
Cloud based Secure Data Transfer using Exchange
of Cryptographic Keys

A major project report submitted in partial fulfillment of the requirement
for the award of degree of

Bachelor of Technology
in

Computer Science & Engineering / Information Technology

Submitted by
Utsav 201292

Devansh Chaudhary 201461

Under the guidance & supervision of
Dr. Hari Singh

Department of Computer Science & Engineering and
Information Technology

Jaypee University of Information Technology,
Waknaghat, Solan - 173234 (India)

CERTIFICATE

This is to certify that the work presented in this report entitled ‘Cloud based Secure Data

Transfer using Exchange of Cryptographic Keys’ in partial fulfillment of the

requirements for the award of the degree of Bachelor of Technology in Computer Science

& Engineering / Information Technology submitted in the Department of Computer

Science & Engineering and Information Technology, Jaypee University of Information

Technology, Waknaghat is an authentic record of my own work carried out over a period

from August 2023 to May 2024 under the supervision of Dr. Hari Singh (Assistant

Professor (SG), Department of Computer Science & Engineering and Information

Technology).

The matter embodied in the report has not been submitted for the award of any other degree

or diploma.

Devansh Chaudhary Utsav

201461 201292

This is to certify that the above statement made by the candidate is true to the best of my

knowledge.

Dr. Hari Singh

Assistant Professor (SG)

Department of Computer Science & Engineering and Information Technology

Dated:

i

Candidate’s Declaration

We hereby declare that the work presented in this report entitled ‘Cloud based Secure

Data Transfer using Exchange of Cryptographic Keys’ in partial fulfillment of the

requirements for the award of the degree of Bachelor of Technology in Computer Science

& Engineering / Information Technology submitted in the Department of Computer

Science & Engineering and Information Technology, Jaypee University of Information

Technology, Waknaghat is an authentic record of my own work carried out over a period

from August 2023 to May 2024 under the supervision of Dr. Hari Singh (Assistant

Professor (SG), Department of Computer Science & Engineering and Information

Technology).

The matter embodied in the report has not been submitted for the award of any other degree

or diploma.

Devansh Chaudhary Utsav

201461 201292

This is to certify that the above statement made by the candidate is true to the best of my

knowledge.

Dr. Hari Singh

Assistant Professor (SG)

Department of Computer Science & Engineering and Information Technology

Dated:

ii

ACKNOWLEDGEMENT
Firstly, I express my heartiest thanks and gratefulness to almighty God for His divine

blessing makes it possible to complete the project work successfully. I am really grateful

and wish my profound indebtedness to Supervisor Dr. Hari Singh, Assistant Professor

(SG), Department of CSE Jaypee University of Information Technology, Wakhnaghat.

Deep Knowledge & keen interest of my supervisor in the field of “Cloud Computing” and

“Information Security” to carry out this project. His endless patience, scholarly guidance,

continual encouragement, constant and energetic supervision, constructive criticism,

valuable advice, reading many inferior drafts and correcting them at all stages have made it

possible to complete this project. I would like to express my heartiest gratitude to Dr. Hari

Singh, Department of CSE, for his kind help to finish my project. I would also generously

welcome each one of those individuals who have helped me straightforwardly or in a

roundabout way in making this project a win. In this unique situation, I might want to thank

the various staff individuals, both educating and non-instructing, which have developed

their convenient help and facilitated my undertaking.

Finally, I must acknowledge with due respect the constant support of my parents.

Devansh Chaudhary

201461

Computer Science & Engineering and Information Technology

Jaypee University of Information Technology, Waknaghat

Utsav

201292

Computer Science & Engineering and Information Technology

Jaypee University of Information Technology, Waknaghat

iii

TABLE OF CONTENTS

CERTIFICATE.. i
Candidate’s Declaration... ii
ACKNOWLEDGEMENT.. iii
LIST OF TABLES.. v
LIST OF FIGURES... vi
LIST OF ABBREVIATIONS...vii
ABSTRACT..viii
CHAPTER 1: INTRODUCTION..1

1.1 INTRODUCTION.. 1
1.2 PROBLEM STATEMENT..3

1.2.1 INEFFECTIVE COMPRESSION UTILIZATION... 3
1.2.2 SCALABILITY AND RELIABILITY CONCERNS....................................... 4
1.2.3 RESOURCE CONSTRAINTS AND SERVER CRASHES............................. 4
1.2.4 LATENCY IN COMPRESSION PROCESSING..5
1.2.5 LACK OF FAULT TOLERANCE.. 5

1.3 OBJECTIVES...6
1.3.1 OPTIMIZED COMPRESSION TECHNIQUES...6
1.3.2 SCALABILITY AND RELIABILITY ENHANCEMENT.............................. 6
1.3.3 RESOURCE MANAGEMENT WITH KUBERNETES.................................. 7
1.3.4 STREAMLINED DATA PROCESSING.. 7
1.3.5 ROBUST ERROR HANDLING MECHANISMS..7

