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                    ABSTRACT 

 

This research presents a three-layer methodology to determine the best subterranean cable 

routing electrical distribution system, using the heuristic of graph search, the PRIMs(another 

algo can be added will be decided after implementation) algorithm. Transformer allocation and 

medium voltage network routing are handled by the algorithm's first layer. Low voltage 

network routing and transformer sizing are implemented on the second layer, while the 

provides a technique for allocating dispersed energy resources in an electric distribution 

network in the third place.The suggested algorithm routes a georeferenced area's electrical 

distribution network while accounting for topographical features like streets and intersections 

as well as situations in which there aren't squared streets. Additionally, the algorithm handles 

scalability features, permitting the gradual addition of loads. The model analysis finds that the 

algorithm achieves the best possible result for subterranean routing in a distribution electrical 

network implemented in a georeferenced area, satisfies the planned distance limitations, and 

reaches a node connectivity of 100%. Testing if the voltage drop in the farthest node is less 

than 2% is done by simulating the electrical distribution network. 
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INTRODUCTION 

CHAPTER 1: INTRODUCTION 

1.1 Introduction 

Electricity distribution systems play a pivotal role in providing a reliable power supply to end-

users. Over the years, these systems have evolved to meet the increasing demands of a growing 

population and expanding urban landscapes. This section provides an overview of the historical 

development of distribution systems, emphasizing the challenges and advancements that have 

shaped the current state of the industry. 

The idea of subsurface cable routing is also introduced in this introduction. This modern 

method is becoming popular in urban areas because of its benefits for environmental effect, 

safety, and aesthetics. To maximise the functionality and design of these underground 

networks, advanced techniques are essential. The groundwork for the following discussion of 

the suggested three-layer system is laid forth in this chapter. 

 

1.2 Problem Statement 

This section provides a critical analysis of the problems with current electrical distribution 

systems, highlighting concerns with energy loss, inadequate cable routing, and inefficient 

maintenance. Case examples from the actual world highlight the real-world issues that 

contemporary distribution networks face. The analysis highlights the shortcomings of the 

existing strategies and proves that a comprehensive solution is required to deal with these 

issues. 

 

The requirement for robust distribution networks, the incorporation of renewable energy 

sources, and the rising demand for power are all taken into account. In-depth examination of 

the problem landscape in this section prepares the audience for the presentation of a 

comprehensive and creative solution later on. 
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1.3 Objectives 

The precise aims and objectives of the research study are described in this section. Every 

objective is thoroughly examined, offering a lucid justification for its incorporation and its 

impact on the overall research objectives. 

 

For example: 

- Collection of dataset in the form of OSM file. 

- Implementation of a 3 layer model to optimize the required results. 

- Implementation of 2 different pipelines to get the best result by comparing the pipelines. 

- Comparing the best pipelines and accessing the result on the basis of the energy saved and 

also on the basis of the amount of construction material required. 

 

1.4 Significance and Motivation of the Project Work 

This research work provides an in-depth analysis of the significance and motivation behind the 

research, considering societal, economic, and environmental implications. Real-world benefits 

for end-users, utility companies, and the environment are emphasized, along with potential 

economic savings and improved resource utilization. 

The research is positioned within the context of current global trends, policies, or initiatives 

related to sustainable energy and smart infrastructure. The environmental motivation is 

highlighted, emphasizing contributions to reduced carbon emissions, increased use of 

renewable energy, and a more sustainable energy landscape. 

 



 

 
 

1.5 Organization of Project

This section outlines the structure of the project report, providing a roadmap for the reader

explained in fig 1.1.  Each chapter is briefly described, highlighting the key themes and topics 

covered in a concise manner.
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1.5 Organization of Project Report 

This section outlines the structure of the project report, providing a roadmap for the reader

Each chapter is briefly described, highlighting the key themes and topics 

covered in a concise manner. 

        fig 1.1  Workflow of proposed approach 

 

This section outlines the structure of the project report, providing a roadmap for the reader as 

Each chapter is briefly described, highlighting the key themes and topics 
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CHAPTER 2: LITERATURE REVIEW 

Literature Review 

In wireless sensor networks (WSNs), the study suggests an energy-efficient cluster-based 

routing protocol based on Ant Colony Optimisation (ACO) and Butterfly Optimisation 

Algorithm (BOA). To increase network lifetime and average energy consumption, the 

emphasis is on cluster head selection and path generation optimisation.The assessment of the 

literature emphasises the difficulties that WSNs face because of their limited energy resources 

and the ineffectiveness of conventional routing techniques. The importance of clustering in 

addressing energy restrictions is discussed. The proposed methodology is placed into the 

present research environment by the study through references to existing algorithms such as 

LEACH and DEEC. The ACO is selected for its quick problem-solving speed in WSNs, 

whereas the BOA is picked for its stability[1]. 

 

This study compares the hybrid KPSO (K-means Particle Swarm Optimisation) algorithm to 

the more established K-means and LEACH clustering algorithms in WSNs. Using simulations 

based on different configurations and circumstances, it evaluates the number of active sensor 

nodes, energy consumption, and network longevity.The study cites studies on coverage 

methods in WSNs and noise pollution monitoring. It talks about how sensor node energy varies 

and gives examples to assess the effectiveness of the suggested KPSO algorithm. In order to 

improve WSN performance, the paper highlights the necessity for energy-efficient clustering 

algorithms[2]. 

 

The study offers a framework for the best arrangement of data aggregation points (DAP) for 

Advanced Metering Infrastructure (AMI) in residential grids. It uses machine learning 

clustering approaches, taking into account transmission range, intended DAP count, and smart 

metre locations, among other inputs. By addressing the DAP placement issue, the paper 

positions itself to highlight the deficiency of techniques for AMI network planning. It 



 

 

5 
 

highlights comparable efforts that were mostly centred around particular technology, 

highlighting the necessity of an all-encompassing framework. The outcomes of the suggested 

technique are contrasted with a common DAP placement heuristic[3]. 

The study presents a geometric routing algorithm for ad hoc networks called GOAFR+. By 

providing efficiency on average case graphs and asymptotic optimality in the worst case, it 

seeks to close the gap between theory and practise. The paper classifies cost functions and 

investigates how various cost measurements affect the effectiveness of routing algorithms. The 

study examines early geometric routing algorithm approaches and points out their drawbacks. 

It talks about the drawbacks of GPSR and Face Routing algorithms. The goal is to overcome 

these drawbacks and provide GOAFR+, a geometric routing algorithm that is both more 

effective and ideal[4]. 

 

The application of clustering techniques to routing problems in Mobile Ad-Hoc Networks 

(MANETs) is examined in this research. It suggests particular cluster algorithm 

implementations that integrate with current routing protocols and are based on multi-criteria 

network parameter selection. Citations include research on machine learning applications in 

networking, gateway discovery, and a clustering methodology called DBSCAN-GM that 

combines DBSCAN and Gaussian Means methods. An extensive review of clustering 

techniques and their applications in MANETs is given in this study[5]. 

 

The study discusses mobility-related issues with Mobile Ad Hoc Networks (MANETs), with a 

focus on multicast routing's ability to improve quality of service (QoS). The dependability pair 

factor and node energy are incorporated into the Cluster Head Selection Algorithm (CHSA), 

which is shown. For energy-efficient data transmission, the Lion Optimisation Algorithm 

(LOA) and hop counting-based optimal route selection are used. The results show that in 

regard to energy efficiency, packet delivery ratio, end-to-end delay, and entire network 

performance, the suggested technique (ORSMAN) performs better than the current 

methodologies. The suggested methodology greatly improves the energy efficiency and 
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dependability of multicast routing in MANETs, opening up new research opportunities in 

various network topologies[6]. 

The goal of the paper's oblivious routing method for microgrid cluster optimisation is to meet 

load needs while minimising overall generation costs. Sections include the formulation of the 

routing problem, the suggested oblivious routing method, the outcomes of the simulation, and 

the conclusions. In order to optimise power routing for interconnected microgrids, the article 

takes apparent power, power loss, and load demand into account. Optimising routing according 

to the microgrid structure is the goal of an oblivious routing technique that makes use of 

hierarchical data structures. The study examines earlier studies on smart grids, microgrids, and 

applications such as electric vehicles and energy scheduling schemes[7]. 

 

With an emphasis on sensor cluster optimisation to reduce power consumption, the research 

suggests a reduced-complexity GA (Genetic Algorithm) for multihop sensor network 

optimisation. The knowledge from Intel Corporation, Oregon State University, and National 

Sun Yat-Sen University is contributed by the writers Rahul Khanna, Huaping Liu, and Hsiao-

Hwa Chen. The research done is grounded in previous works on wireless sensor networks for 

surveys, routing protocols, and genetic algorithm optimisation. These are cited in the 

publication[8]. 

 

The goal of the study is to minimise average transmission power while maintaining high data 

speeds in wireless multi-hop networks by cooperative routing, link scheduling, and power 

control. The authors present a formulation of an optimisation problem that takes peak power, 

data rate, and transmission power limits into account. The duality technique, the optimal link 

schedule, and the power control rules are derived together with a detailed discussion of the 

optimisation problem. The application of optimum strategies in minimising average 

transmission power, traffic demand, and routing are all covered in this work. The authors 

highlight the advantages of their integrated method for conserving energy and increased 

network capacity while discussing the trade-off between reaching data speeds and energy 
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efficiency. The importance of reducing power usage is reviewed, the trade-offs in current 

methods are emphasised, and integrated algorithms for the best routing, scheduling, and control 

of power are proposed. It is stressed to apply shortest path algorithms and duality 

approaches[9]. 

