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ABSTRACT

In the field of online communication, discussion toxicity has become a major problem,

preventing people from expressing their true selves and participating in diverse ideas due

to the threat of attack or harassment. This research aims to solve this problem by using

natural language processing (NLP) technology, which is primarily a technique of machine

learning, to detect the use of toxic comments.

The aim is to detect and minimize toxic comments, to construct a space where authentic

self-expression interchange of numerous ideas occurs. The research focuses on NLP which

constitutes a significant element in machine learning and is instrumental in providing

computers with speech comprehension, analysis, management and control powers. This is

more than a simple act of reading in the sense that it reveals the minute details about a

language.

Artificial intelligence is dependent on natural language processing. This technology goes

way beyond understanding simple language, encompassing such functions as sentiment

analysis, text categorization, speech recognition, and automatic text summarization. NLP

helps with text management, enabling detection and control of harmful texts.

To conclude, this is an extensive study on whether nlp can tackle toxic arguments. The

research aims to help create safer, better and more effective online discussions by

understanding, identifying and carefully addressing toxic content.

Ⅸ



CHAPTER-1 PROJECT INTRODUCTION

1.1. Introduction

In the early days of the web, communication was mostly via email, and the platform

suffered from widespread spam problems. The challenge today is to classify emails as

wanted (good) or unwanted (bad), with an emphasis on identifying and filtering spam.

However, over time, especially with the emergence and spread of social media, the field of

online communication and information flow has also changed.

The changes brought about by social media platforms mark a significant change in the

nature of online interaction. Unlike email management, social media demonstrates a strong

communication and communication capability that increases the scale of content creation

and use. In the changing digital ecosystem, the need to classify content as “good” or “bad”

has become more evident.

The importance of sharing content stems from the need to reduce social harm and prevent

behavior change in communities around the world. As people engage in different forms of

expression and interaction, the potential for exposure to harmful, offensive, or toxic content

increases. The project therefore aims to solve today's challenges by using machine learning

and classification algorithms, to clarify the difference between construction involvement

(meaning "good") and Content that may propagate harmful behavior (known as “bad”).

The project works in the context of the digital communications revolution, demonstrating

the importance of content distribution in managing the online environment. The project

creates a better and safer experience for users by preventing the spread of negative content

and harmful behavior. The introduction lays the groundwork for understanding the

evolution of online communication, the issues arising from the transition, and the overall

goal of the project, which is to divide good content to increase safety in society.

The Figure 1 below shows the distribution of toxic comments in different categories based
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on how severe these comments are.

Figure 1: Distribution of toxic comments

Figure 1 shows the distribution of the toxicity of comments in six different categories and

the number of comments counted in each category with general toxic comments being the

most occurring and serious threats having the least occurrence.

1.2. Problem Statement

In the online communications landscape dominated by social media platforms, a significant

and immediate challenge emerges: accurately identifying and disseminating digital content

to distinguish its contribution to fostering a positive online environment from the potential

harm or toxicity it may propagate. The creation of content that fosters interaction and

sustains viability in the digital realm is crucial. The proliferation of objectionable content

or issues across numerous online platforms presents a pressing concern for societal

well-being, necessitating the establishment of a secure and safe online environment.

Addressing this challenge requires the utilization of advanced Natural Language

Processing (NLP) techniques such as Convolutional Neural Networks (CNN), Long
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Short-Term Memory networks (LSTM), and Bidirectional Encoder Representations from

Transformers (BERT). The integration of these technologies is vital for the precise

interpretation and dissemination of digital content. Leveraging NLP methodologies

alongside intricate neural network techniques like CNN, LSTM and BERT holds immense

promise in facilitating analysis, classification, and strategic management of digital content.

This integration plays a pivotal role in regulating the online environment, effectively

managing networks, and mitigating social risks associated with harmful online content.

1.3. Objectives

We have the following objectives when working on this project:

1) Data Collection and Preparation:

Gather a diverse dataset of online comments, including both toxic and non-toxic examples.

Preprocess the data by cleaning, tokenizing, and performing feature extraction. Split the

dataset into training, validation, and testing sets.

2)Model Architecture And Development:

Utilizing a set of deep learning algorithms such as a special type of Recurrent Neural

Network (RNN) called Long Short-Term Memory networks (LSTM), along with word

embedding techniques like BERT to explore diverse approaches for text categorization.

3) Performance Evaluation:

Conducting a thorough evaluation of the chosen algorithms by employing a dataset

specifically curated for the purpose. The focus is on assessing the accuracy of each

algorithm, considering their individual capabilities in accurately classifying toxic

comments.

4)Comparison of Results:

3



Comparing the accuracy achieved by the different algorithms and to compare them to

baseline machine learning models like Logistic Regression, Naive Bayes, SVM, etc. to

identify the model that exhibits the highest performance in classifying toxic comments.

5)Model Selection:

Selecting the model with the highest accuracy as the final classifier for predicting the

toxicity of comments. This step involves making informed decisions based on the evidence

derived from the performance evaluations.

6)Unseen Data Prediction:

Using the selected model to forecast the toxicity levels of unseen data. Creating a Gradio

interface to check the model’s accuracy in identifying real world toxic comments.

1.4. Significance and Motivation of the Project Work

Significance of Toxic Comment Classification:

Online Safety:

The trend of online communication has led to an increase in toxic comments, posing a

danger to the safety and health of users. Creating an effective classification system for

toxic comments is crucial to create a safe online environment.

User Experience:

Toxic comments can downgrade the entire user experience on social media platforms and

forums. Using the techniques to filter this content can improve the quality of user

interaction and support the online community.
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Motivation:

Social impact:

The motivation behind this project is wanting to help improve the health of the online

community. By detecting toxic comments, we aim to reduce the negative effects of

negative comments and improve online health.

Technical Challenges:

Classifying toxic comments poses significant problems in natural language processing. The

motivation comes from the contradictions involved in creating models that can understand

and distinguish toxic from non-toxic elements.

Applications:

Content Moderation:

Social media forums and other online communities can use the template to use content

management strategy for effective and inclusive online space.

User Empowerment:

Provide users with tools to filter out harmful content to give users more control over their

online experience. The purpose of this project is to provide users with a safer and more

useful experience.

Advancements In Deep Learning:

Searching for modeling resources:

The motivation of this study is the opportunity to think about the potential of deep learning

in the context of natural language, which techniques like LSTM, CNN address.
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Understanding its strengths and limitations will contribute to broader and more in-depth

research.

Importance:

Importance in online platforms:

As online platforms continue to evolve, the need to identify toxic comments becomes even

more important. The motivation for this project is the potential use of design in the

development of content moderation.

Educational Impact:

Learning and Skills Development:

Doing this project provides an opportunity for hands-on learning in natural language

processing, deep learning, and model evaluation. Considerations include the educational

impact on individuals participating in the project.

In summary, the purpose and motivation of the Toxic Comments Classification project is

to make a safe environment and contribute to the betterment of online users. The project is

dedicated to benefiting the digital community and exploring the potential of deep learning

for language understanding.

