover mechanisms. By seamlessly replicating data across nodes and

orchestrating failover procedures, Redis Enterprise guarantees data reliability and

continuity, mitigating the risk of data loss or downtime in the event of node failures.

Furthermore, Redis Enterprise offers comprehensive data management capabilities,

including encryption, access control, and auditing functionalities. These mechanisms

empower organizations to safeguard sensitive data and adhere to regulatory compliance

requirements, bolstering data security and integrity across the enterprise.

To facilitate operational oversight and performance monitoring, Redis Enterprise

incorporates a built-in monitoring and alerting system. This feature enables administrators

to track the health and performance of Redis clusters in real-time, proactively identifying

potential issues and optimizing resource utilization for enhanced efficiency.

Key findings underscore Redis Enterprise's prowess as a scalable, reliable, and secure in-

memory data store solution, making it a compelling alternative for organizations seeking

high-performance data storage with low latency requirements. RedisLabs complements

Redis Enterprise with comprehensive training, consulting, and support services, ensuring

seamless deployment and ongoing maintenance for enterprise customers.

In conclusion, Redis Enterprise emerges as a robust and highly customizable in-memory

data store solution tailored for enterprise use cases. With its advanced features, including

clustering, high availability, data management, and monitoring capabilities, Redis

Enterprise offers organizations a powerful tool to meet their performance and latency

demands while ensuring data integrity and security. As organizations continue to prioritize

digital transformation and data-driven decision-making, Redis Enterprise stands poised to

play a pivotal role in enabling their success.

Computer vision encompasses a myriad of critical tasks, extending far beyond its traditional

boundaries, with face identification standing as a prominent example. However,

conventional face identification systems often rely on hand-engineered attributes, which

may exhibit vulnerabilities in terms of accuracy and robustness over time. In response to

these challenges, this study proposes a novel approach to face detection utilizing Faster R-

CNN, a state-of-the-art regional-based convolutional neural network (CNN) model.

Faster R-CNN represents a significant advancement in object detection systems,

characterized by its dual-phase architecture comprising the Region Proposal Network (RPN)

and the Fast R-CNN detector. The RPN generates potential object bounding boxes, which

are subsequently classified and refined by the Fast R-CNN. Compared to earlier iterations

of R-CNN, Faster R-CNN offers remarkable speed improvements while maintaining

16

comparable levels of accuracy, making it an attractive choice for real-world applications.

[9]

In the context of face detection, the authors leverage a vast dataset comprising over 800,000

images sourced from the PASCAL VOC 2010 and WIDER datasets, along with

approximately 1.5 million labelled faces. Through extensive training on this dataset, the

Faster R-CNN model is primed for face detection tasks. To evaluate its performance, the

model is subjected to rigorous testing using benchmark databases such as FDDB and IJB-

A, widely recognized in the field of face detection evaluation.

The results of the evaluation demonstrate the efficacy of the proposed approach, with the

Faster R-CNN model achieving state-of-the-art performance on both the FDDB and IJB-A

benchmarks. Notably, the model achieves a false detection rate of 0.1 at a detection rate of

90% on the FDDB benchmark and a Verification Error Rate (VER) of 10.7% on the IJB-A

benchmark. These results underscore the superior performance and reliability of the Faster

R-CNN model in face detection tasks.

In conclusion, the study highlights the effectiveness of Faster R-CNN as a robust method

for face recognition, yielding top-tier results on benchmark datasets such as FDDB and IJB-

A. While acknowledging potential trade-offs in favour of newer facial detection algorithms,

the authors assert the significance of their approach in pushing the boundaries of

performance in face detection tasks.

Computer vision encompasses a diverse array of applications, spanning from surveillance

and human-computer interaction to medical imaging analysis and beyond. Within this

expansive field, face recognition plays a pivotal role, enabling the identification of

individuals based on facial photographs. However, traditional face recognition mechanisms

reliant on handcrafted features often exhibit vulnerabilities in terms of accuracy and

robustness. [10]

To address these challenges, this study introduces an innovative method for face detection

leveraging Convolutional Neural Network (CNN) architecture, which has demonstrated

effectiveness in various computer vision tasks, including face detection.

The proposed CNN architecture comprises three stages: feature extraction, feature fusion,

and classification. In the feature extraction stage, input images undergo convolutional layers

to extract relevant information. Subsequently, features from different layers are fused to

generate a discriminant representation. Finally, a fully connected layer is employed for

classification, determining whether an input image contains a face.

Training the CNN model involves utilizing a large dataset of facial images, sourced from

Multi-PIE and FRGC databases, comprising over 200,000 images and 300,000 labelled

facial points. To enhance model robustness, the authors employ various data augmentation

17

techniques, ensuring the model's resilience to diverse facial characteristics and

environmental conditions.

Evaluation of the proposed model is conducted against established benchmarks, including

FDDB and IJB-A, widely recognized standards for face detection assessment. The model

achieves a false detection rate (FDR) of 0.7 and detects 90% of items on the FDDB

benchmark, while achieving a Verification Error Rate (VER) of 14.1% on the IJB-A

benchmark.

In conclusion, the study demonstrates the efficacy of the proposed CNN architecture in

addressing the face identification problem, achieving record results on both the FDDB and

IJB-A benchmarks. By pushing the boundaries of performance in facial detection

applications, the proposed method opens up new possibilities and avenues for innovation in

the field of computer vision.

OpenFace stands as a formidable solution in the realm of facial recognition and community

organization, harnessing the power of deep learning to facilitate a myriad of applications.

Its comprehensive framework comprises three integral components, each contributing to its

robust functionality. Firstly, the feature extraction module serves as the foundation, delving

into facsimile photos to extract deep features. These features encapsulate a diverse array of

physical traits, culminating in higher-dimensional representations essential for precise facial

identification. [11]

Next, the face recognition component takes center stage, meticulously analyzing facial

characteristics to discern individuals within older photographs. This capability extends

beyond mere recognition, enabling the verification of known identities as well as the

identification of unknown individuals from extensive databases of faces.

Complementing these core functions is the community identification module, a feature-rich

tool that partitions faces into cohesive groups based on an assortment of discernible features.

This facet facilitates the classification of familial relations and resemblances, fostering

intuitive categorization and organization.

Central to OpenFace's efficacy is its utilization of a meticulously crafted pre-trained model,

meticulously honed on a vast dataset comprising over 9 million facial images. This model

boasts remarkable adaptability, capable of extracting facial features even under varied

lighting conditions, provided at least 70 percent of the image remains clear and discernible.

Central to the prowess of OpenFace is its pre-trained model, meticulously honed on a corpus

of over 9 million facial images. This repository of knowledge endows the model with

unparalleled adaptability, enabling the extraction of facial features amidst the labyrinth of

varied lighting conditions, provided at least 70 percent of the image remains clear and

unobscured.

18

In conclusion, OpenFace emerges not only as a bastion of technological innovation but also

as a harbinger of transformative change across diverse domains. Its fusion of deep learning

principles with open-source ethos not only democratizes access to cutting-edge technology

but also paves the way for a multitude of applications, spanning realms as varied as security,

law enforcement, social media, and marketing. In an ever-evolving landscape, OpenFace

stands as a testament to the boundless potential of human ingenuity, ushering in a new era

of exploration and discovery.

From the Visual Geometry Group (VGG) at the University of Oxford, a notable

advancement in convolutional neural networks (CNNs) has emerged, commonly known as

VGGFace. Rooted in the foundational VGG-16 architecture, originally tailored for image

classification, VGGFace has undergone meticulous refinement and enhancement

specifically tailored for facial recognition tasks. [12]

VGGFace presents three primary architectures: VGGFace1, VGGFace2, and Ret VGGFace.

While sharing a fundamental framework, each iteration varies in complexity and depth.

VGGFace1, the most rudimentary, comprises 16 layers, while VGGFace2 delves deeper

with 20 layers. Notably, Ret VGGFace represents an evolution, integrating advanced

techniques like batch normalization and dropout for improved performance.

Training VGGFace necessitated vast datasets sourced from the internet, encompassing

approximately 2.6 million images spanning over two thousand individuals. Evaluation

against benchmark datasets such as LFW and YTF underscored the prowess of these models.

The results speak volumes: VGGFace models consistently outperform benchmarks.

VGGFace1 boasts an impressive face verification accuracy of 95.1% on the LFW dataset,

while VGGFace2 achieves a remarkable 90.2% on facial recognition tasks using the YTF

dataset.

In conclusion, VGGFace stands as a preeminent choice for facial recognition endeavors. Its

lineage, rooted in the VGG16 architecture, coupled with its demonstrated state-of-the-art

performance on benchmark datasets, positions it as an invaluable asset for real-world

applications. Moreover, its relative ease of training renders it accessible and practical for a

wide array of practical implementations.

