Fit Barbell Classifier

A major project report submitted in partial fulfillment of the requirement for
the degree of

Bachelor of Technology
n

Computer Science and Engineering

Submitted by

Dhruv Srivastava(201346)
Aahana Dutta(201178)

Under the guidance & supervision of
Dr. Ekta Gandotra

Associate Professor

\NFO
~{ of RM’%')

‘lm

o
Q_

L |
é" o

=

Wl
()
7;%1 ||
lt

aca

P
<
A
w
(&)
=
=
(=)
S
()
G

-0

!

Department of Computer Science & Engineering and Information
Technology

Jaypee University of Information Technology, Waknaghat,
173234, Himachal Pradesh, INDIA

TABLE OF CONTENTS

DECLARATION
CERTIFICATE
ACKNOWLEDGEMENT
ABSTRACT

Chapter 01
1.1 Introduction
1.2 Problem Statement
1.3 Objective
1.4 Significance and Motivation
1.5 Organization Of The Report
Chapter 02
2.1 Overview of relevant literature
2.2 Key Gaps in the Literature
Chapter 03
3.1 Requirement and Analysis
3.2 Project Design and Architecture
3.3 Data Preparation
3.4 Implementation
3.5 Key Challenges
Chapter 04
4.1 Testing Strategies
4.2 Test Cases
Chapter 05
5.1 Results and Evaluation
Chapter 06
6.1 Conclusion
6.2 Future Scope
References

25!21»—1

O WD U W W N N —

AN N N = = e e
—_— O O O L W W W WO W

Serial No.

10.

I1.

12.

13.

14.

15.

LIST OF FIGURES

Figure Name

Project Design Plan

Dataset Pie Chart

Resampled Data

Comparison of heavy and medium set

Outlier detection using IQR

Outlier detection using Chauvenet’s Criterion

Butterworth Low pass filter

PCA

Temporal Features

Cluster Features

Body Landmarking

Exercise Detection and Rep Count

Unit Test Function

Accuracy graph of Feature Set 3

Actual Repetition Vs Predicted Repetition

Page Number

13

17

18

19

20

20

21

21

22

23

44

51

54

57

58

Table No.

LIST OF TABLES

Table Name

Literature Survey

Performance Report I

Performance Report 11

Performance Report 111

Page Number

6-8

55

56

57

DECLARATION

We hereby declare that the work presented in this report entitled ‘Fit Barbell
Classifier’ in partial fulfillment of the requirements for the award of the degree of Bachelor
of Technology in Computer Science & Engineering submitted in the Department of
Computer Science & Engineering and Information Technology, Jaypee University of
Information Technology, Waknaghat is an authentic record of my own work carried out over a
period from August 2023 to May 2024 under the supervision of Dr. Ekta Gandotra
(Associate Professor, Department of Computer Science & Engineering and Information

Technology).

The matter embodied in the report has not been submitted for the award of any other

degree or diploma.

Student Name: Dhruv Srivastava Student Name: Aahana Dutta

Roll No.: 201346 Roll No.: 201178

This is to certify that the above statement made by the candidate is true to the best of

my knowledge.

Supervisor: Dr. Ekta Gandotra
Designation: Associate Professor
Department: Computer Science & Engineering Information Technology

Dated:

CERTIFICATE

This is to certify that the work which is being presented in the project report titled
‘Fit Barbell Classifier’ in partial fulfillment of the requirements for the award of the
degree of B.Tech in Computer Science And Engineering and submitted to the Department
of Computer Science And Engineering, Jaypee University of Information Technology,
Waknaghat is an authentic record of work carried out by Dhruv Srivastava(201346) and
Aahana Dutta(201178) during the period from August 2023 to May 2024 under the
supervision of Dr. Ekta Gandotra, Associate Professor, Department of Computer Science
& Engineering and Information Technology, Jaypee University of Information Technology,

Waknaghat.

Dhruv Srivastava (201346)
Aahana Dutta (201178)

The above statement is correct to the best of my knowledge.

Dr. Ekta Gandotra

Associate Professor

Computer Science & Engineering and Information
Technology Jaypee University of Information Technology,
Waknaghat

ACKNOWLEDGEMENT

Firstly, we express my heartiest thanks and gratefulness to almighty God for His divine

blessing makes it possible to complete the project work successfully.

We are really grateful and wish my profound indebtedness to Supervisor Dr. Ekta
Gandotra, Associate Professor, Department of Computer Science & Engineering and
Information Technology, Jaypee University of Information Technology, Wakhnaghat. Deep
knowledge & keen interest of my supervisor in the field of “Fit Barbell Classifier” to carry
out this project. Her endless patience, scholarly guidance, continual encouragement, constant
and energetic supervision, constructive criticism, valuable advice, reading many inferior drafts,

and correcting them at all stages have made it possible to complete this project.

We would also generously welcome each one of those individuals who have helped us
straightforwardly or in a roundabout way in making this project a win. In this unique situation,
we might want to thank the various staff individuals, both educating and non-instructing,

which have developed their convenient help and facilitated our undertaking.

Finally, we must acknowledge with due respect the constant support and patience of our parents.

Dhruv Srivastava (201346)
Aahana Dutta (201178)

ABSTRACT

Exercise is one of the four key pillars of human well-being. In today’s world where people
are becoming more sedentary day by day, leading to conditions like cardiovascular diseases,
obesity, and type 2 diabetes, with regular exercises, one can reduce the above risks and enjoy a
playful and joyous healthy lifestyle. Calisthenics, cardio and yoga are one of the most popular
forms of exercises to name a few, however strength training tops all of them. According to a
research [1] conducted on 40,000 people, there was a significantly lower risk of death to those
people who practiced strength training along with aerobic training than aerobic training alone.
Gym is a perfect place for strength training using weights. Assistance in workout is easily
accessible in gym through a trainer however fitness guidance is that luxury which not everyone
can afford. There can be huge injury risks due to bad exercise form when one starts to prioritize
repetition count over exercise form. According to the annual ACSM's Health & Fitness Journal®
[2] the #1 trend for the year 2023 is wearable technology and this is where ‘Fit Barbell
Classifier’ comes into the picture. ‘Fit Barbell Classifier’ provides an automated solution for
tracking the type of exercise and counting repetition of it for barbell training through the device's
accelerometer and gyroscope. The user need not to worry about counting the repetitions, it just
needs to mindfully focus on the exercise at hand making the whole process safer and more
enjoyable. The goal is to explore, build, and evaluate models that can, just like human personal
trainers, track exercises and count repetitions. The methods evaluated in the project use a
supervised learning approach for classification. Various machine learning algorithms were
trained using the collected dataset and accuracies were compared to find and evaluate the right
models. Random forest and the simple neural network performed best among other models with
an accuracy of 99.37% for both of them. The repetition count algorithm had the mean absolute

error as 0.88 for any given set. For video tracking, SVM achieved an accuracy 94.11%.

Chapter 01
INTRODUCTION

1.1 Introduction

Exercise is an essential component of a healthy lifestyle. From improving daily mood to
improving the body's resistance towards various health issues like cardiovascular, obesity,
diabetes, weakness, exercise has got you covered. From achieving general well-being to
specific fitness goals, exercise can play a vital role. Some types of exercises are more
beneficial than others [3], one of the best ways to achieve a healthy lifestyle is through
Strength Training. Strength training involves your muscles contracting against an outside
resistance. This resistance could be an external weight or your body weight. An excellent
choice for this resistance to be is barbells. Barbells offer a huge variety of exercises that can

benefit the full body without any other fancy equipment.

One of the great challenges of training through weights is supervision. Supervision makes
the whole training process extremely easy, through the guidance on the types of exercises, the
magnitude of weights and the number of repetitions in one particular set. However, not
everyone has the luxury to afford a trainer. People training on their own might get tempted into
tracking their progress by counting the repetitions and making them lose focus on the form of

the exercise, potentially making them prone to injuries.

Last decade has seen a rise in monitoring gadgets like smartwatches enabling people to track
the basic activities like walking and running. Accelerometer which measures the G-force and
gyroscope which measures the angular velocity are two of the most important sensors which
enables this tracking. Although basic human activity tracking has been widely used, there has
been little to no work done to track complex movements like that of a barbell exercise. And this
is where the Fit Barbell Classifier shines. Fit Barbell Classifier provides an automated solution
for tracking barbell exercises without the manual need of counting the repetitions of a particular
exercise, maintaining a journal and more. All the user has to do is mindfully focus on the
exercise, making sure the form is proper and correct and the workout is enjoyable. With Fit

Barbell Classifier, the risks of injury are reduced without the need of a trainer.

1.2 Problem Statement

In day to day life, fitness is one of the most important aspects of human well-being
as it famously said “Health is Wealth " and exercise is the best way to maintain physical
and mental well-being. Although, the benefits of exercise are well-known, obstacles like
very high cost of a personal trainer and the risk of sustaining an injury often hinder
people from regularly exercising, To tackle above issues, our problem statement for the
project: Fit Barbell Classifier is to fulfill the absence of a personal trainer and
accurately tracking the type of exercise as well the repetition count of it so that the
person can single mindedly focus on the exercise form rather than worrying about the
counting repetitions while performing the exercise which will reduce the risks of

sustaining injuries.

Fit Barbell Classifier aims to use supervised machine learning models to accurately
classify the barbell exercise from the data obtained from accelerometer and gyroscope
present in the device attached to the individual’s arm and a custom algorithm to
determine the count of repetitions of the exercise. The problem statement also extends to
develop a user friendly interface so that any individual can track his/her barbell workout

without any hassle.

1.3 Objective

e C(reate robust machine learning models to classify barbell exercises accurately
using accelerometer and gyroscope data.

e Develop an algorithm for precise counting of repetitions within exercises,
leveraging patterns in sensor data.

e Seamlessly integrate data processing, modeling, and counting to provide a
user-friendly fitness tracking solution and bridge the gap between wearable sensor

data and meaningful exercise interpretations

1.4 Significance and Motivation

A very popular article [4] published in 2020 stated that bad exercise form can lead
to various injuries like tendonitis, lower back pain, slip disc, fracture and this can
especially happen when an individual is training alone without any guidance of a trainer.
There has been very little to no research in the scene of automated tracking of barbell
workouts making the highly powerful sensors like accelerometer and gyroscope useless.
There is no mainstream application that provides an automated solution for workout
tracking. Figuring out what type of exercise to do, how many repetitions to do and
manually counting the repetitions during workout, often hinders the individual from
actually doing the training session. The motivation behind this project is to make one
such end to end product that solves the problem of not having a personal trainer with you
all the time, tracking your workouts, giving a feedback at the end of workout session, so
that the user can enjoy the workout by being fully focused on the session and ensuring

that the risk of injuries become minimum.

1.5 Organization Of The Report

The report has been organized in a logical and comprehensible manner starting from
the first chapter: introduction to the last chapter: conclusion and future scope. A brief

overview of each chapter is as follows:

e Chapter 1, Introduction: The very first chapter introduces the what and why
of the project. It discusses the problem statement, objectives and the

significance of the chosen project.

e Chapter 2, Literature Survey: The second chapter discusses the existing
work that has already been done for the project. The two components of this

chapter are the overview of the literature review and the gaps in it.

Chapter 3, System Development: This chapter deals with the Zow of the
project. It includes the planning and the implementation part of the project.
The sections included in this chapter are, requirement and analysis, project

design and architecture, data preparation, implementation and key challenges.

Chapter 4, Testing: This chapter deals with the testing phase of the project.
Testing is an important part in any of the project life cycle. Testing strategies

and test cases are discussed in this chapter.

Chapter 5, Results and Evaluation: In this chapter, all of the results related
to the project are discussed. This includes, the evaluation of various machine
learning models on many metrics as well evaluation of the custom repetition

count algorithm.

Chapter 6, Conclusion and Future Scope: In this chapter, conclusions are
drawn. These conclusions include key findings, limitations and contribution to
the field. The part of this chapter is future scope which discusses what could

be done in the future.

Chapter 02

Literature Survey

2.1 Overview of relevant literature

Researchers have developed a huge form of system learning strategies to classify facts
from wearable sensors into various exercising-associated categories.The accuracy of the
techniques is decided through the specific assignment and facts used. In precise, the
examination suggests that wearable sensors can reliably classify a vast range of sporting
events, with accuracy prices ranging from 92% to 97% This information may be used to

develop new fitness apps and offer what present accuracy has increased.

Different outcomes have been recorded from different papers. Some of the findings of the
paper had been that a way for locating physical games the use of the data that turned into
accumulated from wrist-worn sensors turned into located to be 96.2% correct and changed into
taken into consideration a technique for classifying exclusive workout speeds by collecting
records from a wearable sensor with 95% accuracy. A technique for figuring out activities the
use of statistics accrued from hobby-manipulated video display units was discovered to be 92%
correct. The new method of classifying daily sports using facts accumulated from cell phone

sensors was found to be 93% correct.

Mostly sensors like accelerometers and gyroscopes were used in the following papers. A
wide range of exercises were performed such as walking, sitting, running, cycling, and
swimming. Some other researchers took gym exercises into consideration such as bicep curls,
tricep extensions, lateral raises, chest presses, rows, overhead presses, squats, deadlifts, leg

presses, and leg extensions.

These findings imply that wearable sensors could be used to create a variety of new fitness
apps, like coaching apps, personalized fitness trackers, and any app that can help users prevent
injuries by keeping an eye on their form and technique or track their progress towards fitness

objectives.