1.5. Organization of Project Report

Chapter 2: Literature Survey

In this chapter, we studied the existing works on toxic comments classification. Existing

literature includes various methods and frameworks. Previous research findings stress on

the difficulties related to handling unbalanced data sets as well as the significance of
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designing relevant features and their connection with the applicability of model

interpretability. Additionally, looking at different metrics of evaluation used in similar

studies gives more meaning to measuring a model's performance, taking into consideration

F1-score, AUC, etc.

Chapter 3: System Development

In this chapter, we go into the project design, data preparation and implementation of our

project. This involves capturing, cleaning up, and balancing to achieve the desired size and

composition for the sample. The use of different algorithms is discussed. Furthermore, the

section identifies a few evaluation metrics including accuracy, precision, recall, and

F1-score for measuring the performance of the classification mechanisms employed.

Chapter 4: Testing

In this chapter, we discuss the testing strategies used to evaluate the performance of our

model.

Chapter 5: Results and Evaluation

This chapter provides the results of the above algorithms as indicators of their effectiveness

in the categorization of toxic comments. The findings obtained through the analysis help to

understand whether the models are effective to solve it.

Chapter 6: Conclusions and Future Scope:

The final chapter of the research is the conclusion that sums up the main conclusions based

on the results obtained during the study. The paper presents the significance of reliably

identically the toxicities, outlining some improvements or recommendations. The final part

discusses suggestions of further improvements.
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CHAPTER 2 LITERATURE SURVEY

2.1 Overview of Relevant Literature

Table 1: Literature Overview

An Automated Toxicity Classification on Social Media Using LSTM and Word

Embedding (2023):
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The research employed two distinct training datasets: the first one categorized the

comments as toxic or not while the second grouped them in the six types of toxicity.

Standard procedures of text analysis like punctuation removal, lemmatization, and

stop-word elimination were used for data preprocessing.

The LSTM model had been described consisting of the word-embedding layer, dropout

layer, LSTM layer, and finally the output layer which formed the heart of the classification

process. This paper investigated the use of two kinds of word embeddings, GloVe and

BERT, to pretrain classifiers. As a contrast, the GloVe model was described as a static and

context independent approach, whereas the BERT framework was depicted as a context

sensitive word-embedding technique able to capture fine and meaningful nuance and

relatedness between words within their specific contexts.

Results

Accuracy and F1 score are common evaluation metrics, which are used to assess how

effective a classification model is. The experiment showed that LSTM model used together

with BERT word embeddings reached up to 94% accuracy and 0.89 F1-score for toxicity

detection. The fact that BERT’s contextualized embeddings trumped static-embeddings like

GloVe was demonstrated in this.

Conclusions and Future Work

Accordingly, the conclusion emphasized that bias in the data should be addressed and

underlined the importance of word embeddings as an approach towards enhancing

classification accuracy. Moreover, it repeated that even though GloVE word embeddings

trained with huge corpus showed high score for accuracy, they were outdone by the

performance of BERT.

Toxic Comments Classification (2022):

9



This study involved making use of different machine learning techniques in identifying the

toxicity present in textual data. Models used are logistic regression, random forest, SVM,

NB, and XG boost classifier techniques. The effectiveness of each method was assessed by

how successfully it identified inappropriate items within the data. With this, we were in a

position of measuring these algorithms so as to determine which was best suited for

classifying such toxic messages.

Results

After evaluation, we considered the different criteria for judging the models such as

accuracy, precision, and also recall. Of all the models that we tried, logistic regression

proved the highest accuracy of 80%. Logistic regression demonstrated accuracy in

separating the toxic and non-toxic comments as the optimal technique towards the present

classify work undertaking. Among all the used models, logistic regression has the highest

performance of correctly detecting toxic substance.

Conclusions and Future Work

The results of the study establish that the logistic model is, by far, the best approach to

toxicity identification in text data and social media commentary. The next step would

involve testing different machine learning models such as RNN, BERT, multilayer

perceptron, and GRU to improve on the precision and speed with which harmful comments

are detected. This will lead to better classification of harmful online content and improved

moderation and management of online discussions hence improved performance.

BERT base model for toxic comment analysis on Indonesian social media (2022):

The study employed three pre-trained models such as multilingual BERT (MBERT),

IndoBERT and IndoROBERTa Small to identify toxic comments in Indonesian social

media. In particular, these models were tailored to cater for multilabel classification that

involves distinguishable types of poisonous articles including hate speech, extremism,
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pornography and vilification.

Results:

The most effective among them was IndoBERT with F1 Score of 0.8897. This result was

far better than that of other models. The model was good at detecting subtle details

regarding different types of obscene material including hate speech, extremism,

pornography, libel and more. The strong performance of IndoBERT validates its utility in

fighting cyber-toxacity and enhancing healthy social media practices in Indonesia.

Conclusions and Future Work:

The results show that IndoBERT is able to detect toxic posts from Indonesian social

networking sites. One possible direction for future work is on improving the precision of

toxic comment classification with the help of these Pre-Trained Models. Exploring how to

revise to suit real time moderation and creating safety environments across all online

platforms could also help to minimize spreading hazardous materials.

Multilabel Toxic Comment Detection and Classification (2021):

The paper uses several machine learning and deep learning models for identifying and

classifying toxic remarks. The models comprise of Logistic Regression, SVM, and LSTM

with various embodiments such as Glove and Word2Vec. Such algorithms are applied to a

Kaggle dataset consisting of labeled comments in different categories of toxicity.

Results

The best performance among all LSTM models is achieved using Glove embedding after

thorough assessment. The model performs excellently as it generates a high score of about

96.67% for the ROC AUC metric in multi-label classification. The hamming loss and log

loss scores for the model are the best as they prove its high accuracy and efficiency on

toxicity classification in comparison with other models.

11



Conclusions and Future Work

The results of this research demonstrate the superiority of the LSTM for categorizing and

detecting toxicness in comments. Other future research directions would involve the use of

more sophisticated models such as BERT and GRUs, trying out ensemble methods to

enhance accuracy of classification and fine-tuning the available models for high levels of

efficiency in classifying toxic comments. Their purpose is to provide more elaborate

information on categorization for enhancing the security of internet users.

Toxic Comments Classificaton (2020):

This study used two different models for categorizing comments into toxic and non-toxic

ones. Models included Naive Bayes because of its simplicity and effectiveness in text

classification tasks, as well as LSTM, a RNN suitable for sequential data such as language.

The performance of these models was measured as a way of determining the accuracy of

differentiating hostile and non-hostile posts.

Results

LSTM was shown to be more precise and accurate and hence its F1 score(0.73) far

surpassed that of Naïve Bayes(0.64). LSTM outperformed the Naïve Bayes in overall

balanced classification demonstrated by the F1 score. Therefore, LSTM proved to be the

best model for identifying toxic comments, with high accuracy, in the dataset used.

Conclusions and Future Work

The results of this study lay strong foundation for future research areas and more accurate

approaches to categorise toxic comments. Extending the range of classifiers to deal with

multi-label classification problems related to the seven comment classes described by the

Kaggle competition can add more depth to the perception and precision in identifying toxic

comments.# Exploring other advanced algorithms and techniques like SVC and CNN

12



provide opportunities to enhancing model’s precision, but more work is needed.