1.4 SIGNIFICANCE AND MOTIVATION OF THE PROJECT WORK....................... 8
1.4.1 ENHANCING DATA TRANSFER EFFICIENCY...8
1.4.2 ENSURING SCALABILITY AND RELIABILITY.. 8
1.4.3 RESOURCE OPTIMIZATION AND COST EFFICIENCY............................ 8
1.4.4 STREAMLINING DATA PROCESSING...9
1.4.5 ROBUSTNESS AND RELIABILITY ASSURANCE......................................9

1.5 ORGANIZATION OF PROJECT REPORT.. 10
CHAPTER 2: LITERATURE SURVEY.. 13

2.1 OVERVIEW OF RELEVANT LITERATURE.. 13
2.2 KEY GAPS IN THE LITERATURE..20

CHAPTER 3: SYSTEM DEVELOPMENT...21
3.1 REQUIREMENTS AND ANALYSIS... 21
3.2 PROJECT DESIGN AND ARCHITECTURE...22
3.3 IMPLEMENTATION... 31

3.3.1 COMPRESSION WORKER... 31
3.3.2 COMPRESSION RESULT PROCESSING WORKER CODE...................... 33

iv

3.4 WEB INTERFACE...35
3.4.1 AUTHENTICATION AND REGISTRATION... 35
3.4.2 UPLOAD INTERFACE...37
3.4.3 SHARE INTERFACE(S)...37
3.4.4 EMAIL NOTIFICATION.. 39
3.4.5 DOWNLOAD INTERFACE... 40
3.4.6 SYSTEM INTERFACE FLOWCHART... 40

3.5 KEY CHALLENGES... 42
CHAPTER 4: TESTING..45

4.1 TESTING STRATEGY.. 45
4.1.1 LOCUST TESTING.. 45
4.1.2 STRESS TESTING..46

4.2 TEST CASES AND OUTCOMES...47
CHAPTER 5: RESULTS AND EVALUATION...49

5.1 RESULTS... 49
5.2 COMPARISON WITH EXISTING SOLUTIONS.. 54

Chapter 6: CONCLUSIONS AND FUTURE SCOPE.. 59
6.1 CONCLUSION...59
6.2 FUTURE SCOPE... 60

REFERENCES..63

iv

LIST OF TABLES

S. No. Title Page No.

1 Literature Survey 17

2 Compute Time Comparison Between Single Instance, Kubernetes

Autoscaling, and Kubernetes Scaling based on Queue Length

50

3 Absolute Cost Comparison Between Single Instance, Kubernetes

Autoscaling, and Kubernetes Scaling based on Queue Length Graph

51

4 Compute Time vs Max Node Graph 53

5 Comparing Single Instance, Kubernetes Autoscaling, and Kubernetes

Scaling based on Queue Length

55

6 Monthly Cost Comparing Single Instance, Kubernetes Autoscaling,

and Kubernetes Scaling based on Queue Length

56

v

LIST OF FIGURES

S. No. Title Page No.

1 Compression Node Pseudo Code 23

2 File Compression Optimised Approach 24

3 File Compression Default Approach 24

4 Result Queue Worker Pseudo Code 26

5 Architecture of our proposed solution with Kubernetes and RabbitMQ 28

6 Login Page Interface 35

7 Signup Page Interface 36

8 Upload File Interface 37

9 Share File Without Compression Interface 38

10 Share File With Compression Interface 38

11 Email Notification Screenshot 39

12 Download File Interface 40

13 System Interface Flowchart 41

14 Compute Time Comparison Between Different Approaches Graph 50

15 Absolute Cost to Compute Compression Requests Comparison Graph 51

16 Compute Time vs Max Node Graph 53

17 Monthly Cost Comparison Between Different Approaches Graph 56

vi

LIST OF ABBREVIATIONS

S. No. Title

1 AMQP: Advanced Messaging Queue Protocol

2 RESTful API: Representational State Transfer Application Programming

Interface

3 S3: Simple Storage Service

4 FFmpeg: Fast Forward Moving Picture Experts Group

5 AWS: Amazon Web Services

vii

ABSTRACT
The secure and effective movement of data to and from cloud environments is a top priority

for organisations across sectors in the present era of digital transformation. This large

project presents a comprehensive solution that combines rigorous security measures, data

compression techniques, Advanced Message Queuing Protocol, and Kubernetes cluster

scalability.

The project utilises encryption techniques and authentication procedures to provide a safe

basis for data transit. These safeguards are intended to protect sensitive information while it

travels across the cloud infrastructure, maintaining its confidentiality and integrity. This

security architecture is vital for safeguarding critical data from potential attacks and

unauthorised access.

Aside from security concerns, the initiative prioritises bandwidth utilisation and overall

transmission efficiency. Data compression technologies are combined to lower video file

data capacity. This method reduces transfer times and costs, resulting in a more

resource-efficient cloud architecture.