S.no Paper Title Journal/Conferen | Tools/Technique | Results Limitations

(Cite) ce S
(Year) Dataset

1 Workout Detection | Applied Sciences F-score of The authors
by Wearable (Switzerland) Random Forest, 96.3% on collected data
Device Data Using K-nearest Random Forest | only from a single
Machine (2023) neighbors, and subject.
Learning[5] SVM.

Accelerometer
data collected
from a
wrist-band.

2. Video-Based Sensors 2023, 96.7 £0.35% Poor Test
Human Activity MDPI (ResNet) and a and 41.0 + Accuracy
Recognition using vision 0.27% in terms
Deep Learning transformer of accuracy in
Methods [6] architecture the train and

(ViT) test phase
Human motion

database

(HMDBS51

3. Video Based International Accuracy of Only two
Exercise Conference on Graph 94.44% and exercises were
Recognition Using | Recent Advances Convolutional 98.65% of included in the
GCN [7] in Electrical, Network (GCN) lunges and research.

Electronics & 5 different squats
Digital physical respectively.
Healthcare' exercises (squats

Technologies and lunges)

(2023)

4 Classification of
Various Workout IEEE World Al Support Vector Accuracy of The authors didn't
Motions Using IoT Congress Machine (SVM) | 990, on svM | use
Wearable (AlloT) using Bayesian cross-validation
Sensors[8] optimization and used only

SVM

https://ieeexplore.ieee.org/xpl/conhome/10150432/proceeding
https://ieeexplore.ieee.org/xpl/conhome/10150432/proceeding
https://ieeexplore.ieee.org/xpl/conhome/10150432/proceeding
https://ieeexplore.ieee.org/xpl/conhome/10150432/proceeding
https://ieeexplore.ieee.org/xpl/conhome/10150432/proceeding
https://ieeexplore.ieee.org/xpl/conhome/10150432/proceeding
https://ieeexplore.ieee.org/xpl/conhome/10150432/proceeding
https://ieeexplore.ieee.org/xpl/conhome/10150432/proceeding

S.no Paper Title Journal/Conferen | Tools/Technique | Results Limitations
(Cite) ce]

(Year) Dataset

(2022) Accelerometer
of wearable
Sensor.

5 Activity Accuracy of The authors only
Identification using Asian Conference | xGBoost, 98% on xG used 6
Supervised on Innovation in | Random Forest, Boost rudimentary
Machine Learning Technology K-nearest activities and
on Wearable (ASIANCON) neighbors, and didn't include any
Activity Tracker (2021) Decision Trees. workout.
Dataf9] Accelerometer

data from Apple
Watch and Fitbit

6 Human Activity International Accuracy of Only DT and RF
Recognition using | Journal of Decision Trees 93% on were used for
ML Techniques Innovative and Random Random Forest | classification
[10] Science and Forest.

Research UCI Human
Technology Activity

Recognition
(2021)

7 Fusion of Accuracy of Only 2 classifiers
smartphone sensor Multimedia Tools | SVM, kNN 98.32 % for and 3 activities
data for and Applications SVM and were used
classification of International Accelerometer 97.42 % for

. o Journal and gyroscope of
daily user activities smartphone at 50 kNN.
[(2021) Hz from 20

participants

S.no Paper Title Journal/Conferen | Tools/Technique | Results Limitations
(Cite) ce]
(Year) Dataset
8 Supervised Accuracy of The authors only
Machine Learning Frontiers in Random Forest, 97.8% on kNN | used 4 exercises
Applied to Bioengineering K-nearest in the study.
Wearable Sensor and neighbors, and
Data Can Biotechnology SVM.
A tely Classify
corately Lasstly (2020) Accelerometer
Functional Fitness and gyroscope
nd gyrosc
Exercises Within a data of 14
Continuous .
Work 0 participants
t
orkout [12] performing 4
functional
fitness drills.
9 ExerSense: Physical
) ICT Unit, Faculty of] SVM
Exercise Engineeri d Accuracy of Data was
» ngineering an
Recognition and : . 93% on SVM collected under
. . Business Acceleration
Counting Algorithm data of five laboratory
v
from Wearable (2020) conditions.
Robust to types of regular
Positioning [13] exercises by four
different
wearable
devices.
10 Exercise motion
classification from IEEE/RSJ 3-layered-CNN Accuracy of Performed in a
large-scale International 92.1% on noisy
Accelerometers .
Conference on environment.

wearable sensor
data using
convolutional
neural networks

[14]

Intelligent Robots
and Systems

(IROS)

(2017)

and gyroscopes

3-layered CNN

S.no Paper Title Journal/Conferen | Tools/Technique | Results Limitations
(Cite) ce]
(Year) Dataset
11 Strength Training: Accuracy of
A Fitness 16th IEEE kNN and Neural | g5 30, o N | Less exercises
Application for International Networks. and 77% on were put under
Indoor Based Conference on KNN consideration
Machine Accelerometer
Exercise
Learnine and data collected
Recognition and g)
- Applications from Biceps
Comfort Analysis
curl, Chest fly,
[15]
(2017) Row, Push up,
Sit up, Squat and
Triceps curl
12 Recognizing gym
: . IEEE Symposium | SVM, Random o Exercise
exercises using 99% accuracy
acceleration data on Computational | Forest, NN. on NN variability. Each
from wearable Intelligence and variation can
- GeneActiv 3D duce diff
sensors [16] Data Mining produce different
accelerometer at .
acceleration
(2014) a frequency of patterns,
100 Hz from 36
exercises

Table 2.1 Literature Survey

2.2 Key Gaps in the Literature

e The data gathered from healthy adults in carefully monitored laboratory environments is
the main emphasis of the study publications. This restricts the findings' applicability to
real-world situations where people may display a greater variety of physical abilities,
health issues, and environmental circumstances. Furthermore, a lot of the research uses
small sample sizes, which might not be sufficient to reflect the diversity in human activity

patterns.

e The accuracy of interest identification algorithms may be significantly impacted by using
the positioning and alignment of wearable sensors. Research articles often make the idea

that sensors are placed especially body components, just like the wrist or ankle. However,

in realistic implementations, the vicinity of sensors may additionally alternate based totally
on personal possibilities and the nature of the interest. Additionally, the orientation of
sensors won't continually be consistent throughout various activities and may impact the

first-class of records amassed.

The class of activities within particular domains, like fitness or each day dwelling, is the
main emphasis of the examination research. But humans additionally regularly take part in
move-domain activities, which includes walking to work or doing home tasks whilst
running out. Reliable activity category across domain names is critical for wearable sensor
systems to be evolved that could provide deep insights into an individual's whole pastime

profile.

Since wearable sensor structures frequently run on batteries, strength economy is an
important thing to recollect. Less interest is located on optimizing electricity use and
greater on the accuracy of hobby popularity algorithms within the studies articles.
Furthermore, wearable gadgets' overall performance in real time might be suffering from

the computational value of algorithms, mainly on gadgets with low processing strength.

The aforementioned shortcomings underscore the need for added investigation to address
the restrictions of extant wearable sensor-based pastime detection structures and broaden
their relevance in actual-world scenarios. By filling in those gaps, scientists can create
wearable sensor structures that are extra dependable, accurate, and adaptable. These
structures can assist human beings achieve their fitness and properly-being objectives with

the aid of presenting individualized insights on their interest styles.

10

Chapter 03

System Development

3.1 Requirement and Analysis

3.1.1 Technical Requirements

e Language Used:

o

Python 3.10.12

o Software Used:

o

o

o

Python 3.10.12
Google Colab
VS Code

e Libraries:

o

O

Numpy
Matplotlib
Pandas
Scikit-Learn
Plotly
Glob
[Python
Seaborn
Scipy
Unittest
MediaPipe

OpenCV

11

3.1.2 Functional Requirements

e The ability to accept and process sensor data of exercises as input.

e The ability to classify the input data into one of several barbell exercises.

e The ability to output the predicted exercise with a corresponding accuracy.

e The ability to handle input sensor data with varying levels of noise or distortion.

e The ability to handle a large number of input data and perform classification efficiently.

e The ability to be easily trained and fine-tuned on new datasets.

3.1.3 Non Functional Requirements

e Performance: The system should be able to train the machine learning models within a
reasonable amount of time. The classification time for new unseen data should be less as
well.

e Scalability: As the project grows in size, the system should not falter and must be able
to handle large amounts of data.

e Reliability: The system should be reliable enough to handle error gracefully. The
system must be robust to failures.

e Usability: The system should be hassle free and friendly to the user. Any internal
complications must be hidden from the end user.

e Portability: The system should be portable to different types of operating systems.

e Maintainability: The system must be easy to update as well as maintain. The system
should be written in such a way, any updates on one module must not directly affect any
other module

3.2 Project Design and Architecture

Data Collection (Phase 1)

Data has been collected
from 5 participants
performing 5 different

barbell exercises from
wearable sensor using
accelerometer and
gyroscope at 12.5 Hz and

25 Hz respectively

Data Preparation (Phase 2)

Labelling and Cleaning Data Visualization

Plotting a single row
to see how the
The individual CSV files graph looks like
are labelled with the
participant name along
with the exercise. Once
all of the files are
labeled, frequency
ressampling is done and
merged data is created.

Comparing the
heavy sets and the
medium sets for
each exercise

Comparing each of
the participants
through plots for
each exercise

Qutlier Detection

QOutliers, extreme E
data values, are
defined. Detection
methods like

1. Boxplots

3. Chauvenet's
Criterion

2. Interquartile
Range

4. Local
Qutlier Factor
Finally the best outlier method is
chosen and the data becomes outlier
free

Feature Engineering

reduction using Low

—
5% .
Training

nhance data quality
through noise

Filter Pass
Simplify data ' Split
complexity through

dimensionality
reduction methods
like PCA

Extract patterns
using temporal and
frequency
abstraction

—
25%
Testing
Data

(Phase 3)

Result Analysis

Model Training and Evaluation

Custom Algorithm for Reps

reafing a custom algori
for counting repititions of each
exercise through analyzing the
local maxima in the plot

Model Training and Evaluation

Various models like Random
Forest, kNN, Decision Tree and
Naive Bayes are trained on the
selected features of the training

dataset. Various
hyperparameters are tuned for
best possible test accuracy

Feature Selection

Feature selection happens
from that training dataset
using a simple decision tree

Figure 3.1 Project Design Architecture

The figure 3.1 shows an extensive project design plan for sensor tracking

Phase 1: Data Collection

Accelerometer & Gyroscope:

The data used for the project is a sensor based time series data based on the movement

pattern during the barbell exercises. The author used five subjects including four males and

one female and were asked to perform barbell exercises namely, deadlift, overhead press,

squat, bench press and barbell row while wearing a wearable device having sensors. The

wearable device consists of two sensors i.e. accelerometer and gyroscope. The accelerometer

measures the gForce and the gyroscope measures the rotation. The accelerometer was

configured to measure at 12.50 Hz whereas the gyroscope was configured to measure at

25.00 Hz. The subjects performed the exercises in two sets, a heavy and medium set. In

between the sets, the resting period was also monitored to better generalize the model to be

trained on the data. Raw data resulted in a total /87 csv files.

13

Video Evaluation:

The first phase of video evaluation was to collect video data of exercises which would be
used to train the model. A script has been written to collect the data which would make use
of OpenCV [17] and MediaPipe [18] library to capture and annotate the frames of the videos,
which then would be stored in a folder where each subfolder would have data of one

particular exercise.

Phase 2: Data Preparation
Accelerometer & Gyroscope:

During the data collection phase, a total of /87 csv files were generated which had the
participant name, type of exercise and set type mentioned in it. Firstly, labeling and cleaning
is done whose purpose is to create a dataframe from which features can be engineered and
selected for model training. The next step in this phase is data visualization whose main goal
is to identify patterns in the data through visualization. Qutlier detection is the next step in
this phase. Detecting outliers is an important step, as a model trained with outliers can have
less accuracy. Various methods like IQOR, Chauvenet'’s criterion [19] and Local Outlier
Factor were used. The next step is feature engineering so that engineered features can be
passed in model training. Various feature engineering techniques like Butterworth Low Pass
Filter [20], PCA, Sum of Squared features, Temporal abstraction, Frequency abstraction and
cluster feature were carried out. A final dataframe was exported with all the basic features as
well the engineered features for model training. A lot of above methods are studied from a
standard book for machine learning on sensor data named Machine Learning for the

Quantified Self: On the Art of Learning from Sensory Data [21].

Video Evaluation:
During the data collection phase, a total of 150 video files (50 of each category) are
acquired. The main preprocessing task is to label the annotated frames of the videos which

then can be used for supervised model building..

Phase 3: Model Training and Evaluation and Repetition Count
Accelerometer & Gyroscope:
Model training is that phase where learning actually takes place. The training data is passed
to the model and the model learns from the training data by finding different patterns among

the training features. At the end of feature engineering, we had 116 features in total. This

14

includes 6 basic features, 3 PCA features, 2 sum of squared features, 16 time related features,
88 frequency related features and 1 cluster feature. Multiple sets of features are created to

train the models on each one of them to find perfect accuracy to processing time ratio.

Feature set A includes basic features, feature set B includes feature set A plus PCA and sum
of squared features, feature set C has all the features of feature set B and temporal features
and the last feature set D contains feature set C plus all of frequency features. The length of

feature sets A, B, C, and D are 6, 11, 27 and 116 respectively.

A number of models like logistic regression, support vector machine, naive bayes, kNN,
decision tree and random forest are trained on each of the feature sets. Since feature set 4
contains 116 features and hence more processing time, we have come up with stacking of
models and then apply the stacked models on feature set 3 to find the perfect balance between

performance(accuracy) and processing model.

