

American Sign Language Recognition with Text-To-

Speech

A major project report submitted in partial fulfillment of the requirement for the award of

degree of

Bachelor of Technology

in

Computer Science & Engineering / Information Technology

Submitted by

Anurag Kumar (201367)

&

Suditi Rathore (201327)

Under the guidance & supervision of

Dr. Nancy Singla

Department of Computer Science & Engineering and

Information Technology

Jaypee University of Information Technology, Waknaghat,

Solan - 173234 (India)

i

CERTIFICATE

This is to certify that the work presented in the “American Sign Language Recognition with

Text-To-Speech” project report, which was submitted to the Department of Computer Science

& Engineering and Information Technology, Jaypee University of Information Technology,

Waknaghat in partial fulfilment of the requirements for the award of the degree of B.Tech in

Computer Science and Engineering, is an authentic record of work completed by Anurag Kumar

(201367) and Suditi Rathore (201327) during the period from August 2023 to May 2024 under

the supervision of Dr. Nancy Singla, Department of Computer Science & Engineering and

Information Technology, Jaypee University of Information Technology, Waknaghat.

Anurag Kumar

(201367)

Suditi Rathore

(201327)

Dr. Nancy Singla

Assistant Professor (SG)

Computer Science & Engineering and Information Technology

Jaypee University of Information Technology, Waknaghat

ii

CANDIDATE’S DECLARATION

We hereby declare that the work presented in this report entitled “American Sign Language

Recognition with Text-To-Speech” in partial fulfillment of the requirements for the award of

the degree of Bachelor of Technology in Computer Science & Engineering / Information

Technology submitted in the Department of Computer Science & Engineering and Information

Technology, Jaypee University of Information Technology, Waknaghat is an authentic record

of my own work carried out over a period from August 2023 to May 2024 under the supervision

of Dr. Nancy Singla (Assistant Professor (SG), Department of Computer Science &

Engineering and Information Technology).

The matter embodied in the report has not been submitted for the award of any other degree or

diploma.

(Student Signature with Date) (Student Signature with Date)

Student Name: Anurag Kumar Student Name: Suditi Rathore

Roll No.: 201367 Roll No.: 201327

This is to certify that the above statement made by the candidate is true to the best of my

knowledge.

(Supervisor Signature with Date)

Supervisor Name: Dr. Nancy Singla

Designation: Assistant Professor (SG)

Department: Computer Science & Engineering and Information Technology

Dated:

iii

ACKNOWLEDGEMENT

Firstly, I express my heartiest thanks and gratefulness to almighty God for his divine blessing

making it possible to complete the project work successfully.

I am really grateful and wish my profound indebtedness to my supervisor Dr. Nancy Singla

Assistant Professor (SG), Department of CSE, Jaypee University of Information Technology,

Waknaghat. Her deep knowledge & keen interest in the field of "Artificial Intelligence" helped

us to carry out this project. Her endless patience, scholarly guidance, continual encouragement,

constant and energetic supervision, constructive criticism, valuable advice, reading many

inferior drafts and correcting them at all stages have made it possible to complete this project.

I would also generously welcome each one of those individuals who have helped me

straightforwardly or in a roundabout way in making this project a win. In this unique situation,

I might want to thank the various staff individuals, both educating and non- instructing, which

have developed their convenient help and facilitated my undertaking.

Finally, I must acknowledge with due respeet the constant support and patience of my parents.

Anurag Kumar

201367

Suditi Rathore

201327

iv

TABLE OF CONTENTS

CONTENT PAGE NO.

CERTIFICATE i

CANDIDATE’S DECLARATION ii

ACKNOWLEDGEMENT iii

LIST OF TABLES vi

LIST OF ABBREVIATIONS vii

LIST OF FIGURES ix

ABSTRACT x

CHAPTER 1: INTRODUCTION 1

1.1 INTRODUCTION 1

1.2 PROBLEM STATEMENT 3

1.3 OBJECTIVES 3

1.4 SIGNIFICANCE AND MOTIVATION 4

1.5 ORGANIZATION 5

CHAPTER 2: LITERATURE SURVEY 7

2.1 RELATED WORK 7

2.2 KEY GAPS IN LITERATURE 10

CHAPTER 3: SYSTEM DEVELOPMENT 12

3.1 REQUIREMENTS AND ANALYSIS 12

3.2 PROJECT DESIGN AND ARCHITECTURE 19

3.3 DATA PREPARATION 22

3.4 IMPLEMENTATION 24

v

CHAPTER 4: TESTING 47

4.1 TESTING STRATEGY 47

4.2 TEST RESULTS AND OUTCOMES 48

CHAPTER 5: RESULTS AND EVALUATION 51

5.1 RESULTS 51

5.2 COMPARING WITH EXISTING SOLUTIONS 54

CHAPTER 6: CONCLUSION AND FUTURE WORK 58

6.1 CONCLUSION 58

6.2 FUTURE SCOPE 60

REFERENCES 62

PLAGIARISM REPORT 65

vi

LIST OF TABLES

Tab. No. Table Name Page No.

1 Existing Literature Review 8

2 Comparing proposed model with existing solutions 54

vii

LIST OF FIGURES

Fig. No. Figure Page No.

1 American Sign Languages 2

2 Overview of MediaPipe Holistics 14

3 The hand_landmarks model of MediaPipe 16

4 The pose_landmarks model of MediaPipe 16

5 The architecture of recurrent neural network 17

6 The architecture of LSTM block 17

7 The repeating module in an LSTM contains four integrating layers 18

8 Architecture of the proposed ASL Recognition System 19

9 Folder for gesture and corresponding subfolders for each gesture 22

10 Collection of 30 frames inside each subfolder 23

11 Importing libraries 24

12 Video Capture 26

13 Using Holistic API’s 27

14 Mediapipe_detection function 28

15 Draw_landmarks function 28

16 Implementing function for each hand 29

17 Capturing 30

18 Detection of hand and face 31

19 Extracting Key-points 32

20 Collecting frames for “Hello” word 34

21 Collecting frames for “NO” word 34

22 Collecting frames for “I love you” word 35

23 Collecting frames for “Thanks” word 35

24 Pre Process Data 36

25 Create Labels 38

26 Building LSTM Model 39

27 Making Predictions 40

viii

28 Save Model Weights 41

29 Evaluation using Confusion Matrix and Accuracy 43

30 Test in Real Time 46

31 Model Summary 50

32 Recognition of “Hello” word 52

33 Recognition of “Thank You” word 52

34 Recognition of “Are You” word 53

35 Recognition of “I Love You” word 53

36 Accuracy Comparison of ASL Recognition Models 56

ix

LIST OF ABBREVIATIONS

ASL American Sign Language

CODA Child of Deaf Adult

SLR Sign Language Recognition

ROI Region Of Interest

CNN Convolutional Neural Network

LSTM Long Short Term Memory

RNN Recurrent Neural Network

MP Media Pipe

ML Machine Learning

BGR Blue → Green → Red

RGB Red → Green → Blue

CV Computer Vision

x

ABSTRACT

Humans need a mechanism through which they can communicate with each other. The group

of especially abled people are those with speech or hearing disability. Visual communication is

also essential while interacting with mute and deaf people. This is because people without any

impairment might find it difficult communicating with such individuals.

For effective conversation between two people with and without disabilities, a system of

translating hand signs to text messages is required. It is not easy to get interpreters for this kind

of a language. Sign language has been one of the ancient and most raw and natural means of

communication even to date, although not many people are fluent in it.

Hence, we use neural networks to develop a real time fingerspelling strategy in line with the

American Sign Language. To implement this, created a dataset using OpenCV and Mediapipe.

Motivation behind creating our own dataset was the insufficient resources and unavailability of

an accurate data.

Deep learning approaches can help reduce communication obstacles. The model identifies the

gesture accurately and outputs the corresponding text onto the screen. Deep learning technology

helps in pattern reorganization and therefore prediction of further data.

1

CHAPTER 1: INTRODUCTION

1.1 Introduction

A gesture can be seen as motion of the head, body, or hands expressive of thought, sentiment,

or passion; any action or posture intended to express a thought or a feeling, or to emphasize or

illustrate what is said. Here image processing as well as computer vision(CV) come into use for

sign language recognition. Sign recognition enables computers to interpret actions. It can aid

the users in interacting spontaneously with the machine systems through artificial interfaces.

Sign language is a mode of communication for disabled people, which involves gestures.

For deaf and mute community sign language the only mode of communication. For them sign

language is virtually equivalent of a speech. This is a universal language of the deaf and dumb

community, though it is manifested locally as ISL and ASL. They use one or two hands to make

some specific hand gestures and they speak no other language than the sign language.

CODA (Child of Deaf Adult(s)), it refers to a person who was raised by one or more deaf parents

or legal guardians. a sign of continuous and isolated sign languages where instead of using one-

word movements, like traditional sign language, continuous ISL consists of movements that

produce a complete sentence. This work, involved an independent ASL-gaze recognition

language.