Toxic Comment Classification and Unintended Bias (2019):

The initial modelling involved use of Naïve Bayes model with n-gram bag-of-words and

logistic regression using tf-idf. Speed-wise, the Logistic Regression model exceeded some

CNN models in its performance. Using Keras and tensorFlow, CNNs constructed from

pretrained word embeddings from GlOve and FastText. A three layered CNN architecture

involved maxim pooling, RELUs, and drop-outs for regularization was put into operation.

Categorical cross-entropy loss with binary output indicating whether a comment is toxic or

not.

Results

For seven iterations, each CNN model was trained using a batch size of 128. Importantly,

FastText CNN presented the best accuracy of 94.84%. On the other hand, the use of AUC

methodology revealed problems related to score conflation, especially in connection with

some ethnic sub-groups such as ‘black’, ‘white’ and even gay or lesbian homosexuals. It

could be argued that there are biased forecasts for

Conclusions and Future Work

The categorization of toxic comments was very accurate, and it revealed some implicit

prejudices that were present in the model’s prognoses. Future works should include using

bias data to penalize negative identity biases, optimized hyperparameter tuning,

incorporating pre-processing with translation, and adopting alternative neural network

architectures such as a BLSTM model.

Convolutional Neural Networks for Toxic Comment Classification (2018):

This work focuses on a comparison of the CNN to the BoW approach in classifying toxic

13



comments. It uses the Kaggle set of talk-page edits in Wikipedia. Text classification

procedures like SVM, NB, kNN, and LDA are used for the evaluation.

The CNN models including the ones with random initialization or word2vec-based

word representations always beat conventional techniques in classifying toxic remarks into

two categories.

Results

Experimentation reveals the supremacy of CNN models with more than 90% accuracy,

precision and recalls being higher than those for SVM, kNN, NB, and LDA.

Conclusions and Future Work

The randomly initialized and word2vec-based CNN variants have a clear advantage over

traditional methods for identifying toxic comments on multiple metrics. Finally the study

argues that CNNs have potential in providing a solution to toxic comments in the future by

increasing online communication safety. These results provide a basis for further work

based on CNN-based schemes for adaptive training in the toxic comment classification

task. Such analysis may be supplemented by incorporation of more advanced CNN models,

utilizing the principles of neural attentions and a more objective comparison between n

gram approaches. Further, exploring the usefulness of transfer learning and fine-tuned

pre-trained models may also help improve the performance of CNNs towards classifying

toxic comments in real-time on the internet.

2.2 Key Gaps in the Literature

Some potential key gaps in the previous literatures were:

Paper 1: Automated Toxicity classification on social media using LSTM and word

embedding (2023).

Limitations:
14



Data Bias Concern: It emphasised that bias in the data had to be addressed. Despite that, it

failed to address the ways of addressing this problem thus affecting the models’

generalizability.

Limited Scope: It is important to point out the fact that this study primarily concentrated on

comparing GloVe vs. BERT, while the other factors that may have also impacted the

model’s performance might have been overshadowed.

Paper 2: Toxic Comments Classification

(2022) .

Limitations:

Lack of Advanced Models: The study evaluated different machine learning methods;

however, it did not consider utilizing complex deep learning architectures such as

transformer-based models such as BERT and GPT that may have improved its

performance. Future Work Needs Clarity: It included a discussion on future works such as

trying other models but no specific plans or procedures was provided on the improvement

procedure.

Paper 3: Toxic Comment Classification Using BERT Base Model for Indonesian Social

Media in 2022.

Limitations:

Limited Comparative Analysis: However, the study was not as broad concerning a

comparative analysis with other current models of high performance.

Scalability Issues: However, the scalability of the model and limitations on real-time

moderation across platforms were not widely discussed in the paper

.

Paper 4: Towards Multilabel Toxic Comment Detection and Classification (2021).

15



Limitations:

Limited Diversity in Model Comparison: However, this study majorly concentrated on

the LSTM models with GloVe embeddings and may have left out other models and

embedding techniques.

Insufficient Exploration of Ensemble Methods: The article did not elaborate on some of the

ensemble methods they tried in an attempt to improve accuracy.

Paper 5: Toxic Comment Classification (2020).

Limitations:

Scope Limited to Binary Classification: The study focused only on a limited two-class

toxicity prediction system, which does not cater for other categories of toxicity.

Limited Exploration of Models: It identified some suggestions for improvement and also

said something about trying more sophisticated models without saying, however, in what

way would such models improve the accuracy?

Paper 6: Toxic Comment Classification and Unintentional Bias.

Limitations:

Bias Mitigation Strategies: It gave biased-ness issues on the model, and yet it was not

comprehensive enough in strategies necessary for reducing the biases whose reliance on

predictive ability may have been compromised.

Inadequate Neural Network Exploration: The paper also indicated the need for the

researchers to explore other architectures such as BLSTM for reduction of bias and

improvement in classification accuracy but did not outline it clearly.

Paper 7: Toxic Comment Classification using Deep Convolutional Neural Networks

(2018).

Limitations:
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Lack of Comprehensive Comparison: The study has demonstrated the superiority of the

CNN models but does not provide a complete comparison of the latest improved advanced

models that may have adopted some new techniques that were not present during the

research time.

Limited Scope: The article compared CNNs to conventional approaches; however, broader

insights into alternative methods that can enhance performance in toxic comment

classification were not discussed.

The contribution of each study is significant, but it comes with a set of issues which can be

improved during future studies aiming at enhancing the accuracy of toxic comment

classification models and their applicability.
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Chapter 3 SYSTEM DEVELOPMENT

3.1. Requirements and Analysis

Language :-

Python:

Python offers several benefits for toxic comment classification:

Rich Ecosystem: Python has libraries such as NLTK, Spacy, and scikit-learn for NLP

operations that facilitate text preprocessing and machine learning model implementation.

Ease of Use: With an easy-to-use syntax, it makes coding and understanding easier even

for novice programmers and machine learners.

NLP Libraries: Various Python libraries such as tokenization, stemming, lemmatization,

and sentiment analysis are readily available to make text preprocessing easier to use in

toxic comment analysis.

ML & DL Frameworks: Classification models are easily implemented in Python using

frameworks such as TensorFlow, Keras, PyTorch and scikit-learn.

Community Support: The python community has an enormous range of documentation,

tutorials and forums where you can get help or updated information.

Flexibility: With python, it is not difficult to combine different third parties’ libraries for

end to end data pipelines creating.

Open-Source: Python and associated libraries are free and open source allowing for

collaborative solutions development regarding the toxic comment classifications in this

research.

Cross-Platform Compatibility: Because python’s a platform independent language a code

can run on different OS without much change, increasing its accessibility.
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SoftwareTechnologies :-

TensorFlow: An open source distributed training system designed by Google for creating

and teaching machine learning algorithms, including neural networks.

Pandas: An open source python module with high level data structures and powerful APIs

of various data manipulation and analytical methods on structured data and time.

NumPy: Fundamental Python package for scientific computing, including support for large,

multi-dimensional arrays and matrices as well as a set of mathematical operations.

Jupyter Notebook: A web application where one can write, edit and share documents that

include live code, equations, visualizations, and story text. It is commonly applied for data

cleansing, transformering, modelization, and visualizing.
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3.2. Project Design and Architecture

Figure 2: Flow chart for implementation

The above figure 2 shows the flow chart for the implementation of our ‘Toxic Comments

Classification’ project.