3 stacked models are created with the following definitions:
e Stacked model 1:
o Weak Learners: Decision Tree, Logistic Regression, Support Vector Machine,
k-Nearest Neighbors and Naive Bayes.
o Final Estimator: Logistic Regression

o Cross Folds: 5

e Stacked model 2:
o Weak Learners: Logistic Regression, Random Forest and Decision Tree.
o Final Estimator: Random Forest

o Cross Folds: 5

e Stacked model 3:
o Weak Learners: Random Forest, Decision Tree, Logistic Regression, Support
Vector Machine, k-Nearest Neighbors and Naive Bayes.
o Final Estimator: Logistic Regression

o Cross Folds: 5

Model evaluation is that phase where the model is tested on the unseen data. A good

15

model performs well on both training and testing data. To ensure this is the case, model
evaluation is done. Various evaluation metrics like accuracy, precision, recall and f-score are
calculated on the testing data. Based on the values of these evaluation metrics, further steps

are taken place if required.

For the final part of this phase, a repetition count algorithm is built which counts the
number of repetitions given any set. The basic idea was to smooth out the curve of the most
dominant feature and count the number of local maxima in it. The repetition count algorithm

was tested against a benchmark dataframe through the mean absolute error parameter.

Video Evaluation:

This final phase begins with the splitting the data into training and testing datasets. A ratio
of 9:1 is chosen as training and testing data. After that SVM is trained on the frames of the
videos stored. Once the model is fully trained it then is evaluated against the testing dataset

on various parameters like accuracy, precision, recall and f-score.

As the final step of this phase, a repetition count algorithm is written which is based on
MediaPipe annotations of the images. The basic idea is to calculate angles between joints
and then depending upon the angles of the images, classify the pose into one of the
predefined labels. When everything is done, the model and the repetition count algorithm is

tested on real data.

3.3 Data Preparation

1. Data Collection

a. The data used for the project is a sensor based time series data based on the movement
pattern during the barbell exercises. Five subjects including four males and one female
were asked to perform barbell exercises namely, deadlift, overhead press, squat, bench
press and barbell row while wearing a wearable device having sensors.

b. The wearable device consists of two sensors i.e. accelerometer and a gyroscope. The
accelerometer measures the acceleration and the gyroscope measures the angular
velocity. The accelerometer was configured to measure at 12.50 Hz whereas the
gyroscope was configured to measure at 25.00 Hz.

c. The subjects performed the exercises in two sets, a heavy and medium set. In between

16

the sets, the resting period was also monitored to better generalize the model to be

trained on the data.

Bench Press

Barbell Row
41 38
Deadlift
22
Squat
4

Cverhead Press
40

Figure 3.2 Dataset Pie Chart

The figure 3.2 shows a pie chart of how many csv files are there from each of the exercises.

2. Labeling and Cleaning

a. During the data collection phase, a total of /87 csv files were generated which had the
participant name, type of exercise and set type mentioned in it. In this part, each
accelerometer and gyroscope files are separated and made into different Panda’s
dataframes.

b. Now, participant name (participant), type of exercise (label) and category of set (set) are
extracted from the file name and then added into the dataframe. After each of the
acceleration and gyroscope dataframe are labeled, and all of the dataframes are merged
into a single dataframe which would be used throughout the project.

c. For cleaning purposes, the epoch attribute is set as the index and some redundant
attributes are deleted. Since, the gyroscope was configured at 25.00 Hz and
accelerometer was configured at 12.50 Hz, merging the two dataframes caused a lot of
null values in it. To handle this problem, frequency resampling was done at an interval

of 200ms.

acc_x acc_y acc_z gyr x gyr.y gyr_z participant label category
epoch (ms)

2019-01-11 15:08:05.200 0.013500 0.977000 -0.071000 -1.8904 2.4392 0.9388 B bench heavy
2019-01-11 15:08:05.400 -0.001500 0.970500 -0.079500 -1.6826 -0.8904 2.1708 B bench heavy
2019-01-11 15:08:05.600 0.001333 0.971667 -0.064333 2.5608 -0.2560 -1.4146 B bench heavy
2019-01-11 15:08:05.800 -0.024000 0.957000 -0.073500 8.0610 -4.5244 -2.0730 B bench heavy
2019-01-11 15:08:06.000 -0.028000 0.957667 -0.115000 2.4390 -1.5486 -3.6098 B bench heavy
2019-01-20 17:33:27.000 -0.048000 -1.041500 -0.076500 1.4146 -56218 0.2926 E row medium
2019-01-20 17:33:27.200 -0.037000 -1.030333 -0.053333 -2.7684 -0.5854 2.2440 E row medium
2019-01-20 17:33:27.400 -0.060000 -1.031000 -0.082000 2.8416 -5.1342 -0.1220 E row medium
2019-01-20 17:33:27.600 -0.038667 -1.025667 -0.044667 -0.2318 02562 1.1220 E row medium
2019-01-20 17:33:27.800 -0.044000 -1.034000 -0.058000 1.0980 -4.0240 0.9760 E row medium

9009 rows x 10 columns

Figure 3.3 Resampled Dataset

The figure 3.3 shows the resampled data frame obtained at the end of labeling and cleaning.

3. Data Visualization

a. The data visualization part of the project deals with visualization of data to gain insights
of the underlying patterns hidden in the data and check for whether some of our
assumptions match with the visualization or not.

b. To compare different types of exercises and how the sensor data differs in each, plots are
drawn and conclusions are made. We need to make sure we know the difference between
a heavy set and a medium set, for that we can draw a plot for each of them and then
compare between them.

c. To make a generalized model, we need to look for the variance in data collected for the
same exercise but different subject, for this we can visualize our data and check for our

assumptions.

set

76.0
76.0
76.0
76.0

76.0

15.0
15.0
15.0
15.0
15.0

18

acc_y

Comparison of Heavy and Medium Sets for Squat for participant A TV B QR W

heavy Set
medium Set

0.9

0.8

0.7

0.6

0.5

0.4

0.3

100 200 300 400 500 600

o

Sample

Figure 3.4 Comparison of heavy and medium set

The figure 3.4 visualizes the comparison between a heavy set and a medium set for participant
A doing a squat. The heavy set produces a low range of acceleration in y direction when

compared to that of a medium set.

4. Outlier Detection

a. The quality of the model directly depends on the quality of the data on which it is trained
and any real world data is filled with noise. This noise is often termed as outliers which
are basically, extreme values of the current context. Outliers are bad as they can give
false information to the model and hence decrease the accuracy of it.

b. To detect outliers, various outlier detection methods like box-plots using the IQR,
Chauvenet’s criterion and Local Outlier Factor [22] are used and then finally,
Chauvenet’s criterion was chosen to detect the outliers and then mark them as null

values. The null values are dealt with in the later part.

19

159 + outlier acc_x + no outlier acc_x + + +

++

+
oy
e

104 ﬁt + 'ﬂz
et * i
4 ii 4w

value

0.0+

A +
HHE 4+ 4

’é:
x
-
Eﬁ
e o

T T T T
0 2000 4000 6000 8000
samples

Figure 3.5 Outlier Detection using IQR

The figure 3.5 visualizes outliers with the help of IQR method

13 + outlier acc_x + no outlier acc_x + + +

4+
4+

+
e
4y

104 'ﬁ* ** ﬁ
M et &1
Yo W W

054 +++ -& + H ++*

value
L

0.0

ol pinny' Py Fa

'y
g@
.

P
+HH 4+ 4

T T T T T
0 2000 4000 6000 8000
samples

Figure 3.6 Outlier Detection using Chauvenet’s Criterion

The figure 3.6 visualizes outliers with the help of Chauevenet’s Criterion

5. Feature Engineering

a. Feature engineering is an important part of data preparation where we essentially try to
manipulate/clean existing features or engineer new features from the existing ones so
that maximum information in minimum number of features can be captured and then
passed to the model for learning.

b. In this part, null values are interpolated, Butterworth Low Pass Filter is applied to each

feature for the smoothening of the curves.

20

Line Plot of acc_y by Label

14 —— acc_y - Label ohp

1.2
%
o
o
]

1.0 A

0.8 1

T T T
15:44:05 15:44:10 15:44:15
Index
Line Plot of acc_y lowpass by Label
—— acc_y_lowpass - Label ohp

1.1 A
@
2
= 1.0 4
o
)
Y 0.9
m

0.8

T T T
15:44:05 15:44:10 15:44:15
Index

Figure 3.7 Butterworth Low Pass Filter
The figure 3.7 visualizes the smoothing of the curve through the Butterworth Low Pass Filter.
c. After Butterworth Low Pass Filter, Principal Component Analysis was performed. A

total of three principal components were extracted and were labeled as "pca_1°, "pca 2"

and ‘pca 3".

0.6 4

0.5 1

=)
=
'l

0.3 4

Explained variance

o
[V)
1

0.1 4

0.0 4

1 2 3 4 5 6
PCA number

Figure 3.8 Elbow Graph of Explained Variance and PCA Number

Figure 3.8 depicts the elbow graph to correctly identify number of components

d. Sum of Squared features are also engineered to reduce bias towards device’s orientation.
‘acc_r was added for accelerometer and "gyr r' was added for gyroscope readings.
acc_r=(acc_x*>+acc_y*+acc_z%) and gyr r="(gyr x*+ gyr y>+ gyr 7).

e. Temporal abstraction is also done through the help of rolling mean and rolling standard
deviation. It was applied to all of the six basic features and squared features and resulted

in a total of 16 new features.

<Axes: xlabel='epoch (ms)'>

104
0.8 q

— accy
0.6 1 —— acc_y_temp_mean_ws_S
—— acc_y_temp_std_ws_5

0.4 1

0.2 4

e S g N e N N

13:53:10 13:53:15 13:53:20
epoch (ms)

0.0 q

Figure 3.9 Temporal Features

Figure 3.8 visualizes the temporal features generated using rolling means and standard

deviation

f. After temporal abstraction, frequency abstraction was done with the help of Fast Fourier
Transform [23]. Each set was given as an input and it resulted in 88 new frequency
features.

g. Feature engineering is concluded by clustering using the K-Means algorithm to generate
a cluster feature. At the end of feature engineering, a total of 176 features were present in

the dataframe.

22

NHBR WO

Figure 3.10 Cluster Feature

Figure 3.9 visualizes the clustering feature generated using K-Means clustering

3.4 Implementation
3.4.1 Screenshots of the various stages of the Project
Type: For tracking through acceleration and gyroscope.

Stage 1: Module imports and labeling and cleaning

One of the most popular and easiest libraries for data handling in python is pandas [24]. It makes

the data manipulation process extremely easy for the developer by providing many functions for

the manipulation tasks.

23

© Fotp tstalt Tyn mere

(1 ioport mimy a5
Inport pandss 55 pd
fran glob dmort glob
from Teython.display inport display

cingle_#ile sce-pd.resd_csv("

nch-hesvy2-ry

Hetesr 2013-81-11715.19.08.270 CADTIREISSE Acceleronster 13,508z 1.4.4.cov7)

@ stngte file scc

(] eooch (1)

[e
TSTESH 20OLTIB 51T
[
TSATIOACHTT 2010011TIB088T1

TAT2I040751 21-D1-1TIEA0A8751

1 BTSN 20101HTIBAO25M

02 1SATZIONAGE 20TB-TION024501

03 1547219624671 2010-01-HTIBAD24571

04 ISATZIZETS 20TBDTION024751

05 154210624831 201B01-M1TIBA0:24831

206 ons %0 cotamrs

] single_F1le gyro-pd.resd_csu("

w oo
0 o
ol oot
0% amm
w2 am

e oo
w000

w2 oon

w2 oo

w0 oo

tioe (@1:69) elapsed (5) x-axs () y-acis (§)

[

chench-hesvya-

2oas ()
o7
00
o087
oo
o

o108

Hetabear_1015-91-11716.10.68. 70 CATTIIBEISSC_Gyroscope 35.000Mz 1.8.4.c5v")

single F1le gyro dto here

epoch (1) tine (g1:00)

TSATIIOAEET 20100LITIB0 381
TSATZIGAEET 201801 ITII08301
TSATOABE 20100LUTIB8 61
TATZOAMBAT! 201D MTIA84T!