To improve scalability and manageability, the project also makes use of the capabilities of

Kubernetes clusters. Kubernetes orchestrates containerized applications, allowing for

smooth resource scaling based on demand, ensuring that data transport stays efficient in

dynamically changing contexts. Integration with Kubernetes clusters enables fault tolerance

and high availability, both of which are crucial for mission-critical data transfer activities.

This combination of secure data transmission, compression, and Kubernetes cluster

integration provides a comprehensive solution to core difficulties connected with

cloud-based data sharing. This project intends to contribute to the development of cloud

infrastructures that are durable, efficient, and secure. It promotes a technical environment

in which organisations may confidently exploit the benefits of cloud computing while

maintaining data integrity and security.

viii

1

CHAPTER 1: INTRODUCTION

1.1 INTRODUCTION

The ever-increasing reliance on cloud computing services has necessitated the development

of efficient and reliable data transfer methodologies. Traditional approaches to cloud data

sharing often struggle with handling large file sizes, optimizing compression techniques, and

scaling systems to meet growing demands. This research proposes a novel solution that

leverages state-of-the-art technologies, including Kubernetes and RabbitMQ Advanced

Message Queuing Protocol (AMQP), to address these challenges and provide a scalable,

secure, and high-performance cloud data sharing framework.

Cloud computing is the on-demand delivery of computing services such as servers, storage,

databases, networking, software, and analytics [1]. Rather than keeping files on a proprietary

hard drive or local storage device, cloud-based storage makes it possible to save remotely.

Cloud computing is a popular option for people and businesses, allowing for cost savings,

increased productivity, speed and efficiency, performance, and security [2].

There are numerous methods for deploying Kubernetes clusters that differ in customization

options, supported clouds, and costs. Some methods have existed since Kubernetes'

inception, while others like AWS EKS were introduced later. Existing comparisons between

different Kubernetes deployment methods either rely on theoretical information from

technical documentation, are presented informally as blog posts through non-academic

processes, or consider only a basic vanilla cluster configuration [3].

Kubernetes is an open-source platform for automating the deployment, scaling, and

management of containerized applications. It allows developers to focus on building and

deploying their applications without worrying about the underlying infrastructure[4].

Kubernetes uses a declarative approach to managing applications, where users specify

desired application states, and the system maintains them. It also provides robust tools for

monitoring and managing applications, including self-healing mechanisms for automatic

failure detection and recovery. Overall, Kubernetes offers a powerful and flexible solution

for managing containerized applications in production environments [5].

2

The advanced message queuing protocol (AMQP) working group's goal is to create an open

standard for an interoperable enterprise-scale asynchronous messaging protocol. AMQP is

finally addressing the lack of enterprise messaging interoperability standards. This relatively

simple yet compellingly powerful enterprise messaging protocol is thus poised to open up a

bright new era for enterprise messaging [6].

The Advanced Message Queuing Protocol (AMQP) aims to create an open standard for

interoperable, enterprise-scale asynchronous messaging. This study implemented AMQP 1.0

over QUIC and conducted extensive testing using the NS3 network simulator. The results

demonstrated significant improvements in communication time and start-up latency,

enabling faster and more reliable connections [7].

RabbitMQ is an open-source messaging system that allows users to integrate applications

together by using messages and queues. RabbitMQ implements the AMQP. The underlying

RabbitMQ server is written in the Erlang programming language which was originally

designed for the telecoms industry by Ericsson. Erlang supports distributed, fault-tolerant

applications and is, therefore, an ideal language to use to build a message queuing system

[8].

Amazon Simple Storage Service (Amazon S3) is an object storage service that offers

industry-leading scalability, data availability, security, and performance. Customers of all

sizes and industries can use Amazon S3 to store and protect any amount of data for a range

of use cases, such as data lakes, websites, mobile applications, backup and restore, archive,

enterprise applications, IoT devices, and big data analytics. Amazon S3 provides

management features so that you can optimize, organize, and configure access to your data

to meet your specific business, organizational, and compliance requirements [9].

Streaming is also more efficient in terms of bandwidth and storage requirements, as only the

portions of the video being processed need to be transmitted and temporarily buffered,

instead of storing the complete file locally. This streaming approach is particularly beneficial

for time-sensitive applications like live video analytics, where insights need to be derived

from the video data with minimal latency. Additionally, streaming seamlessly supports

processing of extremely long videos or even infinite streams of data, which would be

impractical to fully download and store. By leveraging video streaming, compute resources

3

can be optimized to extract value from video content as it is captured and transmitted,

enabling a more agile and responsive video processing pipeline [10].

The proposed approach employs RabbitMQ for effective management of compression

requests, mitigating the risk of server overload and ensuring reliable data processing. By

leveraging Kubernetes, compression worker nodes can be dynamically scaled based on real-

time demand, optimizing resource utilization and ensuring cost-effective operation.