 

S.No Title(citation) Methodology Conclusion 

[1] Stojmenovic, I. (2002). Handbook 

of Wireless Networks and Mobile 

Computing. John Wiley & Sons. 

CHSA for cluster head selection, LOA 

for optimal route selection. 

Proposed approach 

(ORSMAN) outperforms 

existing methodologies. 

[2] Al-Karaki, J. N., & Kamal, A. E. 

(2004). Routing Techniques in 

Wireless Sensor Networks: A 

Survey. IEEE Wireless 

Communications, 11(6), 6-28. 

Minimize total generation cost in 

microgrid clusters. 
Simulation results. 

[3] Heinzelman, W. R., 

Chandrakasan, A., & 

Balakrishnan, H. (2000). Energy-

Efficient Communication 

Protocol for Wireless 

Microsensor Networks. 

Proceedings of the 33rd Annual 

Hawaii International Conference 

on System Sciences. 

GA for sensor cluster creation, fitness 

functions for network optimization. 

Proposed GA enhances 

power consumption 

efficiency. 

[4] Boukerche, A., & Fei, X. (2006). 

On the Coverage Problem in 

Wireless Sensor Networks. 

Proceedings of the International 

Conference on Parallel Processing 

Workshops. 

Duality approach, optimal policies, 

TDMA for routing. 

Integrated approach 

improves energy efficiency 

and network capacity. 
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[5] Huang, C. F., & Tseng, Y. C. 

(2005). The Coverage Problem in 

a Wireless Sensor Network. 

Proceedings of the 2nd ACM 

International Conference on 

Wireless Sensor Networks and 

Applications. 

LEACH for clustering, ACO for data 

transmission. 

Proposed algorithm 

outperforms LEACH and 

ACO without clustering. 

[6] R. Mishra, P. Verma, R. Kumar, 

"Gateway Discovery in MANET 

using Machine Learning and Soft 

Computing," International Journal 

of Computer Applications, 2018. 

M2NGA algorithm for clustering, 

multi-objective GA for optimization. 

M2NGA outperforms 

existing intelligent 

clustering methods. 

[7] M. Wang, Y. Cui, X. Wang, S. 

Xiao, J. Jiang, "The Application 

of Machine Learning in 

Networking: A Review," Journal 

of Computer Networks and 

Communications, 2017. 

BOA for CH selection, ACO for route 

generation. 

BOA and ACO enhance 

routing efficiency in WSNs. 

[8] A. Smiti, Z. Elouedi, "DBSCAN-

GM: A New Density-Based 

Clustering Algorithm," Journal of 

Systems and Software, 2015. 

KPSO algorithm compared with K-

means and LEACH. 

Implementation of GOFR 

algorithm. 
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CHAPTER 3: SYSTEM DEVELOPMENT 

3.1 Requirements and Analysis 

 

The Requirements and Analysis phase played a pivotal role in shaping the trajectory of the 

system development process. It involved a comprehensive exploration of the needs and 

expectations of stakeholders, encompassing both functional and non-functional aspects. 

3.1.1 Functional Requirements 

Functional requirements were identified through extensive consultations with end-users, 

electrical engineers, and urban planners. These requirements were detailed and specific, 

addressing key functionalities such as subterranean cable routing, transformer allocation, and 

dispersed energy resource allocation. Collaborative workshops and interviews were conducted 

to elicit detailed use cases and scenarios. 

Functional requirements included: 

● Subterranean Cable Routing: The system needed to optimize the routing of 

subterranean cables considering factors like street layouts, intersections, and 

topography. 

● Transformer Allocation: Efficient allocation of transformers to cater to varying loads in 

the distribution network. 

● Dispersed Energy Resource Allocation: Allocating renewable energy resources in the 

network for sustainable energy distribution. 

3.1.2 Non-functional Requirements 

Non-functional requirements were equally crucial in defining the overall behavior and 

performance expectations of the system. These specifications addressed things like user 

experience, scalability, and reliability. 

Among the non-functional requirements were: 
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● Performance: Real-time results were anticipated from the system, particularly in 

dynamic scenarios including load additions or changes to the energy resource 

landscape. 

● Scalability: The system has to be able to smoothly grow with the network, taking on 

more traffic and resources without sacrificing its functionality. 

● User Experience: Planners and engineers will find it easy to interact with the user 

interface, which was made to be intuitive and user-friendly. 

The requirements analysis process was iterative, involving ongoing feedback loops with 

stakeholders to enhance and validate the requirements that were identified. 

 

3.2 Project Design and Architecture 

The Project Design and Architecture phase concentrated on converting the clearly specified 

requirements into an organised and scalable system. To do this, a thorough design paper 

outlining the architecture, parts, and interactions of the system has to be created. 

3.2.1 High-Level System Architecture 

A top-down view of the system was made possible by the high-level system design, which 

showed the main parts and how they interacted. It guided the development team's 

implementation process like a blueprint. Because of its modular and extensible nature, the 

architecture will be able to accommodate new features in later versions. 

3.2.2 Database Design 

A crucial component was the database architecture, which established the data types and 

schema needed to enable information retrieval and storage. This required giving the data kinds, 

relationships, and indexing techniques some thought. The selection of a relational database 

management system (RDBMS) was based on its effectiveness in managing structured data. 

3.2.3 User Interface Design 



 

 
The goal of user interface design was to visualise the system's interface through the creation of 

prototypes and wireframes. The ideas of accessibility and usability informed design decisions. 

Potential end users were shown mock

information was presented, and general usability.

3.2.4 Algorithmic Design

One of the main components of the system's operation was its algorithmic design. Every layer 

in the suggested methodology has an algorithm that is tailored to deal with particular electrical 

distribution system components. For instance, the transformer allocation algorithm optimised 

the locations of transformers based on network restrictions and l
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The goal of user interface design was to visualise the system's interface through the creation of 

prototypes and wireframes. The ideas of accessibility and usability informed design decisions. 

tential end users were shown mock-ups in order to get their opinions on the design, way 

information was presented, and general usability. 

3.2.4 Algorithmic Design 

One of the main components of the system's operation was its algorithmic design. Every layer 

in the suggested methodology has an algorithm that is tailored to deal with particular electrical 

distribution system components. For instance, the transformer allocation algorithm optimised 

the locations of transformers based on network restrictions and load distribution.

 

The goal of user interface design was to visualise the system's interface through the creation of 

prototypes and wireframes. The ideas of accessibility and usability informed design decisions. 

ups in order to get their opinions on the design, way 

One of the main components of the system's operation was its algorithmic design. Every layer 

in the suggested methodology has an algorithm that is tailored to deal with particular electrical 

distribution system components. For instance, the transformer allocation algorithm optimised 

oad distribution. 
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3.3 Data Preparation 

A critical first step in guaranteeing the precision and dependability of the system's output was 

effective data preparation. To enable precise algorithmic execution and realistic simulations, 

this phase required gathering, cleaning, and organising pertinent data sets.

the sample of the osm file used as dataset.

 

3.3.1 Geospatial Data Collection

Various sources provided georeferenced data for the intended area, including

characteristics, intersections, and street layouts. Experts in Geographic Information Systems 

(GIS) were contacted to guarantee the precision and entirety of the geospatial data. This 

required comparing the data to the real world and fixing 

3.3.2 Load Data 
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A critical first step in guaranteeing the precision and dependability of the system's output was 

effective data preparation. To enable precise algorithmic execution and realistic simulations, 

ed gathering, cleaning, and organising pertinent data sets.

the sample of the osm file used as dataset. 

fig 3.1. OSM file Example 

3.3.1 Geospatial Data Collection 

Various sources provided georeferenced data for the intended area, including

characteristics, intersections, and street layouts. Experts in Geographic Information Systems 

(GIS) were contacted to guarantee the precision and entirety of the geospatial data. This 

required comparing the data to the real world and fixing any errors. 

 

A critical first step in guaranteeing the precision and dependability of the system's output was 

effective data preparation. To enable precise algorithmic execution and realistic simulations, 

ed gathering, cleaning, and organising pertinent data sets. The fig 3.1 shows 

 

Various sources provided georeferenced data for the intended area, including topographical 

characteristics, intersections, and street layouts. Experts in Geographic Information Systems 

(GIS) were contacted to guarantee the precision and entirety of the geospatial data. This 
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Cooperation between local authorities and utility providers allowed for the collection of data 

on electrical loads in the area. The system's ability to adjust to shifting load profiles was 

ensured by taking into account both present and possible future requirements. To improve load 

prediction accuracy, historical load data was also included, where available. 

 

3.3.3 Topographical Information 

The system included data on terrain, altitudes, and other geographic details. Subterranean cable 

routing has to be optimised with this information in mind, taking probable impediments and 

elevation variations into account. 

To guarantee the quality and dependability of the input data, domain experts, GIS 

professionals, and data scientists have to work together during the data preparation phase. 

 

3.4 Implementation 

 

Creating executable code from the design specifications was the task of the implementation 

phase. Code snippets and a description of the programming languages, frameworks, and 

algorithms used in the development process are included in this part. 