TSAT20408811 201BOLITIBAC0RS T

09 BT 2OOLITIBI02ATH
0 TATIB2TE TBOLNTIEN2 751
NI TOLITIE2 70
2 AT 201D MTIB2A N
13 14T T0OLNTION25

414 o0 % B ol

© here

acc_df

epoch (ns)
2013-01-1817:33:08.416
2019-01-18 17:33:08.46
2019-01-18 17:33:08.576
2018-01-18 17:33:08.686
2013-01-18 17:33:08.738
2019-01-11 15:49:16.116
2019-01-11 15:49:16.196

2019-01-11 15:4¢

2018-01-11 15:4¢
2019-01-11 15:48:

23578 rows x 10 columns

© shere

gyr_df

epoch (ns)
2013-01-15 13:27:00.983
2013-01-15 13:27:01.033
20130115 13:27:01.073
20190115 13:27:01.113

2019-01-15 13:27:01.153

2019-01-14 13:50:00.395
2019-01-14 13:50:00.435
2019-01-14 13:50:00.475
2019-01-14 13:50:00.515
2019-01-14 13:50:00.555

47218 rows x 10 columns

o (5) acas Gra) y-as Cdls)
0w oz
[2168
o)
ot st
o 1224
e 2108
o o
[7108
e som
e s
epoch (ms)
1547832788416

1547832788496
1547832788576
1547832788656
1547832788736

1547221756116
1547221756196
1547221756276
1547221756356
1547221756436

epoch (ns)

1547558820993
1547558821033
1547558821073
1547558821113
1547558821153

1547473800395
1547473800435
1547473800475
1547473800515
1547473800555

saxds (de/s)

I A
ases a8
a0 Aot
4w 454
251 250
a2 o
120 oz
PE) as
057 s
214 a5
time (01:60)

2019-01-18T18:33:08.416
2019-01-18T18:33:08.496
2019-01-18T16:33:08.576
2019-01-18T18:33:08 656

2019-01-18T18:33:08.736

2019-01-11T16:49:16.116

2019-01-11T16:49.16.196
2019-01-11T16:49:16.276
2019-01-11T16:49:16.356

2019-01-11T16:49:16.436

time (01:00)

2019-01-15 14:27:00 993

2019-01-15 14:27:01.033

2019-01-15 14:27:01 073

2019-01-15 14:27:01 113

2019-01-15 14:27:01 153

2019-01-14T14:50:00 395

2019-01-14T14:50:00 435

2019-01-14T14:50:00 475

2019-01-14T14:50:00 515

2019-01-14T14:50:00 555

elapsed (s) x-axis (g) y-axis (g)

000
008
0.16
024
032

2120
2128
21.36
2144
2152

elapsed (s)

1372
1376
1380
1384
1388

0012
-0.010
0.012
0012

-0.002

0318
-0.204
-0.194
-0.203

-0.164

-1.007
-1.020
-1.025
-1.032

-1.032

1236
0.862
0.772
0.891
1.002

Snippet 3.1

z-axis (g) participant label

0097
-0.106
-0.095
-0.110
-0.099

0010
0.031
0.052
0014
0.001

row
ow
ow
row

ow

ohp
ohp
ohp
ohp
ohp

category set

medium
medium
medium
medium

medium

medium
medium
medium
medium

medium

Snippet 3.2

x-axis (deg/s) y-axis (deg/s) z-axis (deg/s)

2317

3110

3232

2988

18.354

-7927

-9695

-11951

-6.646

0.549

-2.500

0793

2134

2195

-7.866

0244

-1.463

-1.402

1524

3049

-9695

-9.207

-2.500

-11.159

-14.451

0793

1524

0793

0.000

7683

participant

m m m m m

> > > > >

Snippet 3.3

bench

bench

bench

bench

bench

ohp
ohp
ohp
ohp
ohp

heavy
heavy
heavy
heavy
heavy

heavy
heavy
heavy
heavy
heavy

label category set

93

93

93

93

93

24

[] #here
data_merged=pd.concat([acc_df .iloc[:,:3], gyr_df],axis=1)

© datanerged
@ x-axis (g) y-axis (g) z-axis (g) x-axis (deg/s) y-axis (deg/s) z-axis (deg/s) participant label category set
epoch (ms)

2019-01-11 15:08:04.950 NaN NaN NaN -10671 -1524 5976

@

bench heavy 76.0

2019-01-11 15:08:04.390 NaN NaN NaN -8720 -2073 31 B bench heavy 76.0
2019-01-11 15:08:05.030 NaN NaN NaN 0.488 -3.537 -4.146 B bench heavy 76.0
2019-01-11 15:08:05.070 NaN NaN NaN 0244 -5.854 3537 B bench heavy 76.0
2019-01-11 15:08:05.110 NaN NaN NaN -0915 0.061 -2.805 B bench heavy 76.0
2019-01-20 17:35:13.382 -0.060 -1.021 -0.058 NaN NaN NaN NaN NaN NaN NaN
2019-01-20 17:35:13.462 -0.035 -1.037 -0.026 NaN NaN NaN NaN NaN NaN NaN
2019-01-20 17:36:13.542 -0.045 -1.029 0.033 NaN NaN NaN NaN NaN NaN NaN
2019-01-20 17:35:13.622 -0.039 -1.027 -0.039 NaN NaN NaN NaN NaN NaN NaN
2019-01-20 17:35:13.702 -0.043 -1.031 -0.049 NaN NaN NaN NaN NaN NaN NaN

69677 rows x 10 columns

Snippet 3.4

© here

data_resanpled=pd. concat(
[df .resample(rule="200ns") . apply (sampling) .dropna() for df in days]
)

#to here
data_resampled

accx accy accz gyrx gyry gyrz participant label category set

epoch (ms)
2019-01-1115:08:05.200 0.013500 0.977000 -0.071000 -1.8904 24392 0.9388 B bench heavyy 76.0
20190111 15:08:05.400 -0.001500 0.870500 -0.079500 -1.6826 -0.8904 2.1708 B bench heayy 76.0
2019-01-1115:08:05600 0.001333 0.971667 -0.064333 25608 -0.2560 -1.4146 B bench heavy 76.0
2019-01-11 15:08:05.800 -0.024000 0.957000 -0.073500 B.0610 -4.5244 -2.0730 B bench heavy 76.0
2019-01-1115:08:06.000 -0.028000 0.957667 -0.115000 24390 -1.5436 -3.6098 B bench heavyy 76.0
20190120 17:33:27.000 -0.048000 -1.041500 -0.076500 1.4146 -56218 0.2926 E row medium 150
20190120 17:33:27.200 -0.037000 -1.030333 -0.053333 -27684 -0.5854 2.2440 E row medium 15.0
20190120 17:33:27.400 -0.060000 -1.031000 -0.082000 28416 -5.1342 0.1220 E row medium 150
20190120 17:33:27.600 -0.033667 -1.025667 -0.044667 02318 02362 1.1220 E row medium 15.0
20190120 17:33:27.800 -0.044000 -1.034000 -0.059000 1.0980 -40240 0.9760 E row medium 150

9009 rows x 10 columns

Snippet 3.5

The code snippet 3.1 to 3.5 shows the final labeled and cleaned data which would be in next steps

for feature engineering and then later on modeling.

Stage 2: Data Visualization

~ Phase 2: Data Visualization

Critical Questions:

1. Why we should bother about data visualization?

[2e]

Y [e1]

v
o

#her

1 #import matplotlib as mpl
2 import matplotlib.pyplot as plt

1 #Plot single column of a specific set

2 set_df=data_resampled[data_resampled["set"]==

1 setﬁdﬂ

acex accy accz
epoch (ms)

2019-01-15 13:27:01.400 -0.192000 0.809000 -0.400333

2019-01-15 13:27:01.600 -0.211500 0.830000 -0.442500

2019-01-15 13:27:01.800 0271667 1112000 -0.526333

2019-01-15 13:27:02.000 -0.204000 1.063500 -0.516000

2019-01-15 13:27:02.200 -0.261000 0.801333 -0.432667

2019-01-15 13:27:12.800 -0.190000 0.974000 -0.344500
2019-01-15 13:27:13.000 -0.106000 0.781333 -0.290667
2019-01-15 13:27:13.200 -0.101000 0.929500 -0.330500
2019-01-15 13:27:13.400 -0.000667 0.016333 -0.364000

2019-01-15 13:27:13.600 -0.090500 0.887000 -0.373500

e

gyr_x

14.0858

12.3658

-47318

-0.0878

-6.4268

-146218

5.6708

149512

3.0636

8.3600

-10.1828

-15.3172

29144

2.7072

1.7926

5.2028

0.6950

28778

-0.4024

1.8505

plt.plot(set_df[["acc y"]]) #-> this plot shous how long the set is

(@ [<matplotlib. lines.Line2d at ex7beossfdadier]

#her

#Com

category_df-data_resanpled.query ("label--"squat’").query(“participant~

O o
fig,
cate
ax.s
ax.s
plt.

@® <mat

10

09

13:27:05 13:27:10

3

paring nediun and heavy set

here

ax-plt.subplots()
gory_df.groupby (["category”])["acc_y"].plot()
et_ylabel-"acc_y"

et_xlabel-"Sanples”

legend()

plotlib.legend.Legend at @x7beo7fbacbber

gyr_z participant

20512

16.1342

-5.2804

-19.3170

-1.3780

205976

8.2684

0.8204

0.5608

07015

mom om om o m

mom

m

m m

label category set

ench heawy 1
bench heayy 1
bench heawy 1
bench heayy 1

ench heayy 1

bench heayy 1
bench heayy 1
bench heavy 1
bench heavy 1

bench heavy 1

Snippet 3.6

Snippet 3.7

"A"").reset_index() #Selects only A's squat data and resets the index

— heavy
—— medium

100

=L

200

Snippet 3.8

600

rTveoB SR E

26

For visualization purposes, matplotlib [25] is used. Matplotlib makes is extremely easy for the
developer to visualize the data with various plots like charts, histogram, etc

The snippet 3.8 visualizes the comparison between a heavy set and a medium set for participant A
doing a squat. The heavy set produces a low range of acceleration in y direction when compared to

that of a medium set.

[] ihere
#Compare participants
participant_df-data_resampled.query("label-="bench'™).sort_values("participant”).reset_index()

© o here
Fig, ax=plt.subplots ()
participant_¢f.groupby(["participant”])["acc_y"].plot()
ax. set_ylabel="acc y"
ax. set_xlabel="samples"
plt. legend()

(@ <matplotlib.legend.Legend at 0x7beo7fades30>

16
— A
— 8

14 me
—ob
— €

12

10

08

06

0.4

Snippet 3.9

The snippet 3.9 visualizes the comparison among all the participants doing a bench press. It is

important to check the movement patterns of all of the participants for better modeling.

Stage 3: Qutlier Detection

~ Phase 3: Outlier Detection

©Q #here

data_resanpled

Q accx accy accz gyrx gy gyrz participant label category set
epoch (ns)

2019-01-11 15:08:05.200 0013500 0.977000 -0.071000 -1.6904 24392 09388 bench heaw 76

2013-01-11 15:08:05.400 -0.001500 0.970500 -0.079500 -16826 -08904 21708 bench heaw 76

2019-01-11 15:08:05.600 0001333 0.971667 -0.064333 25608 -02560 -14146 bench neay 76

2019-01-11 15:08:05.800 -0.024000 0957000 -0.073500 80610 -45244 -20730 bench heavyy 76

D D o o @

2019-01-11 15:08:06.000 -0.028000 0.957667 -0.115000 2.4390 -1.5486 -3.6098 bench heavyy 76

2019-01-20 17:33:27.000 -0048000 -1041500 -0.076500 14146 -56218 02926 row medum 15

2019-01-20 17:33:27.200 0037000 -1030333 0053333 -27684 -05854 22440 row medum 15
2019-01-20 17:33:27.400 -0060000 -1031000 -0.082000 28416 -51342 -01220 row medum 15

2019-01-20 17:33:27.600 0038667 -1.025667 -0.044667 -02318 02562 11220 row medum 15

m m m m m i

2019-01-2017:33:27.800 -0.044000 -1.034000 -0.059000 1.0980 -4.0240 0.9760 row medum 15

9009 rows x 10 columns.

Snippet 3.10

©Q #nere

#Method 1: Boxplots
data_resampled[[“2cc_x", "1abel"]]. boxplot (by="1ebel", Figsize=(20,10})

© <iees: titles(center': “accx’), xlabel=[labe1]'>

Boxplot grouped by label

acc_x

[
—0.5 —
o
bench dead ohp rest row squat
[label]
Sni 3.11
nippet 3.
Q #nere

acc_df . boxplot(by="1label", figsize=(20,19), layout=(1,3))

® array(I<Axes: title-{'center's 'accx'}, xlabel="[labell's,
3 c y'}, xlabel='[label]'>,
<Axes: title={'center': 'acc_z'}, xlabel='[label]'>], dtype=object)

Boxplot grouped by label
acc_x accy acc 2
15
10 <+
i $ H
05 o Q
i °

[}
‘ a4
o
Hi—
-
-
Al
M1 4
-
.

-05
[
B E}
15 +
bench dead ohp rest oW squat bench dead ohp rest oW squat bench dead ohp rest oW squat
[iaber] [1abel] [iabel]

Snippet 3.12

The code snippet 3.12 shows a box plot for basic outlier detection for each of the x, y and z values

of the acceleration for each exercise.

[1 #here
def mark_outliers_igr(dataset, col):
dataset = dataset.copy()

01 = dataset[col].quantile(.25)
03 = dataset([col].quantile(9.75)
IR =03 - Q1

lower_bound
upper_bound

1 - 1.5 % IR
3+ 1.5 % IR

dataset[col + "_outlier"] = (dataset[col] < Louer_bound) | (
dataset[col] > upper_bound
)

return dataset

Snippet 3.13

Q here

plot_binary_outliers(dataset,col,col+"_outlier”,True)

@ B + outlier acc_x + no outlier acc_x " + N + N +

10 ?;jf ?;j: ?‘f

. AR

o o P P
o PN iy g g

¢ . L

-0.5 " M e i

t H t

o 2000 4000 6000 8000
samples

Snippet 3.14

The code snippet 3.14 demonstrates a beautiful visualization of outliers detected for acc x feature
using the IQR method. The IQR method is a popular method to detect outliers. IQR is a

distribution based method.

7 [81]1 1 gyr df.plot.hist(by="label",figsize=(20,10),layout=(3,3))

array([[<Axes: title-{'center’: ‘bench'}, ylabel-'Frequency’>,
<Axes: title={'center’: 'dead'}, ylabel='Frequency's,
<Axes: title={'center’: 'ohp'}, ylabel='Frequency's],
[<Axes: title={'center’: 'rest'}, ylabel='Frequency'>,
<Axes: title-{'center’: 'rou’}, ylabel-'Frequency’>,
<Axes: title-{'center’: ‘squat’}, ylabel-'Frequency'>],
[<Axes: ylabel='Frequency's, <Axes: ylabel='Frequency’s,
<Axes: ylabel="Frequency’>]], dtype=object)

bench dead ohp
1400
1000 1000 - gyr x
1200 - gy
800 000 800 - gyrz
g g g
2 600 £ 800 £ 600
Ed g F
@ g 600 g
& 400 & & 400
400
200 o 200
ol ol

0d
-100 -75 -50 -25 0 25 50 75 100
squat

1000

800

600

Frequency
Frequency
Frequency

o4
=300 =200 ~-100 0 100 200

Snippet 3.15

To apply Chauvenet’s Criterion, the data must be normally distributed. It is well clear from the

visualization that data is normally distributed.