Virtual machines (VMs) constitute a foundational pillar of cloud computing infrastructure,

empowering users with the flexibility to deploy and manage applications in a scalable and

cost-efficient manner. Microsoft Azure, renowned for its comprehensive cloud services,

offers a diverse array of VM configurations tailored to accommodate a spectrum of user

requirements and workload demands. However, navigating the myriad choices to pinpoint

the optimal VM configuration entails a delicate balance between performance, cost-

effectiveness, and resource utilization. [13]

19

Methodologically, the study adopts a systematic approach to dissect the performance

characteristics of distinct VM setups. Three representative VM sizes—Standard_A2_v2,

Standard_D2s_v3, and Standard_E2s_v3—are selected to encapsulate a spectrum of CPU,

memory, and storage capabilities. Each VM size is further subjected to iterative adjustments

in CPU core counts and RAM allocations to delineate alternative configurations.

Additionally, the investigation scrutinizes the performance implications of employing both

ordinary SSD and premium SSD storage variants.

The results unearth a landscape rife with divergent performance outcomes across various

VM configurations. Notably, CPU cores emerge as a pivotal determinant, showcasing

substantial performance gains with escalating core counts, particularly in CPU-bound

workloads. Memory allocation assumes a significant role, particularly in the realm of

memory-intensive applications, exerting discernible influence on overall performance

metrics. Conversely, while storage type does exhibit an impact on performance, the

disparities between premium SSDs and regular SSDs are relatively modest, with the former

conferring incremental benefits.

In summation, this study illuminates the intricate interplay between CPU cores, memory

allocation, and storage type in shaping the performance landscape of Microsoft Azure VMs.

By elucidating these dynamics, it empowers users and decision-makers with valuable

insights to inform judicious VM configuration choices that align with their specific

application requirements and operational objectives.

Cloud computing owes much of its functionality and cost-effectiveness to the indispensable

role played by virtual machines (VMs), which afford users the flexibility and affordability

of deploying and managing applications. Among the leading cloud service providers,

Microsoft Azure stands out, offering a plethora of VM configurations tailored to meet

diverse user expectations and task requirements. Nonetheless, navigating the multitude of

options to select the optimal VM configuration poses a formidable challenge, necessitating

careful consideration of factors such as performance, expenses, and resource utilization. [14]

Against this backdrop, this paper embarks on an exploration of the efficacy of various VM

configurations within the Microsoft Azure ecosystem, with a particular focus on the impact

of CPU cores, allocated memory capacities, and disk types on application performance.

Employing a renowned benchmarking tool, the study scrutinizes CPU, memory, and disk

I/O workloads, delving into response times and throughput parameters to glean insights into

performance dynamics.

Methodologically, the study adopts a systematic approach, meticulously evaluating VM

setups to discern their performance characteristics. Three representative VM sizes—

Standard_A2_v2, Standard_D2s_v3, and Standard_E2s_v3—are chosen to encapsulate a

spectrum of CPU, memory, and storage capabilities. By varying the number of CPU cores

and RAM allocations across each VM size, a range of alternative configurations is

20

generated, further augmented by an examination of storage types, including conventional

SSD and advanced SSD variants.

The findings underscore significant performance differentials across VM configurations,

with CPU cores emerging as a pivotal determinant, particularly in CPU-bound workloads

where increased core counts yield substantial advantages. Memory allocation also proves

pivotal, especially for memory-intensive applications, exerting a discernible impact on

overall performance metrics. Conversely, while storage type does exert influence, the

disparities between premium SSDs and regular SSDs are relatively marginal, with the

former demonstrating slight advantages in most scenarios.

In conclusion, the study advocates for a cost-effective approach to VM deployment tailored

for delay-sensitive applications within the Microsoft Azure environment. The proposed

methodology showcases the ability to mitigate latency while maintaining cost-effectiveness,

rendering it a valuable resource for cloud customers seeking to implement delay-sensitive

applications with optimal efficiency and performance.

In this study, the comparative analysis was focused solely on the two predominant open-

source web servers, Nginx and Apache, with an aim to evaluate their performance across

key metrics such as server reaction time, throughput (number of packets forwarded), and

memory utilization under varying load conditions. The findings unequivocally demonstrated

Nginx's superiority over Apache across all three parameters, thereby underscoring its

suitability for websites and applications contending with higher traffic volumes. [15]

Key findings from the study unveiled a consistent advantage held by Nginx in terms of

response time, regardless of the level of load imposed. Moreover, Nginx showcased a

remarkable capability to handle more concurrent requests, leading to significantly higher

throughput compared to Apache. Notably, even under conditions of heightened load, Nginx

exhibited a propensity to operate with lower RAM consumption vis-à-vis Apache, further

solidifying its position as a leaner and more resource-efficient option.

In conclusion, the study unequivocally establishes Nginx as the preferred choice over

Apache for high-traffic websites and applications. With its superior response time rates,

enhanced throughput capabilities, and efficient memory utilization, Nginx emerges as a

more adept and scalable solution for web server deployments. These findings not only

underscore the performance advantages offered by Nginx but also highlight its potential to

deliver enhanced user experiences and operational efficiencies in demanding web hosting

environments.

21

2.2 KEY GAPS IN LITERATURE

A. React-Native Based Mobile App for Online Experimentation

React-Native based mobile app for online experimentation is one viable alternative of

designing mobile application for online experimentation. Nevertheless, the paper points out

several crucial issues that should be considered for improvement as future work.

There are several notable gaps in the current study that present opportunities for

improvement and expansion. Firstly, the experimentation methodology primarily revolves

around A/B testing and parameter sweeping, leaving out other valuable experiment types

such as multi-armed bandits and Bayesian optimization. By incorporating these additional

experiment types, the program can become more flexible and robust in its approach to

experimentation. Secondly, while the study outlines the process of starting, stopping, and

monitoring experiments through a mobile app, it lacks specific details and approaches for

execution and monitoring. A deeper exploration of these aspects would provide a more

comprehensive understanding of the app's performance during experimentation. Thirdly,

while data synchronization between the mobile app and server is emphasized, the study does

not delve into the synchronization approach employed. Furthermore, there is a gap in

examining security measures to safeguard research trial data from unauthorized access or

modification. Fourthly, although the article includes some visuals of the mobile app's user

interface, there is limited discussion on user experience (UX) review. Expanding research

on UI/UX, user feedback, and usability could enhance the app's user orientation and

accessibility. Finally, the focus on building a mobile app with React-Native for iOS and

Android systems overlooks the potential for cross-platform compatibility. Exploring

interoperability with other platforms such as web-based browsers and portable applications

could broaden the app's reach and appeal to a wider audience. Addressing these gaps would

contribute to the overall improvement and effectiveness of the mobile app.

As such, in final remarks, the study is undeniably valuable for the field of mobile

experimentation, though there are several significant issues to be addressed, which would

only make this application more useful and improve its effect on the field.

B. React Native for Android: Cross-Platform Mobile Application Development

The paper "React Native for Android: Cross-Platform Mobile Application Development"

provides a valuable overview of React Native and its applications for Android development.

However, the paper also indicates certain major gaps that need to be addressed in future

work.

The paper "React Native for Android: “Cross-Platform Mobile Application Development”

serves as an important introduction to React Native and its uses with regard to Android app

development. Nonetheless, the paper also identifies several important things which have not

been looked at and they require attention in future research.

22

The study identifies several gaps that warrant further exploration and improvement in React

Native development. Firstly, while React Native offers cross-platform capabilities, its

performance can sometimes lag behind native Android apps. To address this, the article

suggests investigating methods to enhance React Native speed, such as utilizing native

modules, optimizing JavaScript code, and implementing caching solutions. Secondly,

although React Native provides a wide range of UI elements, there may be occasions where

developers need to integrate native Android UI components for aesthetic purposes and

improved performance. Researching seamless integration techniques for native UI elements

within React Native applications could enhance the overall user experience. Thirdly, React

Native may hide certain Android-specific features and libraries, limiting developers' access

to the full richness of the Android ecosystem. The paper advocates for exploring ways to

facilitate controlled access to these Android-specific features and APIs within React Native

apps, empowering developers to leverage the full potential of the Android platform.

Addressing these gaps would contribute to the optimization and expansion of React Native

development, enhancing its performance, aesthetics, and compatibility with the Android

platform. In conclusion, although React Native has the potential of being used in cross-

platform mobile applications development, fixing these mentioned issues would greatly

improve the capabilities, speed, and user experience of React Native making it more

tempting to use as an Android developer’s toolset.