1) Dataset: The main goal is to start with an initial dataset containing descriptions of

comments classified as toxic or non-toxic.

2) PreProcessing: The aim is to prepare the data for the training model through

various processes. This includes removing spaces, numbers, URLs, and stopped words, as

well as lemmatization functions.

3) Classification design: The aim here is to create a special model for classifying

toxic messages. This algorithm comprises of different algorithms and Word Embedding.

The models should be trained as well as adjusting the parameters.
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4) Model Evaluation: This is a phase that seeks to measure the quality of the model

as well as identify the best one of all. The evaluation metrics include accuracy, precision,

recall, F1 score, among others. Further, techniques like verification are employed to check

on the accuracy of the assessment.

3.3 Data Preparation

Jigsaw Multilingual Toxic Comment Classification dataset from Kaggle is used in this

project.

3.4 Implementation

Step 1: Setting Up The Environment:

As it is written in the code in figure 3, this is the foundation of the environment for training a

deep learning model, especially for NLP tasks, with the BERT model, using PyTorch and

PyTorch Lightning, seaborn and matplotlib are the two platforms used for visualization.

Imports: pandas and numpy for data manipulation, tqdm for progress bars, torch for deep

learning. Sklearn provides machine learning tools advantageous to the Sklearn for machine

learning.

Setting up the Environment: Arranging plotting parameters (sns. set, rcParams) for enhanced

visualization. The process of deciding on a certain number RANDOM_SEED has been set.

Model Training Setup: Starting the PyTorch Lightning environment (pl) is the first step to

solving complex problems with data. set the seed to a random value RANDOM_SEED.

The modules that are imported from PyTorch Lightning for logging, callbacks, and metrics

(ModelCheckpoint, EarlyStopping, TensorBoardLogger) are the necessities to perform the

task.

Model Definition and Training: BERT application in sequence classification is a great option.

BERT is a transformer-based model that is pre-trained for the NLP tasks and is widely used.

Outlining a PyTorch Lightning module for the BERT-based model, for example, its forward
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pass, training step, validation step, and optimizer setup.

The process of establishing the training loop, data loading with the PyTorch DataLoader, and

the

optimizer is the first step in creating a successful deep learning model. g. for Coming up with

the next set of words is considered , AdamW), and learning rate scheduler

(get_linear_schedule_with_warmup).

The action of setting up the callbacks such as model checkpointing and early stopping is

rephrased.

Evaluation: The application of Sklearn in the estimation of metrics like classification report

and confusion matrix in order to assess the performance of the trained model.

Visualization: The employment of seaborn and matplotlib for visualization, e.g., creating

confusion matrices is a good example.

Figure 3: Environment Setup

Step 2:Dividing The Dataset:

Train-Validation Split: The dataset df is divided into the training and validation sets using the
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train_test_split from scikit-learn. The validation set size is 5% of the original dataset. train_df

and val_df are the training and the validation sets, respectively.

Shapes Check: The shapes of train_df, val_df, and test_df are printed to check the sizes of

each split. On the contrary, test_df is mentioned but not defined in the given code.

Label Columns: The labels names are gotten from the DataFrame df. It seems that the first

two columns are not label columns and the rest of the columns are considered label columns.

This is represented by the action of df being sliced. columns. tolist()[2:]. The labels are then

summarized to show the distribution of positive samples for each label, and the result is

displayed as a horizontal bar chart by using plot(kind="barh").

This part of the code is about the way of dividing the dataset into the training and validation

sets, checking their sizes, and illustrating the distribution of positive samples for each label.

Figure 4: Dividing The Dataset

In the above figure 4, we have displayed the dataset into six toxicity levels.
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Step 3:Visualizing Toxic And Clean Comments:

Class Imbalance Handling: This technique splits the training set into two parts according to

the existence of labels. The train_toxic has rows in which one of the rows has at least one

label, which is identified by train_df[LABEL_COLUMNS]. sum(axis=1) > 0. train_clean

has rows where none of the labels are there, identified as the condition

train_df[LABEL_COLUMNS]. sum(axis=1) == 0.

Subsampling for Balanced Training Set:Subsampling for Balanced Training Set:This

synthetically creates a set of clean comments by selecting a part of the whole to make the

dataset fair. It finally picks 15,000 samples from the "clean" comments usingtrain_clean.

sample(15_000).

Visualization of Class Distribution: It generates a DataFrame with the amount of toxic and

clean comments in the training set. It then presents a horizontal bar chart which shows the

number of toxic and clean comments.

Concatenation: It is the combination of train_toxic and the sampled subset of train_clean

which generates the balanced training dataset. The dataset which is well balanced is kept in

train_df.

Shapes Check: It prints the training and validation sets of the balanced dataset (train_df)

and the validation set (val_df) to verify their sizes. This code is designed to resolve the

problem of class imbalance by subsampling the majority class (clean comments) and

generating a balanced training dataset. Besides, it allows the visualization that shows the

balancing achieved after subsampling. The balanced training set must be in the right size

according to the requirements for the model training.
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Figure 5:Visualizing Toxic And Clean Comments

In the above figure 5, we have split the dataset in two, that are clean and toxic comments.
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Step 4: Preprocessing The Dataset:

This code shown in figure 6 represents a dataset class name ToxicCommentsDataset which is

used for loading and preprocessing the dataset for the training or inference with BERT-based

model. Here's a breakdown of the class:

Initialization (__init__):

It takes several parameters:

data: The Pandas DataFrame that holds the dataset is the given dataset.

tokenizer: BERT tokenizer (BertTokenizer) is used for the process of tokenizing the text data.

max_token_len: The longest input tokens limit (default is 128).

test: Boolean marker that shows whether the dataset is for testing or not the default is False.

Length Method (__len__): It gives the length of the DataFrame, that is the total of the

samples in the DataFrame.

Get Item Method (__getitem__): It gets a data sample from the given dataset by taking the

data of the index.

The comment text is tokenized using the BERT tokenizer, that is, the comment text is cut up

into words which BERT tokenizer can divide, and the words are filled into the

max_token_len, if the cutting of the text is less the max_token_len, then the text is padded

until it reaches the max_token_len. Then the BERT tokenizer converts the text into input IDs.

If not in the testing mode: From the data frame, the labels for the sample are separated. It

gives a dictionary that includes the sample's ID, comment text, input IDs, attention mask, and

labels as PyTorch tensors.

If in testing mode: The method does not implement labels, but testing data is hardly in the

possession of labels. A dictionary is given which includes the sample's ID, comment text,

input IDs, and attention mask as PyTorch tensors.

This dataset type is responsible for the tokenization, padding, and the transformation of the

text data to the tensor that can be used as the input for a BERT-based model. It also manages

the situations of training and testing, hence, being able to load and preprocess data at its own

pace.
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Figure 6: Preprocessing

Step 5: BERT Tokenization:

This code shown in figure 7 launches a BERT tokenizer using the bert-base-cased

pre-trained model. Here's what each line does:

BERT_MODEL_NAME = 'bert-base-cased': Sets the variable BERT_MODEL_NAME to

'bert-base-cased', which means the BERT model that will be used will be the pre-trained

one. This particular model has the lowercase and uppercase letters in it which means that it

is able to differentiate between them.

tokenizer = BertTokenizer. from_pretrained(BERT_MODEL_NAME): This posts the

tokenizer in a given BertTokenizer. the from_pretrained() method, that uses the pre-trained

tokenizer associated with the BERT model indicated by BERT_MODEL_NAME to load the

BERT model.