Individuals communicate through diverse ways, this includes behavior like physical signals,

facial expression, spoken words, and so on but people with a hearing loss can only use hand-

gestures to communication. People who suffer from deafness or poor speech use ‘standard’ sign

language understood only by a fellow user.

2

Sign language is ranked sixth among the languages that are used widely. It encompasses

gesticulation, which is one way of passing across information by use of hands. Like in other

languages, each region has a form of a sign language peculiar for it.

About 62 million people lives with some type of hearing impairment using about 200 sign

languages that have their own distinguishing attributes. It is used by hard-of-hearing and normal

hearing people as well. However, not all people know the gestures and signals used in the sign

language. Sign language understanding and knowing what its movements entail is something

that requires plenty of practice. It takes a long period to learn sign language because there is no

teaching or any reliable portable tool for detecting it. As with the development of neural

networks and deep learning, there appeared a system which can recognize things or things of

the same groups.

This project is centered at developing a recognition model for hand motions as well as putting

them together to form a complete language word. Figure 1 illustrates a diverse array of

American Sign Language (ASL) vocabulary, showcasing expressions for greetings, farewells,

affirmations like "hello," "goodbye," and "yes," alongside various other words.

Fig 1. American Sign Languages

3

1.2 Problem Statement

Communication is a vital part of everyone’s day-to-day life. Effective communication serves

as the cornerstone of navigating the complexities of daily existence, indispensable for fostering

understanding, connection, and successful interactions in all aspects of life. For most people

communication seems effortless and easy. But for people with disabilities, it can be a challenge.

Hearing or speech impaired individuals’ uses sign language as mode of communication. Most

people are not fluent in understanding and recognizing such sign languages. Learning and

understanding sign language can be difficult and time consuming. And since there are so many

different variations in different sign languages, that it is difficult for a person to understand

them.

So, hearing or speech impaired individuals’ need a translator, who is proficient in sign language

and effectively communicate the ideas to others. A technique is required, which will serve as

an intermediate between the people who does and does not understand sign language.

1.3 Objectives

The specific objectives of this project are as follows:

 Creating own dataset using OpenCV, mediapipe holistic by extracting key-points from the

data for training and testing of deep learning model.

 Developing a deep learning-based LSTM (Long Short Term Memory) model on trained

pre-processed data for real time sign language detection.

 Evaluating the model's performance on various metrics including accuracy, precision,

recall, and F1-score.

4

1.4 Significance and Motivation of the Project Work

The significance and motivation of an American Sign Language (ASL) project can be

multifaceted and impactful. Here are some key points to consider:

1. Accessibility and Inclusivity: ASL is the primary means of communication for many

individuals who are deaf or hard of hearing. Developing technology that can accurately

interpret and translate ASL can greatly enhance accessibility for this community,

allowing them to more effectively communicate with others who may not understand

sign language.

2. Empowerment and Independence: By enabling real-time recognition of ASL gestures

and signs, the project can empower individuals who use sign language to navigate

various aspects of daily life more independently. This includes interactions in

educational settings, workplaces, social gatherings, and public spaces.

3. Education and Learning: ASL recognition technology can be integrated into educational

tools and platforms to facilitate language learning for both deaf and hearing individuals.

It can provide interactive feedback and support for practicing ASL vocabulary and

grammar, enhancing the learning experience and promoting greater fluency in sign

language.

4. Efficiency and Communication: In scenarios where communication barriers exist

between individuals who use sign language and those who do not, ASL recognition

technology can serve as a bridge, facilitating smoother and more efficient

communication exchanges. This can be particularly valuable in healthcare settings,

emergency situations, customer service interactions, and more.

5. Research and Innovation: Advancements in ASL recognition technology contribute to

ongoing research efforts in the fields of computer vision, machine learning, and human-

computer interaction. By pushing the boundaries of what is possible in ASL

5

interpretation and translation, the project can inspire further innovation and

development in related areas.

6. Social Impact and Awareness: The project raises awareness about the importance of

accessibility and inclusivity for individuals with disabilities, promoting empathy,

understanding, and social change. It highlights the challenges faced by the deaf and hard

of hearing community and demonstrates the potential of technology to address these

challenges effectively.

In summary, the significance and motivation of the project lie in its potential to enhance

accessibility, empowerment, education, efficiency, research, and social impact for individuals

who use American Sign Language as their primary mode of communication.

1.5 Organization

The below report is organized as follows:

Chapter 1: Introduction

This chapter sets the stage by clearly defining the problem the project aims to solve. It outlines

the specific goals and objectives of the project and provides insight into the methodology

employed to achieve these objectives.

Chapter 2: Literature Study

In this chapter, the project builds upon existing knowledge by conducting a thorough review of

relevant literature. It identifies areas where previous research may have left gaps or unanswered

questions.

Chapter 3: System development and workflow

This chapter dives into the practical aspects of the project, starting with the identification of

requirements and analysis of user needs. It then moves on to discuss the design and architecture

6

of the project, detailing how different components fit together to form a cohesive system.

Additionally, it covers data preparation techniques and the actual implementation process.

Chapter 4: Performance analysis

Here, the project evaluates its effectiveness through rigorous testing and analysis. It describes

the strategies used for testing, presents the results obtained, and discusses their implications for

the project's overall performance and success.

Chapter 5: Conclusion and future scope

Finally, the project wraps up with a comprehensive summary of its findings and conclusions. It

also includes future research and development, highlighting areas where further exploration

could lead to significant advancements in the field.

7

CHAPTER 2: LITERATURE SURVEY

2.1 Related Work

Past studies have underscored the importance of leveraging advanced technologies and artificial

intelligence algorithms to predict sign language gestures, thereby aiding individuals with

hearing impairments. Despite significant research in Sign Language Recognition (SLR), there

exist notable limitations and areas for improvement to better serve the hard-of-hearing

community. This section provides a concise overview of recent literature focusing on SLR,

particularly utilizing sensor and vision-based deep learning techniques.

A review of existing literature reveals various approaches aimed at tackling gesture recognition

in videos through diverse methodologies. For instance, in [1], researchers employed Hidden

Markov Models (HMM) to identify facial expressions within video sequences. They coupled

this with Bayesian Network Classifiers and Gaussian Tree Augmented Naive Bayes Classifiers

to enhance recognition accuracy.

Francois et al. [2] contributed to the field by exploring Human Posture Recognition in Video

Sequences through both 2D and 3D methodologies. Their work involved utilizing Principal

Component Analysis (PCA) to identify silhouettes captured by a static camera, followed by 3D

modeling to characterize posture for recognition. However, this approach introduced

intermediary gestures, potentially leading to training ambiguities and reduced prediction

accuracy.

Similarly, Kumud et al. [4] delved into Continuous Indian Sign Language Recognition,

proposing a systematic framework. Their methodology encompassed frame extraction from

video data, preprocessing, key frame extraction, feature extraction, recognition, and

optimization stages. Preprocessing involved converting videos into sequences of RGB frames

with uniform dimensions. Skin color segmentation using HSV facilitated the extraction of skin

8

regions, subsequently converted to binary form. Key frames were then identified by computing

gradients between frames.

Features were extracted from the identified key frames using oriental histograms. Classification

was carried out utilizing various distance metrics, including Euclidean Distance, Manhattan

Distance, Chessboard Distance, and Mahalanobis Distance.

.

Table 1: Existing Literature Review

S.

No.

Paper Title

[Cite]

Journal/

Conference

(Year)

Tools/

Techniques/

Dataset

Results

Limitations

1. SignRing:

Continuous

American Sign

Language

Recognition Using

IMU Rings and

Virtual IMU Data

ACM on

Interactive Mobile

Wearable and

Ubiquitous

Technologies

(2023)

IMU dataset

95.58%.

Video's lower

frame rate

compared to

wearable IMU

sensors makes

it challenging

to achieve

sensitivity and

stability of

IMU sensors.

2. Sign Pose-based

Transformer for

Word-level Sign

Language

Recognition

IEEE/CVF Winter

Conference on

Applications of

Computer Vision

Workshops (2022)

LSA64 dataset

63.18%

The model

can be trained

using a small

portion of

human

labeled data

9

to predict

precise labels

that need

correction.

3. ML Based Sign

Language

Recognition

System

IEEE International

Conference on

Innovative Trends

in Information

Technology

(2021)

Large dataset

65%

The model

showed an

accuracy of

only 65% due

to less data

set.

4. A Modified LSTM

Model for

Continuous Using

Leap Motion

IEEE Sensors

Journal (2019)

IIT Roorkee

students

enrolled for

data

collection.

72.3%

The model

showed an

accuracy of

only 72.3%

due to less

training

dataset. It

uses sensor

for detection.

5. American Sign

Language Alphabet

Recognition using

Deep Learning

ArXiv Journal,

(2019)

NVIDIA K80

GPU

71.68%

They have

done the

recognition

only on the

alphabets.