. resampled
plot_binary_outliers(dataset,col,col+"_outlier",True)

15 + outeraccx + nooutlieraccx + & &
(+_ouderacex + o outeraccx] + +

10 *“: &‘f *;f
et et #

“ e Ned N
3 d

0 2000 2000 6000 8000
samples

samples

Snippet 3.16

Outlier detection from Chauvenets Criterion is shown in the snippet 3.16. Chauvenet s Criterion

is also a distribution based method to detect outliers based on probability theory.

outliers_lof(data_resampled outlier_columns)

col,"outlier_lof",True)

3 + outeraccx + noaulllerac:}l
14
&
= W

Wi)
wﬁw‘%’“ st Pl

0 2000 4000 6000 8000
samples

+ outlieraccy + noeullleracu'

o

15
AR 1 ™ 4
10
a " eﬁ; g’i} L I
¥ +
E phé bt M
- g : . vl R o
L s + ¥ + % v %
+ A ot et |
g o0 L B I
t g it o+t i +
-05 s %, + + +
’ e 3 ‘?}i “’aﬁ *»*'i LTS 1% SRS 1, T 0
i §
.) i i
A e e
=15
0 2000 6000 8000
samples

Snippet 3.17

Finally, the outliers are detected using Local Outlier Factor which is distance based outlier

detection method.

Q #nere

for col in outlier_colums:
For label in data_resampled["label”].unique():
dataset-mark_outliers_chauvenet(data_resampled[data_resampled] "label”

abel], col)

#Replace value with Nen marked as outlier
dataset . loc[dataset [col+”_outlier"],col]=np.nan

Update the column in the origi
outliers_removed_df.loc[(outliers_removed_df["label”
n_outliers=len(dataset)-len(dataset[col] .dropna())

print(F"Nunber of outliers for label:{label} and attribute:{col}={n_outliers))

==1abel), col]=datasetcol]

(@ MNumber of outliers for label:bench and attribute:acc
Number of outliers for label:onp and attribute:acc x=
Number fers for label:squat and attributesacc.
Number
Number of outliers for labelirow and attribute:acc x=
Number of outliers for label:rest and attribute:acc x=
Humber
Humber
Number of outliers for labelisquat and attributesacc
Number of outliers for labelidead and attribute:acc y-
Number of outliers for labelirow and attributeiacc y=0
Number of outliers for labelirest and attribute:acc y=2
Number of outliers for label:bench and attribute:acc
Number of outliers for label:onp and attribute:acc_z=t
Number of outliers for label:squat and attribute:acc
Number of outliers for label:dead and attribute:acc =
Number of outliers for label:row and attribute:acc
Humber rest and attribute:ace_z

ench and attribute:gyr

for label:
Number outliers for label:ohp and attribute:gyr x=4
Number i BT
Number
Number
Number.
Number.
Number of outliers for label:onp end attribute:gyr_y=15
Number outliers for label:squat and attribute:gyr.
Number outliers for label:dead and attribute:gyr_y=14
Number outliers for labelirow and attribute:gyr_y=18
Number i
Number
Number
Number.
Number. d and attribute:gyr
Number of outliers nd sttribute:gyr_z=0

£

-3
$999999FFTITITITTTIFSTIIFITRSSHRTNTSSS

o

outliers for label:rest and attribute:gyr_z-26

Snippet 3.18

At last, Chauvenet’s Criterion is chosen and the entire dataset is run on it to mark outliers and

given a value of null.

Stage 4: Feature Engineering

~ Part 4: Feature Engineering

Feature engineering is the process of transforming raw data into meaningful features that can be used for training machine learning models.

Snippet 3.19

[1 #nere
#Building features
fron DataTransformation import LoePassFilter,PrincipalConponentanalysis
#ron Temporalabstraction inport Mumericalabstraction

© cdf-outliers_removed_df.copy()

accx accy accz gyrx gyry gyrz participant label category set

epoch (ns)
20190111 15:08:05.200 0.013500 0.977000 -0071000 -18904 24392 09388 B bench heaw 76
20190111 15:08:05.400 -0.001500 0.970500 -0.079500 -16826 -0.8904 21708 B bench heawy 76
20190111 15:08:05.600 0.001333 0.971667 -0064333 25608 -0.2560 -1.4146 B bench heawy 76
20190111 15:08:05.800 -0.024000 0.957000 -0073500 80610 45244 -2.0730 B bench heay 76
2010.01-11 15:08:06.000 -0.028000 0.957667 -0.115000 24300 15486 -3.6008 B bench heay 76
2019.01-2017:33:27.000 -0.048000 -1.041500 -0.076500 14145 56213 0.2026 E row medum 15
2010.01-2017:33:27.200 -0.037000 -1.030333 -0053333 -27684 05854 22440 E row medum 15
2019.01-2017:33:27.400 -0.060000 -1.031000 -0.082000 28416 -5.1342 -0.1220 E row medum 15
2019.01:2017:33:27.600 -0.038667 -1.025667 -0.044667 -02318 02562 11220 E row medum 15
201901-2017:33:27.800 -0.044000 -1.034000 -0.059000 10980 40240 (0.9760 E row medum 15

9009 rows x 10 columns

Snippet 3.20

© here

#5tep 1: Dealing with missing velues (Imputation)

subset=af [df["set”]==12]["gyr_y"].p2ot()
#e can see a lot of missing values, how do we deal with them>
@
w0
20
[
20 \/\/\/\/\\/
-40
13:57:30 13:57:35 13557:40 13:57:45
epoch (ms)
S i 3 2 1
nippet 3.
[1 #ere

#ie can interpolate the data
or col dn predictor_columns:
df[col]=df[col].interpolate()

subset=df[df["set"]==12] ["gyr_y"].plot ()

-20

-40

13:57:30 13:57:35 13:57:40 13:57:45
epach (ms)

Snippet 3.22

The code snippets 3.22 show how the outliers having a value of null are interpolated as a part of

feature engineering.

[#here
f_Lowpass-LowPass. low_pass_filter(
F _lowpass,
"accy",
sampling_freq,
cutoff
)
© o towass
] accx accy acc grx gy gz perticipnt label category set duration acc_y_lowpass
epoch (ms)
2019.01-1115:08:05200 0013500 0977000 -0071000 -1.8904 24392 09388 B bench heay 76 160 0977001
2019.01-1115:08:05400 0001500 0.970500 -0.079500 -1.6826 -0.8904 21708 B bench heaw 76 160 0970257
2019.01-1115:08:05600 0001333 0971667 -0064333 25608 -0.2560 -141d5 B bench heay 76 160 0963589
2019.01-1115:08:05800 0024000 0957000 -0073500 80610 45244 -20730 B bench heawy 76 160 0.965441
2019.01-115:08:06.000 0025000 0957667 -0.415000 24330 -15486 -36038 B bench heay 76 160 0.966784
2010.01-2017:33:27.000 0.048000 -1.041500 0076500 14145 56213 02025 E ow medum 15 100 0074701
2019.012017:3327.200 -0.037000 -1.030333 0053333 27684 05854 22440 E row medum 15 190 1020916
2018.01-2017:33:27.400 -0.060000 -1.031000 -0.082000 28416 -5.1342 01220 E ow medum 15 190 -1.05165
2019.012017:33:27.600 -0.038667 -1.025667 -0.044667 02318 02562 11220 E row medum 15 190 -1.040440
2018.01-2017:33:27.800 -0.044000 -1.034000 -0.059000 1.0980 40240 09760 E ow medum 15 190 103052

9009 rows = 12 columns

Snippet 3.23

32

Q irere

Create a 21 subplot
fig, axes = plt.subplots(2, 1, figsize=(3, 6))

Reset the index of the subset dataset
subset.reset_index(drop-True, inplace-False)

Create Line plots for "accy" and "acc_y_lowpa:
for 1, column in enumerate(["acc_y", "acc_y_l
ax = axes[i]
For 1abel, group in subset.groupby("lat
ax.plot(group. index, group[column], 1

"{column} - Label {label}")

ax.set_title(f"Line Plot of {column} by Label")
ax.set_xlabel("Index")

ax.set_ylabel(colum)

ax. Jegend (loc="upper right")

p1t. tignt_layout()

plt.show()
A4 Line Plot of acc_y by Label

" — accy- Label ohp
12

J

LET)
08

15:44:05 15:44:10 15:44:15
Index

Line Plot of acc_y_lowpass by Label

— acc_y_lowpass - Label ohp

ace_y_lowpass
g £ ®

o

15:44:05 15:44:10 15:44:15
Index

Snippet 3.24

The second part of feature engineering was to apply a Butterworth lowpass filter. The main goal
for doing so is to smoothen the curve for better pattern detection by the models during training. It

filters out regions of high frequency for smoothing.

[] #ere
#step 3: PCA
df_pca=df_lowpass.copy()
PCA=PrincipalConponentAnalysis()

pe_values=PCA. determine_pc_explained variance(df_pca,predictor_colums)
pc_values

array([0.58094932, 0.27090665, ©.06427472, 0.05519685, 0.01836805,
0.01030437])

Snippet 3.25

© #nere
#Elbow Technique to determine the optimal number of PCs
plt. figure(figsize=(5,5))
pIt.plot (range(1, len(predictor._columns)+1),pc_values)
plt.xlabel("PCA number")
pIt.ylabel("Explained Variance™)
plt.show()

e

06

05

s 3
W 2

Explained Variance

o

0.0

1 2 3 4 5 6
PCA number

Snippet 3.26

[1 #here
subset[["pca_1","pca_2","pca_3"11.plot()

<Axes: xlabel="epoch (ms)">

-0.4

15:44:05 15:44:10 15:44:15
epoch (ms)

Snippet 3.27
The code snippets 3.24, 3.25 and 3.26 show the working for Principal Component Analysis

(PCA). New features are engineered from the basic six features. Through the elbow method, we

came to the conclusion that three principal features should be extracted from the basic features.

TV W W

Q there
subset-df_squared[df_squared["set"]--25]
subset[[o =True

— acr

60 — gyrr

0
16:00:50 16:00:55 16:01:00 16:01:05
epoch (ms)

Snippet 3.28

The next part of feature engineering is to engineer the sum of squared features to minimize the

bias towards device’s orientation.

— xcy
06 — acc_y_temp_mean_ws 5
— acc_y_temp std_ws 5

L~ TN TN~

13:53:10 13:53:15 13:53:20
epach (ms)

Snippet 3.29
The fifth part of feature engineering was to engineer temporal features. Temporal features give a
clear idea of the data is changing throughout the time. Rolling mean and rolling standard

deviation were used to extract temporal features of each corresponding attribute.

34

©Q inere
of_freq_list=[]
for s in ¢f_freq["set"].unique():
print(f"Applying Fourier Transformation to set {s}")
subset=af_freq[df_freq["set"]==s].reset_index(drop=True) .copy()
subset=Freghbs. abstract_frequency(subset, predictor_columns,ws,fs)
df_freq_list.append(subset)

@ #pp1ying Fourier Transformation to set 76
Applying Fourier Transformation to set 3
Applying Fourier Transformation to set 26
Applying Fourier Transformation to set 73
Applying Fourier Transformation to set 17
Applying Fourier Transformation to set 3
Applying Fourier Transformation to set 8
Applying Fourier Transformation to set 68
Applying Fourier Transformation to set 30
Applying Fourier Transformation to set 48
Applying Fourier Transformation to set 18
Applying Fourier Transformation to set 9
Applying Fourier Transformation to set 60
Applying Fourier Transformation to set 59
Applying Fourier Transformation to set 63
Applying Fourier Transformation to set 25
Applying Fourier Transformation to set 41
Applying Fourier Transformation to set 39
Applying Fourier Transformation to set 40
Applying Fourier Transformation to set 42
Applying Fourier Transformation to set 23
Applying Fourier Transformation to set 47
Applying Fourier Transformation to set 78
Applying Fourier Transformation to set 45
Applying Fourier Transformation to set 70
Applying Fourier Transformation to set 77
Applying Fourier Transformation to set 79
Applying Fourier Transformation to set 24

Applying Fourier Transformation to set 83

Applying Fourier Transformation to set 69

Applying Fourier Transformation to set 35

Applying Fourier Transformation to set &5

Applying Fourier Transformation to set 27

Applying Fourier Transformation to set 12

Applying Fourier Transformation to set 33

Applying Fourier Transformation to set 54

Applying Fourier Transformation to set 62

Applying Fourier Transformation to set 61

Applying Fourier Transformation to set 19

Applying Fourier Transformation to set 81

Applying Fourier Transformstion to set 1

Applying Fourier Transformation to set 36

Applying Fourier Transformation to set 22

Applying Fourier Transformation to set 38

Applying Fourier Transformation to set 13

Applying Fourier Transformation to set 10

Applying Fourier Transformation to set 52

Applying Fourier Transformation to set 82

Applying Fourier Transformation to set 9

Applying Fourier Transformation to set 71

Snippet 3.30

The next features to be engineered were frequency features. Fast Fourier Transform was used to

engineer the frequency features.