This tokenizer divides the text into tokens and then converts those tokens into numerical IDs

which are linked to the embeddings present in the BERT model's vocabulary.
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The from_pretrained() method loads the tokenizer from the Hugging Face model hub, based

on the model name, which is provided.

Through these, we have prepared a BERT tokenizer which can tokenize the text data

according to the vocabulary and tokenization scheme used by the bert-base-cased model.

This tokenizer will be employed in the future for the input of the text data into the input IDs

and the attention masks (for BERT model).

Figure 7: BERT Tokenizer

Step 6:Making Class Instances:

In this code shown in figure 8, these class instances are made for the training and validation

datasets. It creates a ToxicCommentsDataset object for the train_df data (training dataset).

The class ToxicCommentsDataset contains the method which takes the training DataFrame

(train_df), the BERT tokenizer (tokenizer), and the maximum token length

(MAX_TOKEN_COUNT) and modifies them at the constructor.

MAX_TOKEN_COUNT is considered to be a constant defined at the beginning which

stands for the maximum number of tokens that can be entered in one input sequence.

Then the sentence is rephrased: The ToxicCommentsDataset object is created for the

validation dataset (val_df).

The constructor of ToxicCommentsDataset receives the validation DataFrame (val_df), the

BERT tokenizer (tokenizer) and the maximum token length (MAX_TOKEN_COUNT) as

arguments.

These datasets will be employed for the training and the validation since the beginning of

the training of the model. The ToxicCommentsDataset class is going to process the

tokenization, padding, and transformation of the text data into tensors that can be fed into

the BERT-based model. You should confirm that the MAX_TOKEN_COUNT is

well-defined.
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Figure 8: Class Instance

Step 7: Creating Object For Test Data:

This code shown in figure 9 creates a ToxicCommentsDataset object for the test dataset

(test_df). The constructor of ToxicCommentsDataset receives the input test_df, the tokenizer

and the maximum token length (MAX_TOKEN_COUNT) from the official test. the

test=True means that these datasets are for testing, which means they do not have labels. The

dataset class will deal with this by not labeling classes when test=True.

The given dataset will be utilized for testing the trained model and it doesn't have the labels

since usually the test data doesn't have the ground truth labels. The ToxicCommentsDataset

class will tokenize the text data, padding sequences, and prepare the input tensors for the

inference with the BERT-based model. DO NOT let the MAX_TOKEN_COUNT be too

high or too low for the BERT model that is being used.

Figure 9: Test Data Object

Step 8: Sample Item From The Training Data:

This code shown in figure 10 prints information about an item sample from the training

dataset. Here's what each line does:
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sample_item = train_dataset[0]: Gets the first sample from the training dataset (train_dataset)

by using Python's indexing ( [0] ). This gives a dictionary which has data about the sample,

like its ID, comment text, input IDs, attention mask, and labels (if they are applicable).

print(sample_item. keys()): The method prints the keys of the dictionary sample_item, that

represent the different data stored for the sample_item.

print(sample_item["_id"]): It prints the ID of the sample that was stored under the key "_id".

print(sample_item["comment_text"]): Type of the comment text of the sample stored under

the key "comment_text" is printed.

print(sample_item["input_ids"]): The input IDs are printed out under the key "input_ids".

These are the tokenized and numericalized text representations of the comment, which are of

the type of BERT input.

print(sample_item["attention_mask"]): It shows the attention mask of the sample collected

and stored under the key "attention_mask". This mask puts forward the tokens which should

be attended to and those which should be ignored during processing of the BERT model.

print(sample_item["labels"]): Prints the labels of the sample which is saved under the key

"labels". This is the case only if the dataset is used for training, since the testing and

validation datasets can't contain labels.

Figure 10: Sample Item

Step 9: Creating The Dataloader:

This code shown in figure 11 creates the PyTorch DataLoader objects for training, validation

and test datasets.

The DataLoader for the training dataset (train_dataset) is initiated. The batch_size parameter

is the one which depicts the number of samples per batch to be loaded during the training.
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the shuffle=True means that the data will be shuffled at the start of each epoch during the

training process so that the model will see different samples in each batch.

Then, the beginning of the process of creating a DataLoader for the validation dataset

(val_dataset) is made.

The batch_size parameter defines the number of samples for each batch to be loaded during

the validation.

Shuffle= False means that the data will not be shuffled in validation, because the order of

samples has no influence on the validation performance.

unshuffle=False signifies that the data will not be shuffled during testing because the order of

samples doesn't have any effect on testing.

The DataLoader objects are the key to the efficient iteration of datasets in mini-batches

during the training, validation, and testing of the model in the phases of the model. The

shuffle parameter makes sure that the training data is shown to the model in a different way in

each epoch, but the absence of shuffling in validation and testing guarantees the same

evaluation and the same results that can be reproduced.

Figure 11: Data Loader

Step 10: Garbage Collection:

In this code shown in figure 13, the gc. Python's collect() function is utilized to manually

collect garbage. This approach tries to free the memory that is currently assigned to the

objects which are not used or needed by the program anymore. In this way, the gc. will be

called.

collect(): The Python garbage collector tries to find and delete the memory that is not

necessary any more. It travels through the objects in memory and recognizes those that are

not any more used by any aspect of the program. As these unreferenced objects are no longer

in memory they are then available for future use. Calling gc. automatically the garbage

collector runs when the memory is low or the objects are deleted, hence, collect() is not

always necessary.
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Figure 12: Garbage Collector

Step 11: Structure Of The Model:

This code is written to define a PyTorch model class, ToxicCommentTagger, which is

supposedly for tagging toxic comments. Here's what each part does:

Initialization (__init__ method): The constructor is the one that initializes the model.

n_classes: Number of classes is the way in which a system can handle multiple different

types or characteristics. Thus, the size of the output layer is determined in this way.

n_training_steps: Training steps, which are the variables for adjusting the learning rate during

training, usually used in learning rate schedules, are the number of because of this, the learner

can decrease the learning rate after the initial phase, and increase it after half the training, and

after the training because of this the learner can increase the learning rate.

n_warmup_steps: The number of warm-up steps, which is also used for the adjustment of the

learning rate during the training, is the one that I will rephrase.

super(). __init__(): The phrase "calls the constructor of the parent class (nn." is equivalent to

"calls the constructor of the parent class (nn. Module).

self. bert = BertModel. from_pretrained(BERT_MODEL_NAME, return_dict=True): The

initial loads the pre-loaded BERT model using BertModel. the first component is

from_pretrained() and the second component is the self. bert. The return_dict=True argument

is a notation that the model should return outputs as a dictionary.

self. classifier = nn. Linear(self. bert. config. hidden_size, n_classes): It is a layer with a

linear connection (nn.Linear) added on top of BERT. The input size of this layer is the hidden

size of BERT, and the output size is n_classes, referring to the number of classes.

self. n_training_steps and self. the n_warmup_steps is the presenter of the number of training

steps.

self. criterion = nn. BCELoss(): This is the step when the binary cross-entropy loss function

(BCELoss), which is usually used for binary classification tasks, is initialized.