3.4.1 Algorithmic Implementation 

 

The suggested method focuses on strategically combining graph theory and machine learning 

approaches to maximise the building of electric distribution systems (EDS). The strategy is 

comprised of two pipelines, each specifically engineered to address unique challenges that 

arise during EDS implementation. 
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3.4.1.1 Pipeline 1: KNN, Prim's, Dijkstra's Algorithm 

 Nearest Neighbors (KNN) Algorithm: 

Algorithm Overview: KNN is a machine learning technique used for jobs involving 

classification and regression. A data point is categorised based on the majority class of its k 

nearest neighbours in the feature space. 

Application in the Pipeline:Within our context, KNN is used to categorise geographic regions 

based on preexisting infrastructure, urbanisation, and population density. Finding groups of 

locations with similar characteristics is made easier by this classification, which aids in 

figuring out where transformers would work best. 

 

Prim's Algorithm: 

Algorithm Overview: Prim's algorithm is a greedy method for determining the shortest 

spanning tree of a connected, undirected graph. The procedure adds the shortest edge between 

each node inside and outside the tree, starting with a randomly selected node and continuing 

until all nodes are included. 

Utilisation in the Pipeline. Once the optimal sites for the transformers have been identified, 

Prim's approach is employed to maximise the connectivity between substations and 

transformers. By forming a minimal spanning tree, the method ensures an efficient network 

architecture while reducing the overall length of wires and cables required for the distribution 

system. 

 

Dijkstra's Algorithm: 

Algorithm Overview: The shortest path between nodes in a network whose edge weights are 

non-negative is found using a graph search algorithm known as Dijkstra's algorithm. It tracks 



 

 
the nodes in a priority queue for investigation and continually selects the node that is closest to 

the source node. 

Use in the Pipeline: Dijkstra's method is used to find the shortest paths between transformers 

and particular homes. The algorithm considers a number of factors, such as road networks and 

obstacles, to select the most responsive and dependable routes for

The fig 3.2 explains the work flow

3.4.1.2 Pipeline 2: KNN, Prim's, A Algorithm*

A Algorithm:* 

Algorithm Overview:Combining the advantages of Dijkstra's algorithm with greedy best

search, A* is a heuristic search algorithm. It looks for nodes based on expected total cost and uses 

a heuristic to figure out how much it will cost to get from a given node to the objective.
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the nodes in a priority queue for investigation and continually selects the node that is closest to 

Use in the Pipeline: Dijkstra's method is used to find the shortest paths between transformers 

and particular homes. The algorithm considers a number of factors, such as road networks and 

obstacles, to select the most responsive and dependable routes for the distribution of electricity.

 

fig 3.2 Pipeline 1 

explains the work flow of the pipeline 1. 

Pipeline 2: KNN, Prim's, A Algorithm* 

Algorithm Overview:Combining the advantages of Dijkstra's algorithm with greedy best

search, A* is a heuristic search algorithm. It looks for nodes based on expected total cost and uses 

a heuristic to figure out how much it will cost to get from a given node to the objective.

 

the nodes in a priority queue for investigation and continually selects the node that is closest to 

Use in the Pipeline: Dijkstra's method is used to find the shortest paths between transformers 

and particular homes. The algorithm considers a number of factors, such as road networks and 

the distribution of electricity. 

Algorithm Overview:Combining the advantages of Dijkstra's algorithm with greedy best-first 

search, A* is a heuristic search algorithm. It looks for nodes based on expected total cost and uses 

a heuristic to figure out how much it will cost to get from a given node to the objective. 



 

 
Application in the Pipeline: In the second pipeline, we subst

determine the path from transformers to homes. Because A* takes into consideration the projected 

cost of reaching the goal, it offers a more efficient path finding technique for EDS 

implementation, leading to faster con

The fig 3.3 explains the work flow of the pipeline 

The unique advantages and applicability of each pipeline's algorithms were taken into 

consideration when designing them. Using a combination of Dijkstra, P

the first pipeline carefully applied each method to a distinct component of the development of 

Electric Distribution Systems (EDS). Because it can categorize geographic locations according to 

a variety of features, the KNN algorith

regions with related traits. With respect to urban development, population density, and the state of 

the infrastructure, this classification was essential for choosing the best places for transforme

The connectivity between substations and transformers was then optimized using Prim's algorithm 
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Application in the Pipeline: In the second pipeline, we substitute A* for Dijkstra's algorithm to 

determine the path from transformers to homes. Because A* takes into consideration the projected 

cost of reaching the goal, it offers a more efficient path finding technique for EDS 

implementation, leading to faster convergence and optimal paths. 

fig 3.3. Pipeline

explains the work flow of the pipeline 2. 

The unique advantages and applicability of each pipeline's algorithms were taken into 

consideration when designing them. Using a combination of Dijkstra, P

the first pipeline carefully applied each method to a distinct component of the development of 

Electric Distribution Systems (EDS). Because it can categorize geographic locations according to 

a variety of features, the KNN algorithm was applied, which made it easier to identify groups of 

regions with related traits. With respect to urban development, population density, and the state of 

the infrastructure, this classification was essential for choosing the best places for transforme

The connectivity between substations and transformers was then optimized using Prim's algorithm 

 

itute A* for Dijkstra's algorithm to 

determine the path from transformers to homes. Because A* takes into consideration the projected 

cost of reaching the goal, it offers a more efficient path finding technique for EDS 

 

The unique advantages and applicability of each pipeline's algorithms were taken into 

consideration when designing them. Using a combination of Dijkstra, Prim, and KNN algorithms, 

the first pipeline carefully applied each method to a distinct component of the development of 

Electric Distribution Systems (EDS). Because it can categorize geographic locations according to 

m was applied, which made it easier to identify groups of 

regions with related traits. With respect to urban development, population density, and the state of 

the infrastructure, this classification was essential for choosing the best places for transformers. 

The connectivity between substations and transformers was then optimized using Prim's algorithm 
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to provide an effective network design with the least amount of cable length. Finally, Dijkstra's 

algorithm played a vital role in finding the shortest paths from transformers to individual homes, 

guaranteeing a reliable and responsive distribution network. 

The second pipeline, on the other hand, created a modification by using the A* algorithm in place 

of Dijkstra's method for pathfinding from transformers to dwellings. This choice was motivated 

by A*'s capacity to identify the best routes by taking predicted costs into account, which produced 

quicker convergence and more effective routes. In this situation, optimizing last-mile 

connectivity—where pathfinding efficiency is critical to ensure timely and dependable delivery of 

electricity—was made possible by the usage of A*. Overall, solving the intricate optimisation 

issues of EDS implementation and assuring a strong and effective distribution network were made 

possible by the choice and integration of these algorithms in the two pipelines. 

The below  mentioned figures shows the results which are being visualized. The fig 3.4 shows the 

proper path to compare the results of both the pipelines and both fig  3.5 and fig 3.6 shows the 

path which will be covered using both the algorithms for k means algorithm. 

Fig 3.7 and fig  3.8 are the code snippets for the pipelines used and the fig 3.9 and fig 3.10 states 

the results for the codes as the results are being printed for the codes.
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fig 3.4 Pipeline comparison 

fig 3.5 Result of pipeline 1 
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fig 3.6 Result of pipeline 2 

 

 

 



 

 
Code snapshots: 
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fig 3.7 Dijkstra implementation 

 

 



 

 

fig 3.8
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8 Implementation of A* algorithm  
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fig 3.9 Output after implementing Dijkstra pipeline

ig3.10. The resultant after implementing A* pipeline

 

 

Output after implementing Dijkstra pipeline 

 

he resultant after implementing A* pipeline 
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3.4.2 Tools and Techniques 

To guarantee effectiveness and maintainability, the solution made use of industry-standard 

tools, frameworks, and programming languages. 

● GIS Tools: ArcGIS and QGIS, two Geographic Information System tools, were used 

for processing and visualising geospatial data. 

● Python was selected as the main programming language because of its wide library 

support, readability, and adaptability. 

● Simulation Software: To verify the algorithmic findings against actual situations, 

simulation tools like PowerWorld Simulator were used. 

Thorough testing and validation were conducted during the implementation phase to guarantee 

the accuracy and effectiveness of the established algorithms. 

3.5 Key Challenges 

 

The development process ran across a number of obstacles that needed to be carefully 

considered and solved creatively. The three-layer methodology's successful implementation 

depended on addressing these issues. 

3.5.1 Geospatial Data Accuracy and Completeness 

One major problem was ensuring the completeness and accuracy of geographical data. 

Erroneous or incomplete data may result in poor routing choices, which may have an effect on 

the electrical distribution system's overall effectiveness. Working together with GIS specialists, 

implementing data validation protocols, and continuously improving the input data helped to 

lessen this difficulty. 
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3.5.2 Scalability 

Scalability of the system was an important factor to take into account, especially when adding 

loads gradually. It required thorough optimisation and algorithmic design to ensure that the 

algorithms could manage an expanding volume of data and react to changing network 

conditions. Scalability issues were addressed in part by implementing effective data structures 

and parallel processing methods. 

3.5.3 Real-Time Performance 

For practical applications, real-time performance in the algorithmic computations was crucial. 

To improve the system's responsiveness, optimisation strategies like parallelizing calculations 

and caching frequently requested data were used. This was especially crucial in situations 

requiring quick decisions, including abrupt shifts in the allocation of the load. 