#lets plot the clusters
Figeplt.figure(figsize=(1,10))
add_subplot (project io
for ¢ in df_cluster("cluster"].unique():
subset=df_cluster[dF_cluster["cluster
ax.scatter(subset["acc_x"], subset["acc_y

,subset["acc_z"],labelsc)

ax.set_abel ("
ax.set_ylabel("V-axis’
ax.set_zlabel("Z-axis")
p1t.legend()

@ <matplot1iv. legend. Legend st 6x7b896b2bdeT0>

Snippet 3.31

Feature engineering is concluded by clustering using the K-Means algorithm. At the end of feature

engineering, a total of /16 features were present in the dataframe.

Stage 5: Predictive Modeling

For predictive modeling, python provides a comprehensive library for model training and
evaluation. The name of the library is scikit-learn [26]. It has a comprehensive list of models for

all type of problems be it classification, regression or clustering.

LRACL-Wa"E
~ Part 5: Predictive Modeling

+ Code — + Text

Snippet 3.32
ppet S.
[] #here
df_train=df.drop(["participant”,"category”,"set","duration™],axis=1) #drop the columns mentioned in the list
© X=df_train.drop("label”,axis=1)
y=df_train["label"]
Sni 3.33
nippet 3.
[] #here
700 Total
B Train
600 = Total
500
400
300
200
100
g < o % h-] z 9
2 s 3 b 3 2
3 ¥ s
. 4
Snippet 3.3

The code snippet 3.33 shows the splitting of data frame created in the last phase into training and

testing in a 75% to 25% ratio. The splitting for each label is also visualized.

[#here
#step 2: Split
basic

square

Snippet 3.35

Snippet 3.36

36

The snippet 3.34 and 3.35 shows the splitting of features into various sets like basic, temporal,

frequency and more.

(possible_feature_sets)), festure_names):

B
(train[po:
_test[poss

1

Featurs

performance.
performance.
performance.

} = learner.random_forest(
selectes_train ¥, y_train, selected_test X, gridsearch=True

RerEnrmEnCe $ash RE ACE 4= ArCURARU Seore(v fach. rlase fack v

Snippet 3.37

Feature set: ©
Training neural network, 8

ng randon forest, 8

Feature s

Feature

Feature s
=

Feature set: 4
T

Snippet 3.38

The code snippet 3.37 shows the training of various models. A simple neural network, decision

tree, random free, kNN and naive bayes were used. Each model was trained on different feature

sets created previously.

[] #here

score_df. sort_values(by="sccuracy", ascending=False)
model feature set accuracy precision recall fi-score
1 RF FeatureSet4 0994820 0994856 0994820 0994827
1 RF SelectedFeatures 0994820 0994917 0894829 0994832
0 NN FeaureSet4 0992761 0992793 0.992761 0.992762
3 DT SelecledFeatures 0991727 0991847 0991727 0.991731
0 NN FeafureSet3 0990693 0990780 0.990693 0.990702
3 DT FestureSetd 0981385 0981821 0981385 0981421
1 RF FealueSeld 0980352 0980357 0980352 0.980351
0 NN SelectedFeatures 0975181 0975522 0.975181 0.975175
2 KNN FealureSetd 0872079 0872200 0972073 0872074
4 NB FeareSet4 0963306 0963306 0.963806 0.963757
RF FeatursSat1 0958635 (0959067 0958635 0958508
1 RF FestureSet2 0955533 0955621 0955533 0955545
3 DT FestureSet3 0945191 0845270 0845191 0845056

0 NN FealureSet1 0936918 0937306 0.936918 0.937045
4 NB FeafureSet3 0935834 0935813 0.935884 0.935725
0 NN FeafureSet2 0932782 0934278 0.932782 0.932750
3 DT FeaweSell 0932782 0935343 0932782 0932754
3 DT FeatwreSet2 0931748 0933351 0931748 0.931326
4 NB SelecedFeafures 0929579 0.930951 0.929679 0929082
2 KNN FealureSet3 0922441 0922881 0.022441 0.922481
2 KNN SelectedFealures 0366598 0.869051 0.866598 0.867154
4 NB FeatureSet2 0863495 0865488 0.863495 0.862685
4 NB FealureSet1 0854188 0858232 0.354188 0.851303
2 KNN FealureSet1 0792141 0792366 0792141 0791443
2 KNN FeatureSet2 0789038 0788309 0789038 0.787923

p1t.Figure(#i
sns.barplot(
plt.xlabel("Model")
plt.ylabel("Accuracy”)
plt.ylin(0.7,1)
pIt.legend(loc="lower rignt")

0,10))
,y="accuracy”,h

" feature_set",data=score_df)

(@ <matplotli.legend.Legend at 6x7b@265262000>

1.00

0.95

0.90

Accuracy
o
o«
&

0.80

Feature Set 1
Feature Set 2
Feature Set 3
Feature Set 4
Selected Features

NB

0.75

0.70

Snippet 3.39

The dataframe and the visualization shows all of the evaluation metrics in an easy to comprehend
way. We can see that the neural network and random forest performed almost identically. Feature
set 4 performs the best for each of the models except the decision tree, where overfitting is

happening.

38

plt.figurefigsize=(19, 12))
pIt. nshou(en, Interpolation
pIE. itle("Confusion asts
pIt.colortr()

ek marks = np.arangelen(classes))

pIL. ticks (Uek marks, classes, rotation=d5)
pIE.yticks(tiek marks, classes)

est”, caapeplt.ca.Bluss)

thresh = ca.nax() / 2.0
For 4, 5 10 itertonls.product(range (cn.shepe(8]), range(ca.shape(1])):
Pl text(
i

formst(aalt, 11),
hortzontalalignsent="center,
ealor="shite” 35 en[t, 3] > thresh else “black’,

Pl ylabel("Tr
plt.xlabel (“Predic
plt.grid(False)

. shoe)
160
bench
140
dead
120
g o0 100
o
o
v
2 80
o rest
60
oW
40
squat
20
& 2 &0 & s &
S @ >
& & 8 .

Predicted label

Snippet 3.40

This stage ends with the visualization of a confusion matrix for the random forest classifier.

Stage 6: Repetition Count

~ Phase 6: Repetition Counting

[1 #here
import numpy as np
dnport pandas 25 pd
import matplotlib.pyplot as plt
ron DataTransformation import LowPassFilter
#rom scipy. signal import argrelextrema
rom sklearn.metrics import mean_absolute_error

pd. options.mode .chained_assignnent = None

Plot settings

vethirtyeight")
plt.rcParans["Figu
plt.rcParans["figure.

[1 #here
#step 2: Split data for each exercise
bench_df=df[df["Labe!
squat_af=af[aF["Labe!
row_df=dF[f["Labe:
ohp_df=df[df["Labe:
dead_df=df[df["1abel"]

[1 #here
#step 3: Visualize data to identify patterns
plot_df-bench_df
plot_df[plot_¢f["set"]

--plot_df["set"] .unique() [011["acc_x"1.plot()
plt.legend()

<matplotlib.legend.Legend at 8x7bOY6TCAIEIE>
0.00 m—acc X
—0.05
=0.10
=0.15

=0.20

-0.25

15:08:10 15:08:15

15:08:20
epoch (ms)

Snippet 3.41

The code snippets 3.40 show the pattern of acc_x over a set from the bench press. We can infer

from the visualization that there are roughly 4-5 repeating patterns.

Q here
def count_reps(dataset, cutoF=0.4,0rder=18, colum="acc_r"):
datasLoupass. low_pass_filter(dataset, col=column,sampling frequency=fs cutoff_frequency=cutof,order=order)
indexes=argrelextrens (datal column+"_lowpass®].values,np.greater)
pesks=data.iloc[indexes]

fig,ax=plt.subplots ()

plt.plot(dataset[" {colunn}_lowpass"])
pIt.plot(peaks[¥*{column}_lowpass*],"0", color="red")
ax.set_ylabel (£ {column)_lowpass™)
exercisesdateset["label"] iloc[8] .title()
category=dataset[“category"].loc[0] . title()
plt.title(f"{category} {exercise}: {len(peaks)} reps.”)
plt.shou()

plt.legend()

return len(peaks)

Snippet 3.42

count_reps(bench_set, cutoff=8.4)
count_reps(squat_set, cutoff=0.35)
count_reps(row_set, cutoff=0.65,column="gyr_x")
count_reps(ohp_set, cutoff=8.35)
count_reps(dead_set, cutoff=0.4)

Heavy Bench: 5 reps.
1.06
1.04
1.02
@
& 1.00
5
32 0.98
|
=10.96
|v]
o
© 0.94
0.92

0.90

15:08:05 15:08:10 15:08:15 15:08:20

Snippet 3.43

The code snippet 3.42 is of the custom repetition count algorithm. The basic idea for the algorithm

was to smooth the curve of the most dominant feature and then count the number of maximas in it

which would indicate the number of repetitions.

40

[#here

rep_of
label category set reps reps_pred
bench heawy 1 5 4
bench heawy 24
bench heawy 26

bench heavy 34

R

5
5
5
5

bench heawy 47

squal medum 30 10

squal medum 40 10

squat medum 41 10

squat mediom 42 10

@ o o e

squal medum 50 10

85 rows x 5 columns.

Snippet 3.44

Q #nere

#Evaluate the results

error=nesn_absolute_error(rep_df["reps"],rep_df["reps_pred"]).round(2)
error

#0n an average for each set we have an error of 1 rep only

0.8

Snippet 3.45

° 1 #Stacking!
2 #Stack-1
3
4 from sklearn.metrics import accuracy_score
5 from sklearn.model_selection import train_test_split
6 from sklearn.ensemble import StackingClassifier
7
8 stacked_modell = StackingClassifier(
9 estimators=[('dt',dt), ('1r', 1r), ('svm',svm),('knn', knn), ('nb', nb)],

18 final_estimator=1lr,
11 cv=5 # You can adjust the number of folds for cross-walidation
12)

13 stacked_modell.fit(X_train[feature_set_3], y_train.values.ravel())

14 stacked predictions = stacked modell.predict(X test[feature set 3])

15 accuracy stacked = accuracy score(y test, stacked predictions)

16 precision stacked = precision score(y test, stacked predictions,average='weighted')
17 recall_stacked = recall_score(y_test, stacked_predictions,average='weighted')

18 f1 stacked = f1 score(y test, stacked predictions,average='weighted')

19 print("Accuracy of Stacked Model:", accuracy_stacked)

28 print("Precision of Stacked Model:", precision_ stacked)

21 print("Recall of Stacked Model:", recall stacked)

22 print("fl of Stacked Model:", f1_stacked)

Snippet 3.46

Code snippet 3.46 defines the first stacked model calling is stacked modell, trains it and then

evaluates it based on the test data.

41

© 1#Stack-2

2

3 stacked_model2 = StackingClassifier(

4 estimators=[('rf',rf), ('1r', 1r), ('dt',dt)],

5 final_estimator=rf,

6 cv=5 # You can adjust the number of folds for cross-validation
7)

8 stacked_model2.fit(X_train[feature_set_3], y_train.values.ravel())

9 stacked_predictions = stacked model2.predict(X_test[feature set 37])

10 accuracy_stacked = accuracy_score(y_test, stacked_predictions)

11 precision_stacked = precision_score(y_test, stacked_predictions,average='weighted')
12 recall stacked = recall score(y_test, stacked predictions,average='weighted')

13 f1_stacked = f1_score(y test, stacked predictions,average="weighted')

14 print("Accuracy of Stacked Model:", accuracy stacked)

15 print("Precision of Stacked Model:", precision_stacked)

16 print("Recall of Stacked Model:™, recall_stacked)

17 print("fl of Stacked Model:", f1_stacked)

Snippet 3.47

Code snippet 3.47 defines the second stacked model calling is stacked mode2, trains it and then

evaluates it based on the test data.

[1 1#Stack-3
2 stacked_model3 = StackingClassifier(
3 estimators=[('rf',rf),('dt',dt), ('1r', 1r), ('svm',svm),('knn’, knn), ('nb', nb)],

4 final_estimator=1r,
5 cv=5 # You can adjust the number of folds for cross-validation
6)

7 stacked_model3.fit(X_train[feature_set 3], y train.values.ravel())
3 stacked_predictions = stacked_model3.predict(X_test[feature_set_3])
9 accuracy_stacked = accuracy_score(y_test, stacked_predictions)
10 precision_stacked = precision_score(y test, stacked_predictions,average='weighted')
11 recall_stacked = recall score(y_test, stacked predictions,average="weighted')
12 f1_stacked = f1_score(y_test, stacked _predictions,average="weighted")
13 print("Accuracy of Stacked Model:", accuracy_stacked)
14 print("Precision of Stacked Model:", precision_stacked)
15 print ("Recall of Stacked Model:", recall stacked)
16 print("fl of Stacked Model:", f1_stacked)

Snippet 3.48

Code snippet 3.48 defines the third stacked model calling is stacked mode3, trains it and then

evaluates it based on the test data.

[#nere
rep_df.groupby([*label”,"category"]) ["reps”, "reps_pred”].mean().plot.bar()

<ipython-input-235- c68c5cdBbedd>:1: Futureliarning:
Tndexing with nultiple keys (implicitly converted to a tuple of keys) will be deprecated, use s list instead.

<Axes: xlabel='label, category’>

N reps

10 Wmm reps_pred

8

6

4

2

0 T~ - - - - o~ - - - -
& E 2 E 2 E 2 E £
: s g E : 5 3 5 : 5
v o o @
1= T < T £ T < T 2 b
< E 5 [= a £ 3 £ I £
g N © N i - ° s ;
c £] o S o £ 3 2 ®
@ S S @ e £) 3 o [}
o c 2 0 S g a9
= b < < = g

Q =)

label,category

Snippet 3.49

This implementation part ends with the evaluation of performance of the custom repetition count

algorithm. A benchmark dataset was created from knowing the fact that heavy sets had 5

repetitions and medium sets had 10 repetitions. Mean absolute error was calculated as the

evaluation metric and it was just (0.88.