Furthermore, the solution introduces a streaming mechanism for retrieving file byte data

from S3, eliminating the need for local storage and significantly reducing processing time,

especially for large files. This innovative approach not only addresses existing limitations

but also paves the way for a paradigm shift in cloud data transfer methodologies.

1.2 PROBLEM STATEMENT

The cloud data transfer market is characterised by ongoing problems that need a paradigm

shift in existing approaches. Traditional approaches frequently fail to leverage compression

techniques effectively, resulting in major challenges with scalability, reliability, and resource

management.

1.2.1 INEFFECTIVE COMPRESSION UTILIZATION

In the landscape of contemporary cloud data transfer methodologies, a pervasive issue

emerges in the suboptimal utilization of compression techniques. This inefficiency results in

a less-than-ideal reduction of large file volumes, manifesting in a two-fold consequence.

Firstly, the transfer times for these voluminous files are needlessly prolonged, impacting the

efficiency of data transfer processes. Secondly, and perhaps more critically, there is an

increased demand for storage resources as the inadequately compressed files occupy more

space than necessary.

The ramifications of this ineffective compression utilization extend beyond mere

inconveniences. They pose a significant bottleneck, hindering the seamless flow of

information across cloud platforms. As organizations grapple with the exponential growth

of data volumes, this inefficiency becomes a pronounced challenge, impeding the swift and

resource-efficient transfer of crucial information in cloud-based environments. Addressing

this inefficiency becomes paramount for optimizing data transfer processes and ensuring that

the infrastructure can handle the escalating demands of modern data management.

4

1.2.2 SCALABILITY AND RELIABILITY CONCERNS

An ongoing concern in the landscape of modern cloud data transport procedures is the

underutilization of compression algorithms. This inefficiency leads to a less-than-ideal

decrease of huge file sizes, which has two consequences. For starters, the transfer durations

for these large files are unnecessarily long, reducing the efficiency of data transmission

procedures. Second, and possibly more importantly, there is a greater demand on storage

resources since improperly compressed files use up more space than necessary.

The consequences of inadequate compression usage go beyond minor annoyance. They are

a major impediment in the smooth flow of information among cloud platforms. As

organisations battle with the exponential expansion of data quantities, this inefficiency

becomes a significant barrier, preventing the timely and cost-effective transmission of

critical information in cloud-based settings. Addressing this inefficiency is critical for

optimising data transfer operations and ensuring that the infrastructure can support the ever-

increasing needs of contemporary data management.

1.2.3 RESOURCE CONSTRAINTS AND SERVER CRASHES

In the context of cloud data transport, the complicated interplay between the resource-

intensive nature of compression activities and the general stability of servers emerges as a

crucial problem. The severe computing needs inherent in compression methods generate

significant concerns regarding server stability, especially when resource limits are present.

When server resources are insufficient to manage the computational demand, the threat of

crashes during compression procedures becomes a critical point of failure.

This important moment not only jeopardises continuous data transfers, but also raises the

spectre of data loss and system outage. The insecurity of present approaches is exacerbated

by the instability of servers under the burden of compression operations. Addressing these

resource limits becomes critical for assuring continuous data flow, protecting against data

loss, and preserving the integrity of the cloud data transfer system. In order to mitigate these

risks and reinforce the system against unexpected failures, strategies for efficient resource

allocation, dynamic scaling, and strong error recovery methods are critical.

5

1.2.4 LATENCY IN COMPRESSION PROCESSING

While RESTful APIs for compression requests provide a handy interface for user

interactions, they come with a trade-off in the shape of data transmission delay. Waiting

delays are introduced by the sequential nature of RESTful API requests, notably during the

completion of compression activities, which greatly influences the entire transfer time. This

delay undermines the projected efficiency improvements from using compression methods.

The system encounters delays in responding to subsequent requests because users are forced

to wait until the compression process is complete before proceeding with additional

activities. This delay degrades not just the user experience but also the overall efficiency of

the data transfer process. In an age when speed and responsiveness are critical, the delay

induced by RESTful API-based compression requests becomes a significant disadvantage.

To solve this, alternate techniques that allow for asynchronous compression task processing

or the use of more responsive protocols might be beneficial. By reducing latency in

compression processing, the system may not only improve overall data transfer efficiency,

but also provide a more fluid and user-friendly experience that meets the demands of current

cloud data transfer settings.

1.2.5 LACK OF FAULT TOLERANCE

One obvious flaw in many existing approaches to cloud data transport is the lack of effective

fault tolerance measures, particularly during the complex compression process. The

compression process, as a critical phase in the data transmission workflow, necessitates

robustness in the face of unanticipated problems. Unfortunately, the current absence of

adequate fault tolerance methods reveals a vulnerability with far-reaching implications.

When a server crashes or a node fails during the compression process, the lack of adequate

fault tolerance methods becomes a major source of worry. Without proper procedures in

place to gracefully handle failures, the system is vulnerable to data loss, jeopardising the

whole data transmission process's dependability. This flaw not only jeopardises the integrity

of the sent data but also increases the possibility of interruptions to current data transfers.