C. Geolocation APIs for React Native

In their article “Geolocation APIs for React Native”, they provide a good way of getting

started with using geolocation APIs in React Native apps. Nevertheless, the paper

highlights some critical loopholes which need to be considered for broader inclusion and

implementation. implementation.

The article highlights several areas where further investigation and improvement are

needed in the realm of geolocation functionality within React Native apps. Firstly, while

the article primarily focuses on basic geolocation services, future discussions should delve

into more advanced features such as geofencing, location-based routing, and location-

based notifications. Exploring these advanced functionalities would enhance the overall

utility and user experience of geolocation-enabled apps. Secondly, considering the cross-

platform nature of React Native development, future conversations should address factors

affecting cross-platform compatibility, including variations in native geolocation APIs

across different operating systems and leveraging platform-specific features for optimal

performance. Thirdly, while the article briefly touches on performance issues, future

discussions should provide more elaborate strategies for optimizing geolocation

functionality in React Native apps. This could include techniques for conserving battery

power, optimizing data access, and improving spatial data representation and rendering.

Lastly, given the potential privacy implications of collecting geolocation data, future

debates should focus on security and privacy considerations, such as obtaining user

consent and implementing measures to protect user privacy. Addressing these gaps would

contribute to the development of more robust, efficient, and privacy-respecting

geolocation features in React Native apps.

23

These additional topics would significantly enhance the article's usefulness by giving more

in-depth knowledge and practical help for developers working with geolocation APIs in

React Native applications.

D. React Native Geolocation: A Complete Tutorial

An introductory insight into using geolocation APIs on react native can be found in an article

called “Geolocation APIs for React Native”. However, the paper also emphasises certain

critical holes that need to be addressed for more comprehensive coverage and practical

implementation.

This article primarily focuses on fundamental geolocation functionalities, such as acquiring

user coordinates and displaying them. However, there's a need for future discussions to

explore advanced geolocation features like geofencing, location-based routing, and

location-based notifications. Additionally, considering React Native's cross-platform nature,

it's essential to delve into factors affecting cross-platform compatibility, including

differences in native geolocation APIs and leveraging platform-specific enhancements.

While the article briefly touches on performance concerns, future discussions should offer

detailed optimization strategies, including battery conservation and efficient data

processing. Furthermore, privacy and security considerations are crucial, necessitating

discussions on obtaining user consent, secure data storage, and protection against

unauthorized access. Lastly, the article could benefit from practical implementation

examples, such as step-by-step tutorials and code snippets, to enhance understanding and

application of geolocation features in React Native development. Addressing these gaps

would enrich discussions and improve the development of geolocation functionalities in

React Native applications.

Real-world case studies of leveraging geolocation APIs in React Native applications

These additional topics would significantly enhance the article's usefulness by giving

more in-depth knowledge and practical help for developers working with geolocation

APIs in React Native applications.

E. Designing and Implementing RESTful APIs with Flask

“Designing and Implementing RESTful APIs with Flask” is a wonderful place to start when

learning to create RESTful APIs using the Flask Python framework. On the other hand, the

paper points at some of the main areas that should be dealt with in subsequent research

works.

The article primarily focuses on fundamental concepts of HTTP methods and status codes

within RESTful API architecture, omitting discussion on advanced HTTP concepts such as

caching and content negotiation. Furthermore, while exception handling is briefly

mentioned, there's a lack of detail on managing failures in RESTful APIs. Additionally,

although the importance of data validation is underscored, specific techniques for validating

24

and sanitizing user-supplied data are not outlined. Similarly, while authentication and

authorization are briefly touched upon, there's a gap in discussing implementation methods

like Basic Authentication, OAuth, and JWTs. Moreover, while testing and deployment are

acknowledged as essential, the article lacks specific methodologies for testing RESTful

APIs and deployment techniques such as containerization and cloud deployment.

Addressing these gaps would provide developers with a comprehensive understanding and

practical guidance on implementing, securing, testing, and deploying RESTful APIs

effectively.

In conclusion, while the article provides a good foundation for building and implementing

RESTful APIs with Flask, fixing these important gaps will significantly increase the paper's

comprehensiveness and provide developers with a more thorough grasp of RESTful API

development.

F. Redis++: A High Performance In-Memory Database Based on Segmented

Memory Management and Two-Level Hash Index

The paper "Redis++: Segmented memory management and two-level hash index for a high-

performance in-memory database.”. Therefore, there are some key holes that must be filled

in further research works.

The paper primarily focuses on the performance aspects of Redis++, particularly its in-

memory capabilities, but it lacks discussion on durability and persistence of data. Future

research should explore methods for storing persistent data on disk or other storage media,

enhancing the overall robustness of Redis++. Additionally, while the paper discusses

Redis++ performance, it overlooks implementation details for replication and high

availability in distributed systems, which are crucial for fault-tolerant data management.

Incorporating discussions on replication systems like master-slave and multi-master

replication would provide a more comprehensive understanding of Redis++ capabilities.

Moreover, while performance evaluation is conducted under specified workloads, there's a

need to broaden the testing scope to include varying data volumes, request types, and

concurrency levels to provide a comprehensive assessment of Redis++ performance across

different environments. Furthermore, comparing Redis++ with existing in-memory

databases like Memcached and Redis would offer insights into its strengths and weaknesses

relative to other solutions. Lastly, the paper should address the open-source availability and

community engagement of Redis++, as open-sourcing the project could foster wider

adoption and collaboration among developers. Addressing these gaps would enhance the

understanding and applicability of Redis++ in real-world scenarios.

In conclusion, while Redis++ presents a promising approach to in-memory database

performance optimization, solving these important shortcomings would further enhance its

value and usefulness in real-world applications.

25

G. Towards Scalable and Reliable In-Memory Storage System: A Case Study with

Redis

The research "Towards Scalable and Reliable In-Memory Storage System: The article “A

Case Study with Redis” provides an insightful discussion of the scalability and robustness

challenges associated with the Redis in-memory data store together with workable

recommendations. However, the study also indicates certain major weaknesses that need to

be addressed in future work.

The paper highlights several gaps in the analysis and proposed solutions for scalability

challenges in Redis. Firstly, there's a need for a thorough analysis of scalability bottlenecks,

including the decentralised design of Redis and request processing costs, to understand their

impact on productivity accurately. This would enable the development of tailored

optimization mechanisms to address specific limitations effectively. Secondly, while the

report proposes solutions like Client side K2N caching and MSS.1®, a comprehensive

evaluation of these solutions under different load intensities and network conditions is

necessary to identify the most effective approach. Additionally, future research should

explore innovative scalability techniques beyond the presented optimizations. Moreover,

there's a need for a more thorough investigation into reliability vulnerabilities, particularly

regarding inconsistency-based issues in Redis's replication strategy, and the development of

improved replication mechanisms and data consistency standards. Lastly, extending the

evaluation to real-world production scenarios, including diverse workloads and network

circumstances, would provide practical insights into Redis's performance, scalability, and

reliability in actual deployment settings. Addressing these gaps would enhance the

understanding and effectiveness of Redis in real-world scalability challenges and

deployments.

Addressing these important gaps would significantly expand the understanding of Redis's

limits and provide more complete solutions to achieve scalability and reliability in large-

scale in-memory storage systems.

H. Redis Enterprise: An Overview

The paper "Redis Enterprise: The article titled “An Overview” on Redis Enterprise

introduces this commercial in-memory data store. However, the study also indicates certain

major weaknesses that need to be addressed in future work.

The report highlights several key gaps in the analysis and evaluation of Redis Enterprise's

performance, features, cost, and real-world deployment scenarios. Firstly, there's a need for

an in-depth performance analysis of Redis Enterprise under various workloads and

conditions, including benchmarking against other open-source databases, to provide a

comprehensive understanding of its capabilities in real-world production environments.

Secondly, while the study outlines crucial elements of Redis Enterprise, a comprehensive

feature comparison with other in-memory data stores like Memcached and Aerospike is

necessary to assess its advantages and disadvantages thoroughly. Thirdly, there should be a

26

rigorous evaluation of Redis Enterprise's enterprise-grade features, such as high availability,

data durability, and security, to validate their value and reliability under operational

conditions, including failure scenarios and security threats. Additionally, a detailed cost

analysis and total cost of ownership evaluation, including transparent pricing and

clarification of TCO components, would provide potential customers with insights into the

cost-benefit considerations of deploying Redis Enterprise. Lastly, the report should include

case studies and real-life deployment examples to illustrate how companies have effectively

implemented Redis Enterprise in productive scenarios, offering crucial information and

guidelines for further adopters. Addressing these gaps would provide a more comprehensive

and objective assessment of Redis Enterprise's capabilities and suitability for enterprise-

grade applications.