Type: For tracking through camera.

Stage 1: Module imports and basic detection

The most important library that has been used for object detection using cameras is MediaPipe.

MediaPipe allows us to mark body-landmarks which then in turn can be used to detect poses of

various kinds including exercises.

(Yol RN I IV - SR VI S

I ST T e T R T S R L
N R ® W eNON AR WN RO

[sN IRV N UV S I

import cv2 b= Dy By 3 - W
import numpy as np

import 04

from matplotlib import pyplot as

import time

import mediapipe as mp

import tensorflow as tf

import math

from sklearn.model_selection import train_test_split
from sklearn.metrics import multilabel confusion_matrix, accuracy_score, classification_report
from tensorflow.keras.utils import to_categorical

import tensorflow as tf
from tensorflow.keras import backend as
eras.callbacks import TensorBoard, 5 » ModelCheckpoint

from tensorflow.keras.models import Sequential, Model
RIS B L S LR St

from tgnsorflqw.kgrasflayers import (LSTM, Dense, B ,» Dropout, B
Input, Flatten, , Bidirectional, Permute, multiply,

Snippet 3.50

def mediapipe detection(image, model):
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) # COLOR CONVERSION BGR 2 RGB

‘ image.flags.writeable = False # Image is no longer writeable
results = model.process(image) # Make prediction

‘ image.flags.writeable = True # Image is now writeable
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR) # COLOR COVERSION RGB 2 BGR

‘ return image, results

v 0.0s

Snippet 3.51

43

Code Snippet 3.51 explains a function takes in an image and annotates it using the model

provided.

1 def draw_landmarks(image, results):

2 mp_drawing.draw_landmarks(image, results.pose landmarks, mp_pose.POSE_CONNECTIONS,
3 mp_drawing.DrawingSpec(color=(245,117,66), thickness=2, circle radius=2),
4 mp_drawing.DrawingSpec(color=(245,66,230), thickness=2, circle_radius=2)
5)
v 0.0s P
.
Snippet 3.52

Code snippet 3.52 is a function that takes in an annotated image and its results and draws

body-landmarks on it using MediaPipe.

7 OpenCV Feed

Figure 3.11

Figure 3.11 shows the body landmark identified by MediaPipe for the particular image

44

1 def extract_keypoints(results):

2 pose = np.array([[res.x, res.y, res.z, res.visibility] for res in results.pose_landmarks.landmark])
flatten() if results.pose landmarks else np.zeros(33*4)
3 return pose
v 00s

.

Snippet 3.53
1 # Recollect and organize keypoints from the test
2 pose = []
3 for res in results.pose_landmarks.landmark:
4 test = np.array([res.x, res.y, res.z, res.visibility])
5 pose.append(test)

v 0.0s
= Dy Dy B - 1

1 h There are a total of 33 landmarks with 4 values (x,y,z,visibility)
2 num_landmarks = len(landmarks)
3 num values = len(test)

4 num_input_values = num_landmarks*num_values

v 0.0s

Snippet 3.54

Code snippet 3.53 and 3.54 extracts the landmark which would be fed into the model for

classification.

Stage 2: Data Collection for classification

Data collection is a necessary step before model training. Good quality data always increases the

chances of better model evaluation.

exercises = np.array(['rest’,'curl’, 'press’, ‘'squat'])
num_classes = len(exercises)

UV e

num_videos = 50

sequence_length = FPS*1

~N oW B

g8 start_folder =1

v/ 0.0s

Snippet 3.55

Code Snippet 3.55 defines the type of exercises and number of videos to be collected for each of

the exercises.

45

1 # Collect Training Data
2
3 cam = cv2.VideoCapture(8)
4 with mp_pose.Pose(min_detection_confidence=0.5, min_tracking confidence=08.5) as pose:
5 for idx, action in enumerate(exercises):
6 for sequence in range(start_folder, start folder+num_videos):
7 for frame num in range(sequence length):
8 ret, frame = cam.read()
9 image, results = mediapipe detection(frame, pose)
10 try:
11 landmarks = results.pose_landmarks.landmark
12 except:
13 pass
14
i draw_landmarks(image, results)
1
37
38 # Export keypoints (sequence + pose landmarks)
39 keypoints = extract keypoints(results)
40 npy_path = os.path.join(DATA PATH, action, str(sequence), str(frame_num))
11 np.save(npy_path, keypoints)
42
43 ‘ # Break gracefully
44 if cv2.waitKey(10) & OxFF == ord('q"'):
45 ‘ break
46
47 cap.release()
48 cv2.destroyAllWindows ()
v 473s
Snippet 3.56

Code Snippet 3.56 defines the data collection process through OpenCV library. The OpenCV
library enables the webcam and reads the video in frames. These frames are then annotated using

the MediaPipe library and then saved to the disk.

Stage 3: Data Preprocessing and labeling

Data Preprocessing and labeling is an important step before model building, we are using

supervised machine learning we must label our data as per the needs

1 label map = {label:num for num, label in enumerate(exercises)}

=Dy by B

sequences, labels = [], []
for action in exercises:
for sequence in np.array(os.listdir(os.path.join(DATA PATH, action))).astype(int):

1
2
3
a4 window = []

5 for frame_num in range(sequence_length):
6 # LSTM input data

7 res = np.load(os.path.join(DATA_PATH, action, str(sequence), "{}.npy".format(frame_num)))
8 window.append(res)

S

10 sequences.append(window)
11 labels.append(label map[action])

Snippet 3.57

Code snippet 3.57, for each of the exercises reads the data collected from its folder and then labels
each frame with the corresponding label type. As a result of which, each frame of the data gets

labeled.

1 # Split into training, validation, and testing datasets

2 X train, X test, y train, y test = train test split(X, y, test size=0.10, random state=1)
3 print(X_train.shape, y train.shape)
4

Snippet 3.58
Code snippet 3.58, splits the data into training and testing dataset. A split ratio of 9:1 has been
taken meaning 90% of the data is gone to training whereas 10% of the total data is considered for

testing.

Stage 4: Model Building

After the data preprocessing and labeling, model building is the next step. Model building or
training is the step where the model is actually learning from the labeled data so that it can predict

on unseen data as well.

47

1 # SVM model
2 svm = SVC(kernel='linear', probability=True)
3

4 # Fit SVM model to the training data
5 svm.fit(X_train.reshape(X_train.shape[@], -1), y train)

6
7 # Evaluate the SVM model

Snippet 3.59

Code snippet 3.59 depicts that SVC class is instantiated, the instance aka our model is train/fit on

the labeled training data where it starts learning.

import joblib

Assuming "svc model' is your SVC model
save_dir = os.path.join(os.getcwd(), "svm.joblib")

[V, I VI R

joblib.dump(svm, save_dir)

Snippet 3.60

Code snippet 3.60 saves the trained model’s weight into the same directory and name “svm.joblib”

for future purposes.

48

Stage 3: Model Evaluation

1@
11
12
13
14
15
16
17
18
19
2@
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

True label

Code snippet

import itertools

yhat = swvm.predict(X_test_reshaped)

unique_labels = np.unigue(y_test)

cm = confusion_matrix(y_test, yhat, labels=unique_labels)

plt.figure(figsize=(10, 18))
plt.imshow(em, interpolation="nearest", cmap=plt.cm.Blues)
plt.title("Confusion matrix™)

plt.colorbar()

tick_marks = np.arange(len(unique_labels})
plt.xticks(tick_marks, exercises, rotation=45)
plt.yticks(tick_marks, exercises)

thresh = cm.max() / 2.0
for i, j in itertools.product(range(cm.shape[@]), range(cm.shape[1])):
plt.text(
s
1
format(em[i, F]).,
horizontal;izgnment=”center”,
color="white” if cm[i, j] > thresh else "black”,
)
plt.ylabel("True label")
plt.xlabel("Predicted label™)
plt.grid(False)

plt.show()

Confusion matrix

1:

1

& &
& ¢¢, o

Predicted label

Snippet 3.61

by sk-learn.

3.61 shows how to create the confusion matrix using the confusion_matrix function

49

for model_name, model in models.items():
yhat = model.predict(X_test_reshaped)

Model accuracy

print(f"{model_name} classification accuracy = {round(classification_accuracies[model_name]*100,3)}%")

Collect results

1

2

3

4

5 classification_accuracies[model_name] = accuracy_score(y_test, yhat)
6

7

8

9 eval_results['accuracy'] = classification_accuracies

v 00s

SVM classification accuracy = 94.118%

Snippet 3.62

Code snippet 3.62 checks the model accuracy by evaluating the unseen data. SVM achieved an

accuracy of 94.118%

1 for model_name, model in models.items():

2 yhat = model.predict(X_test_reshaped)

3

4

5 # Precision, recall, and fl score

6 report = classification_report(y_test, yhat, target_names=exercises, output_dict=True)
7 |

8 precisions[model_name] = report['weighted avg']['precision']

g recalls[model_name] = report[‘weighted avg']['recall']
1@ f1_scores[model_name] = report['weighted avg']['fl-score']
11 |
12 print(f"{model_name} weighted average precision = {round(precisions[model_name],3)}")
13 print(f"{model_name} weighted average recall = {round(recalls[model_name],3)}")
14 print(f"{model_name} weighted average fl-score = {round(fl_scores[model_name],3)}\n")
15
16 # Collect results
17 eval_results['precision'] = precisions
18 eval_results['recall'] = recalls
12 eval_results['fl score'] = fl_scores

v 00s

SVM weighted average precision = @.95
SVM weighted average recall = 0.941
SVM weighted average fl-score = 8.941

Snippet 3.63

Code snippet 3.63 calculates the weighted average precision, recall and fl1-score. SVM achieved a

weighted average precision of 95.0%, recall of 94.1% and f1-score of 94.1% as well.

50

1 def count reps(image, current action, landmarks, mp_pose):

2 global curl counter, press_counter, squat_counter, curl stage, press stage, squat_stage
3

4 if current_action == "curl':

5 # Get coords

6 shoulder = get_coordinates(landmarks, mp_pose, 'left', 'shoulder')
7 elbow = get_coordinates(landmarks, mp_pose, 'left', 'elbow')
8 wrist = get_coordinates(landmarks, mp_pose, 'left', ‘wrist')
9

1@ # calculate elbow angle

11 angle = calculate_angle(shoulder, elbow, wrist)

12

13 # curl counter logic

14 if angle < 38:

15 curl_stage = "up"

16 if angle > 140 and curl_stage =="up':

17 curl_stage="down"

18 curl counter +=1

19 press_stage = None

29 squat_stage = None

21

22 # Viz joint angle

23 viz_joint_angle(image, angle, elbow)

24

Snippet 3.64

b=

= T

Code snippet 3.64 defines a function which would count repetitions based on the frame provided

considering the type of exercise passed into it and updating the global state.

Figure 3.12

The figure 3.12 depicts the whole project in action where the exercise is being tracked and its

repetition is being counted as well.

51

3.5 Key Challenges

e Lack of good research

Working with sensor data is not a day to day task like working with images or
plain text. Sensor data is highly scarce and hence finding good research was not
an easy task. After thorough consultation with our supervisor, we got to know
about a few good researches which enabled us to study proper methodology to

work and excel with sensor data.

e Development of custom repetition count algorithm

All of the research that has happened in the context of our project, mainly
focuses on classification of exercises with some machine learning algorithm.
However, if you want to actually build a fitness tracker product, just classifying
exercise is of no use. We must classify as well as count the number of
repetitions. It was a great task for us to develop one such algorithm. After much
thought, we identified a pattern that the local maximas in the most dominant
attribute could be counted as one repetition. We tried and tested this method and

it turned out to be a great solution for our problem.

Chapter 04

Testing

4.1 Testing Strategies

As of the current status of Fit Barbell Classifier, there’s no Ul of'it, so
sophisticated testing is not possible. However, Unit Testing is done on both

classification and the repetition count algorithm.

Strategy: The strategy for unit testing is simple. For classification,
random rows from the unseen data (test data) have been selected then passed
to the unit tests created. A total of 5 random rows are selected for
classification unit testing. For the repetition count algorithm, one set is passed

to the unit test function and the tests are run.

Tools: For unit testing, python’s inbuilt unittest framework [27] is used.
The unittest is a simple framework based on object oriented principles. To use
it, we must create a class which inherits from unittest. TestCase class. Then we
write our unit test functions, one important thing to remember is that all of the
unit test functions must begin with ‘test’. We can assert using the assertEqual
to check whether the actual value is equal to expected value or not. If they are
not equal then the test will end in a failure, otherwise the test will run

normally.

53

4.2 Test Cases

Test Case 1: Unit Test for the repetition count algorithm

Input: A dataframe of one particular set

Expected Output: If the set is heavy, then 5 else if the set is medium then 10.

© 1 #Unit Testing for Repetition Count algorithm
2 import unittestl
3 class TestRepetitonCount(unittest.TestCase):
4 def setUp(self):

5 self.count_reps_test=count_reps_test
6
7 def test_predict_seti(self):
8 s=random.choice(df["set"].unique())
9 subset=df[df["set” |==5]
10 column="acc_r"
11 cutoff=6.4
12
13 if(subset|["label"].iloc[@]=="squat"):
14 cutoff=06.35
15
16 if(subset["label”].iloc[@]=="row"):
17 cutoff=0.65
18 column="gyr x"
19
20 if(subset["label"].iloc[@]=="0hp"):
21 cutoff=e.35
22
23 reps_predicted=self.count_reps_test(subset,cutoff,10,column)
24 reps_actual=subset["reps”].iloc[@]
25 self.assertAlmostEqual(reps_predicted, reps_actual, delta=1)
26

27 unittest.main(argv=["''],verbosity=2,exit=False)
test_predict_set (__main__.TestRepetitonCount) ... ok

Ran 1 test in ©.83@s

oK
<unittest.main.TestProgram at 8x7b@967e6776@>

Figure 4.1 Unit Test Function

The figure 4.1 shows the unit test function used for testing of the custom repetition count algorithm.