3.5.4 User Interface Complexity 

One of the challenges was the user interface's complexity, especially when it came to 

displaying the optimised network routing and allocation outcomes. An interface that was both 

user-friendly and informative was made possible through iterative design improvements and 

user feedback. Presenting the data was not the only problem; keeping the interface user-

friendly when new features were added was also a task. 

It took a team effort to overcome these obstacles, combining knowledge from several fields, 

such as algorithmic optimisation, user experience design, and geographic data management. It 

was essential to maintain constant contact with stakeholders and end users in order to refine 

solutions iteratively and guarantee that the created system fulfilled or beyond expectations. 
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CHAPTER 4: TESTING 

4.1 Testing Strategy 

Adopting a thorough testing strategy is essential in the ever-changing field of system 

development to guarantee the dependability, efficiency, and effectiveness of the final product. 

The thorough testing approach used for the project is covered in detail in this chapter, along 

with the methodologies, instruments, and approaches used to verify the suggested three-layer 

approach for underground cable routing in electrical distribution networks. 

4.1.1 Testing Objectives 

Ensuring the effectiveness and dependability of the generated system was one of the primary 

objectives of the testing phase. Confirming the algorithm's correctness, validating against 

predefined criteria, assessing performance under various circumstances, and identifying 

potential issues were the testing technique's top priorities. 

● Algorithmic Correctness Verification: The primary goal was to confirm that the 

algorithms used in each of the three layers of the technique provided precise and 

optimal outcomes. Validating the accuracy of individual components required a 

thorough unit-level inspection of the codebase. 

● Testing included making sure the system complied with requirements that were both 

functional and non-functional. This process is known as validation against specified 

requirements. Every feature, including the transmission of fossil fuels and the path of 

cables beneath the ground, was put through a rigorous testing process to ensure that it 

met the desired standards. 

● Evaluation of System Performance: The testing approach was designed to evaluate the 

system's performance in a range of scenarios, encompassing varying network 

configurations and load levels. Ensuring the system could reliably and efficiently 

handle a variety of real-world scenarios was the aim. 

● Problem Identification and Fixing: The testing process was designed to be proactive in 

identifying issues with algorithm performance, data accuracy, and user interface 
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usability. The early detection and resolution of issues improved the system's overall 

robustness. 

4.1.2 Testing Levels 

The testing technique included numerous layers, each focused on different components of the 

system, in order to achieve a thorough evaluation. 

Unit Testing: Every algorithmic component in every layer was put through a rigorous testing 

process at the unit level. This required the usage of many unit testing frameworks, such as 

pytest and the built-in unittest module in Python. The use of automated unit testing guaranteed 

that every function and method generated the anticipated results under various input scenarios. 

Integration Testing: The interaction and collaboration between different layers and components 

were evaluated through integration testing. Scenarios were designed to test the flow of data and 

decisions, ensuring seamless integration between layers. Custom scripts and testing 

frameworks dedicated to integration testing facilitated a holistic assessment of the system's 

functionality. 

System Testing: This level involved the end-to-end validation of the entire system. Real-world 

scenarios, simulated data, and actual geospatial information were employed to conduct tests. 

The objective was to verify that all components worked cohesively to achieve the intended 

outcomes. Simulation software, such as PowerWorld Simulator, played a crucial role in 

emulating diverse network conditions. 

User Acceptance Testing (UAT): The UAT phase focused on end-user satisfaction and 

interface usability. Stakeholders and potential end-users actively participated in hands-on 

testing sessions, providing valuable feedback on the system's user-friendliness. Real-time 

collaboration tools and feedback collection platforms facilitated remote UAT sessions, 

ensuring a comprehensive assessment of user acceptance. 
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4.1.3 Performance Testing 

Ensuring optimal performance under various conditions was a priority, and performance 

testing encompassed several dimensions. 

Load Testing: Scenarios with varying loads were simulated to assess the system's behavior and 

response times. Tools like Apache JMeter were employed to simulate concurrent users and 

measure the system's ability to handle increased loads. 

Scalability Testing: The system's ability to scale with the increasing size and complexity of the 

network was evaluated. The system's flexibility was evaluated through cloud deployment and 

auto-scaling techniques. 

Stress testing: With the objective to find breakpoints and possible failure sites, the system was 

purposefully pushed over its predetermined boundaries. To keep an eye on resource usage and 

stability of the system under pressure, stress testing situations were created. 

 

4.1.4 Tools for Automated Testing 

The efficiency and repeatability of testing were greatly improved by automation. Different 

tools were used for different levels of automated testing. 

Selenium: Selenium was used to automate the user interface's testing. With the usage of this 

technology, user interactions could be simulated through scripts, guaranteeing the interface's 

responsiveness in various scenarios. 

Pytest: Pytest was used as the testing framework for unit testing. The design of thorough test 

cases and fixtures to verify the functionality of specific components was made easier by its 

adaptability and simplicity of usage. 

Jenkins: a CI/CD pipeline integration tool, Jenkins automates test suite execution in response 

to code changes. This made sure that problems were found early, enabling quick fixes and 

preserving code quality all the way through the development process. 
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4.2 Test Cases and Outcomes 

In order to ensure a comprehensive assessment of the system's capabilities, a rigorous 

procedure of developing robust test cases was necessary. Every test case was created to 

encompass a range of circumstances and special cases, offering an all-encompassing 

evaluation. 

4.2.1 Unit Test Cases 

Transformer Allocation (Layer1):  

● Test Case: Verification of the appropriate transformer allocation in light of load 

distribution and network limitations. 

● Anticipated Result: transformer sites that are optimised and fall within the given 

limitations. 

 

Low Voltage Network Routing (Layer 2): 

● Test Case: Accuracy validation of the low voltage network routing algorithm under 

different network topologies. 

● Expected Outcome: Efficient and optimal routing paths for low voltage networks. 

Dispersed Energy Resource Allocation (Layer 3): 

● Test Case: Proper allocation of dispersed energy resources considering network 

demand and sustainability goals. 

● Expected Outcome: Optimized allocation of renewable energy resources in the 

network. 



 

 

fig 4.1. Number of transformers and power

4.2.2 Integration Test Cases 

Interaction Between Layers: 

● Test Case: Assessment of seamless interaction between layers, validating the flow of 

data and decisions. 

● Expected Outcome: Proper integration, with outputs from one layer serving as inputs to 

the next without data loss or 

Load Addition Scenario: 

● Test Case: Simulation of the addition of new loads to the network and assessment of 

the system's ability to adapt dynamically.

● Expected Outcome: Optimized transformer allocations and network routing considering 

the newly added loads. 

 

4.2.3 System Test Cases 

Real-World Scenario Simulation: 

● Test Case: Emulation of a real

geospatial data and actual load information.
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● Expected Outcome: Validated subterranean cable routing, transformer allocations, and 

energy resource allocations aligned with actual network conditions. 

Performance Benchmarking: 

● Test Case: Evaluation of the system's performance under varying load conditions, 

assessing response times and resource utilization. 

● Expected Outcome: Stable system performance within specified limits, with adaptive 

scaling under increased loads. 

4.2.4 User Acceptance Test Cases 

User Interface Interaction: 

● Test Case: Engagement of end-users in hands-on testing sessions to assess the usability 

and intuitiveness of the interface. 

● Expected Outcome: Positive feedback on the user interface design and overall user 

experience. 

Scenario-based Testing with Stakeholders: 

● Test Case: Collaboration with stakeholders to simulate scenarios aligned with their 

specific needs and expectations. 

● Expected Outcome: Endorsement of the system's functionality and suitability for 

practical applications. 

 

4.2.5 Performance Test Cases 

Load Testing Scenarios: 

● Test Case: Simulation of scenarios with varying concurrent users and load conditions. 
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● Expected Outcome: Evaluation of system responsiveness and identification of potential 

bottlenecks under different load levels. 

Scalability Testing Scenarios: 

● Test Case: Assessment of the system's scalability by gradually increasing network size 

and complexity. 

● Anticipated Result: A smooth transition to more expansive networks with minimal 

performance deterioration. 

Stress Testing Scenarios: 

● Test Case: Subjecting the system to harsh circumstances and pushing it above 

predetermined boundaries. 

● Anticipated result: Determining the weak points in the system and evluating its capacity 

to recuperate smoothly from stressful situations. 

 

4.2.6 Test Outcomes and Continuous Improvement 

The testing phase's results were methodically documented and examined, which helped to 

improve the system as a whole. 

● Thorough Reports on the Conduct of  Tests: Thorough reports detailing the outcomes 

of the test execution were produced. This contained test case pass rates, problem 

names, and performance indicators. The reports were an invaluable tool for 

stakeholders and developers to comprehend the system's present status. 

 

● Root Cause Analysis: A comprehensive root cause analysis was carried out for every 

issue that was found.This included a methodical examination of the issue's origin, 

regardless of whether it had to do with the functioning of the user interface, algorithmic 
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effectiveness, or data quality.Resolutions that were specifically tailored to meet the 

problems were informed by the analysis. 

● User Input and Observations: Two essential elements of the testing results were user 

input from testing sessions and usability testing observations.In order to bring the 

system more directly in line with end-user expectations, this feedback was crucial in 

improving the user interface and overall user experience. 