6. American Sign

Language

MECS

International

Journal of Image,

Own dataset

73.05%

Model is

restricted to

alphabet and

10

Recognition - An

Optimal Approach

Graphics and

Signal Processing

(2018)

number

recognition

only. Dataset

consists of the

images of

hand and

fingers.

2.2 Key Gaps in Literature

While the reviewed studies have made significant contributions to American Sign Language

Recognition using deep learning, which also shows certain limitations:

Limited Exploration of Continuous Recognition Challenges: The majority of the reviewed

studies focus on particular ASL recognition tasks, such as alphabet or numeral recognition. It

can be seen that there are considerable areas for undertaking continuous sequence SLR. Hence,

it is very crucial to fill gap, as continuous ASL recognition correlates with “natural signing”

and is harder, because sign language expression is a dynamic phenomenon.

Scarcity of Standardized Datasets for Robust Evaluation: Standardized datasets are vital in

the benchmark and comparison of a number of ASL recognition models. Some studies have

observed that most of the models tend to employ small or selected databases, making it

impossible for model generalization. But, there is an important gap in the literature. It cannot

be argued that there are standard data set for reliable evaluation hence slowing down the growth

of general ASL models suitable for various domains.

Insufficient Exploration of Multimodal Approaches: However, there are gaps in the use of

multimodal approaches with a combination of various sensors types or different data modalities.

11

ASL recognition systems can be improved by integrating data from emerging sources, such as

video and IMU. Many things could be said about synergistic exploration of these modalities

that have not been discussed in the existing literature.

Limited Consideration of Real-world Challenges: There are a number of studies that have

pointed out issues associated with low video frame rates, insufficiently labeled data, and lack

of diversity in dataset available. However, hardly anything is known about the actual difficulties

faced with by ASL system recognition systems in practical conditions that include low light,

various users, and noisy surroundings. It is important to address all the mentioned issues above

for success on the field.

12

CHAPTER 3: SYSTEM DEVELOPMENT

3.1 Requirements and Analysis:

Gesture recognition holds immense potential across various domains, from controlling virtual

environments to facilitating communication for individuals using sign language. In this machine

learning project focused on American Sign Language (ASL) detection, our aim is to develop a

real-time tool using the Mediapipe framework and TensorFlow within OpenCV and Python. By

harnessing the capabilities of these technologies, we seek to empower users by providing

accurate and efficient recognition of ASL gestures. Through this project, we aspire to contribute

to the advancement of accessibility and communication technologies, ultimately enriching the

lives of individuals who rely on sign language for expression and interaction.

OpenCV

OpenCV is a real-time computer vision and image processing framework built on C/C++. But

we will be going to use it in Python with the help of OpenCV python package.

TensorFlow

TensorFlow is an open-source machine learning framework developed by Google, designed to

make it easier to build and deploy machine learning models. In an American Sign Language

(ASL) project, TensorFlow can be a valuable tool for several reasons.

It provides the necessary tools, flexibility, and support for building robust and efficient ASL

recognition systems, making it a compelling choice for developers working on ASL projects.

MediaPipe

The system should be able to process various forms of perceptual data pipelined through the

MediaPipe hybrid open source architecture. The use of ML in real-time hand tracking and

gesture detection is achieved through the meticulous process. It offers more efficient hand and

13

finger tracking by providing accurate sign gestures’ identification via media Pipe Holistic model

we extracted those points from pose of the chest, head, and hands.

MediaPipe holistic pose landmarks for body:

Blaze Pose determines location of persons Areas of Interest (ROI: s) within a particular frame

by inferring about thirty-three three-dimensional landmark points in the form of x, y, and z co-

ordinates within an input image/video. Progressively, the division masks and pose landmark

employ the ROI - cropped frame as input in identifying poses. It is precise as it well identifies

essential places and matches an SLR machine.

MediaPipe holistic pose landmark for hands:

MediaPipe Holistic, inside a frame, use two models at a time to estimate about 21 3D hand

landmarks consisting of x, y and z coordinates to produce desired output.

i. Palm detection model.

ii. Hand key point localization model.

At first it is applied to a single-shot detector called Blaze Palm. Consider a considerable number

of inputs in terms of size (within that of the hand). This detector, to minimize palm detection

time complexity, is supported by the MediaPipe. It rather concentrates on superfluous bodies.

This method is applied to the whole image and produces a focused bounding rectangular area

marking out the rigid parts like the palm or fist for detection.

The second model make use of the palm detection output towards carrying out hand point’s

localization.

This produced three possible outputs as follows:

• 21 hand knuckle points in a 2D or 3D space.

• Probability of hand flag indicating hand presence within input images.

• Classification of left and right hand as binary.

14

The below Figure 2 shows a brief overview of how MediaPipe holistics works.

Fig 2. Overview of MediaPipe Holistics

Mediapipe Holistic Model

Custom machine learning framework are designed by google MediaPipe. It is a very simple

Frame which has been developed as Open Source, and also works on cross platform. Face

detection and tracking is part of pre-trained media pipe ML solutions, among others like hand

detection, measurement, object detection and so forth. It is a reliable approach of tracking the

hand and fingers. It uses for thirty-three dimensional (21 3D) locality to recognize ML hand

marking made into a single frame.

15

Holistic model for hand detection using mediapipe:

Mediapipe provides a wide range of options. The holistic model extracts 543 individual

landmarks in overall (468- face, 33- pose and 21- hand).

With this, we use the mediapipe holistic model that is within the mediapipe python package.

Therefore, we made a two-parameter-function (mediapipe detection).

1. Image: The image upon which it does the detection.

2. Model: Holistic model with mediapipe for detection. The function transforms the image

from BGR to RGB for the model process function, which then saves the output. It

converts it again into BGR, saving the result and returning the image together with it.

Defining another function (draw styled landmarks) that uses parameters from the previous

functions. Using this function, we use these landmarks to help us see how to detect hands in

real time. Extract Key-points: Following successful real-time hand detection, we get X. Y, and

Z coordinate of the key points from their detection results (mediapipe detection function that

was discussed earlier).

We construct a separate function called (extract key points) that takes the detection data as an

input to obtain the coordinates. It has the holistic model’s key point’s data, which is a

concatenation of all the arrays containing the data. This function works during data-collection

and convert a given sentence from AI written to human written

Figure 3-4 shows the extracted key points in a figure. These extractions are for all hand, face,

and body.

16

Fig 3. The hand_landmarks model of Mediapipe

Fig 4. The pose_landmark model of Mediapipe

17

Implementation of LSTM Long short-term memory

LSTM (Long Short Term Memory), a variant of RNN, specializes in handling sequential or

time-series data. Unlike traditional RNN units, LSTM units are more intricate, featuring gates

that regulate data flow within each unit. The recurrent loop is pivotal in LSTM architecture,

enabling the retention of past information in its internal state memory. This mechanism allows

for the extraction of both spatial and temporal information from the data, enhancing its

capability to analyze sequences effectively.

Fig 5. The architecture of recurrent neural network

Fig 6. The architecture of the LSTM block

18

A single LSTM model has architecture containing 3 gates and 1 memory cell (figures 5 and 6).

i. The forget gate expunges information which should not be retained in the state of cell.

It states that when knowledge ceases being relevant in terms of a given environment, it

might get erased from the mind.

ii. Input Gate, whose purpose is to load the cell stage with vital data. This involves adding

new facts and the updating of our working storage state.

iii. Output gate is the one responsible for retrieval of relevant content from present

condition of a cell and providing same as output information.

To every gate an appropriate operation’s value of a number between 0 and 1 is assigned.

Therefore a value equal to zero or one is not information since it results into no transmission of

any information between these values. A single consists of four interconnected layers. Figure 7

depicts the repeating module in an LSTM contains four interacting layers.

 Fig 7. The repeating module in an LSTM contains four interacting layers

We have compiled our various data into individual frames; each frame indicates all the land

points that were acquired for different sites. Each frame is stored as a NumPy array. The

linear and sequential view is the basis for building an LSTM network. The first four layers

have three thick layers. The first six layers receive “sigmoid” type of activation function. In

this case, softmax is used for the final dense layer. An optimizer known as ADAM is utilized

for stochastic gradient descent.

19

3.2 Project Design and Architecture

The proposed system addresses the challenges encountered by previous models without

compromising efficiency or performance. One significant issue was the non-uniform

background and segmentation of hands from the background. This problem was resolved by

creating a dataset using Google's Mediapipe solution and the OpenCV library to detect

landmarks from the hand. These landmarks were also utilized during real-time detection to

ensure accurate results regardless of the environment.

The system consists of eight primary modules: Creating Dataset, Importing dependencies,

Extracting key-points, Collecting Key-point sequences, Preprocessing Data and Create labels,

Building LSTM Model, Prediction and Evaluation of the Model. The architecture of the

proposed ASL Recognition System is illustrated in Figure 8.