Addressing the system's lack of fault tolerance becomes critical for assuring its resilience in

the face of unforeseen events. Data replication, automated failover systems, and robust error

6

recovery procedures, for example, can considerably improve the system's capacity to tolerate

disturbances. As a result, the system obtains a degree of robustness that not only protects

against data loss in the case of server breakdowns, but also strengthens the general

dependability of the cloud data transfer process. As organisations rely more on frictionless

and trustworthy data transmission technologies, incorporating fault tolerance techniques

becomes a strategic need for maintaining data integrity in transit.

In conclusion, the current issues with cloud data transmission protocols underscore the

crucial need for a comprehensive and novel solution. This project seeks to address these

issues front on by presenting a methodology that not only optimises compression techniques

but also addresses scalability, dependability, and resource management issues, ushering in a

new era of safe and efficient cloud data transport.

1.3 OBJECTIVES

This unique project's principal goals are multifarious, with the goal of overcoming the

problems inherent in present cloud data transmission technologies. The complete set of goals

is intended to improve the data transfer process's efficiency, scalability, dependability, and

resource management, resulting in a secure and optimised solution.

1.3.1 OPTIMIZED COMPRESSION TECHNIQUES

The primary goal is to create a robust system that uses Compression Techniques to

successfully decrease huge file sizes during cloud data transport. The project aims to

dramatically improve the compression process by using new algorithms and techniques,

lowering transfer times and lessening the need for storage resources.

1.3.2 SCALABILITY AND RELIABILITY ENHANCEMENT

A critical goal is to address the scalability and reliability difficulties associated with

compression tasks. The project intends to distribute compression requests to dedicated

queues on different servers using RabbitMQ AMQP. This not only reduces the chance of

server breakdowns, but also assures a dependable and fluid data transmission experience,

even when several users make concurrent requests.

7

1.3.3 RESOURCE MANAGEMENT WITH KUBERNETES

The project aims to dynamically distribute and grow compression worker nodes based on the

real-time length of the compression request queue, with Kubernetes serving as a major

enabler. This dynamic resource management guarantees that server resources are used

optimally, reducing crashes due to computational intensity, and optimising overall system

performance.

1.3.4 STREAMLINED DATA PROCESSING

An important goal is to use byte streaming to receive file byte data from S3, as opposed to

typical approaches that include waiting for file downloads, local storage, and future uploads.

This innovation not only saves processing time but also the requirement for substantial server

storage space, which is especially useful when dealing with files with greater volumes than

accessible local storage.

1.3.5 ROBUST ERROR HANDLING MECHANISMS

It is critical to design a system with strong error handling methods. The project intends to

develop a requeuing mechanism in the case of a node failure during request processing,

guaranteeing that the request is eventually executed. This improves the system's overall fault

tolerance, which contributes to the dependability of the cloud data transmission process.

Finally, the project's objectives comprise a complete framework targeted at changing the

landscape of cloud data transport. The project aims to provide a secure, efficient, and reliable

solution to the challenges posed by modern cloud data transfer methodologies by optimising

compression techniques, improving scalability and reliability, dynamically managing

resources, streamlining data processing, and implementing robust error handling

mechanisms.

1.4 SIGNIFICANCE AND MOTIVATION OF THE PROJECT WORK

This research is significant because it has the potential to revolutionise the efficiency,

reliability, and security of cloud data transport. The motive for embarking on this novel

8

endeavour is to solve the critical difficulties confronting present techniques while also

unleashing new possibilities in the field of data management.

1.4.1 ENHANCING DATA TRANSFER EFFICIENCY

One of the key motivators for this research is the critical need to improve the efficiency of

cloud data transport. Traditional techniques, which are hampered by inefficiencies in

compression utilisation and processing delay, frequently result in lengthy transfer times. The

project seeks to drastically reduce transfer times by optimising compression techniques and

using a streaming approach for data processing, resulting in a more streamlined and

responsive data transfer experience.

1.4.2 ENSURING SCALABILITY AND RELIABILITY

In the context of current data transmission demands, the project's emphasis on scalability and

dependability is critical. The usual issues of server failures, resource restrictions, and the

possibility of data loss during concurrent compression requests need a strong solution. The

project secures not only the system's scalability but also its resilience in the face of

unforeseen interruptions by integrating RabbitMQ AMQP and Kubernetes, giving users with

a dependable and uninterrupted cloud data transfer service.

1.4.3 RESOURCE OPTIMIZATION AND COST EFFICIENCY

Efficient resource management is a key component of this project, which is driven by the

need to optimise server resources and decrease operational costs. The system guarantees that

resources are used efficiently by dynamically assigning and scaling compression worker

nodes depending on real-time demand, reducing wasteful server failures and lowering

infrastructure costs. This resource optimisation is critical in today's world, when cost

efficiency and sustainability are top priorities for businesses.