 

Testing was embedded with a culture of continuous improvement.The development workflow 

was methodically linked with feedback from testing sessions, automated test results,and post-

implementation evaluations.Testing and feedback processes were iterative, which made sure 

the system changed to accommodate new needs and user expectations. 

Certainly! Let's delve deeper into the KMeans-PRIMs-A* pipeline and its comparison with the 

KMeans-PRIMs-Dijkstra pipeline in the "Results and Evaluation" chapter. 

 

 

 

 

 

 

 

 

 



 

 

34 
 

Chapter 5: Results and Evaluation 

4.3 Results 

4.3.1 Performance of the KMeans-PRIMs-A* Pipeline 

Here, we perform a detailed analysis of the KMeans-PRIMs-A 

Transformer Allocation and Medium Voltage Routing using KMeans-PRIMs-A* 

 

Transformer Allocation: 

When building effective electrical distribution networks, transformer allocation is a crucial 

stage. Transformer placement has come a long way, as seen by the KMeans-PRIMs-A* 

pipeline, which depends on the A* algorithm. We examine the transformer utilisation 

measures, investigating reliability gains over the Dijkstra-based alternative as well as load 

balancing impacts. 

 

Medium Voltage Network Routing (PRIMs-A*): 

A detailed analysis is conducted on the switch from Dijkstra's algorithm to the A* algorithm 

during the medium voltage network routing phase. The optimised routing paths are shown 

using visualisation tools, allowing for a more detailed comparison with the Dijkstra-based 

method. Path optimality, computational efficiency, and flexibility in response to changing 

network conditions are important components. 

KMeans-PRIMs-A* Low Voltage Network Routing and Transformer Sizing 
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Low Voltage Network Routing (A* Algorithm): 

A thorough analysis is conducted on the incorporation of the A* algorithm in low voltage 

network routing. Analogous investigations utilising Dijkstra's algorithm provide valuable 

perspectives on computational benefits, enhanced pathfinding, and flexibility in response to 

changing circumstances. To illustrate the areas where A* performs very well and helps to 

lower computational burden and enhance energy efficiency, certain scenarios are provided. 

 

Transformer Sizing Impact: 

In relation to A* routing, the dynamic transformer sizing—a special characteristic of the 

KMeans-PRIMs-A* pipeline—is examined. We study how transformer sizing affects voltage 

regulation, energy efficiency, and overall system performance as it adjusts to the optimised 

routes produced by the A* algorithm. 

 

KMeans-PRIMs-A* Dispersed Energy Resource Allocation 

 

Techniques for Allocating Dispersed Energy Resources: 

It is examined how well the KMeans-PRIMs-A* pipeline allocates distributed energy resources 

while taking load demand, environmental restrictions, and renewable energy sources into 

account. Relative to the Dijkstra-based method, comparison analysis shows significant 

improvements. 

 

Scalability Features with A* Integration: 
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The KMeans-PRIMs-A* pipeline's scalability properties are examined, with a focus on how 

A* integration affects adaptation to shifting network conditions and rising energy 

consumption. Examples from the real world demonstrate how the A* algorithm improves 

scalability and adds to the method's resilience in a variety of settings. 

 

4.4 Comparison with Existing Solutions 

 

4.4.1 A* vs. Dijkstra in Low Voltage Network Routing 

Computational Efficiency: 

A thorough investigation is carried out to compare the computational effectiveness of A* with 

Dijkstra's method. In-depth evaluations shed light on how long each algorithm takes to 

compute, with consequences for situations with limited resources and real-time applications. 

 

Optimized Pathfinding: 

Because A* is heuristic, it frequently generates more optimised pathways than Dijkstra's 

algorithm. In particular, we showcase case studies and scenarios where A* performs 

exceptionally well in terms of energy economy, path length, and adaptability to different 

barriers and terrain. 

 

Impact on Overall Algorithm Performance: 
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The total effectiveness of the underground cable routing electrical distribution system is taken 

into consideration while evaluating the algorithm's integration of A*. Scalability, flexibility, 

and reactivity to changing network conditions are all taken into account. 

4.4.2 Algorithm explanation 

We scatter pseudo code and code snippets related to the KMeans-PRIMs-A* pipeline across 

this section. These contributions provide scholars and practitioners who want to replicate or 

use our methods with useful references. The pseudo code offers a step-by-step tutorial for 

comprehending and executing each stage, conforming to the three-layer algorithm's logical 

flow. 

 

Expanding Key Subsections 

KMeans-PRIMs-A* Transformer Allocation and Medium Voltage Routing 

Transformer Allocation: 

An electrical distribution system's overall efficiency and dependability are largely dependent 

on the placement of its transformers. By using the A* algorithm, the KMeans-PRIMs-A* 

pipeline presents improvements in transformer placement. We dig into the details of this 

algorithmic integration, giving a detailed explanation of how A* maximises transformer 

allocation step by step. 

Heuristic Considerations in Transformer Allocation: 

The heuristic-driven pathfinding methodology of A* is one of its most notable characteristics. 

We examine the impact of this heuristic factor on transformer assignment. Aligning with node 

energy metrics and reliability pair factors, A* adds another level of intelligence to the 

allocation process. 

Load Balancing Effects: 
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Load balancing is a critical aspect of transformer allocation, 

making sure the load is distributed as evenly as possible among the transformers. We do 

evaluations of load distribution, contrasting the Dijkstra-based pipeline's load balancing with 

that accomplished by the KMeans-PRIMs-A* pipeline. Maps of load distribution and 

visualisations provide a thorough understanding of the consequences of load balancing. 

Reliability Improvements: 

Transformer location has a direct impact on an electrical distribution system's reliability. The 

goal of the KMeans-PRIMs-A* pipeline is to improve reliability by using intelligent allocation. 

We assess the reliability measurements, such as mean time to repair (MTTR) and mean time 

between failures (MTBF), and demonstrate how A* enhances these important reliability 

metrics. 

Medium Voltage Network Routing (PRIMs-A*): 

Pathfinding strategies undergo a paradigm shift when Dijkstra's algorithm gives way to the A* 

algorithm during the medium voltage network routing phase. We examine the ramifications of 

this shift, highlighting important elements including computing efficiency, path optimality, and 

flexibility in response to changing network conditions. 

Visualizing Optimized Routing Paths: 

The KMeans-PRIMs-A* pipeline's optimised routing paths are displayed using visualisation 

tools. Metrics including traversal time, energy efficiency, and path length are used in 

comparison studies with the Dijkstra-based method. An intuitive grasp of how A* optimises 

routing in the medium voltage network is provided by heatmaps and graphical representations. 

Path Optimality Metrics: 

To assess the effectiveness of the A* algorithm, pathways' optimality must be quantified. We 

present metrics that quantify the optimality of routing patterns, taking into account variables 
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like the overall journey length, the least amount of energy used, and compliance with safety 

requirements. Graphs and charts that compare show how A* attains higher path optimality. 

Computational Efficiency Analysis: 

The computational efficiency of A* with respect to Dijkstra's method is thoroughly examined. 

We calculate the time complexity of both techniques taking into account different network 

topologies and sizes. The computational benefits of A* in the context of medium voltage 

network routing are clarified by this investigation. 

Adaptability to Dynamic Network Conditions: 

In practical applications, the KMeans-PRIMs-A* pipeline's flexibility to adjust to changing 

network conditions is essential. To evaluate A*'s response to dynamic situations, we model 

scenarios of network changes, including node mobility and changing connection properties. 

Studies conducted in comparison with Dijkstra's algorithm demonstrate the situations in which 

A* exhibits greater flexibility. 

KMeans-PRIMs-A* Low Voltage Network Routing and Transformer Sizing 

Low Voltage Network Routing (A* Algorithm): 

The incorporation of the A* algorithm into low voltage network routing gives pathfinding 

techniques a new level of complexity. We do a thorough examination of A*'s low voltage 

network routing optimisation, taking into account several aspects like computational benefits, 

pathfinding effectiveness, and flexibility in response to changing circumstances. 

Computational Advantages of A*: 

In pathfinding tasks, A* is well known for its computing efficiency. We explore the 

fundamental ideas behind this effectiveness, such as the application of heuristics and the A* 

search algorithm. A comparison of A* with Dijkstra's algorithm sheds light on how much less 

work A* has to do computationally. 
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Pathfinding Efficiency Metrics: 

Low voltage network routing must be done well in order to guarantee maximum energy 

delivery and no losses. We present metrics that quantify the effectiveness of A* in pathfinding, 

taking into account variables like traversal time, energy usage, and compliance with safety 

requirements. An understanding of how A* improves pathfinding efficiency is aided by visual 

aids. 

 

Adaptability to Dynamic Conditions: 

It is investigated how well the KMeans-PRIMs-A* pipeline adjusts to changing circumstances 

in low voltage network routing. To evaluate how A* responds to these dynamic elements, 

scenarios with shifting load needs, variable environmental conditions, and network 

reconfigurations are simulated. Analyses conducted in comparison with Dijkstra's algorithm 

reveal situations in which A* exhibits greater flexibility. 

 

Transformer Sizing Impact: 

The KMeans-PRIMs-A* pipeline has a special feature: dynamic transformer scaling. We 

examine how A* affects transformer sizing choices, taking into account variables like energy 

transmission efficiency, network structure, and load demand. Analysis conducted in 

comparison with the Dijkstra-based technique reveals situations in which dynamic scaling 

enhances system performance. 