Forward Pass (forward method):

def forward(self, input_ids, attention_mask, labels=None):def forward(self, input_ids,
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attention_mask, labels=None): Puts into action the forward pass of the model.

input_ids and attention_mask are the tensors showing tokenized text and attention masks.

output = self. bert(input_ids, attention_mask=attention_mask): It takes the input and sends it

through the BERT model which in turn gives the output, that is a dictionary containing

various outputs like the hidden states and the pooler output.

output = self. classifier(output. pooler_output): The pooler output (usually the output of the

[CLS] token) is passed through the linear classifier layer to obtain the logits.

output = torch. sigmoid(output): It smoothen the function of the logits to make them

probabilities.

The system returns both the loss value and the model output (probabilities) if labels are given,

otherwise it just returns the output.

This class describes the structure and the forward pass logic for the model, which can be

applied in both the training and the inference phase of the toxic comment classification.

Figure 13: Forward Pass Logic

Step 12: Accessing The GPU:

This code shown in figure 14 is the guide for PyTorch to choose the platform, either CPU or

GPU available. It also creates an instance of the ToxicCommentTagger model and puts it on

the device that is mentioned. Here's what each line does:

device = torch. device("cuda" if torch. cuda. is_available() else "cpu"): Multiple checks

CUDA CUDA (GPU) is available using torch. cuda. is_available().

Under the condition of CUDA's existence, the device is turned on to CUDA ("cuda"),
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otherwise, it is turned on to CPU ("cpu").

This line guarantees that the model will be transferred to the GPU for computation if CUDA

is on but if it is not, the CPU will be used.

bert_model = ToxicCommentTagger(len(LABEL_COLUMNS)). to(device): This Begins the

creation of the ToxicCommentTagger model with the number of classes being the same as

the length of LABEL_COLUMNS.

After running these lines, you have a ToxicCommentTagger model that is ready for training

or inference or can be used for inference, depending on whether GPU is available or not, and

thus you can place it on the appropriate device. You will then be able to go on with the

training process of the model on your dataset.

Figure 14: Accessing GPU

Step 13: Running The Epochs:

In this code shown in figure 15, the number of warm-up steps and the total training steps are

defined by the number of epochs (N_EPOCHS), the size of the training dataset, and the batch

size. Here's what each part does:Here's what each part does:

N_EPOCHS = EPOCHS: In this way, the value of the EPOCHS variable is set to

N_EPOCHS. Thus, the names of the variables are always the same throughout the entire

project.

steps_per_epoch=len(train_df) // BATCH_SIZE: It gets the number of steps (batches) per

epoch by dividing the total number of samples in the training dataset (len(train_df)) by the

batch size (BATCH_SIZE). This is the value that shows how many batches are processed in

each epoch.

total_training_steps = steps_per_epoch * N_EPOCHS:total_training_steps = steps_per_epoch

* N_EPOCHS: The train steps are obtained by multiplying the steps per epoch

(steps_per_epoch) by the number of epochs (N_EPOCHS). This value is the sum of the
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numbers of optimization steps the model will execute during training.

warmup_steps = total_training_steps // 5:warmup_steps = total_training_steps // 5: The

calculated number of warm-up steps are usually an estimated fraction of the total training

steps. In this instance, it is set to one-fifth (of the total training steps) of the total training

steps.

The warm-up steps that are used in some learning rate schedules are designed to increase the

learning rate at the start of the training in a gradual way, thus, the learning process becomes

more stable and the possibility of diverging is prevented.

The warmup_steps and total_training_steps are the two values which are significant in setting

up the learning rate schedules, especially in training the big deep learning models such as

BERT. They are used to the control of the learning rate during training to the improvement of

convergence and performance.

Figure 15: Running Epochs

Step 14: Optimizer And Scheduler:

In this code shown in figure 16, we are initializing the optimizer for the training of the model.

AdamW is a version of the Adam optimizer that applies weight decay (L2 regularization)

directly to the parameters during the optimization, which hinders the overfitting.

optimizer: The optimizer object is the one that changes the learning rate.

num_warmup_steps: The number of warm-up steps before the usage of the learning rate is

attained.

num_training_steps: The cumulative number of training steps (batches) for every epoch.

Thus, the scheduler boosts the learning rate linearly from 0 to the suggested learning rate

(lr=2e-5) during the warm-up period and then it gets decreased linearly to 0 over the

remaining steps.

The optimizer and scheduler are the ones who are the partners in adjusting the model
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parameters during the training phase. The optimizer replaces the parameters based on the

gradients that were computed during the backpropagation, on the other hand, the scheduler

modifies the learning rate according to the given schedule, thus the training process is under

control and it is improved.

Figure 16: Optimizer and Scheduler

Step 15:Creating A Training Function:

This code shown in figure 17 creates the training function for the model. Here's a breakdown

of what each part of the function does:

def train(): Creates a function called train() for the training of the model.

model. train(): The format of the model is set to the training mode, which allows the gradients

to be computed and the parameters to be updated during the training.

It starts by creating three variables total_loss, total_accuracy, and avg_loss that will be used

to store the loss and accuracy data during the training process.

The step starts with creating an empty total_preds list to contain the model predictions.

Batch Iteration: Goes over the batches of the train_dataloader one by one.

For each batch: The mentioned batch tensors are moved to the specified device.

The sentence is explained using the tools of math which makes it easier to understand.

zero_grad().

Steps forward through the model to calculate the loss and the model outputs.

Calculates the total_loss by summing the loss item to the total_loss.

Adjust model parameters using the optimizer for the updates. It does the step() and schedules

the learning rate with a scheduler. step().

The method separates the model outputs from the computation graph, moves them to CPU,

and converts them to NumPy arrays before attaching them to the total_preds.
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Loss Calculation: Calculates the mean of the training loss.

Model Predictions: Then, the predictions of all the batches are linked along the first axis to

get total_preds that are in the shape (number of samples, number of classes).

Returns: Returns the average training loss for the epoch (avg_loss) and the total predictions

(total_preds) which are concatenated together.

Figure 17: Training Function

Step 16: Creating An Evaluation Function

This code shown in figure 18 contains an evaluation function which evaluates the

performance of the model on the validation dataset. Here's a breakdown of what each part of

the function does:Here's a breakdown of what each part of the function does:

def evaluate(): The function evaluate() lets the model be evaluated.
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Model Evaluation:

model. eval(): Transforms the model into evaluation mode, turning off dropout layers and

forcing the batch normalization layers to use the correct population statistics.

The introduction of the variables total_loss, total_accuracy and avg_loss enables the tracking

of the loss and accuracy during evaluation.

The method first creates two empty lists, total_preds and total_labels, which will store model

predictions and true labels.

Batch Iteration: Computes over batches from the val_dataloader.

For each batch: The batch tensors are transferred to the device (GPU) of the user's choice.

Unmasks the autograd feature to put it on the brakes.

Takes a backward pass through the model to compute the loss and model outputs.