1.4.4 STREAMLINING DATA PROCESSING

The incentive for using a streaming technique for data processing is the potential for it to

revolutionise how files are handled during transit. The streaming strategy, as opposed to

traditional approaches that entail many stages such as downloading, local storage, and later

9

uploading, considerably decreases processing time. This is especially useful for

organisations dealing with massive file volumes that exceed accessible local storage, making

the project's technique not only efficient but also flexible to a variety of storage

circumstances.

1.4.5 ROBUSTNESS AND RELIABILITY ASSURANCE

The project's emphasis on strong error handling techniques is motivated by the significance

of assuring the integrity and dependability of the data transmission process. The system

improves its fault tolerance by incorporating requeuing techniques in the event of node

failures. This resilience means that, even in difficult conditions such as server restarts or

outages, every compression request is finally executed, adding to the overall stability of the

cloud data transmission system.

In short, the relevance and motivation for this research stem from its potential to

revolutionise cloud data transmission procedures. By tackling the inefficiencies, problems,

and constraints of existing methodologies, the project aims to produce a solution that not

only meets but surpasses the expectations of efficiency, scalability, dependability, and

resource optimisation in the changing environment of cloud computing.

10

1.5 ORGANIZATION OF PROJECT REPORT

The project report is organised in a methodical manner, encompassing various stages of

research and development. Each chapter contributes in its own way to offering a

comprehensive knowledge of the project, including its context, implementation, and

consequences.

Chapter 1: Introduction

The opening chapter provides a comprehensive summary of the project, covering the history,

motivation, aims, and technique used. It highlights the limitations of modern cloud data

transport and the novel technique provided to overcome these concerns.

Chapter 2: Literature Review

The second chapter undertakes a thorough literature review to investigate and analyse

existing methods to cloud data transport and compression techniques. This evaluation

outlines the project's background, identifies shortcomings in conventional approaches, and

emphasises the necessity for the suggested creative solution.

Chapter 3: System Development

Chapter 3 delves into the project's heart by revealing the complexities of system

development. It delves into the methodology's implementation, including the integration of

RabbitMQ AMQP, the use of Kubernetes for resource management, and the use of a

streaming approach for efficient data processing. This chapter also provides a detailed

technical overview of how the proposed system works and the reasoning behind design

decisions.

Chapter 4: Testing

The fourth chapter focuses on the thorough testing that was performed to evaluate the

functionality, reliability, and efficiency of the implemented system. It describes the testing

approaches used, such as unit testing, integration testing, and system testing. The results of

these tests are provided and analysed to assure the resilience and efficacy of the established

system.

11

Chapter 5: Results and Evaluation

Chapter 5 is devoted to presenting the testing findings and providing a thorough review of

the system's performance. This section offers quantitative and qualitative assessments that

demonstrate the gains made in data transmission efficiency, scalability, and dependability.

The outcomes are evaluated in light of the project's objectives and expectations.

Chapter 6: Conclusions and Future Prospects

The last chapter summarises the important findings, draws conclusions based on the data and

insights gathered, and examines the project's larger ramifications. It also highlights the future

scope of the study, identifying prospective opportunities for additional research and

development in the realm of cloud data transfer.

In accordance with this organised framework, the project report seeks to give a clear and

complete narrative, taking the reader through the path of ideation, development, testing, and

assessment of the revolutionary cloud data transfer approach.

12

13

CHAPTER 2: LITERATURE SURVEY

2.1 OVERVIEW OF RELEVANT LITERATURE

When it comes to moving data in the cloud, many current methods don't use a smart way to

shrink the size of big files. Even those that try often run into problems with how well they

can handle lots of data and keep everything working smoothly.

The way people usually compress data can be really hard on the computer, and it might even

make the server crash if it doesn't have enough power. Also, using a particular kind of tool

called RESTful API to ask the computer to compress things means we have to wait until it's

all done. If lots of people ask the computer to compress things at the same time, it could

crash, and we might lose some data.

Our solution to these issues is pretty cool. Instead of the usual way, we use a system called

RabbitMQ to ask another computer to compress things for us. We've set up special worker

computers using Kubernetes that are always ready to compress files. The number of these

worker computers changes based on how many compression requests there are: more

requests mean more workers, and when things calm down, we use fewer workers. If a worker

computer has trouble, we try the request again, and the worker computer gets a fresh start.

Inside the worker computer, we use a clever method to get pieces of data from the file we

want to compress. This helps us speed up the whole process and saves us from needing a lot

of space on the computer. This is especially helpful when dealing with really big files that

won't fit in our computer's storage.

Once the compression is done, we organize the results and update a list that keeps track of

where the compressed file is. We also send a message to the person who asked for the

compression, letting them know it's all done.