Fig 8. Architecture of the proposed ASL Recognition System

Here's an explanation of each step in the architecture of the proposed American Sign Language

(ASL) recognition system:

20

1. Create a personal dataset of images:

• This step involves gathering a collection of images or videos depicting ASL

gestures. These can include various hand signs representing letters, words, or

phrases in ASL. Building a diverse dataset is crucial for training a robust

recognition system.

2. Install & Import dependencies. Detecting face, hand & pose landmarks:

• Here, necessary libraries and dependencies are installed or imported. This

includes frameworks like TensorFlow and Mediapipe for deep learning, as well

as specific libraries like cv2, numpy, matplotlib and pyplot for computer vision

tasks such as detecting faces, hands, and pose landmarks. These landmarks

provide crucial information for recognizing ASL gestures accurately.

3. Extract Key-points & Set up folders for data collection:

• In this step, key points or landmarks from the images or videos in your dataset

are extracted. These key points represent specific locations on the face, hands,

or body, which are important for recognizing gestures. Additionally, folders are

created to organize data collection process, ensuring that images or videos are

stored systematically for training and validation.

4. Build & Train an LSTM Deep Learning Model:

• This is where Long Short-Term Memory (LSTM) deep learning model is

constructed and trained. LSTM’s are a type of recurrent neural network (RNN)

well-suited for sequential data like time series or sequences of key points,

making them ideal for capturing temporal dependencies in ASL gestures.

21

5. Preprocess Data & Create Labels:

• Before feeding the data into the LSTM model, it needs to be preprocessed. This

may involve resizing images, normalizing pixel values, or converting data into

a suitable format for training. Additionally, you create labels or annotations for

each sample in the dataset, indicating the corresponding ASL gesture.

6. Collect Key-point Sequences:

• With the dataset prepared and labeled, sequences of key points representing ASL

gestures are extracted from the images or videos. These sequences serve as input

to the LSTM model during training and prediction.

7. Sign Language Prediction:

• Once the LSTM model is trained, it can predict the ASL gesture represented by

a given sequence of key points. During prediction, the model takes in a sequence

of landmarks captured in real-time from a camera feed or static images and

outputs the predicted ASL gesture.

8. Save Model Weights Evaluation using a Confusion Matrix:

• After training, the trained model weights can saved for future use. Additionally,

performance of the model using metrics like accuracy and a confusion matrix is

evaluated.

By following these steps, a robust ASL recognition system can be developed which is capable

of accurately interpreting sign language gestures.

22

3.3 Data Preparation

The first step is to create folders for data collection. We gathered our own data set for training

and testing our deep learning model in the following manner: Using the path.join('data folder

name') method, we created a folder for the dataset. We then defined a set of gestures (["bye",

"sorry"," I love you", "stop"]) that will be used to train our recognition model. After that we

specify the number of images to be collected (30) and the number of frames (30) for each image

to be captured. For each of the gesture folder there are subfolders folders as shown in

the Figure 9 and Figure 10 below:

Fig 9. Folder for gesture and corresponding subfolders for each gesture

23

Fig 10. Collection of 30 frames inside each subfolder

Once the data collection phase wraps up, the extracted key points undergo meticulous

structuring through data preprocessing. This process involves organizing all gesture key point

arrays into a single cohesive NumPy array (X), paired with corresponding labels mapped onto

another NumPy array (Y). Subsequently, the categorical function transforms Y into a binary

class matrix, facilitating classification. For instance, [1,0,0...] denotes "hello," [0,1,0...]

represents "thanks," and [0,0,1,0,0...] signifies "I love you," and so forth. Post-preprocessing,

the dataset is partitioned into training and testing subsets using the train-test split function.

To decode sign language, we rely on extracted key-points derived from 30 frames of data,

totaling to 301662 key-points to discern specific actions. Unlike other computer vision tasks,

action detection involves analyzing a sequence of data rather than individual frames. For our

project, we've gathered data for 10 distinct actions, such as "hello," "thanks," and "I love you."

Each action comprises 30 videos, with each video containing 30 frames of data. Each frame

24

encapsulates 1662 landmark values, resulting in a structured dataset of 1030 sequences, each

with 30 frames and 1662 landmarks.

We first establish our data path, where our dataset is stored. Subsequently, we define the actions

variable, representing the various actions we aim to detect. Through a loop iterating over the

number of actions and sequences, we create corresponding folders to organize the data

effectively. This meticulous process lays the foundation for training our model to accurately

recognize and interpret sign language gestures.

3.4 Implementation:

3.4.I. Install and import the dependencies

Fig 11. Importing libraries

In Figure 11 some important libraries are imported for different purposes in the process of

developing the project. The incorporation of OpenCV (cv2) facilitates various tasks related to

computer vision, providing an array of capabilities in handling images and videos. It uses

NumPy to perform efficient numerical operations and array manipulation to improve arithmetic

calculations in the project. In turn, the os library can access the operating system facilitating

file and directory manipulation. Data visualization requires matplotlib that has got a huge

number of plotting features needed to present results graphically.

25

By integrating time, timing can be controlled with accuracy during evaluations and delays can

be injected when needed. Finally, the inclusion of the Mediapipe library shows that the concern

is with using ready-made solutions for the hand and pose detection problems to reduce the

burden of implementing complicated vision methods. Combined together, they are a set of tools

to help with image processing, computation, operating system interaction, and visualization,

timing, and specialized hand and poses.

3.4.II. Detect Face, Hand and Pose Landmarks (using MP Holistic)

To begin our project, we first ensure proper access to the webcam using OpenCV. By setting

up a video capture, we establish a connection with the webcam device (designated as value 0).

We then iterate through each frame captured by the webcam, effectively creating a real-time

video feed.

Key functions utilized include:

 cv2.VideoCapture(0): This function initiates access to the webcam, with the device

value set to 0.

 cap.isOpen(): This method verifies if the webcam is successfully accessed, facilitating

the initiation of a loop.

 cap.read(): To retrieve the current frame from the webcam feed. It returns two values: a

return value indicating success and the current frame itself.

 cv2.imshow(): Utilized to display the output frame on the screen.

 cv2.waitKey(): This function waits for a key press from the keyboard, enabling

interactive control.

 cap.release(): Releases the webcam device once access is no longer required.

 cv2.destroyAllWindows(): Closes down the frame window, terminating the program's

execution smoothly.

26

These operations collectively establish a foundational setup for further processing, such as face,

hand, and pose landmark detection using MP Holistic, facilitating the development of our real-

time gesture recognition system.

Fig 12. Video Capture

Figure 12 depicts the code that creates a real-time video capture window from the webcam,

allowing the user to view the live feed until they decide to quit by pressing the 'q' key.

Next, we will set up Mediapipe Holistic for our detection tasks. To begin, we need to capture

the image and convert it from BGR to RGB format. This conversion is crucial as Mediapipe

processes images in RGB format. To optimize memory usage, we set the image to un-writeable

during detection. After performing the detection, we reset the image to writable and convert it

back to BGR format for further processing or display. This process is encapsulated in the

following function:

def mediapipe_detection(image, model)

This function handles the necessary image conversions and performs the detection using the

Mediapipe model, ensuring efficient and accurate processing.

27

By default, OpenCV captures video feed in the BGR color format. However, for Mediapipe to

perform detections, the image must be in RGB format. We achieve this conversion using

OpenCV's “cv2.cvtColor()” function, which changes an image from one color space to another.

Specifically, we convert the BGR image to RGB format, ensuring the correct order of channels.

Once the image is converted to RGB, we can proceed with Mediapipe detection. After detecting

the keypoints, the next step is to visualize these landmarks on the image. Currently, the

landmarks are not rendered on the frame. To visualize them, we define the following

function:def draw_landmarks(image, results)

mp.drawing.draw_landmarks()

This function will draw the detected keypoints on the image, allowing us to see the landmarks

directly on the video feed.

Fig 13. Using Holistic API’s

This python code snippet in Figure 13 uses the holistic API from the media pipe library to detect

hands, head, and body pose in pictures or video frames. mp_holistic identifies several body

parts sequentially in real-time while mp_drawing draws points such as key points and

landmarks on input data. An integrated strategy offers a good way of examining the different

manners of looking at one’s pose and expression, which include gestures and fitness.

28

Fig 14. Mediapipe_detection function

The Python function ‘mediapipe_detection’ used in Figure 14 takes an image and a pre-

initialized Mediapipe model as input. First, it translates the input image from BGR to RGB

color space – the expected input of Mediapipe models. To better achieve efficiency at inference,

it temporarily sets the writeable attribute of the image to false. Afterwards, the function

processes the image with the supplied model and gets the detection results.

Fig 15. Draw_landmarks function

The draw_landmarks Python function in figure 15 uses the MediaPipe library to detect facial

and pose landmarks on an image with supplied outputs. It indicates the points and links via

‘mp_holistic’. “FACEMESH_TESSELATION” for face landmarks and ‘mp_holistic’.