54

Chapter 05

Results and Evaluation

5.1 Results

Our project “Fit Barbell Classifier” has two phases of results, one of

exercise classification and the other for repetition count.

o Exercise classification:
a) Accelerometer & Gyroscope:

The sensor data of accelerometer and gyroscope was trained on a
variety of models including a simple neural network, random forest, decision
tree, kNN and naive bayes. The training and testing split was 75% and 25%
respectively. Since it’s a classification problem therefore, various evaluation

metrics like accuracy, precision, recall and f-score are shown below:

Serial Model Accuracy Precision Recall F1-Score
No.
l. Neural 0.993795 0.993947 0.993795 0.993795
Network
2. Random 0.993795 0.993852 0.993795 0.993794
Forest
3. Decision 0.984488 0.984669 0.984488 0.984456
Tree
4. Naive 0.963806 0.963896 0.963806 0.963757
Bayes
5. K-Nearest 0.972079 0.972290 0.972079 0.972074
Neighbors

Table 5.1 Performance Metrics on Feature Set 4

55

S.No.

Model

SVM

RF

LR

DT

KNN

NB

Accuracy

0.961737

0.983454

0.972079

0.949328

0.922441

0.935884

Stacked Model 1 0.97931
(DT, LR, SVM,
kNN, NB)

Stacked Model 2 0.987590
(RF, LR, DT)

Stacked Model 3 0.98345
(RF, DT, LR,
SVM, kNN,

NB)

Table 5.2 Performance Metrics on feature set 3

Precision

0.962901

0.983567

0.972289

0.949506

0.922881

0.935813

0.97932

0.987613

0.98353

Recall

0.961737

0.983454

0.983454

0.949328

0.922441

0.935884

0.97931

0.987590

0.983453

F-1

0.961776

0.983473

0.983473

0.949225

0.922481

0.935725

0.97930

0.987590

0.98344

56

Accuracy Comparison of Individual Models and Stacked Models on feature set 3

Model

Stacked Model 1
Stacked Model 2

Stacked Model 3

© © & o o o o .o o o o
& &> v » o> & P o

Accuracy (%)

Figure.5.1 Accuracy graph on feature set 3

The figure 5.1 shows the comparison of accuracy among various models trained on feature set 3.

b) Camera/Video:

For video evaluation SVM achieved following evaluation metrics:

S.No. Metric Value

1. Accuracy 0.941118
2. Precision 0.950000
3. Recall 0.941000
4. F1-Score 0.941000

Table 5.3 Performance Metrics of Camera Evaluation

57

e Repetition Count: The other puzzle of the project is the repetition count
algorithm. The sets were divided into two categories; heavy and medium. Heavy
set had 5 repetitions whereas the medium set had 10 repetitions. The algorithm
had to count the number of repetitions given any set. Mean absolute error was
chosen as the evaluation metric and it turned out to be that the mean absolute
error for the repetition count algorithm for all the sets was (.88, which means
that on an average the repetition count algorithm is off by just 0.88 repetitions

for any set of any exercise.

B reps
10 W reps_pred
8

0

o

S

N

(bench, heavy)
(bench, medium)
(dead, heavy)
(dead, medium)
(ohp, heavy)
(ohp, medium)
(row, heavy)
(row, medium)
(squat, heavy)
(squat, medium)

label,category

Figure 5.2 Actual Repetition vs Predicted Repetitions

The figure 5.2 shows the comparison between the actual repetition count and the predicted count.

Chapter 06

Conclusion and Future Scope

6.1 Conclusion

Our Fit Barbell Classifier is one of those projects which are unique in its own

way. By combining the powers of machine learning and sensor data, an automated

solution for fitness/workout tracking can be made possible. Any device that has an

accelerometer and a gyroscope or a camera could be converted into a fitness tracker.

e Key Findings:

o

Tracking through gyroscope & accelerometer is slightly better than video
in terms of accuracy.

Feature engineering techniques like frequency and temporal abstraction
came out to be one of the most important steps to extract meaningful
patterns from the raw data.

The ten features selected through forward selection performed almost
similarly when compared to a total 776 features.

Random Forest and Simple Neural Network performed best among all of
the models for feature set 4.

For feature set 3, the stacked model 2 performed the best.

kNN when trained with only basic features performed the worst.

The models were also trained on every other participant but one for
better generalization and they performed very well.

Repetition algorithm didn’t require any machine for either of the

trackings.

59

e Limitations:

o

The data on which the model has been trained on has been collected
from a wearable sensor on the wrist. For better coherence with the UI,
models should be trained on the data collected through a mobile device.
The data has been collected from five participants only. Data from more
participants can better generalize the model for exercises.

At this point, the model is trained on only five barbell exercises.

The Fit Barbell Classifier is currently inaccessible due to a lack of

deployment through an app or a website.

e Contribution to the field:

o

The potential of Fit Barbell Classifier is massive and can completely
revolutionize the fitness industry. As of now, there’s no such product in
the market that can automate the tracking of barbell workouts. The
closest products for automated human activity recognition are
smartwatches and fitness bands [28] which can track activities like
walking, running, swimming and cycling. The Fit Barb]ell Classifier
opens this same door. Possibilities are endless, from acting as a personal
trainer to automatically counting the repetitions to even suggesting
workout routines based on the individual’s information, Fit Barbell

Classifier has got you covered.

6.2 Future Scope

The Future scope of Fit Barbell Classifier are, but not limited to:

o

Collect sensor data from mobile devices to train the model on it for
better generalization.

Include more barbell exercises for both sensor and video tracking in the
final system.

Include more participants in the data collection process.

Develop an easy accessible user interface so that the end user can track

workouts without any hassle.

60

References

[1] C. J. Coleman, D. J. McDonough, Z. C. Pope, and C. A. Pope, "Dose-response association of acrobic
and muscle-strengthening physical activity with mortality: a national cohort study of 416,420 US
adults," Br J Sports Med, vol. -, no. -, p. bjsports-2022-105519, Feb. 2024.

[2] W. R. Thompson, "Worldwide Survey of Fitness Trends for 2023," ACSM's Health & Fitness Journal,
Jan./Feb. 2023.

[3] "Weightlifting is better for the heart than cardio," News-Medical.Net, Jul. 9, 2019. [Online].
Available:https://www.news-medical.net/news/20190709/Weightlifting-is-better-for-the-heart-than-ca

rdio.aspx.

[4] "Weightlifting Injury: Common Injuries and How to Prevent Them," Integrative Rehabilitation,
[Online]. Available: https://integrehab.com/blog/sports-injuries/weightlifting-injury/.

[5] Y. Yoshida and E. Yuda, "Workout Detection by Wearable Device Data Using Machine Learning,"
Applied Sciences, vol. 13, no. 7, 2023.

[6] G. A. S. Surek, L. O. Seman, S. F. Stefenon, V. C. Mariani, and L. d. S. Coelho, "Video-Based
Human Activity Recognition Using Deep Learning Approaches, Sensors, 2023.

[7] U. Aiman and T. Ahmad, "Video Based Exercise Recognition Using GCN," in 2023 International

Conference on Recent Advances in Electrical, Electronics & Digital Healthcare Technologies, 2023.

[8] C. O'Brien and C. H. Min, "Classification of Various Workout Motions Using Wearable Sensors," ,
IEEE World Al IoT Congress (AlloT), 2022.

[9] S. Bhatia, "Activity Identification using Supervised Machine Learning on Wearable Activity Tracker
Data," 2021 Asian Conference on Innovation in Technology (ASIANCON), 2021.

[10] M. Yerramsetti, "Human Activity Recognition using ML Techniques," International Journal of

Innovative Science and Research Technology, vol. 6, no. 9, 2021.

[11] G Sengiil, E Ozcelik, S Misra, R Damasevicius, R Maskelitinas , "Fusion of smartphone sensor data
for classification of daily user activities," Multimedia Tools and Applications_International Journal,

2021.

61

[12] E. Preatoni, S. Nodari, and N. F. Lopomo, "Supervised machine learning applied to wearable sensor
data can accurately classify functional fitness exercises within a continuous workout,", Frontiers in

Bioengineering and Biotechnology, 2020.

[13] S. Ishii, A. Yokokubo, M. Luimula, and G. Lopez, "ExerSense: Physical Exercise Recognition and
Counting Algorithm from Wearable Robust to Positioning," Sensors, vol. 21, no. 1, 2020.

[14] T. T. Um, C. D. Yoo, and J. H. Lee, "Exercise motion classification from large-scale wearable sensor
data using convolutional neural networks," IEEE/RSJ International Conference on Intelligent Robots

and Systems (IROS), 2017.

[15] D. Das, S. M. Busetty, V. Bharti, and P. K. Hegde, "Strength Training: A Fitness Application for
Indoor Based Exercise Recognition and Comfort Analysis," in 2017 16th IEEE International
Conference on Machine Learning (ICML), 2017.

[16] H. Koskiméki and P. Siirtola, "Recognizing gym exercises using acceleration data from wearable
sensors," in Proceedings of the Symposium on Computational Intelligence and Data Mining (CIDM),

2014.
[17] OpenCV Documentation. [Online]. Available:https://www.docs.opencv.org/
[18] MediaPipe Documentation. [Online]. Available: https://www.developers.google.com/mediapipe
[19] Chauvenet’s Criterion. [Online]. Available:https://www.statisticshowto.com/chauvenets-criterion/
[20] Butterworth Filter. [Online]. Available: https://en.wikipedia.org/wiki/Butterworth_filter.

[21] M. Hoogendoorn and B. Funk, "Machine Learning for the Quantified Self: On the Art of Learning
from Sensory Data," 1st ed. ©2018

[22] Local Outlier Factor. [Online]. Available: https://en.wikipedia.org/wiki/Local outlier factor

[23] Fast Fourier Transform. [Online]. Available: http://en.wikipedia.org/wiki/Fast Fourier transform
[24] Pandas Documentation. [Online]. Available: https://pandas.pydata.org/docs/

[25] Matplotlib Documentation. [Online]. Available: https://matplotlib.org/docs/

[26] Scikit-learn Documentation. [Online]. Available: https://scikit-learn.org/0.21/documentation.html

62

[27] Unittest framework. [Online]. Available: https://docs.python.org/3/library/unittest.html

[28] Fitness Bands: All About Their Tracking Features Reliance Digital Solutionbox. Available:

https://www.reliancedigital.in/solutionbox/fitness-bands-all-about-their-tracking-features

63

SS

ORIGINALITY REPORT

0., 5o, 5o,

SIMILARITY INDEX INTERNET SOURCES PUBLICATIONS

2%

STUDENT PAPERS

PRIMARY SOURCES

www.mdpi.com

Internet Source

(K

WWW.coursehero.com

Internet Source

(K

Internet Source <1 %
Submitted to Massey University <1
Student Paper 0%
researchoutput.csu.edu.au < 1
Internet Source %

rgu-repository.worktribe.com
6

Martina Ravizza, Laura Giani, Francesco Jamal <1 y
Sheiban, Alessandra Pedrocchi, John DeWitt, °
Giancarlo Ferrigno. "IMU-based classification

of resistive exercises for real-time training

monitoring on board the international space

station with potential telemedicine spin-off",

PLOS ONE, 2023

Publication

researchportal.bath.ac.uk

Internet Source

<1%

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT
PLAGIARISM VERIFICATION REPORT

[DF- | =1
Type of Document (Tick): |PhD Thesis| |M.Tech/M.Sc. Dissertation | |B.Tech./B.Sc./BBA/Other|

Name: Department: Enrolment No

Contact No. E-mail.

Name of the Supervisor:

Title of the Thesis/Dissertation/Project Report/Paper (In Capital letters):

UNDERTAKING

| undertake that | am aware of the plagiarism related norms/ regulations, if | found guilty of any plagiarism and
copyright violations in the above thesis/report even after award of degree, the University reserves the rights to
withdraw/revoke my degree/report. Kindly allow me to avail Plagiarism verification report for the document
mentioned above.

— Total No. of Pages =

— Total No. of Preliminary pages =

— Total No. of pages accommodate bibliography/references =

(Signature of Student)
FOR DEPARTMENT USE

We have checked the thesis/report as per norms and found Similarity Index at (%). Therefore, we
are forwarding the complete thesis/report for final plagiarism check. The plagiarism verification report may be
handed over to the candidate.

(Signature of Guide/Supervisor) Signature of HOD

FOR LRC USE

The above document was scanned for plagiarism check. The outcome of the same is reported below:

Copy Received on Excluded Similarity Index Abstract & Chapters Details
(%)

Word Counts
o All Preliminary

Pages

Report Generated on * Bibliography/Ima
ges/Quotes

e 14 Words String

Character Counts

Submission ID Page counts

File Size

Checked by
Name & Signature Librarian

Please send your complete Thesis/Report in (PDF) & DOC (Word File) through your Supervisor/Guide at
plagcheck.juit@gmail.com

mailto:plagcheck.juit@gmail.com

	Date: ………………………….
	(Signature of Student)
	FOR LRC USE
	Checked by