By using RabbitMQ and Kubernetes, we make sure that even if the computer crashes and

restarts, it will still finish compressing everything. Kubernetes also helps us manage the

14

worker computers efficiently, adding more when needed and reducing them when things

slow down. This way, we use our resources wisely and save money on running the

computers. Our approach is like having a smart team that knows how to handle lots of data

without causing problems.

The authors compared two modes of communication between microservices, RabbitMQ that

is characterized by asynchronous messaging, message queuing, publish-subscribe,

scalability and RESTful APIs characterized by simplicity, statelessness, widespread

adoption, platform-independent. They found that the RESTful APIs suffer from limited

asynchronous support, potential message loss, network overhead in certain cases, tight

coupling in synchronous communication while RabbitMQ requires infrastructure setup,

learning curve, complexity in synchronous communication but has the benefit of scalability,

reliability and asynchronous communication [11].

The study focuses on a Kubernetes-based monitoring platform for dynamic cloud resource

provisioning, highlighting its methodology centered on real-time monitoring within

Kubernetes. Notable advantages include efficiency and scalability, but challenges such as

complexity and a steep learning curve are evident. Recommendations for improvement

include enhancing automation, integrating machine learning, improving usability, and

bolstering security. These enhancements promise to optimise resource management and

performance in dynamic cloud environments, aligning with evolving technological demands

[12].

The research introduces an estimation-based dynamic load-balancing algorithm tailored for

heterogeneous grid computing environments. Methodologically, it focuses on crafting this

algorithm to optimize load distribution. Notable benefits include efficient resource

utilization, dynamic adaptation, and heightened performance and reliability. However,

challenges like the need for precise estimation and implementation complexity exist. To

advance, refining estimation accuracy, simplifying implementation, and integrating machine

learning for resource allocation are suggested. These improvements promise to bolster the

algorithm's efficacy, paving the way for more efficient load balancing in diverse computing

environments [13].

15

The study presents an innovative data-sharing scheme for mobile devices in cloud

computing, where encryption and decryption tasks are executed on the cloud server instead

of local devices. This methodology offers speed advantages for mobile devices. However,

concerns arise regarding reduced security and increased server-side computational load. To

progress, enhancing scalability, fortifying security measures, and optimizing server-side

computation are imperative. Additionally, leveraging heavy compression computation on the

server side enables lightweight functionality for mobile applications, further enhancing

efficiency [14].

The paper examines Docker Cluster Management for the Cloud through a multi-step

methodology involving use case analysis, requirement derivation, tool selection based on

documentation, and rigorous testing. Docker's lightweight and efficient containerization

technology is a notable advantage. However, existing Docker cluster management tools lack

full integration and fail to meet all container management requirements in cloud

environments. Improvement opportunities lie in developing a more integrated and

comprehensive solution, specifically addressing the limitations and challenges of container

management. This research emphasizes Docker's significance in facilitating Kubernetes

deployment [15].

Another study proposes a methodology for cloud application deployment that emphasizes

transient failure recovery. It deploys redundant application instances across multiple cloud

servers, dynamically adjusts resources through auto-scaling, continuously monitors health

with alerts, ensures data integrity, and employs circuit breakers for fault tolerance. Notable

advantages include high availability, improved performance, reduced downtime, data

integrity assurance, and cost-efficiency through optimal resource utilization. However, the

approach introduces increased complexity, potential resource overhead, and additional

development effort. Areas for further improvement include predictive failure analysis,

streamlined implementation, enhanced automation, and integration of advanced recovery

techniques like checkpointing or replication. Addressing these aspects could enhance the

resilience, reliability, and efficiency of cloud application deployments, especially in failure-

prone environments [16].

16

A bibliometric study analyzed research trends and patterns related to Kubernetes as a

standard container orchestrator. The methodology involved using the Bibliometrix R

package to extract and analyze bibliometric data from the Web of Science database. This

approach provides a comprehensive quantitative overview of the research landscape,

identifying current trends, influential works, and potential future directions.

A notable advantage is the ability to systematically map and understand the evolution of this

field. However, limitations include being confined to the Web of Science database,

potentially missing relevant research from other sources, and focusing primarily on

quantitative bibliometric indicators. Areas for improvement could involve combining

bibliometric analysis with qualitative methods, expanding the data sources to include other

databases, preprints, and conference proceedings. This would yield a more holistic

understanding of Kubernetes research while compensating for the limitations of solely

relying on bibliometric data from a single database [17].

This proposed Kubernetes system architecture by the author with a proactive custom

autoscaler using a Bi-LSTM deep learning model is proposed. The Bi-LSTM accurately

predicts future workloads from historical data, outperforming LSTM and ARIMA models.

The planning phase mitigates oscillations and efficiently removes surplus pods during

decreasing workloads for burst handling. Evaluations demonstrate the Bi-LSTM's superior

accuracy, prediction speed, resource provisioning accuracy, and elastic scaling capabilities

compared to existing approaches. The architecture outperforms Kubernetes' default

autoscaler in dynamic resource scaling [18].