It adds the loss item to the total_loss in order to compute the total loss.

Runs the detach function to free the model outputs from the computation graph, transfers

them to CPU and converts them to NumPy arrays before appending to total_preds. Likewise,

correct labels are cut and connected to total_labels.

Loss Calculation: The function calculates the mean validation loss for the epoch by dividing

total_loss by the number of batches.

Model Predictions: By concatenating the predictions from all batches on the first axis to get

total_preds in the form (number of samples, number of classes).

Links true labels from all batches along the first axis to get total_labels which are in the same

shape as the labels of all batches.

Metrics Calculation: Computes the ROC AUC score for each class by utilizing roc_auc_score

from scikit-learn. The meta prints the ROC AUC scores for each class.

Returns: It outputs the average validation loss of the epoch (avg_loss), the total predictions

(total_preds), and the total true labels (total_labels).

This function is assessing the model on the validation data and returning the validation loss,

model predictions and true labels. Besides, in addition to the ROC AUC score for each class,

it also prints the result of the classification for each class, which gives us an idea of the model

performance across different classes.
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Figure 18: Evaluation Function

Step 17:Training The Model:

This code shown in figure 19 keeps training the model for a certain number of epochs and

after each epoch it tests its performance on the validation dataset. Here's a breakdown of what

the code does:

%%time: This is the Jupyter Notebook command that measures the execution time of the cell.

Initialization: best_valid_loss = float('inf'): The early validation loss is set to infinity.

Epoch Loop: Reiterates for each epoch from 1 to the particular number of epochs (EPOCHS).

The print number of the current epoch.

Training: It runs the train() command for training for the current epoch and gathers the loss.
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Evaluation: The evaluate() function is then used to evaluate the model on the validation

dataset. If the current validation loss is less than the best validation loss so far, it updates the

best validation loss and saves the model's weights to a file named 'saved_weights'. pt'.

Loss Logging: The earlier mentions the appending of the training and validation losses of the

current epoch to their respective lists (train_losses and valid_losses).

Prints: The outputs the training and validation losses for the current epoch. This loop

continues for the specified number of epochs, during training and evaluation of the model and

at the same time, keeping the track of the best validation loss.

Figure 19: Model Training

Step 18: Creating The Testing Function

This code shown in figure 20 has a testing function that tests the trained model on the test

dataset. Below is a breakdown of what each part of the function does:

def test(): It is the code that specifies the function named test() for testing the model.

Model Testing:

model. eval(): Sets the model to evaluation mode, which is a mode without the dropout layers

and makes sure that the batch normalization layers are using the right statistics of the

population. The variable total_loss is set to be the memory element for the loss during testing.
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Begins by making empty lists total_preds and _ids which will be used as a storage for model

predictions and the IDs.

Batch Iteration: Cycles through the batches from the test_dataloader.

For each batch: Doubles the batch tensors and moves them to the specified device (GPU).

Automatically turns off gradients thus disabling the gradient computation. The forward pass

through the model is executed to obtain the loss and model outputs. Computes the total loss

by adding the loss item to the existing total_loss. The model outputs and the IDs that come

with them are added to total_preds and _ids, respectively.

Loss Calculation: It calculates the mean test loss for the whole test dataset by dividing the

total_loss by the number of batches.

Model Predictions: Allows the predictions from all batches to be concatenated along the first

axis to get the total_preds in the shape of (number of samples, number of classes).

Joins the related IDs from all batches on the first axis and gets _ids as a NumPy array.

Results: Constructs a dictionary containing the terms _ids and total_preds which gives the

IDs and the predictions respectively.

Returns: Returns the average test loss for the complete test set (avg_loss), concatenated

predictions (total_preds), and the dictionary of results (results). This function is the one that

evaluates the model that has been trained on the test dataset and gives the test loss,

predictions of the test data and then it returns the test IDs. It is a good tool to evaluate the

model's performance on the unseen data once the training is done.
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Figure 20: Testing Function

Step 19: Making The ROC Curve:

In this code shown in figure 21, the given evaluate_roc function is aimed at the assessment of

the model's performance by the Receiver Operating Characteristic (ROC) curve and the

metrics that are related to it. Below is a breakdown of what each part of the function does:

Function Definition:

def evaluate_roc(probs, y_true): The function evaluate_roc is defined that gets predicted

probabilities(probs) and true labels(y_true) as its parameters.

ROC Curve and Metrics:

ROC Curve: Computes the False Positive Rate (FPR), True Positive Rate (TPR) and the

thresholds using the roc_curve from scikit-learn. The function computes the Area Under the
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Curve (AUC) of the ROC curve by using the function from scikit-learn. It plots the ROC

curve with the AUC value indicated on the plot.

Accuracy: Calculates the accuracy of the model by classifying the predicted probabilities into

0 when the model is wrong and 1 when the model is right.

Printing Metrics: Outprints the ACC and the AUC on the test set.

Plotting: The issue is introduced then the ROC curve is set up the plot for it. The graph shows

the ROC curve, adding the AUC on the graph. Includes a legend and the labels of what is in

the plot.

Returns: No explicit return value. The procedure prints the AUC and the accuracy and shows

the ROC curve plot. This function gives a thorough review of the model's ability to predict

using the ROC curve and the related metrics. It is a good tool for checking the quality of the

model and for showing its performance in different classification thresholds and the

discrimination between positive and negative samples.

Figure 21: ROC Curve

Step 20: Calculating The Loss:

In this code shown in figure 22, we have made the evaluate() function call, which checks the

model on the validation dataset and gives the average validation loss, model predictions
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(total_preds), and true labels (total_labels). We shall now start breaking the model and getting

the values.

This indicates that we have tested the model on the validation data and got the average

validation loss, model predictions (total_preds) and true labels (total_labels). With this we

can calculate performance metrics and measure the model's performance.

Figure 22: Average Loss

Step 5: Calculation THe Model Accuracy:

This code shown in figure 23 goes over every column of labels and checks the model's

performance with the evaluate_roc function for each label. Here's a breakdown of what each

part of the code does:

Iteration over Label Columns: for i, name in enumerate(LABEL_COLUMNS):The sentence

iterates over the label columns one by one where i is the index number and name is the name

of the label column.

Evaluation for each Label: print(f"label: {name}"): Shows the name of the label.

Total_labels[:,i]): The evaluate_roc function is called to assess the model's performance for

the current label.

total_preds[:, i] > 0. 5 is used to set the limit of threshold probabilities for the current label at

0. 5 which will assist in determining the binary outcome.
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total_labels[:, it] supplies the accurate labels for the restricted label column.

evaluate_roc Function: This function calculates the AUC and the accuracy for each label.

Through the process of checking each label column and reviewing the model's performance

for every label, you can determine the model's success for each individual label in the

multi-label classification problem. This enables us to find the model's aptitude and

inadequacy for each category.

Figure 23: Model Accuracy

3.5 Key Challenges

Complexity of Toxicity:

There are plenty of forms for toxic remarks such as hate speech, threatening, sarcasm and

others. Developing a model which is capable of understanding and classifying these

subtleties correctly is difficult.

Model Overfitting:

They experience a problem of overfitting, especially in the case where data are restricted or

when the model is too complicated for the objective. These include the regularization

methods of dropout and early stopping to avoid overfitting.