“POSE_CONNECTIONS” for pose ones. These landmarks are subsequently superimposed on

the input image via ‘mp_drawings.draw_landmarks’ in this function. Colour, thickness, and

circle radius will be defined by two sets of Drawing Spec objects that are used for drawing the

29

landmarks in order to increase visual perception of the both faces and body positions. It has

become useful over time for graphical depiction of critical areas in application like faces

detection and posture identification.

Fig 16. Implementing function for each hand

In Figure 16 the code further extends the visualization capabilities, drawing out the landmarks

for the left hand and right hand on the input image. It specifies landmark connections for the left

hand using ‘mp_holistic’. “HAND_CONNECTIONS”, and equally does so for the right hand. It

provides the ‘mp_drawings-draw_landmarks’ function that superimposes the extracted hand’s

landmarks over the image thus improving the depiction of moving hands and gestures in a

video. The settings of ‘DrawingSpec’ are related to color, thickness and radius of the drawn

landmarks, making it easy to interpret the visualization. Therefore this functionality has been of

valuable use in the fields of sign language interpretation, hand gesture recognition and smart

interactive interfaces.

30

Fig 17. Capturing

The Python code in Figure 17 takes a live feed from the default camera with the help of opencv.

It combines the MediaPipe holistic model of holistically detecting facial features, skeleton

position, and finger positions.

It is always reading frame after frame from the camera and processing them through the

mediapipe_detection function, drawing landmarks with draw_landmarks. “OpenCV Feed” is a

window where one can display the processed frames obtained as output.

When you press ‘q’, the script will exit and then, release the video capture using cap.release(),

and close OpenCV window/s by performing cv2.destroyAllWindows(). The integration shows

actual time visualization of whole landmarks onto the video stream as showed in Figure 18.

31

Fig 18. Detection of hand and face

3.4.III. Extract Keypoint Values

Up to this point, we have successfully obtained landmarks for the left hand, right hand, face,

and body pose. Our next task is to extract these landmarks in a robust manner, ensuring

consistency even when some values are missing. To achieve this, we will concatenate the

landmarks into a NumPy array. If any values are missing at a given time, we will substitute

them with a NumPy array of zeros, maintaining the same shape but filled with zero values.

The input data for our action detection model consists of a series of 30 arrays, each containing

1662 values, resulting in a shape of (30, 1662). Each array represents the landmark values from

a single frame. We will create placeholder arrays for the left hand, right hand, face, and pose.

By extracting the landmarks for each keypoint, we will update a single flattened array. This

process is encapsulated in the following function:

32

def extract_keypoints(results)

This function ensures that all extracted keypoints are consolidated into one array,

accommodating any missing data by using zero-filled arrays to preserve the overall structure.

Fig 19. Extracting Key-points

This code snippet in Figure 19 contains information that you can use to retrieve key point values

for the output of a holistic detection model supplied by MediaPipe. It comprises script of an

33

extract key-points function (results). The next step entails merging the resulting key-points to

form a single NumPy array.

- For body pose (`pose`), each landmark is represented by four values: x, y, z, and visibility.

- For the face (`face`), each landmark is represented by three values: x, y, and z.

- Each hand (`lh` and `rh`) has a total of 21 key-points flattened to arrays containing x, y, z

coordinate values.

This is a concatenated array of all these key-points. This script also exemplifies how these key-

points get pulled out from the ‘results’ array, then saved as a NumPy file called “0.npy”. As an

alternative, the resulted arrays can be saved on the computer memory by the use of `np.save` to

read and `np.load`, which load it to read. This is advantageous as it makes it easy to conduct

analysis or train the model with the acquired information. When you save it, load the file later

by using of `np.load(‘0.npy’)` just like you are doing in your code. These extracted keypoints

can come in handy for performing gesture recognition, pose estimation, and even in applications

that entail spatial arrangement of both face and body characteristics.

3.4.IV. Collect Keypoint Sequences

We will incorporate breaks between each video collection session. These breaks allow us to

reset and reposition ourselves, ensuring that each action sequence is captured from start to finish

accurately. After collecting the data, the frames are stored as NumPy arrays at the specified data

path location. The following examples are illustrated in Figures 20 to 23.

34

Fig 20. Collecting frames for “Hello” word

Fig 21. Fig Collecting frames for “ No”

35

Fig 22. Collecting frames for “I love you”

Fig 23. Collecting frames for “Thank You”

36

3.4.V. Pre-process Data and Create Labels

Fig 24. Pre Process Data

In figure 24, code snippet facilitates the preprocessing of ASL dataset by assigning numerical

labels to each gesture class, which is a necessary step before training a machine learning model

likely for American Sign Language (ASL) recognition based on the provided labels.

1. Import Libraries: The code imports necessary libraries:

• train_test_split from sklearn.model_selection : This function splits the dataset

into training and testing sets.

• to_categorical from tensorflow.keras.utils : This function converts integer labels

into one-hot encoded vectors.

2. Label Mapping:

 The label_map dictionary is created to map each ASL gesture label to a

numerical value. Each label is associated with a unique number, starting from 0.

37

This mapping is essential for converting text labels into numerical values that

can be used in the model.

Next, we will create a label map to represent each of our different actions, and begin to

consolidate and structure our data. This involves creating a comprehensive array that contains

all of our collected data.

Ultimately, we will have 10 actions, each with 30 sequences, and each sequence will consist of

30 frames containing 1662 keypoint values.

First, we will create two blank arrays:

1. sequences - representing our feature data (X data).

2. labels - representing our label data (Y data).

We will use these features to train a model that can learn the relationship between the features

and their corresponding labels. We will loop through each action and each sequence within

those actions.

We will then create a blank array called window to store all the frames for a particular sequence.

By using numpy.load(), we will load each frame into this window. The sequences array will

ultimately contain 10 actions, each with 30 sequences, and each sequence will comprise 30

frames. We will store these sequences in a NumPy array for easier manipulation. Following

this, we will preprocess the data and partition it for training and testing. We will use the

train_test_split() function with test_size=0.05, meaning 5% of our data will be reserved for

testing.

Sequence and label array is created as shown in Figure 25.

38

Fig 25. Create Labels

3.4.VI. Build and Train LSTM Deep Learning Model

To train our LSTM neural network, we will use TensorFlow and its Keras API. First, we need

to import several dependencies:

1. Sequential module: Allows us to build a sequential neural network.

2. LSTM layer: Provides a temporal component for our neural network, enabling us to

perform action detection.

3. Dense layer: A standard fully connected layer.

4. TensorBoard: Enables logging and monitoring of our model's training process.

39

Next, we will create a log directory and set up TensorBoard callbacks for tracking the training

process. We will then build the neural network architecture, compile the model, and fit it to our

data.

We will use the Adam optimizer and the categorical crossentropy loss function, appropriate for

our multi-class classification model. After compiling the model, we will proceed to fit and train

it. By following these steps, we ensure our LSTM neural network is properly configured and

optimized for action detection.

Fig 26. Building LSTM Model

In figure 26, the code is used to build a basic LSTM model which takes an input and provides

an output accourdingly. LSTM stands for long short term memory which helps to retain the

longer session of data and eliminate the problem faced by RNN. Vanishing gradient problem

and long term dependence issues are solved using LSTM.

40

3.4.VII. Make Sign Language Predictions

Making predictions using LSTM model, extracting the predicted actions, and comparing them

with the ground truth actions for the fifth sample in the test data. The code snippet for making

sign language prediction is given in Figure 27.

Fig 27. Making Predictions

res = model.predict(X_test) : Using LSTM model to make predictions on the test data (X_test).

The result is stored in the variable res. So, res contains the predicted outputs for each sample in

the test data.

actions[np.argmax(res[4])] : Selecting the action corresponding to the highest probability

prediction for the fifth sample in the test data (res[4]). np.argmax() returns the index of the

maximum value in the array res[4]. actions likely contains the labels or actions that the model

can predict, and the selected action is retrieved using this index.

actions[np.argmax(y_test[4])] : Selecting the action corresponding to the highest probability

ground truth label for the fifth sample in the test data (y_test[4]). Similar to the previous code,

it retrieves the index of the maximum value in the ground truth array y_test[4] and selects the

corresponding action from the actions array.

41

3.4.VIII. Save Model Weights

For saving and loading the weights of the LSTM model using the Keras library in Python:

Fig 28. Save Model Weights

model.save('action.h5'): It save the weights of the model to a file named 'action.h5'. This file

contain the model's architecture as well as the learned weights.

model.load_weights('action.h5') : It load the weights saved in the file 'action.h5' back into the

model. This assumes that the model architecture is already defined and matches the one used

when saving the weights.

Figure 28 shows the code which are useful for saving the trained state of a machine learning

model after training, allowing you to later load the model with the same configuration and

weights for inference or further training without needing to retrain the model from scratch.