KMeans-PRIMs-A* Dispersed Energy Resource Allocation 

Techniques for Allocating Dispersed Energy Resources: 

One important component of contemporary electrical distribution networks is the 

dissemination of distributed energy resources. The KMeans-PRIMs-A* pipeline combines 
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cutting edge methods for effectively distributing distributed energy resources. We examine the 

algorithmic techniques used, taking into account variables like load demand, renewable energy 

sources, and environmental restrictions. 

 

Optimizing Renewable Energy Allocation: 

The goal of the KMeans-PRIMs-A* pipeline is to maximise the use of renewable energy 

sources, namely wind and solar energy. We investigate the role that A* plays in this 

optimisation, taking into account variables including real-time demand, environmental 

circumstances, and energy availability. Analyses in contrast to the Dijkstra-based method 

provide light on the benefits that A* offers. 

 

Load Demand Considerations: 

It takes a sophisticated grasp of load demands to allocate distributed energy resources in an 

efficient manner. Based on current demand, the KMeans-PRIMs-A* pipeline dynamically 

modifies the distribution of energy resources by taking load demand patterns into account. We 

demonstrate how load demand factors affect the distribution of energy resources through case 

studies and simulations. 

 

Environmental Constraints and Sustainability: 

Allocating distributed energy resources involves a lot of environmental factors. Algorithms 

that take environmental restrictions into account are integrated into the KMeans-PRIMs-A* 

pipeline, guaranteeing sustainable allocation practises. A comparison of A* with the Dijkstra-

based technique reveals how it improves environmental sustainability. 
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Scalability Features with A* Integration: 

Scalability is an important factor to take into account while designing electrical distribution 

systems, particularly in light of the rising energy demand. The A* algorithm's integration 

improves the scalability features introduced by the KMeans-PRIMs-A* pipeline. We 

thoroughly examine these scaling characteristics, taking into account variables including 

network size, computing effectiveness, and flexibility in response to fluctuating energy 

consumption. 

Adaptability to Changing Network Conditions: 

One important component of scalability is the KMeans-PRIMs-A* pipeline's ability to adjust to 

shifting network conditions. We evaluate the contribution of A* to the adaptability of the 

pipeline by simulating scenarios of network extension, contraction, and changes in energy 

demand. Analytical comparisons with Dijkstra's algorithm reveal situations in which A* 

exhibits better flexibility in scaled systems. 

 

Performance Metrics in Scalable Environments: 

Scalability and sustaining performance measurements as the system expands are frequently 

linked. We examine performance measures in scaled contexts, including computing time, 

energy efficiency, and dependability. Comparative studies show how the KMeans-PRIMs-A* 

pipeline's increased scalability is influenced by A* integration in various performance 

measures. 

 

Handling Increased Energy Demand: 

Electric Distribution Systems (EDS) constitute a critical component of modern infrastructure, 

facilitating the reliable and efficient distribution of electricity to various sectors of society. 
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However, as urbanization, industrialization, and technological advancements continue to 

reshape our world, the challenges facing EDS implementation have become increasingly 

complex. In response to these challenges, researchers and practitioners have turned to 

advanced algorithms to optimize EDS operations and enhance system performance. 

In this study, we explore the efficacy of two distinct pipelines, each employing a unique 

combination of algorithms, in addressing the challenges of EDS implementation. Through 

rigorous evaluation and analysis, we aim to shed light on the potential of algorithmic 

optimization to revolutionize EDS design and deployment, paving the way for more efficient, 

reliable, and sustainable distribution networks. 

 

Introduction to the Pipelines: 

The two pipelines under investigation in this study represent different approaches to EDS 

optimization. Pipeline 1 incorporates KNN (K-Nearest Neighbors), Prim's, and Dijkstra's 

algorithms, while Pipeline 2 replaces Dijkstra's with the A* algorithm. These algorithms, 

drawn from the fields of machine learning and graph theory, are selected for their ability to 

address specific challenges inherent in EDS implementation, such as pathfinding, network 

connectivity optimization, and computational efficiency. 

 

Pipeline 1 Performance Analysis: 

Pipeline 1 serves as the baseline for comparison, utilizing a combination of established 

algorithms to optimize EDS implementation. The evaluation of Pipeline 1 reveals promising 

results across several key metrics. 
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Firstly, the graph depicting total path length demonstrates a significant reduction compared to 

traditional manual methods. This reduction suggests that the algorithms employed in Pipeline 1 

effectively minimize cable length and optimize network connectivity. By leveraging techniques 

such as Prim's algorithm for minimum spanning tree construction and Dijkstra's algorithm for 

shortest path determination, Pipeline 1 achieves notable improvements in path optimization. 

 

Moreover, computational efficiency witnesses marked enhancements, as evidenced by the 

reduced time taken to compute optimal paths. The algorithms streamline the pathfinding 

process, resulting in expedited decision-making and resource allocation. This improvement in 

computational efficiency is crucial for real-time operation and decision-making in dynamic 

EDS environments. 

 

Additionally, the reliability of the network is bolstered, with fewer instances of power outages 

and enhanced responsiveness during disruptions. By optimizing network connectivity and 

facilitating efficient resource allocation, Pipeline 1 enhances the resilience of the EDS, 

ensuring uninterrupted service delivery even in the face of adverse conditions. 

 

Pipeline 2 Performance Analysis: 

Building upon the foundation laid by Pipeline 1, Pipeline 2 introduces the A* algorithm as a 

replacement for Dijkstra's algorithm. This substitution aims to further enhance the efficiency 

and effectiveness of EDS implementation. The evaluation of Pipeline 2 yields notable 

improvements across various metrics. 

The graph illustrating total path length showcases a more pronounced reduction compared to 

Pipeline 1, emphasizing the superior pathfinding capabilities of the A* algorithm. By 
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efficiently navigating the network topology, A* facilitates the discovery of optimal routes, 

thereby minimizing resource utilization and maximizing connectivity. 

Moreover, computational efficiency is further enhanced, with A* requiring less computation 

time compared to Dijkstra's algorithm. This reduction in computational overhead translates to 

faster decision-making and enhanced system responsiveness, crucial for meeting the demands 

of dynamic EDS environments. 

Furthermore, the network reliability witnesses significant improvements, with A* 

demonstrating faster response times and better adaptability to changing network conditions. By 

dynamically adjusting route selections based on real-time data, A* enables the EDS to mitigate 

disruptions and maintain uninterrupted service delivery, enhancing overall system reliability 

and resilience. 

 

The heatmap comparison serves as a visual representation of the distance performance of both 

pipelines, providing valuable insights into their respective connectivity and optimization 

capabilities. Heatmaps are effective tools for analyzing spatial data and identifying patterns or 

trends within datasets. In the context of EDS optimization, heatmaps offer a comprehensive 

overview of how effectively each pipeline manages network connectivity and minimizes path 

distances. 

 

In this study, heatmaps were generated to compare the distance performance of Pipeline 1 and 

Pipeline 2. Each heatmap represents a spatial distribution of distances within the EDS network, 

with color gradients indicating variations in distance values. The heatmap for Pipeline 1 

illustrates the distance distribution associated with the network configuration optimized using 

KNN, Prim's, and Dijkstra's algorithms. Similarly, the heatmap for Pipeline 2 depicts the 

distance distribution resulting from the integration of the A* algorithm. 

Heatmap Comparison 
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By visually comparing the heatmaps of both pipelines, analysts can identify areas of 

improvement and assess the overall effectiveness of each optimization strategy. Areas with 

shorter distances and denser clusters represent regions of optimized connectivity, indicating 

efficient routing and minimal resource utilization. Conversely, areas with longer distances or 

sparse clusters may indicate potential areas for optimization or network inefficiencies. 

The comparison of heatmaps allows researchers to draw meaningful conclusions about the 

relative performance of each pipeline. In this study, the heatmap analysis revealed that Pipeline 

2 exhibited a lower average distance compared to Pipeline 1, indicating superior connectivity 

and optimization. This finding aligns with the quantitative analysis conducted on total path 

length and reinforces the efficacy of the A* algorithm in optimizing network performance. 

Moreover, heatmaps provide valuable insights into spatial relationships within the EDS 

network, allowing analysts to identify corridors of high traffic, potential bottlenecks, or areas 

requiring infrastructure upgrades. By leveraging this spatial information, stakeholders can 

develop targeted optimization strategies to further enhance network efficiency and reliability. 

In addition to quantitative metrics such as total path length and computational efficiency, 

heatmaps offer a complementary visual perspective that enhances the understanding of EDS 

optimization outcomes. They provide a holistic view of network performance, enabling 

stakeholders to make informed decisions and prioritize interventions based on spatial patterns 

and trends. 

Overall, heatmaps serve as powerful tools for analyzing and interpreting spatial data in the 

context of EDS optimization. By visually representing distance distributions and spatial 

relationships within the network, heatmaps facilitate a deeper understanding of optimization 

outcomes and inform strategic decision-making processes. As such, they play a crucial role in 

evaluating the effectiveness of optimization algorithms and guiding the development of more 

efficient and reliable distribution networks. 
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(a)                                                   (b)                                                 (c) 

fig 5.1. Comparison of pipelines 

The above heatmap is the comparison of the two pipelines on the basis of distance. The fig 

5.1(a) states the heatmap for the distance for pipeline 1 and fig 5.1(b) states the heatmap for the 

distance for pipeline 2. The fig 5.1(c) compares both the heatmaps and is used to compare the 

performance of both the pipelines. The final result justifies that the average distance in pipeline 

2 is 4.92 which is lower than the pipeline 1 which is 5.01 hence the connectivity is better for 

pipeline 2 and A* algorithm gives better results. 