Hyperparameter Tuning:

For LSTM or BERT models, a very careful selection of the architecture, number of layers,

learning rate, batch size etc. is needed during the trial and error process.

Interpretability:
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Simpler models are preferred because they are not as complex or less interpretable than the

LSTM or hybrid models. Analyzing how these models decide whether substances are

harmful may be challenging.
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CHAPTER 4 TESTING

4.1 Testing Strategy

In this code shown in figure 24 ,we’ve run the test() function, which evaluates the trained

model on the test dataset and generates the average test loss, model predictions

(total_test_preds), and a dictionary containing IDs and predictions (sub). Now we should start

with the model evaluation on the test dataset and their corresponding values will be listed

below.

We have evaluated the model on the test dataset and achieved the average test loss, model

predictions (total_test_preds), and a dictionary that contains the IDs and predictions (sub).

With this, you can look at the model's result on the test data or, even use its predictions for

any other tasks.

Figure 24: Test Loss

Then as explained in the code shown in figure 25, we made a DataFrame called D and added

a column 'id' to it. The values in this column are from the dictionary sub, which probably has

the IDs and accordingly the predictions generated by the model on the test dataset.

Here's a breakdown of the steps:

DataFrame Creation: We've generated a DataFrame named D that is not filled. The
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DataFrame that will be created will be used to store the IDs obtained from the sub dictionary.

Column Addition: We've placed a column named 'id' in the DataFrame D with the help of

D['id'] = sub['id']. This column contains the IDs which are the result of the sub dictionary

extracted.

Through the process of making this DataFrame and adding the IDs to it, you will be able to

easily manipulate and analyze the test data predictions as well as, if necessary, further

manipulate and analyze the test data predictions.

Figure 25: Dataframe

4.2 Test Cases and Outcomes

As explained in the code shown in figure 26, we are making the predictions from the sub

dictionary to the DataFrame D through colonization of the fields in the DataFrame D.

Assigning Predictions:

sub['predictions']. cpu(). numpy(): This extracts the predictions from the 'predictions' of the

sub dictionary. The prediction seems to be stored as tensors on the CPU, and . cpu(). numpy()

is the function that is used to get the arrays into NumPy arrays.

D[LABEL_COLUMNS]: This assigns the predictions to the column names specified in

LABEL_COLUMNS in the DataFrame D. LABEL_COLUMNS most probably is the list of

labels in the dataset and thus, by doing D[LABEL_COLUMNS], we are assigning the
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predictions to the specific labels specified in this list in the DataFrame.

Through the placement of the predictions in the DataFrame columns that correspond to the

label columns, we are on the way to organizing the predictions in a logical order, hence it will

be easier to analyze and compare them with the ground truth labels or perform further

processing if needed.

Figure 26: Predictions
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CHAPTER 5 RESULTS AND EVALUATION

4.1. Results

We have made the ROC curve for each of the six levels of comments toxicity and calculated

AUC and accuracy for each level.

Figure 27: ROC Curve For label ‘toxic’

In the above figure 27, we have plotted a ROC curve between True Positive Rate and False

Positive Rate for the label ‘toxic’ and displayed the AUC and Accuracy of this label.
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Figure 28: ROC Curve For label severe_toxic

In the above figure 28, we have plotted a ROC curve between True Positive Rate and False

Positive Rate for the label ‘severe_toxic’ and displayed the AUC and Accuracy of this label.

Figure 29: ROC Curve For label ‘obscene’

In the above figure 29, we have plotted a ROC curve between True Positive Rate and False

Positive Rate for the label ‘obscene’ and displayed the AUC and Accuracy of this label.
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Figure30: ROC Curve For label ‘threat’

In the above figure 30, we have plotted a ROC curve between True Positive Rate and False

Positive Rate for the label ‘threat’ and displayed the AUC and Accuracy of this label.

Figure 31: ROC Curve For label ‘insult’

In the above figure 31, we have plotted a ROC curve between True Positive Rate and False

Positive Rate for the label ‘insult’ and displayed the AUC and Accuracy of this label.
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Figure 32: ROC Curve For label ‘identity_hate’

In the above figure 32, we have plotted a ROC curve between True Positive Rate and False

Positive Rate for the label ‘identity_hate’ and displayed the AUC and Accuracy of this label.

4.2. Comparison with Existing Solutions

The best existing solution in the literature review was in Multilabel Toxic Comment

Detection and Classification (2021) where LSTM with GloVe showed an accuracy of

96.66%. Our models prove to be better in detecting toxic comments than the previous

studies.
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CHAPTER 6 CONCLUSION AND FUTURE

SCOPE

6.1. Conclusion

We worked with a complex deep learning model in this project. This implementation took

place using a Natural Language Processing use-case. We also came to understand some

efficient ways of cleaning messy textual data during the different projects preprocessing

activities as well as in feature engineering.

We learned how different deep-learning models operate including LSTM and BERT

models. We got the understanding of word embedding and their merits if compared to

untrained word embedding. We also learned about different libraries that enabled us to tune

perfectly the hyper- parameters for both models as well as optimize the results.

6.2. Future Scope

1. Enhanced Model Architectures:

Transformer-based Models: Use advanced architectures such as BERT, GPT or RoBERTa

to better understand toxic discourse contexts.

Ensemble Techniques: Use various models in combination in order to optimize the

performance in a better way by exploiting the advantages of each model.

2. Multilingual Adaptability:

Language Expansion: Expand model to take into account larger number of languages,

accents and toxicity detection for increased inclusivity.
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3. Contextual Understanding and Nuanced Detection:

Fine-grained Classification: Develop tools which can recognize slight manifestations and

various types of poisonousness like sarcasm, subtle hate speech, and others.

Contextual Analysis: Consider including data about the current situation in the room or any

other element, which may help explain the true intention of the comment rather than its

surface meaning.

4. Continuous Learning and Adaptation:

Active Learning Strategies: Use methods of incremental improvement on man-related

models.

Dynamic Dataset Expansion: Update/enrich/refresh datasets on a regular basis as they

become obsolete in light of altering patterns of online languages and behavior.

5. Real-time Monitoring and Intervention:

Live Moderation Systems: Integrate models for real-time platforms, filtering and removal

of toxic text/content as it appears.

Prompt Interventions: Respond with severity design prompt/response & intervention

systems that detect severe toxicity.

6. Ethical Considerations and Bias Mitigation:

Bias Detection and Mitigation: Apply techniques for finding and eradicating any bias,

which may be embedded in data, in order to generate unbiased and reliable forecasts.

Ethical Guidelines: Develop guidelines for use of the AI to monitor online contents with a

view of not censoring too much nor biasing the same.

7. Domain-specific Applications:
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Industry-specific Solutions: Overcome industry-specific challenges through building niche

customized models for niches such as social media, game, education, etc.

8. Regulatory Compliance and Standards:

Compliance Measures: Ensure that you don’t violate any of the statutes as stated by

matching the models with statutes on privacy and content censorship. More elaborate,

flexible and culturally sensible model should be created to cope with the complex nature of

internet-based dialect without infringement and transparency. Development of more

effective toxicity detection systems, incorporating advanced AI/NLP technologies will also

persist.
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