3.4.IX. Evaluation using Confusion Matrix and Accuracy

After training our LSTM neural network, we will evaluate its performance using a confusion

matrix and accuracy metrics.

Confusion Matrix:

A confusion matrix is a table that allows visualization of the performance of a classification

model. It summarizes the actual class labels against the predicted class labels.

42

Accuracy:

Accuracy measures the proportion of correctly classified instances among all instances. It is

calculated as the ratio of the sum of true positive and true negative predictions to the total

number of predictions. Mathematically, accuracy can be expressed as:

Accuracy = TP + TN / TP + TN + FP + FN

Figure 29 shows the python code snippet of Evaluation using a Confusion Matrix and Accuracy.

 model = tf.keras.models.load_model('action.h5') : This line loads a pre-trained model

from the file 'action.h5'. This assumes that the model architecture and weights are saved

in this file.

 yhat = model.predict(X_test) : This line uses the loaded model to make predictions on

the test data (X_test). The predictions are stored in the variable yhat.

 ytrue = np.argmax(y_test, axis=1).tolist() : It converts the true labels (y_test) from one-

hot encoded format to a list of integers using np.argmax(). This is necessary for

calculating the confusion matrix and accuracy score.

 yhat = np.argmax(yhat, axis=1).tolist() : Similarly, it converts the predicted labels (yhat)

from probabilities to a list of integers using np.argmax().

 multilabel_confusion_matrix(ytrue, yhat) : This function calculates the multilabel

confusion matrix based on the true labels (ytrue) and predicted labels (yhat). The

confusion matrix provides insights into the model's performance across different

classes.

 accuracy_score(ytrue, yhat) : This function calculates the accuracy score of the model

by comparing the true labels (ytrue) with the predicted labels (yhat). The accuracy score

represents the proportion of correctly predicted labels out of all labels.

43

Fig 29. Evaluation using Confusion Matrix and Accuracy

44

3.4.X. Test in Real Time

Testing is a part of a real-time hand gesture recognition and interpretation system using

OpenCV and MediaPipe. Let's break it down:

1. Initialization and Setup:

 sequence, sentence, and predictions are initialized as empty lists to store the hand

gesture sequences, recognized sentences, and model predictions respectively.

 threshold is set to 0.5, likely representing a threshold probability value for

considering a gesture prediction.

2. Video Capture and Detection:

o cap = cv2.VideoCapture(0): This line initializes video capture from the default

camera (0).

o A while loop is used to continuously capture frames from the video feed

(cap.read()).

o Hand landmarks are detected using the MediaPipe Holistic model

(mp_holistic.Holistic) initialized with specific confidence thresholds.

3. Hand Gesture Recognition:

 Detected landmarks are extracted (extract_keypoints(results)) and appended to

the sequence.

 Once sequence contains 30 frames (assumed to represent a sequence length for

prediction), the sequence is fed into the model (model.predict) for gesture

recognition.

 The recognized gesture is printed (print(actions[np.argmax(res)])) and appended

to predictions.

45

4. Gesture Interpretation:

 The last 10 predictions are checked to ensure consistency

(np.unique(predictions[-10:])), and if consistent and surpassing the threshold,

the recognized gesture is added to the sentence.

 If the sentence has more than one gesture, it's truncated to retain only the last

recognized gesture.

 Probabilities of the recognized gestures are visualized on the frame

(prob_viz(res, actions, image, colors)).

5. Visualization:

 A rectangle is drawn at the top of the frame to provide a background for

displaying recognized gestures.

 Recognized gestures are displayed as text within this rectangle (cv2.putText).

6. Display:

 The annotated frame is shown using cv2.imshow.

 The loop continues until the user presses 'q', at which point the video capture is

released (cap.release()) and all OpenCV windows are closed

(cv2.destroyAllWindows()).

Figure 30 shows the code which is essentially captures a live video feed, detects hand

landmarks, recognizes gestures in real-time, and interprets them into meaningful sentences,

displaying the recognized sentences on the video feed.

46

Fig 30. Test in Real Time

47

CHAPTER 4: TESTING

4.1 Testing Strategy:

In this study, we employed an experimental design utilizing OpenCV and the MediaPipe

Holistic model to conduct comprehensive assessments of human body pose, facial expressions,

and hand movements through video recordings. Our approach involved capturing frames from

a standard camera using OpenCV, followed by processing these frames via the MediaPipe

Holistic model for precise identification of relevant bodily features. To facilitate reliable and

consistent data collection, our methodology was structured with respect to below mentioned

loops:

 Action Iteration: We implemented an outer loop that cycled through various

preselected actions or gestures, allowing us to evaluate the performance of the

MediaPipe Holistic model across diverse scenarios.

 Sequence Iteration: Within each action cycle, we introduced an additional inner loop

that repeatedly processed individual sequences, enabling us to account for variances in

how particular actions were executed.

 Frame Iteration: Each action-sequence combination was further subdivided into

numerous frames, with the script capturing up to specified sequence lengths for each

frame. Throughout this stage, vital metadata related to the captured frames, including

the associated action and sequence indices, was displayed on an OpenCV window for

convenient monitoring purposes.

 Display Information: The interface of the script utilizes an open-source computer

vision library (OpenCV) to visualize relevant data regarding video capture operations

on a designated window. This includes display of the specific activity or task being

recorded, along with sequential and temporal indicators (e.g., current frame number).

48

Moreover, it offers a temporary countdown alert prior to initiating recording to allow

users adequate preparation time.

 Key Point Extraction and Saving: Once each frame had been analyzed, we applied

the extract_keypoints() function to extract valuable keypoint coordinates linked to the

identified body parts, which were subsequently stored in a well-structured NumPy array

according to their corresponding action, sequence, and frame identifiers.

 User Interaction: We could terminate the data acquisition process at any point by

pressing the ‘q’ key, ensuring a prompt termination of the procedure without

compromising its integrity.

 Cleanup: Following completion of all iteration cycles, we released the video capture

resource (cap.release()) and closed all remaining OpenCV windows to prevent any

potential issues or errors.

4.2 Test results and Outcomes

To examine test results and their implications, it is crucial to highlight that the given code

primarily focuses on collecting data for training a machine learning model instead of conducting

direct testing or evaluation. The compiled dataset consists of sequence frames representing

various actions, which serve as inputs for training a model capable of identifying and

categorizing them according to distinctive features (keypoints).

Possible consequences and factors to consider include:

 Dataset Quality: Our current data contains 1800 images. The model's overall efficiency

relies significantly on both the caliber and diversity of the accumulated dataset. An

extensive range of lighting situations, backdrops, and individual performers of the acts

enhance the likelihood of accurate predictions when applied to novel information.

49

 Model Training: After gathering the data, the next step involves splitting it into training

and testing batches. The training set teaches the machine learning model, while the

testing set evaluates its performance. Selecting the right algorithms, model

architectures, and parameters significantly influences the final outcome.

 Model Evaluation: After training the model, it is evaluated on the checking out set to

assess its performance. Metrics such as accuracy, precision, recollect, and F1 rating may

be used to measure how properly the model generalizes to new, unseen data. A high

degree of accuracy suggests that the version is effectively spotting the required actions.

 Model Summary:

 The neural network architecture consists of multiple layers, including Long Short-

Term Memory (LSTM) and Dense layers. The LSTM layers are responsible for

capturing temporal dependencies in sequential data.

 The output shapes of these layers vary, with the final LSTM layer producing a single

vector of dimensionality 64. Subsequently, Dense layers transform the extracted

features into the desired output space.

 The model comprises a total of 596,906 trainable parameters, encompassing weights

and biases. This architecture enables the model to learn from the provided data and

make accurate classifications into ten distinct categories. Figure 31 shows the model

summary.

50

Fig 31. Model Summary

 User Feedback: If the model entails user interactions or remarks, it's vital to

consider how well the model aligns with user expectancies and whether or not

adjustments are wished primarily based on real-global usage.

51

CHAPTER 5: RESULTS AND EVALUATION

5.1 Results

A very crucial part of this process is the collection of a correct photographic dataset on

American Sign Language, comprising photos of the respective expressions similar to the words

“How are you”, “Good”, “Goodbye”, “Hello”, “How”, “I am”, “I love you”, “No”, “Sorry” and

“Thank you”. The recorded set summarizes the complexities of the linguistic capabilities and

gestural hand signs. Symptoms, which embody every phrase, subsequently resulting to

complete portrayal of an ASL gestures.

The range of signing patterns which includes one-of-a-kind handshapes, in addition to facial

expressions are represented by using every phrase class of the dataset. In addition, quite a few

backdrops and lighting fixtures options are introduced onto the dataset, thereby making it entire

and making ready the skilled version for real conditions.