I. Face Detection using Faster R-CNN

A novel approach is suggested in the study “Face Detection using Faster R-CNN” which

includes an advanced face detection method based on the Faster R-CNN objects

identification model. Nevertheless, the paper signposts some key areas of improvement

needed for further studies.

The identified gaps in the proposed face recognition technique underscore critical areas for

further research and development. Firstly, while the technique shows promise in enhancing

face recognition rates, its real-time performance and computational complexity remain

challenges. Future studies should focus on optimizing the approach to enable real-time

operation under resource-constrained conditions. Secondly, the technique's resilience to

occlusions, pose variations, and changes in illumination needs improvement, particularly in

complex scenarios. Alternative approaches should be explored to better address these

challenges. Thirdly, adapting the technique to accommodate diverse face appearances and

ethnic groups requires attention. Expanding the training dataset and addressing biases can

enhance performance across different demographics. Additionally, integrating the proposed

procedure with facial recognition and analysis tasks would further enhance its utility in

comprehensive face processing workflows. Lastly, while the approach has been evaluated

on benchmark datasets, its performance on larger and more diverse datasets remains to be

assessed. Conducting thorough evaluations on such datasets will provide insights into the

approach's applicability and effectiveness across a wide range of real-world scenarios.

Addressing these gaps will contribute to the development of more robust and versatile face

recognition techniques with broader applicability and improved performance in real-world

applications.

J. Robust Real-time Face Detection via Convolutional Neural Networks

The publication "Robust Real-time Face Detection via Convolutional Neural Networks"

provides a promising technique to face detection using convolutional neural networks

(CNNs). However, the paper also indicates certain major gaps that need to be addressed in

future work.

27

The identified gaps in the paper's evaluation of the face detection method highlight areas for

further research and development. Firstly, while the method performs well under ideal

conditions, its performance under challenging settings, such as poor lighting and partial

occlusions, requires investigation. Future studies should explore the method's robustness in

diverse real-world scenarios to ensure its practical applicability. Secondly, while the method

achieves high accuracy, its computational cost may hinder real-time applications. Future

research should focus on optimizing the method for real-time performance through network

design optimizations and hardware acceleration techniques. Thirdly, the evaluation

predominantly focuses on datasets featuring Caucasian faces, raising questions about the

method's generalization to faces from diverse ethnicities and backgrounds. Ensuring the

method's inclusivity and fairness requires investigation into its performance across a broad

spectrum of face appearances. Additionally, exploring the integration of the method with

face tracking and recognition tasks could enhance the development of comprehensive and

accurate face processing pipelines. Finally, the availability of the method as an open-source

implementation and community engagement are not addressed in the study. Open-sourcing

the method would promote wider adoption and collaboration among researchers and

developers, driving innovation and advancement in the field. Addressing these gaps will

contribute to the development of more robust, efficient, and inclusive face detection

methods with broader applicability in real-world applications.

K. Open Face: A Unified Deep Learning Framework for Face Recognition and

Community Identification

The paper "OpenFace: The authors of “A Unified Deep Learning Framework” propose an

overall deep-learning framework for face recognition and community identification.

Nevertheless, the essay also points out some significant aspects that must be considered for

future research.

The identified gaps in the research on face recognition methods highlight critical areas for

further exploration and enhancement. Firstly, while deep learning models have shown

promise in face recognition, they remain susceptible to variations in pose and lighting

conditions. Future research should focus on improving the robustness of these models to

such instabilities, enabling more accurate face recognition across diverse conditions.

Secondly, achieving fairness and inclusivity in face recognition algorithms requires

addressing biases inherent in the data and algorithms. This necessitates the use of more

diverse datasets and exploration of fairness-aware learning approaches to ensure equitable

performance across different ethnicities and individuals. Thirdly, while the OpenFace

framework shows potential in face recognition, scalability to large-scale applications

remains unexplored. Future studies should investigate the scalability of OpenFace for high-

speed feature extraction and retrieval in large-scale face recognition systems. Additionally,

privacy and security considerations are paramount in facial recognition applications.

Research should focus on methods to address privacy concerns through techniques like

anonymization, differential privacy, and secure data storage and transmission. Lastly,

integrating face recognition methods with real-time face detection systems presents

opportunities for real-time identification. Future research should explore efficient

integration paradigms while addressing computational challenges to achieve real-time

28

performance. Addressing these gaps will contribute to the development of more robust, fair,

scalable, and privacy-aware face recognition systems with broader applicability in real-

world scenarios.

L. A CNN Family for Face Recognition

Exploration of Hybrid CNN Architectures: Future studies can investigate hybrid

architectures which combine different face recognizing CNNs for better results.

Investigation of Transfer Learning Strategies: The utility of transfer learning for various

deep learning tasks. Research in the future may include investigating how CNN training can

be used for recognition of faces with transfer methods. It may also entail using CNN training

from other areas so as to improve accuracy levels and reduce training periods.

Addressing Bias and Generalization to Diverse Face Appearance: Face recognition tools

could show bias toward certain groups of people. Research efforts for future study should

concentrate on overcoming bias in face recognition through increased diversity training

data, as well as consideration of fairness aware training.

Robustness to Occlusions and Variations in Pose and Illumination: Face recognition can

suffer serious degradation due to changes in pose and illumination, or even partial

occlusions. Further researchers may try to develop methods that can enhance the resilience

of CNN systems to these variations in order to enable accurate classification under different

environments.

Real-Time Performance Optimization: Though the study is concerned with recognition

accuracy, subsequent studies are recommended on optimisation techniques for live

applications of facial recognition. This may involve evaluating lightweight CNN networks

or hardware efficiency in utilising acceleration techniques as well as efficient feature

extraction methods.

M. Performance Evaluation of Different Virtual Machine Configurations in

Microsoft Azure

It provides an insightful assessment of different VM configurations within MS Azure.

However, the article also emphasises some critical topics for additional research:

Expanded Workload and Scenario Evaluation: This article mainly reviews the behaviour of

virtual machines in CPU-intense conditions. Going forward, it will be necessary to broaden

the framework through which the study is assessed and include other types of workloads

like memory intensive, I/O intensive, and network intensive workloads. The other part in

this evaluation must also consider real life cases like the web applications, databases, and

machine learning applications among others.

29

Cost Analysis and Cost-Performance Optimization: On the other hand, the focus is on

performance indicators, leaving out any issues surrounding the cost implications that arise

due to diverse virtual machine settings. Hence, future studies need to include cost factors in

the assessment process considering factors like hour, instance prices, and storage costs. It

would therefore facilitate an overall insight into the cost-to-performance ratios of each

virtual machine's setup.

Advanced Performance indicators and Analysis: It examines elementary efficiency

measures including central processing unit usage, memory consumption, and network

performance. Therefore, future studies should consider more elaborate performance

indicators like cache hit rate, disk I/O patterns, and network latency. Another topic for

further in-depth exploration would be to delve deeper into other analysis methods like

detecting performance bottleneck and optimization solutions.

N. A Performance Analysis of Nginx and Apache Web Servers

“Comparative Performance Analysis of Nginx and Apache: Popular open-source web

servers” is a useful paper evaluating performance of the most popular freeware web servers.

However, the paper also indicates three significant weaknesses that need to be addressed in

future work:

This study majorly focuses on the comparison of the performance of Nginx and Apace when

serving static content. To start with, the evaluations in future research must cater for a wider

range of the workload including dynamic content generation, database interactions and real

time web applications. Also, it should take into consideration practical cases like e-

Commerce, a content management system, and social networks applications.

This evaluates the paper with regard to particular hardware configuration and network

environment. Further studies into how computer speed is influenced by the number of CPU

cores, memory size or network connections would be recommended

performance of Nginx and Apache. The assessment should consider varying network

attributes like response time, delay, and packets’ drop in assessing the performance of both

servers on different networks.

However, it focuses on performance measurement without looking deep at the security

implications of different web server setups. It is important for future studies to look into

how various security measures like firewall rules, intrusion detection system, web

application firewall affect web server performance. This would help in optimising security

configurations without sacrificing performance speeds.

Most of the evaluations are centred on on-premises implementations in the paper. It is,

therefore, important that future work focuses on testing Nginx and Apache performance and

scalability across major cloud-based platforms, including AWS, Azure, and GCP. It is a key

step towards determining suitability of the applications for cloud-native apps as well as

assessing if they are capable of handling varying load and scaling needs.

30

31

CHAPTER 3: SYSTEM DEVEPLOPMENT

3.1 REQUIREMENT AND ANALYSIS

Hardware Requirements:

● A computer with a minimum of 4 GB RAM to accommodate the computational demands

of the project.