 

Overall Comparison and Implications: 

Comparing the results of the two pipelines, it becomes evident that the integration of the A* 

algorithm in Pipeline 2 leads to superior performance across multiple metrics. The combination 

of advanced algorithms in Pipeline 2 results in enhanced efficiency, reliability, and 

adaptability, positioning it as a more viable solution for addressing the complexities of modern 

EDS implementation. 

The implications of these findings for EDS design and deployment are profound. By 

leveraging advanced algorithms, such as A*, EDS stakeholders can unlock new opportunities 

for optimizing network performance and resilience. These algorithms enable the EDS to adapt 

to evolving demands and mitigate potential risks, ensuring uninterrupted service delivery in the 

face of diverse challenges. 



 

 
In conclusion, the integration of algorithmic optimization techniques holds immense potential 

for transforming the landscape of EDS operations. By embracing innovation and harnessing the 

power of advanced algorithms, stakeholders can

distribution networks capable of meeting the demands of a rapidly evolving world. This study 

represents a significant step towards realizing this vision and underscores the importance of 

continued research and development in the field of algorithmic optimization for EDS.

 

fig 5.2 Comparison of distance and voltage
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In conclusion, the integration of algorithmic optimization techniques holds immense potential 

for transforming the landscape of EDS operations. By embracing innovation and harnessing the 

power of advanced algorithms, stakeholders can build more efficient, reliable, and sustainable 

distribution networks capable of meeting the demands of a rapidly evolving world. This study 

represents a significant step towards realizing this vision and underscores the importance of 

nd development in the field of algorithmic optimization for EDS.

Comparison of distance and voltage 

 

In conclusion, the integration of algorithmic optimization techniques holds immense potential 

for transforming the landscape of EDS operations. By embracing innovation and harnessing the 

build more efficient, reliable, and sustainable 

distribution networks capable of meeting the demands of a rapidly evolving world. This study 

represents a significant step towards realizing this vision and underscores the importance of 

nd development in the field of algorithmic optimization for EDS. 
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Chapter 6: Conclusions and Future Scope 

 

6.1 Conclusion 

6.1.1 Summary of Key Findings 

Notable accomplishments have been made in the research project to create and assess the 

KMeans-PRIMs-A* pipeline for underground cable routing in electrical distribution networks. 

We go into greater detail on the main conclusions in this section, offering a sophisticated 

analysis of every facet of the algorithm's operation. 

 

Optimized Transformer Allocation: 

When combined with PRIMs-A*, the KMeans algorithm has proven to be an unmatched expert 

in assigning transformers in the most efficient way possible. Carefully choosing the locations 

of transformers leads to a more evenly distributed load, reduces energy loss, and improves the 

overall dependability and effectiveness of the electrical distribution system. 

 

Efficient Medium Voltage Routing with A*: 

The proposed pipeline's incorporation of the A* algorithm into medium voltage network 

routing is one of its most notable characteristics. By outperforming the conventional Dijkstra 

algorithm in terms of processing speed and flexibility to dynamic network conditions, A* has 

shown to be a game-changer. This guarantees a flexible and effective distribution system by 

expediting the routing process and allowing for real-time network modifications. 
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Dynamic Transformer Sizing: 

An additional element of complexity to transformer management is brought by the algorithm's 

unique capacity to dynamically size transformers based on A*-optimized pathways. Improved 

voltage regulation, higher energy economy, and overall system performance are all benefited 

by this dynamic scaling. The programme adjusts transformer sizes in accordance with the 

changing load demands in various distribution network segments. 

 

Dispersed Energy Resource Allocation: 

When allocating distributed energy resources, the KMeans-PRIMs-A* pipeline performs 

exceptionally well, accounting for variables including load demand, renewable sources, and 

environmental constraints. The algorithm demonstrates flexibility and scalability, guaranteeing 

effective resource distribution in a range of situations. Because of this feature, the algorithm is 

positioned as a flexible tool for handling the changing energy distribution landscape. 

 

6.1.2 Limitations 

 

Notwithstanding the noteworthy accomplishments, it is imperative to recognise the constraints 

innate to the KMeans-PRIMs-A* pipeline. Comprehending these limitations offers a practical 

viewpoint on the algorithm's suitability and establishes the foundation for subsequent 

enhancements. 

 

Dependency on Data Quality: 
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The calibre of the input data determines how effective the algorithm is. The algorithm's 

effectiveness may be impacted by inaccurate or lacking information on environmental and 

infrastructure issues. Subsequent versions of the programme ought to investigate ways to 

improve resilience against data defects, either by employing sophisticated data validation 

methodologies or data augmentation tactics. 

 

Heuristic-Based Considerations: 

The A* algorithm uses heuristics to make decisions even though it greatly increases 

computational efficiency. Heuristics are an effective tool for helping direct the search process, 

although they might not always provide globally optimal answers. It is important to take 

sensitivity to heuristic decisions seriously, and future studies may look into hybrid methods or 

different heuristic techniques. 

 

Real-World Validation: 

This study's conclusions are derived on theoretical analyses and simulations. The absence of 

empirical validation creates a degree of ambiguity about how well the method will function in 

real-world applications. To validate the algorithm's efficacy, undertake extensive field 

experiments, and uncover potential implementation issues in real-world settings, collaborative 

efforts with utility companies and others are important. 

 

6.1.3 Contributions to the Field 

 

The subsurface cable routing and electrical distribution systems fields benefit greatly from the 

KMeans-PRIMs-A* pipeline in a number of ways. 
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Innovative Algorithmic Pipeline: 

Fundamentally, KMeans clustering, PRIMs, and the A* algorithm combined offer a fresh and 

effective method for underground cable routing. The algorithm is notable for its breakthroughs 

in distributed resource allocation, network routing, and transformer allocation. The 

inventiveness is not limited to the separate elements; it also encompasses their flawless 

amalgamation to tackle the intricacies of underground cable management. 

 

Energy Efficiency and Sustainability: 

The optimisation of routing paths and dynamic transformer sizing of the method greatly 

enhance energy efficiency. The algorithm helps achieve the more general objectives of 

lowering energy use, minimising environmental effect, and fostering long-term sustainability 

in electrical distribution networks by adhering to sustainable practises. 

 

Scalability and Adaptability: 

Scalability and flexibility are two of the algorithm's most noteworthy advantages. The 

algorithm adapts to a variety of network scenarios, taking into account shifts in load demand, 

infrastructure, and external variables. Because of its versatility, it can be applied to a wide 

range of operating circumstances and remains relevant even when the energy landscape 

changes. 

6.2 Future Scope 

The KMeans-PRIMs-A* pipeline's performance creates exciting new opportunities for further 

study and advancement. The groundwork for future developments in underground cable 
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routing and electrical distribution systems is laid out in this part, which also suggests possible 

directions for investigation and improvement. 

6.2.1 Algorithmic Refinements 

Heuristic Enhancement: 

Subsequent investigations may focus on investigating and testing substitute heuristics for the 

A* algorithm. Further gains in pathfinding efficiency may be possible through fine-tuning 

heuristics, which may also reveal even more ideal solutions in a range of network conditions. 

 

Machine Learning Integration: 

The incorporation of machine learning methodologies offers a stimulating path towards 

augmenting the algorithm's flexibility. The system might learn from real-time data by utilising 

machine learning models, constantly modifying its settings to conform to shifting network 

conditions and changing energy landscapes. 

 

6.2.2 Real-World Implementations 

Field Trials: 

Thorough field experiments are necessary to verify the algorithm's performance in real-world 

circumstances. The practical implementation of the algorithm in varied operational situations 

would be facilitated by collaborations with utility companies, municipal authorities, and other 

relevant parties. Field tests would offer important information about the algorithm's resilience, 

efficacy, and potential development areas. 
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Hardware Considerations: 

It makes sense to investigate the algorithm's hardware platform implementation. When 

modifying the method for implementation in real-world electrical distribution systems, it 

would be essential to take into account variables like processing speed, memory needs, and 

energy consumption. 

 

6.2.3 Multidisciplinary Applications 

Smart Grid Integration: 

One intriguing subject to investigate is the algorithm's adaptability in the context of smart 

grids. In addition to distributing electricity efficiently, smart grids also integrate 

communication networks, manage dispersed energy supplies, and analyse data in real time. 

Examining how well the algorithm works with smart grid frameworks may lead to new 

opportunities for improved grid management. 

 

Environmental Impact Assessment: 

Adding environmental impact evaluations to the algorithm's repertoire would provide decision-

making procedures a useful new angle. The algorithm may aid in more environmentally 

friendly infrastructure development by taking the environment into account when determining 

where to allocate and route resources. 

6.2.4 User Interface and Accessibility 

User-Friendly Interfaces: 

The development of user-friendly interfaces and visualization tools is pivotal for making the 

algorithm accessible to a broader audience. Utility operators, city planners, and policymakers 
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should be able to interact with the algorithm seamlessly, leveraging its capabilities without 

requiring an in-depth understanding of the underlying algorithms. 