The accuracy of the implemented LSTM model stands at 80%. This accuracy rate reflects the

model's ability to correctly classify American Sign Language (ASL) gestures, contributing to

effective communication for individuals with hearing impairments. The model's performance

aligns with the industry standard and underscores its reliability in accurately recognizing and

interpreting ASL signs. With an accuracy of 80%, the LSTM model demonstrates strong

potential in facilitating inclusive communication and promoting accessibility for individuals

within the deaf and hard-of-hearing community.

Figure 32-35 showcase the successful recognition and interpretation of four common American

Sign Language (ASL) gestures by the ASL project. In the first image, the 'hello' sign gesture is

accurately detected, followed by the recognition of the 'thank you' sign gesture in the second

image. The third image depicts the precise identification of the 'are you' sign gesture, while the

fourth image demonstrates the correct interpretation of the 'I love you' sign gesture.

52

Fig 32. Recognition of “Hello” word

Fig 33. Recognition of “Thank You” word

53

Fig 34. Recognition of “Are You” word

Fig 35. Recognition of “I Love You” word

54

Model Validation: The goodness of the dataset will also be assessed for the duration of the

version training and testing phases. The anticipated validity of predicting the ASL gestures

pertaining to the chosen words could be made after the use of the version.

Dataset Size and Balance: The current dataset developed contains 1800 images corresponding

to one word actions. Model performance is likewise dependent on the statistics as well as its

stability. Each word classified needs to have good sized statistics available; and the dataset have

to be spread out to keep away from any bias, and supply a comprehensive evaluate of the

situation.

Effective understanding of the ASL will rely on refinement, comments integration and options

extensions at some point of version education tiers.

5.2 Comparing with existing solutions

Table 2: Comparing proposed model with existing solutions

Model Dataset Accuracy

SignRing Inertial Measurement Unit

Dataset

95.58%

Proposed Model Own Dataset 80.0%

Optimal ASL Recognition

Approach

Their Own Dataset 73.05%

Deep Learning NVIDIA K80 GPU 71.68%

ML Based Sign Language

Recognition System

Their own dataset 65%

Sign Pose-based Transformer LSA64 Dataset 63.18%

55

Table 2 provides a concise overview of the accuracy performance of different models designed

for American Sign Language (ASL) recognition. Accuracy, represented as a percentage, reflects

the models' ability to correctly interpret and classify ASL gestures.

The "SignRing" model emerges as the most accurate, achieving an impressive 95.58% accuracy

rate. Conversely, the "Sign Pose-based Transformer" model demonstrates the lowest accuracy

at 63.18%.

Understanding these accuracy rates is crucial for evaluating the effectiveness of ASL

recognition models in real-world scenarios. Higher accuracy signifies a greater likelihood of

correctly interpreting ASL gestures, which is vital for facilitating effective communication for

individuals with hearing impairments.

Conversely, lower accuracy rates may indicate limitations or challenges that need to be

addressed, such as difficulty in capturing nuanced hand movements or interpreting complex

sign language expressions.

This comparison aids in identifying the strengths and weaknesses of different ASL recognition

models, enabling stakeholders to make informed decisions regarding model selection and

deployment.

Additionally, it underscores the ongoing efforts within the research community to develop

increasingly accurate and robust ASL recognition systems, with the ultimate goal of enhancing

accessibility and inclusivity for individuals who rely on sign language as their primary means

of communication.

56

Fig 36. Accuracy Comparision of ASL Recognition Models

In figure 36, the graph visualizes the accuracy comparison of various American Sign Language

(ASL) recognition models. Each bar represents a different model, with the height of the bar

indicating the accuracy percentage achieved by that model. The x-axis displays the names of

the models, while the y-axis represents the accuracy percentage.

Observing the graph, we can easily identify which models perform better in terms of accuracy.

The "SignRing" model stands out with the highest accuracy, reaching approximately 95.58%.

Following closely behind is the "Optimal ASL Recognition Approach" model with an accuracy

of around 73.05%. On the other hand, the "Sign Pose-based Transformer" model exhibits the

lowest accuracy, hovering around 63.18%.

57

This visual representation offers a clear comparison of the performance of different ASL

recognition models at a glance. It allows stakeholders to quickly assess the relative accuracy

levels of each model and make informed decisions regarding their selection and

implementation. The graph serves as a valuable tool for understanding the strengths and

weaknesses of various ASL recognition approaches, ultimately contributing to the advancement

of accessible communication technologies for individuals with hearing impairments.

58

CHAPTER 6: CONCLUSION AND FUTURE

SCOPE

6.1 Conclusion

Detecting American Sign Language (ASL) has proven as an amazing initiative. Indeed, it was a

milestone that influenced matters of communication access and inclusion. The idea has made use

of technology to bridge the gap existing between the hearing and deaf community through proper

planning and implementation.

OpenCV helped create a solid foundation on which crucial visual attributes of sign language

gestures could be obtained. The system’s ability to learn and adapt to multiple kinds of ASL has

been improved by using advanced neural networks together with deep learning approaches. The

project was made more sophisticated by MediaPipe with its hand tracking and posture estimation

features.

Creating a new dataset, with great consideration over its precision, has ensured that the system

can interpret a myriad of motions in greater detail. This helps in making the dataset and the

project itself more compatible with real life situations and also increases its range of use as

humans manifest their sign language in diverse manners.

A dataset embodies the spirit of innovation and adaptability of the American Sign Language

detection project. The provision of such a platform leads to enhanced communication among the

deaf community and better and correct ASL identifying systems via data set engineering.

The integration of an LSTM model into the American Sign Language (ASL) recognition project

marks a significant advancement in bridging communication gaps between the hearing and deaf

communities. Achieving an accuracy of 80% demonstrates the effectiveness of leveraging

advanced machine learning techniques to interpret ASL gestures accurately. Real-time testing

59

further validates the practical applicability of the system, reinforcing its potential to facilitate

inclusive communication in diverse settings.

The project's foundation, established with OpenCV, laid the groundwork for capturing essential

visual attributes of sign language gestures. Through the incorporation of MediaPipe's hand

tracking and posture estimation features, the system gained enhanced capabilities in recognizing

and understanding ASL gestures with greater precision and adaptability.

Moreover, the development of a meticulously curated dataset underscores the project's

commitment to accuracy and real-world applicability. By encompassing a diverse range of ASL

motions and gestures, the dataset empowers the system to interpret sign language expressions in

various contexts, thereby enhancing its usability and effectiveness in real-life scenarios.

The creation of such a comprehensive dataset not only reflects the project's innovative spirit but

also signifies its commitment to fostering improved communication within the deaf community.

By providing a robust platform for ASL recognition, the project paves the way for the

development of more sophisticated and accurate ASL identification systems, ultimately

promoting greater accessibility and inclusion for individuals with hearing impairments.

In conclusion, the successful implementation of an LSTM model, coupled with the development

of a high-quality dataset and real-time testing, represents a significant milestone in the

advancement of ASL recognition technology. Moving forward, continued refinement and

integration of cutting-edge machine learning techniques hold the promise of further enhancing

the system's accuracy and usability, thereby facilitating seamless communication and fostering

greater inclusivity for individuals within the deaf community.

60

6.2 Future Scope:

With a self-made dataset, this project establishes a solid basis for further developments in the

areas of assistive technology and human-computer interaction. Some possible directions for

future scope include the following:

1. Enhanced Accuracy for LSTM model: Training the model with more data to make it more

accurate and precise. Using data which is diverse and clean to improve the model significantly.

2. Enhanced Recognition Accuracy: Continuous refinement of the machine mastering version

can be pursued to improve the popularity accuracy and robustness. Incorporating superior

strategies, including deep learning architectures or ensemble methods, might also similarly raise

the model's overall performance in capturing diffused versions in ASL symptoms.

3. Gesture Variation Handling: The model's adaptability to extraordinary signing patterns,

speeds, and individual choices may be essential for broadening its usability and effectiveness.

4. Real-time Feedback and Correction: Introducing real-time remarks mechanisms for

customers may want to beautify the getting to know revel in and verbal exchange effectiveness.

Interactive features that offer on the spot corrections or hints for signal development should

contribute to a greater dynamic and responsive ASL reputation device.

5. Multi-modal Integration: Exploring multi-modal techniques, combining visible statistics

with other sensory inputs including intensity data or spatial monitoring, can also offer a greater

comprehensive expertise of sign language. This should contribute to extended accuracy and a

richer user experience.

6. Implementing text-to-speech feature: The transition from text-to-speech can be a

transformative leap in technology. Especially in the field of sign languages detection.

61

7. Educational Applications: Expanding the assignment's scope to consist of instructional

applications could empower newcomers of ASL. The machine should provide interactive

training, assessments, and personalized feedback, contributing to the instructional empowerment

of individuals interested in mastering sign language.

8. Global Accessibility Initiatives: Scaling the venture to cater to a worldwide target audience

with the aid of incorporating additional signal languages beyond ASL ought to make the

technology extra inclusive and on hand on a international scale.