● An internet connection is required for accessing external datasets, libraries, and cloud-

based resources.

Software Requirements:

● Python 3.5 or higher

● Visual Studio Code

● React Native

● AWS S3

● AWS Lambda

● Amazon Rekognition

● API Gateway

Libraries:

● React & React Native: The above frameworks formulate engaging and responsive

application interfaces for professor and student users.

● Jest: For verifying the functionality and reliability of react-native and react application

codes.

● Nginx: Acting as a reverse proxy server, it directs web traffic and improves security.

● Hypercorn: An ASGI server, compatible with Flask, for running asynchronous Python web

applications.

● Redis-py: A python client to handle Redis session management and caching.

● Flask: A powerful yet easy-to-use web framework that forms the backbone of building a

backend for API.

● PyTest: Pytest makes it easy to write small, readable tests, and can scale to support complex

functional testing for applications and libraries.

32

● DynamoDB: Amazon DynamoDB is a fully managed proprietary NoSQL database offered

by Amazon.com as part of the Amazon Web Services portfolio.

Functional Requirements

The attendance tracking system necessitates several key functionalities to ensure efficient

management and accurate record-keeping. Firstly, it must possess the capability to precisely

identify faces from photos uploaded by instructors, subsequently recording attendance for

each recognized student in the database. Secondly, students should be able to register

themselves via the student application, providing necessary information including face

recognition data. Furthermore, the student application should enable students to access and

review their attendance records, offering filtering options based on course, date, or other

relevant criteria. On the instructor side, professors should be able to upload class photos

through the application, with the system processing these images to identify faces and

compare them against the database of enrolled students. Moreover, to maintain accuracy in

attendance records, professors need the functionality to specify the precise class and session

for which attendance is being recorded, facilitated through the professor application. By

integrating these features seamlessly, the system ensures streamlined attendance

management and facilitates the tracking of student attendance across various courses and

sessions.

Non-Functional Requirements

The facial recognition process within the system should prioritize timeliness to minimize

the duration between image submission and attendance recording. Additionally, it should be

scalable to accommodate simultaneous usage by multiple users and handle large datasets

without compromising speed. Furthermore, the transference and storage of sensitive

information, including students' facial and personal data, must be conducted with utmost

care, ensuring compliance with relevant data protection laws. Both the teacher and learner

applications should be designed with user-friendliness in mind, considering the varying

levels of technological expertise among users. Moreover, the system should strive for

minimal downtimes and high availability, while maintaining accurate face recognition and

attendance tracking with a low false positive or negative rate. These features collectively

contribute to the effectiveness, security, and usability of the attendance tracking system.

3.2 SYSTEM DESIGN

The Facial Recognition and Attendance Marking Service and the Image Registration Service

are the project's two primary services. Every service has a distinct architecture that is suited

to its own capabilities and integrates with standard components for consistency and

efficiency.

Front-end - Application for Professor and Students:

33

In the construction of our project, React Native served as the primary framework, providing

a versatile and efficient platform for development. This choice enabled us to create a cross-

platform application that delivers a seamless user experience across various devices. Among

the standout features of our application are the capabilities for uploading images and

selecting specific classes or times, offering users a tailored and convenient experience.

These functionalities streamline the attendance tracking process, enhancing efficiency for

both educators and students alike. To facilitate communication with the backend systems,

our project integrates RESTful APIs. Leveraging this architectural style ensures robust and

standardized communication between the frontend and backend components, promoting

interoperability, scalability, and maintainability. Through the implementation of RESTful

APIs, our application achieves seamless data exchange, empowering users with reliable and

responsive performance.

Server in the back end:

Our backend infrastructure operates on Flask, deployed on virtual machines hosted by

Azure. Flask provides a robust and flexible framework for handling various tasks, including

image processing and attendance tracking API calls. Through Flask, our system efficiently

manages the flow of data, ensuring seamless communication between the frontend and

backend components. To support asynchronous operations, we employ Hypercorn as the

ASGI server. This choice enhances the scalability and responsiveness of our system,

allowing it to handle concurrent requests with optimal efficiency. By leveraging Hypercorn,

our application can efficiently process multiple tasks simultaneously, further enhancing its

performance and reliability.

Nginx:

As a critical component of our system architecture, the reverse proxy plays a pivotal role in

orchestrating communication between clients and the Flask program. Acting as a

intermediary, it efficiently forwards incoming requests to the Flask backend, ensuring

smooth and reliable data transmission. Moreover, the reverse proxy serves as a crucial layer

for optimizing security measures and controlling the distribution of workload. By

centralizing access control and implementing robust security protocols, it fortifies our

system against potential threats and vulnerabilities. Simultaneously, the reverse proxy

enhances performance by intelligently balancing the load across different servers, thereby

optimizing resource utilization and ensuring a seamless user experience.

AWS Rekognition:

AWS Rekognition based facial recognition that operates together with AWS S3, AWS

DynamoDB and AWS Api gateway to process the images and output the result. Database

retains attendance records, registered face data, and student information.

Redis:

34

In our system, caching serves as a strategic tool to alleviate the database load and improve

response times. By storing frequently accessed data in a cache, we reduce the need for

repeated database queries, thus enhancing the overall performance and efficiency of the

system. This approach not only accelerates response times but also minimizes latency,

ensuring a smoother user experience. Additionally, our system effectively manages the Flask

application's session data, providing seamless and secure interaction for users. Through

robust session management techniques, we maintain the integrity and consistency of user

sessions, facilitating personalized interactions and preserving user data across multiple

requests. By efficiently handling session data within the Flask environment, we optimize

resource utilization and streamline the user experience, ultimately enhancing the overall

functionality and performance of the application.

AWS S3:

In our system, AWS S3 serves as the designated repository for storing the images uploaded

for recognition purposes. Leveraging the robust capabilities of AWS S3, we ensure secure,

reliable, and scalable storage for the uploaded images. By utilizing AWS S3, we optimize

resource management and streamline the image recognition process, enabling seamless

access to the stored images when needed. This integration enhances the efficiency and

reliability of our system, contributing to a smoother and more responsive user experience.

Data Flow:

1. Professors upload images via the app.

2. Images are sent to the Flask backend.

3. AWS based Flask app processes the images, detects faces, and uses Rekognition for

4. Recognized faces are matched with the database for attendance marking.

5. Attendance data is updated in the database and cache in Redis.

6. Results are sent back to the professor application.

Service 2: Overview of Image Registration Architecture:

Student Application Frontend:

Our application, built using React Native, represents a seamless integration of modern

technology to cater to the needs of our users. It offers students the convenience of checking

their attendance status and registering for classes effortlessly. Through its intuitive interface

and robust functionality, our application enables smooth interaction with the backend

system, facilitating the seamless submission and retrieval of data. By leveraging React

Native's capabilities, we ensure a responsive and engaging user experience while

maintaining seamless communication with the backend, thereby enhancing the overall

efficiency and effectiveness of our application.

Server in the back end:

35

Our Flask Anywhere-powered Flask application stands as a versatile and dynamic platform,

capable of handling diverse functionalities with ease. It efficiently responds to student

registration requests and manages associated data seamlessly. Through its robust

architecture and flexible design, our application facilitates smooth interactions between

users and the system, ensuring reliable performance and an intuitive user experience. By

leveraging Flask Anywhere, we empower our application with the agility and scalability

necessary to meet the evolving needs of our users effectively.

Nginx:

As the reverse proxy for our Flask application, this component plays a pivotal role in our

system architecture. It serves as a critical intermediary, efficiently managing incoming

requests and directing them to the appropriate backend services. Beyond its fundamental

function, the reverse proxy also serves as a key component for load management and

enhancing security measures. By intelligently distributing incoming traffic and

implementing robust security protocols, it ensures optimal performance and protects against

potential threats. This multifaceted role not only optimizes the overall system efficiency but

also contributes to a seamless and secure user experience.

Database:

Our system serves as the central repository for storing registered facial photos and student

data, consolidating all relevant information in a single, secure location. By centralizing this

data, we streamline the management and accessibility of crucial information, facilitating

efficient operations and enhancing user convenience. This centralized approach ensures that

all registered facial photos and student data are readily accessible when needed, enabling

seamless integration with various system functionalities and enhancing the overall reliability

and effectiveness of our application.