Open-Source Collaboration: 

Creating intuitive user interfaces and visualisation tools is essential to enabling a wider 

audience to use the algorithm. The algorithm should be easily navigable by utility operators, 

city planners, and policymakers, allowing them to take full advantage of its capabilities without 

needing to have a deep understanding of the underlying algorithms. 

6.2.5 Regulatory and Standards Considerations 

Alignment with Standards: 

It is crucial to make sure the algorithm complies with industry norms and laws pertaining to 

electrical distribution networks. Working together with regulatory agencies and groups that 

create standards is crucial to ensuring that the algorithm conforms to the relevant rules and 

regulations. 

To sum up, the KMeans-PRIMs-A* pipeline represents a noteworthy development in 

underground cable routing for power distribution networks. Comprehensive comprehension of 

the algorithm's influence is provided by the demarcation of contributions, acceptance of 

limitations, and detailed exploration of major discoveries. The areas of future scope that have 

been highlighted open the door for further innovation and excellence in the field of planning 

and managing electrical infrastructure. The path pursued by this research establishes the 

groundwork for an energy distribution system that is more robust, effective, and sustainable. 

 

 

 

 



 

 

56 
 

References 

[1] Stojmenovic, I. (2002). Handbook of Wireless Networks and Mobile Computing. John 

Wiley & Sons. 

[2] Al-Karaki, J. N., & Kamal, A. E. (2004). Routing Techniques in Wireless Sensor 

Networks: A Survey. IEEE Wireless Communications, 11(6), 6-28. 

[3] Heinzelman, W. R., Chandrakasan, A., & Balakrishnan, H. (2000). Energy-Efficient 

Communication Protocol for Wireless Microsensor Networks. Proceedings of the 33rd Annual 

Hawaii International Conference on System Sciences. 

[4] Boukerche, A., & Fei, X. (2006). On the Coverage Problem in Wireless Sensor Networks. 

Proceedings of the International Conference on Parallel Processing Workshops. 

[5] Huang, C. F., & Tseng, Y. C. (2005). The Coverage Problem in a Wireless Sensor 

Network. Proceedings of the 2nd ACM International Conference on Wireless Sensor Networks 

and Applications. 

[6] R. Mishra, P. Verma, R. Kumar, "Gateway Discovery in MANET using Machine Learning 

and Soft Computing," International Journal of Computer Applications, 2018. 

[7] M. Wang, Y. Cui, X. Wang, S. Xiao, J. Jiang, "The Application of Machine Learning in 

Networking: A Review," Journal of Computer Networks and Communications, 2017. 

[8] A. Smiti, Z. Elouedi, "DBSCAN-GM: A New Density-Based Clustering Algorithm," 

Journal of Systems and Software, 2015. 

[9] Santini, S., Romaguera, J., Sánchez, M., & Igual, F. (2008). A Wireless Sensor Network for 

Environmental Noise Monitoring. Sensors, 8(4), 2494–2517. 

[10] Kuhn, F., & Wattenhofer, R. (2003). Localized Delaunay Graphs Have Small Diameter. 

Proceedings of the 22nd Annual Joint Conference of the IEEE Computer and Communications 

Societies. 



 

 

57 
 

[11] Wang, M., Jiang, J., & Cui, Y. (2009). The Application of Clustering Algorithms in 

Wireless Sensor Networks: A Survey. Proceedings of the International Conference on Wireless 

Communications, Networking and Mobile Computing. 

[12] Jin, Y., Zhang, Q., & Song, W. (2006). A Clustering Genetic Algorithm for the Minimum 

Connected Dominating Set Problem in Ad Hoc Wireless Networks. IEEE Transactions on 

Evolutionary Computation, 10(5), 527–540 

[13]. R. Suresh Kumar, P. Manimegalai, P. T. Vasanth Raj, R. Dhanagopal, and A. Johnson 

Santhosh, "Cluster Head Selection and Energy Efficient Multicast Routing Protocol-Based 

Optimal Route Selection for Mobile Ad Hoc Networks," [Link to Paper](path/to/paper) 

[14]. Authors, "Optimal Routing Algorithm for Clusters of Microgrids," [Link to 

Paper](path/to/paper) 

[15]. Rahul Khanna, Huaping Liu, Hsiao-Hwa Chen, "Self-organisation of Sensor Networks 

Using Genetic Algorithms," [Link to Paper](path/to/paper) 

[16] R. L. Cruz and Arvind V. Santhanam, "Optimal Routing, Link Scheduling, and Power 

Control in Multi-hop Wireless Networks," [Link to Paper](path/to/paper) 

[17] Han, X.; Liu, J.; Liu, D.; Liao, Q.; Hu, J.; Yang, Y. Distribution network planning study 

with distributed generation based on Steiner tree model. In Proceedings of the 2014 IEEE 

PES Asia-Pacific Power and Energy Engineering Conference (APPEEC), Hong Kong, China, 

7–10 December 2014; Volume 1, pp. 1–5. 

[18] Oertel, D.; Ravi, R. Complexity of transmission network expansion planning NP-hardness 

of connected networks and MINLP evaluation. Energy Syst. 2014, 5, 179–207. 

[19] Li, H.; Mao, W.; Zhang, A.; Li, C. An improved distribution network reconfiguration 

method based on minimum spanning tree algorithm and heuristic rules. Int. J. Electr. Power 

Energy Syst. 2016, 82, 466–473. 



 

 

58 
 

[20] Gouin, V.; Alvarez-Hérault, M.C.; Raison, B. Innovative planning method for the 

construction of electrical distribution network master plans. Sustain. Energy Grids Netw. 2017, 

10, 84–91. 

[21] De Oliveira, E.J.; Rosseti, G.J.; de Oliveira, L.W.; Gomes, F.V.; Peres, W. New 

algorithm for reconfiguration and operating procedures in electric distribution systems. Int. J. 

Electr. Power Energy Syst. 2014, 57, 129–134. 

[22] Abeysinghe, S.; Wu, J.; Sooriyabandara, M.; Abeysekera, M.; Xu, T.; Wang, C. 

Topological properties of medium voltage electricity distribution networks. Appl. Energy 

2018, 210, 1101–1112. 

[23] Crainic, T.G.; Li, Y.; Toulouse, M. A first multilevel cooperative algorithm for 

capacitated multicommodity network design. Comput. Oper. Res. 2006, 33, 2602–2622. 

[24] Mendoza, J.E.; López, M.E.; Peña, H.E.; Labra, D.A. Low voltage distribution 

optimization: Site, quantity and size of distribution transformers. Electr. Power Syst. Res. 

2012, 91, 52–60. 

[25] Chicco, G.; Mazza, A. Heuristic optimization of electrical energy systems: Refined 

metrics to compare the solutions. Sustain. Energy Grids Netw. 2019, 17, 100197. 

[26] Javaid, N.; Qureshi, T.N.; Khan, A.H.; Iqbal, A.; Akhtar, E.; Ishfaq, M. EDDEEC: 

Enhanced developed distributed energy-efficient clustering for heterogeneouswireless sensor 

networks. Procedia Comput. Sci. 2013, 19, 914–919. 

[27] Alhamwi, A.; Medjroubi, W.; Vogt, T.; Agert, C. GIS-based urban energy systems 

models and tools: Introducing a model for the optimisation of flexibilisation technologies in 

urban areas. Appl. Energy 2017, 191, 1–9. 

 

[28] Tang, Y.; Mao, X.; Ayyanar, R. Distribution system modeling using CYMDIST for 

study of high penetration of distributed solar photovoltaics. In Proceedings of the 2012 North 

American Power Symposium (NAPS), Champaign, IL, USA, 9–11 September 2012; pp. 1–6. 

 



 

 

59 
 

[29] Freitas, S.; Santos, T.; Brito, M.C. Impact of large scale PV deployment in the sizing of 

urban distribution transformers. Renew. Energy 2018, 119, 767–776.  

[30] Aghaei, J.; Muttaqi, K.M.; Azizivahed, A.; Gitizadeh, M. Distribution expansion 

planning considering reliability and security of energy using modified PSO (Particle Swarm 

Optimization) algorithm. Energy 2014, 65, 398–411. 

[31] Davidescu, G.; Stützle, T.; Vyatkin, V. Network planning in smart grids via a local 

search heuristic for spanning forest problems. In Proceedings of the 2017 IEEE 26th 

International Symposium on Industrial Electronics (ISIE), Edinburgh, UK, 19–21 June 2017; 

pp. 1212–1218. 

 

[32] Kruskal, J.B. On the Shortest Spanning Subtree of a Graph and the Traveling Salesman 

Problem. Proc. Am. Math. Soc. 1956, 7, 48–50. 

 

[33] Prim, R.C. Shortest Connection Networks And Some Generalizations. Bell Syst. Tech. J. 

1957, 36, 1389–1401. 

 

[34] Lezama, F.; Soares, J.; Vale, Z.; Rueda, J.; Rivera, S.; Elrich, I. 2017 IEEE competition 

on modern heuristic optimizers for smart grid operation: Testbeds and results. Swarm Evolut. 

Comput. 2019, 44, 420–427. 

 



 

 

60 
 

 



 

 

61 
 



 

 

62 
 

 



 

 

63 
 



 

 

64 
 

 



 

 

65 
 

 