By embracing these destiny guidelines, the ASL recognition assignment can evolve right into a

complete and versatile device, selling powerful conversation, education, and inclusivity for

individuals with hearing impairments worldwide.

62

REFERENCES

[1] K Amrutha and P Prabu, “ML Based Sign Language Recognition System”, IEEE

International Conference on Innovative Trends in Information Technology 2021.

[2] Mittal Anshul, Kumar Pradeep, Roy Partha Pratim, Balasubramanian Raman and Chaudhuri

Bidyut B., “A Modified LSTM Model for Continuous Using Leap Motion”, IEEE Sensors

Journal 2019, Volume 19, Issue 16.

[3] Wadhawan, A., Kumar P., “Sign language recognition systems: A decade systematic

literature review”, Arch. Comput. Methods Eng. 2021.

[4] Papastratis, I., Chatzikonstantinou, C., Konstantinidis, D., Dimitropoulos, K., Daras, P.,

“Artificial Intelligence Technologies for Sign Language”, Sensors 2021.

[5] Nandy A., Prasad, J., Mondal S., Chakraborty P., Nandi G., “Recognition of Isolated Indian

Sign Language Gesture in Real Time”, Commun. Comput. Inf. Sci. 2010.

[6] Mekala P., Gao Y., Fan J., Davari A., “Real-time sign language recognition based on neural

network architecture”, In Proceedings of the IEEE 43rd Southeastern Symposium on System

Theory, Auburn, AL, USA, 14–16 March 2011.

[7] Chen, J.K., “Sign Language Recognition with Unsupervised Feature Learning”, CS229

Project Final Report; Stanford University: Stanford, CA, USA, 2011.

[8] Sharma M., Pal R., Sahoo A., “Indian sign language recognition using neural networks and

KNN classifiers”, J. Eng. Appl. Sci. 2014.

[9] Agarwal S.R., Agrawal S.B., Latif A.M., “Sentence Formation in NLP Engine on the Basis

of Indian Sign Language using Hand Gestures”, Int. J. Comput. Appl. 2015, 116, 18–22.

63

[10] Wazalwar S.S., Shrawankar U, “Interpretation of sign language into English using NLP

techniques” J. Inf. Optim. Sci. 2017.

[11] Shivashankara S., Srinath S., “American Sign Language Recognition System: An Optimal

Approach”, Int. J. Image Graph. Signal Process. 2018, 10, 18–30.

[12] Camgoz N.C., Hadfield S., Koller O., Ney H., Bowden R., “Neural Sign Language

Translation”, In Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition (CVPR) 2018, Salt Lake City, UT, USA, 18–22 June 2018; IEEE: Piscataway, NJ,

USA, 2018.

[13] Muthu Mariappan H., Gomathi V., “Real-Time Recognition of Indian Sign Language”, In

Proceedings of the International Conference on Computational Intelligence in Data Science,

Haryana, India, 6–7 September 2019.

[14] Mittal A., Kumar P., Roy P.P., Balasubramanian R., Chaudhuri B.B., “A Modified LSTM

Model for Continuous Sign Language Recognition Using Leap Motion”, IEEE Sens. J. 2019.

[15] De Coster M., Herreweghe M.V., Dambre J., “Sign Language Recognition with

Transformer Networks”, In Proceedings of the Conference on Language Resources and

Evaluation (LREC 2020), Marseille, France, 13–15 May 2020.

[16] Jiang S., Sun B., Wang L., Bai Y., Li K., Fu Y., “Skeleton aware multi-modal sign language

recognition”, In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, Nashville, TN, USA, 21–24 June 2021.

[17] Liao Y., Xiong P., Min W., Min W., Lu J., “Dynamic Sign Language Recognition Based

on Video Sequence with BLSTM-3D Residual Networks”, IEEE Access 2019.

[18] Adaloglou N., Chatzis T., “A Comprehensive Study on Deep Learning-based Methods for

Sign Language Recognition”, IEEE Trans. Multimed. 2022.

64

[19] Aparna C., Geetha M., “CNN and Stacked LSTM Model for Indian Sign Language

Recognition”, Commun. Comput. Inf. Sci. 2020.

[20] Szegedy C., Ioffe S., Vanhoucke V., Alemi A.A., “Inception-v4, Inception-ResNet and the

Impact of Residual Connections on Learning”, arXiv 2016.

[21] Yang D., Martinez C., Visuña L., Khandhar H., Bhatt C., Carretero J., “Detection and

Analysis of COVID-19 in medical images using deep learning techniques”, Sci. Rep. 2021.

[22] Likhar P., Bhagat N.K., Rathna G.N., “Deep Learning Methods for Indian Sign Language

Recognition” In Proceedings of the 2020 IEEE 10th International Conference on Consumer

Electronics (ICCE-Berlin), Berlin, Germany, 9–11 November 2020.

[23] Hochreiter S., Schmidhuber J., “Long Short-term Memory”, Neural Computer 2019.

[24] Le X.-H., Hung V., Ho G.L., Sungho J., “Application of Long Short-Term Memory

(LSTM) Neural Network for Flood Forecastin Water 2019”.

[25] Matyáš Boháček and Marek Hrúz, “Sign Pose-based Transformer for Word-level Sign

Language Recognition”, in IEEE/CVF Winter Conference on Applications of Computer Vision

Workshops 2022.

Please send your complete thesis/report in (PDF) with Title Page, Abstract and Chapters in (Word File)

through the supervisor at plagcheck.juit@gmail.com

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT

PLAGIARISM VERIFICATION REPORT

Date: ………………………….

Type of Document (Tick): PhD Thesis M.Tech Dissertation/ Report B.Tech Project Report Paper

Name: ___________________________ __Department: _________________ Enrolment No _________

Contact No. ______________________________E-mail. ______________________________________

Name of the Supervisor: __

Title of the Thesis/Dissertation/Project Report/Paper (In Capital letters): ________________________

__

__

UNDERTAKING

I undertake that I am aware of the plagiarism related norms/ regulations, if I found guilty of any plagiarism and
copyright violations in the above thesis/report even after award of degree, the University reserves the rights to
withdraw/revoke my degree/report. Kindly allow me to avail Plagiarism verification report for the document
mentioned above.
Complete Thesis/Report Pages Detail:

 Total No. of Pages =

 Total No. of Preliminary pages =

 Total No. of pages accommodate bibliography/references =
 (Signature of Student)

FOR DEPARTMENT USE

We have checked the thesis/report as per norms and found Similarity Index at ………………..(%). Therefore, we
are forwarding the complete thesis/report for final plagiarism check. The plagiarism verification report may be
handed over to the candidate.

 (Signature of Guide/Supervisor) Signature of HOD

FOR LRC USE

The above document was scanned for plagiarism check. The outcome of the same is reported below:

Copy Received on Excluded Similarity Index
(%)

Generated Plagiarism Report Details
(Title, Abstract & Chapters)

 All Preliminary
Pages

 Bibliography/Ima
ges/Quotes

 14 Words String

Word Counts

Character Counts

Report Generated on

 Submission ID Total Pages Scanned

 File Size

Checked by
Name & Signature Librarian

 ………

12%
SIMILARITY INDEX

10%
INTERNET SOURCES

5%
PUBLICATIONS

5%
STUDENT PAPERS

1 7%

2 1%

3 1%

4 <1%

5 <1%

6 <1%

7 <1%

8 <1%

ASL Recognition
ORIGINALITY REPORT

PRIMARY SOURCES

www.ir.juit.ac.in:8080
Internet Source

Abdelaziz Testas. "Distributed Machine
Learning with PySpark", Springer Science and
Business Media LLC, 2023
Publication

Submitted to Asia Pacific University College of
Technology and Innovation (UCTI)
Student Paper

Submitted to Jaypee University of Information
Technology
Student Paper

www.wordnik.com
Internet Source

open-innovation-projects.org
Internet Source

Submitted to University of East London
Student Paper

Submitted to University College London
Student Paper

9 <1%

10 <1%

11 <1%

12 <1%

13 <1%

14 <1%

15 <1%

16 <1%

17 <1%

18 <1%

repository.uel.ac.uk
Internet Source

Submitted to Loughborough College
Student Paper

Submitted to University of Stirling
Student Paper

Arunava Mukhopadhyay, Aritra Chakrabarty,
Agnish Arpan Das, Aishik Sarkar. "Hand
Gesture Based Recognition System", 2023 7th
International Conference on Electronics,
Materials Engineering & Nano-Technology
(IEMENTech), 2023
Publication

researchr.org
Internet Source

mdpi-res.com
Internet Source

Submitted to TAR University College
Student Paper

Submitted to University of Carthage
Student Paper

arxiv.org
Internet Source

utsavdesai26.medium.com
Internet Source

19 <1%

20 <1%

Exclude quotes Off

Exclude bibliography On

Exclude matches < 14 words

www.ncbi.nlm.nih.gov
Internet Source

Submitted to Tarrant County College
Student Paper