Redis:

Utilized to boost performance, our system employs caching mechanisms to store frequently

accessed data, thereby reducing the need for repetitive retrieval from the primary data

source. By strategically caching this data, we minimize latency and optimize response times,

ultimately enhancing the overall efficiency and responsiveness of our application. This

caching strategy ensures that commonly accessed information is readily available,

contributing to smoother user experiences and improving system performance, particularly

in scenarios where data retrieval occurs frequently. Dataflow:

1. Students register and upload their facial images via the app.

2. The Flask backend receives the registration data and images.

3. Images are processed and stored in AWS S3 Storage.

4. Student data and image references are stored in the database.

5. Redis caches registration data for quick access.

6. Confirmation and retrieval requests are managed through the Flask app and sent back to the

student application.

36

3.3 DATA WAREHOUSING:

Gathering First Image Pool:

Gather a starting set of face photos for every student who has signed up. This can be

completed in the student application during the registration phase.

Make sure the dataset is diverse by taking pictures with various lighting, viewpoints, and

expressions on people's faces to increase the resilience of the facial recognition algorithm.

Continued Image Gathering

Gather photos from classroom environments that instructors contribute on a regular basis to

improve the dataset's quality and the model's accuracy over time.

Data Preprocessing:

● Standardisation of Images: Photos also must all be resized into one standard size with the

original aspect ratio intact. This ensures that the model’s data is not subject to change.

● Converting To GrayScale: Computing complexity can be lowered by converting a grayscale

picture. Facial recognition models could also use grayscale photos in this way, thereby

reducing the quantity of data without compromising essential characteristics.

● Reduce Noise: Employ filters to reduce noise and artefacts in images. This can significantly

improve recognition rate, which is highly important when shooting photographs differently

under light situations.

● Recognition of Faces and Cropping: Extract faces from pictures through use of face

detection tools (DNNs from OpenCV and Haar cascades).

● Data Augmentation: However, apply techniques that can improve the data by rotating it,

stretching or flipping it horizontally. The system tries to mimic various circumstances under

which those photographs may have been taken and strengthens the model.

● Normalisation: Subtract mean and divide by the standard deviation to achieve normalised

picture pixel value with 0 means and 1 standard deviations. This is a normalising step that

helps converge much faster during model training.

● Labelling: Labelling the pictures with the particular student’s name or id would ensure each

picture is matched correctly to the individual student on the database.

● Data Splitting: Breakdown the data into training, validation, and test sets. The dataset will

be split into training (70%) validation (15%), and test set (15%).

37

3.4 IMPLEMENTATION:

Screenshots of various stages of the project

Figure 3.1 Segregating faces and names from input faces directory (V1 of the model)

Figure 3.2 Using openCV and face recognition to recognise faces (V1 of the model).

38

Figure 3.3 Record attendance of the student using V1 of the model

Figure 3.4 Dataflow Diagram of the mobile application

39

Figure 3.5 Register Student Endpoint using V1 of the Model

Figure 3.6 Nginx proxy configuration for the python backend

40

Figure 3.7 Unit Test for registering student in V1 of the model

Figure 3.8 Unit Test for marking attendance in V1 of the model

41

Figure 3.9 Redis setup on port 6379 in V1 of the model

Figure 3.10 MongoDB Connection uri

Figure 3.11 URI Parsing for MongoDB Connection

42

Figure 3.12 Connection Established with S3 bucket

Figure 3.13 S3 Bucket

3.5 KEY CHALLENGES

3.5.1 FACE RECOGNITION ACCURACY

In order to guarantee optimal facial recognition capability, a wide range of conditions

such as varying angles under different lighting sources must be taken into

consideration. The problem exists in making sure that a model can correctly identify

faces yet takes into consideration changes in accessories, partial occlusions, and

expression of one’s face with minimal amount of wrong positive or negative results.

3.5.2 PERFORMANCE & SCALABILITY

However, at rush hours such as commencement of lessons, the system ought to

handle a high magnitude of requests concurrently. Examples of scalability problems

include managing increasing data loads, ensuring faster response times, and

sustainability.

43

3.5.3 SECURITY AND PRIVACY OF DATA

Handling face photos and other private data raises privacy issues. For security

reasons, it is necessary to prevent illegal access, data breach, and safe storage of data

in order to ensure that it complies with data protection regulations like GDPR and

implements robust security measures, the system will follow its data transmission

process.

3.5.4 INTERFACE DESIGN AND USER EXPERIENCE

Programs have to be simple enough to understand not only by students, but also by

professors themselves. However, it is essential to ensure ease of operation without

compromising functionality and user-friendliness among people with differing

professional skills.

3.5.5 COMPATIBILITY AND INTEGRATION

Ensuring interoperability across several platforms and devices and smooth

integration of multiple technologies (React Native, Flask, Azure, Redis, etc.) is a

challenging undertaking. The system needs to function flawlessly on a variety of

devices and operating systems.

44

45

CHAPTER 04: TESTING

Ensuring the security, dependability, and effectiveness of the attendance marking and facial

recognition system depends heavily on the testing phase. The testing techniques, such as

unit tests and integration tests, that are used to verify each part of the system and the system

overall are described in this chapter.

4.1 TESTING STRATEGIES:

Unit testing is the process of evaluating each application component separately to make

sure all of the components are working as intended.

4.1.1 FLASK APPLICATION BACKEND

Our quality assurance process involves thorough verification of each API endpoint's

response accuracy and error management mechanisms. We meticulously examine the

behaviour of the system to ensure that responses align with expected outcomes and

that error handling is robust and comprehensive. Additionally, we conduct rigorous

testing to verify the functionality of the image processing module, confirming that it

operates seamlessly according to specifications. Furthermore, we meticulously

scrutinize all database operations, including data updates and retrievals, to ensure

they perform as intended without any discrepancies or errors. By meticulously

examining these aspects of the system, we strive to maintain the reliability, accuracy,

and overall integrity of our application.

4.1.2 REACT NATIVE APPLICATIONS ON THE FRONT END

In our quality assurance process, we meticulously inspect the rendering and user

interactions of all UI elements to ensure a seamless and intuitive user experience.

Through rigorous testing, we verify the accuracy of data submission and validation

across various forms, including those for login and registration. By scrutinizing the

behaviour of these forms, we confirm that data submitted by users is processed

accurately and validated according to predefined criteria. This comprehensive

approach enables us to identify and address any potential issues related to UI

functionality and data integrity, ultimately enhancing the overall usability and

reliability of our application.

46

4.1.3 INSTRUMENTS AND REFERENCE MATERIALS

In our testing strategy, we leverage the unit test framework in Python for conducting

backend testing. This powerful framework allows us to systematically assess the

functionality and reliability of our backend components, ensuring that they meet the

specified requirements and perform as expected. Additionally, for testing React

Native components, we employ Jest, a comprehensive testing framework tailored

specifically for JavaScript-based applications. By utilizing these specialized tools,

we can thoroughly evaluate the behaviour and functionality of our backend and

frontend components, thereby ensuring the overall quality and robustness of our

application.

4.1.4 INTEGRATION EXAMINATION

Integration testing is a crucial phase in our quality assurance process, aimed at

verifying interoperability and identifying interface flaws within our system. During

integration testing, we combine individual units of the system and test them

collectively to ensure seamless communication and interaction between different

components. By simulating real-world scenarios and interactions, we can detect any

inconsistencies or compatibility issues that may arise when integrating various

modules. This comprehensive approach helps us validate the overall functionality

and reliability of our system, ensuring smooth interoperability and a seamless user

experience.

4.1.5 WORKFLOW FOR APPLICATIONS

In our testing protocol, we conduct end-to-end testing to validate the entire process,

starting from the image upload functionality within the professor app to the

attendance tracking recorded in the database. This comprehensive approach allows

us to assess the seamless flow of data and operations throughout the system, ensuring

that all components interact harmoniously and produce the intended outcomes.

Furthermore, we meticulously verify the student app's registration process and

validate the corresponding database entries to confirm the accuracy and

completeness of student data storage. By rigorously evaluating these critical

functionalities, we ensure the reliability, accuracy, and integrity of our application's

core processes.

4.1.6 API CONSOLIDATION

Our testing strategy includes a thorough examination of the integration between the

frontend apps and the Flask backend to ensure seamless interaction and functionality.

We meticulously scrutinize the communication and data exchange processes

between these components to verify their seamless integration and interoperability.

47

Additionally, we rigorously validate all API requests and responses, meticulously

assessing how they are handled across various scenarios, including error conditions.

By conducting comprehensive testing of these critical aspects, we ensure that our

application delivers a cohesive user experience and robust functionality, maintaining

reliability and performance across the board.

4.1.7 INTEGRATION OF DATABASES

In our testing procedures, we thoroughly assess the integration between the database

and backend application to ensure seamless data interaction and synchronization. We

meticulously examine the communication protocols and data transfer mechanisms to

verify their effective integration and interoperability. Additionally, we conduct

rigorous tests during read and write operations to confirm the integrity and

consistency of the data stored in the database. By scrutinizing these critical aspects,

we ensure that our backend application seamlessly interacts with the database,

maintaining data integrity and consistency throughout various operations. This

comprehensive testing approach enables us to deliver a reliable and robust system

that meets the requirements of our users.

4.1.8 STORAGE AND CLOUD SERVICES

The testing process includes a thorough examination of the integration between S3

Storage and API Gateway on AWS to ensure seamless functionality. We meticulously

assess the communication and data transfer between these services to verify their

effective integration and interoperability. Additionally, we rigorously validate the

upload, storage, and retrieval of photos from cloud storage to ensure that these

operations are executed accurately and efficiently. By scrutinizing these critical

aspects, we ensure that our application seamlessly interacts with AWS services,

enabling reliable and secure photo management in the cloud. This comprehensive

testing approach ensures that photos are uploaded, saved, and retrieved in the proper

manner, meeting the expectations of our users and maintaining the integrity of our

system.

4.1.9 REDIS CACHING

As part of our testing regimen, we thoroughly examine the caching system

implemented for frequently accessed data. Our assessment focuses on evaluating

the effectiveness of the caching mechanism in optimizing performance by reducing

the need for repeated data retrieval. Additionally, we rigorously verify the

procedures for updating cached data and ensuring proper cache invalidation. By

scrutinizing these aspects, we aim to ensure that our caching system operates

seamlessly, enhancing system efficiency while maintaining data accuracy and

consistency. This comprehensive testing approach enables us to deliver a high-

48

performance system that effectively manages frequently accessed data, contributing

to an enhanced user experience.

Test Cases and Outcomes

Positive Test Cases: These are test cases where the desired outcome is achieved, like

successfully uploading an image, detecting faces, and recording attendance.

Negative Test Cases: are test scenarios that ought to fail, like improper data submissions,

invalid image formats, or unauthorised access.

Figure 4.1 HTTP health check teste

49

 Figure 4.2 HTTP testing file

Figure 4.3 Health Test

50

Figure 4.4 Signup Test

Figure 4.5 Login Student Test

51

CHAPTER 5: RESULTS AND EVALUATIONS

5.1 RESULTS

The proposed attendance tracking application, leveraging React-Native, Flask, AWS

Rekognition, and GeoLocation API, represents a comprehensive solution to address the

challenges faced in traditional attendance management systems. This analysis examines the

key components and potential impact of the application within the context of academic

institutions.

5.1.1 TECHNOLOGICAL SYNERGY

The integration of React-Native and Flask offers a powerful combination of frontend

and backend technologies, enabling the development of a cross-platform mobile

application with robust server-side functionality. React-Native's efficiency in

creating intuitive user interfaces complements Flask's scalability and flexibility in

managing data interactions and server logic.

5.1.2 ENHANCED EFFICIENCY

By incorporating AWS Rekognition's facial recognition capabilities, the application

automates the attendance tracking process, reducing manual effort and potential

errors associated with traditional methods. Real-time facial recognition ensures

timely recording of attendance, enhancing efficiency for both teachers and students.

5.1.3 IMPROVED ACCURACY AND SECURITY

 The utilization of AWS Rekognition not only streamlines attendance tracking but

also enhances accuracy by minimizing false positives and negatives. Moreover,

stringent measures will be implemented to ensure the secure transfer and storage of

sensitive data, such as facial and personal information, in compliance with data

protection laws.

5.1.4 GEOLOCATION INTEGRATION

The integration of the GeoLocation API adds another layer of functionality to the

application, enabling location-based attendance verification. This feature ensures

that students are physically present within designated areas during class sessions,

further enhancing attendance accuracy and integrity.

52

5.1.5 SCALABILITY AND RELIABILITY

The application's architecture is designed to be highly scalable, capable of handling

simultaneous usage by multiple users and large datasets without sacrificing

performance or reliability. This scalability ensures that the application can

accommodate the needs of academic institutions of varying sizes and complexities.

The innovative approach to attendance tracking proposed for academic institutions marks a

departure from conventional methods, offering a sophisticated blend of modern technologies

to streamline processes and enhance overall efficiency. At the heart of this approach lies the

seamless integration of React-Native, Flask, AWS Rekognition, and GeoLocation API.

Through this integration, the application aims to automate attendance recording while

ensuring accuracy, security, and scalability. By harnessing the power of AWS Rekognition's

facial recognition capabilities, the application facilitates real-time identification of students

from uploaded images, eliminating the need for manual data entry and reducing

administrative overhead. This automation not only enhances operational efficiency but also

reduces the likelihood of errors inherent in traditional attendance tracking methods.

Furthermore, the incorporation of GeoLocation API adds an additional layer of functionality

to the application, enabling location-based attendance verification. This feature ensures that

students are physically present within designated areas during class sessions, thereby

bolstering attendance accuracy and integrity. Additionally, stringent security measures are

implemented to safeguard the transfer and storage of sensitive data, including facial and

personal information. Compliance with data protection regulations is paramount, ensuring

that student privacy is upheld and data breaches are mitigated effectively. The application's

design prioritizes scalability and reliability, enabling seamless performance even under high

user loads and large datasets.

In conclusion, the proposed approach to attendance tracking represents a significant

advancement in academic record-keeping, promising to revolutionize traditional processes

with its innovative use of technology. By automating attendance recording, enhancing

accuracy and security, and prioritizing usability and scalability, the application stands poised

to make a meaningful impact on educational institutions' administrative operations.

Continued refinement and optimization of the application are expected to further enhance

its capabilities and ensure its relevance in the ever-evolving landscape of education

technology.

53

5.1.6 RESULT SCREENSHOTS

Figure 5.1 Test Results of Unit Tests

Figure 5.2 Single Face Detection

Simple singular face detection for images having only one recognised face

54

Figure 5.3 Faces Detected in each Image

Figure 5.4 Proportion of Recognized vs Unrecognised Faces

55

Graph showing number of recognised images from our dataset to unrecognised ones in the

inputted images.

Figure 5.5 Distribution of Face Recognition Confidence Scores

Confidence score of the algorithm with respect to each inputted image. Shows how

confident the algorithm is that it predicted the correct image

56

Figure 5.6 Cumulative Faces Recognized Over Time

Figure 5.7 Flask Backend Running Successfully

57

5.2 COMPARISON WITH EXISTING PROJECTS:

5.2.1 TECHNOLOGY STACK

Leveraging a modern technology stack including React Native for mobile application

development, Flask for backend logic, and AWS API Gateway for hosting. Existing

Projects: Many existing attendance recording systems rely on older technology

stacks or a combination of technologies that may not offer the same level of

scalability or efficiency.

5.2.2 INTEGRATION OF MACHINE LEARNING

Incorporates powerful machine learning and deep learning techniques to enhance

speed, accuracy, and accessibility in attendance recording. Existing Projects:

Traditional attendance recording systems often lack integration with advanced

technologies like machine learning, resulting in lower accuracy and efficiency.

5.2.3 SCALABILITY AND FLEXIBILITY

Utilizes AWS API Gateway for hosting, ensuring scalability and adaptability to

varying workloads, particularly in a university setting. Existing Projects: Some

existing systems may struggle to handle dynamic demands due to limitations in their

hosting infrastructure or technology stack.

5.2.4 BACKEND FRAMEWORK CHOICE

Chooses Flask as the backend framework for its lightweight nature, extensibility, and

ease of integration with other technologies. Existing Projects: Other attendance

recording systems may use different backend frameworks which might not offer the

same level of simplicity or flexibility.

5.2.5 OVERALL EFFICIENCY AND RELIABILITY

Provides a seamless and efficient attendance recording solution, ensuring precision

and reliability in managing attendance records. Existing Projects: While existing

systems may fulfil basic attendance recording needs, they may lack the advanced

features, efficiency, and reliability offered by Visage Verify.

This comparison highlights the unique advantages and strengths of Visage Verify compared

to existing attendance recording projects, particularly in terms of technology stack,

integration of machine learning, scalability, backend framework choice, customization

capabilities, and overall efficiency.

58

59

CHAPTER 6: FUTURE SCOPES AND

CONCLUSION

6.1 CONCLUSION

Thus, the Attendance Recording App, based on React Native, Flask, OpenCV, Nginx and

Redis, becomes one of the major stages towards simplified and convenient attendance

accounting in the schools. Throughout the evolution of this project, it clearly shows that

technology can change some obsolete approaches to bring forth what might be considered

futuristic attendance monitoring practices that are no longer exclusively automated; they are

intelligent and reactive.

It is crystal clear, if one looks back on the successes of the previous year, that this app is

more than just a static solution; rather, it represents a dynamic, evolving platform of limitless

capacity. While the proposed future scope of the project targets an advancement beyond

implementation, incorporating state-of-the-art technology and innovative features for

enhanced functionality and better usability.

Facial recognition using machine learning will enhance accuracy and make the attendance

tracking more believable in various environments. Real time monitoring introduces an

element of urgency and the latter follows how hectic learning environments are. The

integrated enhanced analytics and reporting and blockchain technologies also bring to fore

more information for increased transparency and data secrecy in the education environment

becoming relevant currently.

This exceptional system boasts of an improved mobile app which serves as the doorstep for

the users and is both attractive and interactive. This comprises gamification elements, multi-

lingual support, and push alerts in order to promote user engagement and happiness.

Its design is flexible enough and can fit all education establishments, ranging from small

colleges to larger universities since it can be used in the cloud. This versatility ensures that

the application remains a relevant tool as efficient devices adjust and adapt to the ever-

changing society it was meant to benefit.

Therefore, the future of attendance management depends on integrating innovative

technologies, user-focused designs and meeting constantly changing needs of schools. It is

just one step towards the future where attendance tracking will be more than just an

administration routine, but rather, it will boost success and efficiency of classroom tasks.

The year one’s anniversary will be celebrated, and it will be accompanied by a promising

and revolutionary journey that involves innovation as well as learning within the attendance

management sector.

60

6.2 FUTURE SCOPES

The advent of computer science into education increases the prospects for improvement of

educational approaches as well. The development of React Native, Flask, OpenCV, Nginx,

and Redis as an attendance tracking app, means a big leap toward making automatic and

efficient college attendance management. With regards to the future, there are different areas

of change and development that could be developed further in order to enhance the program,

make it easier to use and meet the ever-expanding demands of educational institutions.

1. Machine Learning for facial recognition.

Presently, OpenCV is used for face recognition but using machine learning techniques will

greatly improve the precision and dependability in facial identification. The application uses

deep-learning algorithms that allow the solution to improve face detection performance,

despite changing light circumstances and different states of expression at runtime. These

would greatly enhance the smoothness, and reduce errors, in attendance tracking.

2. Real-time Attendance Monitoring

The software could also be adapted for real-time attendance monitoring to offer rapid

understanding of attendance statistics. Through this tool, teachers and administrators would

be able to see real-time data about attendance that will necessitate subsequent actions by

some students. Finally, real-time monitoring ensures that education is as vibrant and

responsive as possible.

3. Enhanced Analytics and Reporting

By extending the analytical and reporting capacity of the app, more useful information

regarding attendance patterns, engagement during classes, or individual growth across

semesters could be obtained. The app can include a lot of data visualisation tools coupled

with configurable reports to enable educators and administrators to make informed decisions

and spot trends that will facilitate focused intervention strategies where necessary.

4. Mobile Application Enhancements

Continuous enhancement of the mobile application is vital for delivering a flawless user

experience. Future advancements could focus on enhancing the user interface, incorporating

user feedback, and optimising performance. Additionally, researching features such as push

notifications for key announcements, gamification components to encourage attendance,

and support for many languages can boost the overall user engagement.

6. Scalability and Cloud Integration

To meet the possible growth in user base and data volume, the app's architecture can be

improved for scalability. Integrating cloud services can provide the flexibility needed to

handle greater demands, guaranteeing smooth operation during peak times. This scalability

can be particularly advantageous for colleges with different sizes and attendance needs.

61

The future scope of the attendance recording app extends beyond its existing capabilities,

enabling chances for innovation and refinement. By incorporating new technology,

increasing user experience, and tackling developing difficulties in attendance management,

the app can play a crucial role in transforming how educational institutions approach and

execute attendance tracking. As the app continues to improve, it has the potential to become

a holistic solution that not only streamlines attendance registration but also helps to the

overall efficiency and efficacy of educational operations.

62

63

REFERENCES

[1] Xingwei Zhou, Wenshan Hu, Guo-Ping Liu “React-Native Based Mobile App for Online

Experimentation” 2019 IEEE International

Conference on Service Systems and Service Management (ICSSSM)

https://ieeexplore.ieee.org/document/9189636

[2] Sreekanth Dekkati, Karu Lal,Harshith Desamsetti, React Native for Android: Cross-

Platform Mobile Application Development International

Journal of Computer and Communication Technology (IJCCT),

2022https://ouci.dntb.gov.ua/en/works/4bwKvMWl/

[3] Michal Chudziak, Geolocation APIs for React Native, Medium 2018

https://medium.com/hackernoon/react-native-basics-geolocation-adf3c0d10112

[4] React Native Geolocation: A Complete Tutorial, LogRocket,

2022https://docs.logrocket.com/reference/react-native

[5] Daniel Quimper, Designing and Implementing RESTful APIs with Flask, 2015

https://blog.miguelgrinberg.com/post/designing-a-restful-api-with-python-and-flask

[6] Hongli Li, Jun Zhao, Yongguang Xu, and Yuan Zhang, Redis++: A High Performance In-

Memory Database Based on Segmented Memory

Management and Two-Level Hash Index, IEEE Xplore 2018

https://ieeexplore.ieee.org/document/8672254

[7] Hao Zhang, Haixia Zhang, Qingquan Zhang, Towards Scalable and Reliable In-Memory

Storage System: A Case Study with Redis, IEEE

Xplore 2016 https://ieeexplore.ieee.org/document/7847138

[8] Redis Enterprise: An Overview, RedisLabs, https://redis.io/docs/about/redis-enterprise/

[9] Ross Girshick, Jeff Donahue, Trevor Darrell, Jitendra Malik, Face Detection using Faster

R-CNN, IEEE Xplore 2017 https://ieeexplore.ieee.org/document/7961803

[10] Yuan Zhang, Xiao Yang, Xiao-Jun Wang, Robust Real-time Face Detection via

Convolutional Neural Networks, International Journal of Computer Vision, 2017

https://paperswithcode.com/search?q=author%3AXiao+Yang

[11] Brandon Amos, Brian Wilder, Ben W. Becker, Tyler Joulin, Pierrot Separovic, OpenFace:

A Unified Deep Learning Framework for Face Recognition and Community Identification,

IEEE Transactions on Pattern Analysis and Machine Intelligence 2016

[12] Oxford Research Department of Commerce, University of Oxford, A CNN Family for

Face Recognition Omron Research, Department of Commerce, University of Oxford 2022

https://ieeexplore.ieee.org/author/37089545015
https://ieeexplore.ieee.org/author/37089545015
https://ieeexplore.ieee.org/document/9189636
https://ouci.dntb.gov.ua/en/works/4bwKvMWl/
https://medium.com/hackernoon/react-native-basics-geolocation-adf3c0d10112
https://docs.logrocket.com/reference/react-native
https://blog.miguelgrinberg.com/post/designing-a-restful-api-with-python-and-flask
https://ieeexplore.ieee.org/document/8672254
https://ieeexplore.ieee.org/document/7847138
https://redis.io/docs/about/redis-enterprise/
https://ieeexplore.ieee.org/document/7961803
https://paperswithcode.com/search?q=author%3AXiao+Yang

64

[13] M. Shoaib, A. Al-Nuaimi, S. Awan, and M. A. Yousaf , Performance Evaluation of

Different Virtual Machine Configurations in Microsoft Azure, Journal of Cloud

Computing 2021

[14] F. Li, W. Wu, and J. Zhang, Cost-Effective Virtual Machine Placement in Microsoft Azure

for Delay-Sensitive Applications, IEEE Transactions on Cloud Computing, 2020

https://ieeexplore.ieee.org/ielaam/5/8789751/8772112-aam.pdf?tag=1

[15] A Performance Analysis of Nginx and Apache Web Servers, International Journal of

Computer Science and Information Technology (IJCSIT) 2017

[16] React Native https://reactnative.dev/

[17] Flask https://flask.palletsprojects.com/en/3.0.

[18] Javascript https://www.w3schools.com/js/

[19] Python https://www.python.org/

[20] Nginx https://www.nginx.com/

[21] Azure https://azure.microsoft.com/en-in

[22] OpenCV https://opencv.org/

[23] GeeksForGeeks https://www.geeksforgeeks.org/

https://ieeexplore.ieee.org/ielaam/5/8789751/8772112-aam.pdf?tag=1
https://reactnative.dev/
https://flask.palletsprojects.com/en/3.0.
https://www.w3schools.com/js/
https://www.python.org/
https://www.nginx.com/
https://azure.microsoft.com/en-in
https://opencv.org/
https://www.geeksforgeeks.org/

65

66

67

68

69

70