17

S. No. Paper Title

Journal/

Conference

(Year)

Tools/

Techniques

/Dataset Pros Cons

1 An Estimation-Based

Dynamic Load

Balancing Algorithm.

[13]

Journal of

Grid

Computing /

2023

Simulation

experiments

based on

GridSim toolkit

Achieved

better

productivity,

high average

resource

utilization.

Evaluated

using

simulation

experiments;

did not

consider the

impact of

network

latency

2 File Transfer on

Cloud using Diffie-

Hellman Key

Exchange in

Conjunction with

AES Encryption [19]

National

College of

Ireland

(2023)

Diffie-Hellman

Key Exchange,

AES

Encryption

Enhanced data

security during

cloud-based

file transfers.

Limited

scalability for

large files

3 An efficient and

secure compression

technique for data

protection using

burrows-wheeler

transform algorithm

[20]

Heliyon /

2023

Burrows-

Wheeler

Transform

Algorithm

Efficient data

compression

and protection.

Limited

application for

specific data

types; might

have varying

effectiveness

for different

file formats.

4 An Efficient

Algorithm for Secure

Key Management in

Cloud Environment

[21]

IEEE

ICONSTEM

(2023)

Secure Key

Management

Algorithm

Efficient

algorithm for

secure key

exchange in

cloud

environments,

addressing key

generation,

distribution,

and storage

Further

validation in

diverse cloud

environments

18

S. No. Paper Title

Journal/

Conference

(Year)

Tools/

Techniques

/Dataset Pros Cons

5 Kubernetes as a

Standard Container

Orchestrator - A

Bibliometric Analysis

[17]

Journal of

Cloud

Computing /

2022

Bibliometrix The analysis

identified the

main research

hotspots like

Auto Scalling

in Kubernetes

Kubernetes not

suitable for low

users

applications

6 Secure Data Transfer

Based on Cloud

Computing [22]

IRJET (Mar

2022)

DPaaS, Diffie

Hellman key

exchange

Improved

Security,

reduced risk

and efficacy

performance

Resource

Constraints;

Security Trade-

offs

7 Password-

Authenticated Key

Exchange from

Group Actions [23]

Annual

International

Cryptology

Conference /

2022

Group Actions

in

Cryptography

Secure

password-

authenticated

key exchange

protocols.

Requires

additional steps

in the

authentication

process; may

have higher

computational

overhead.

8 An efficient and

secure data sharing

scheme for mobile

devices in cloud

computing [14]

Journal of

Cloud

Computing /

2020

Elliptic Curve

Cryptography -

key base

encryption

algorithm

Achieves

lightweight

computation on

mobile devices.

High

computation

task make the

device run out

of memory and

led to app

crash.

9 A Comparison

between RabbitMQ

and RESTful API for

Communication

between

IRJET / 2020 RabbitMQ,

RESTful API,

Database

operations,

AMQP is a

better option as

it improves the

speed and

Performance of

RabbitMQ and

RESTful API

may vary

depending on

19

Table 1: Literature Survey

S. No. Paper Title

Journal/

Conference

(Year)

Tools/

Techniques

/Dataset Pros Cons

Microservices Web

Application [11]

AMQP

protocol

efficiency of

micro-service

the specific

requirements

10 Cloud application

deployment with

transient failure

recovery [16]

Journal of

Grid

Computing /

2018

AURA, a cloud

deployment

system

AURA helps to

minimise

failures and

does not

increase time to

deploy

Slow down

deployment

11 A Kubernetes-Based

Monitoring Platform

for Dynamic Cloud

Resource

Provisioning [12]

IEEE

GLOBECO

M / 2017

Kubernetes

CLI (kubectl),

Apache JMeter,

Docker

Dynamically

adjust resource

provisioning

based on CPU

and memory

utilization.

Tested on a

single

application;

Increased

complexity

12 Docker Cluster

Management for the

Cloud: A

Comprehensive

Survey and Solution

[15]

Journal of

Grid

Computing /

2016

FluentD (data

collection),

Graylog 2

Docker led to

easy

deployment

and

management

Not suitable for

all use cases

since it is time-

consuming to

set up.

20

2.2 KEY GAPS IN THE LITERATURE

The presented text reveals several gaps in the existing literature on cloud data transfer

methodologies. Many current approaches struggle with the efficient reduction of large file

sizes, leading to increased transfer times and a greater demand for storage resources.

Additionally, scalability and reliability concerns arise due to the computational intensity of

compression tasks, risking server crashes, especially in resource-constrained environments.

The reliance on RESTful API for compression exacerbates these challenges, introducing

waiting times and escalating the likelihood of crashes, particularly under concurrent user

requests.

The proposed solution introduces a novel approach using RabbitMQ and Kubernetes,

offloading compression tasks to dedicated worker computers and dynamically adjusting their

numbers based on request volumes, addressing scalability and reliability issues. This

innovative method also minimizes the risk of server crashes, efficiently manages

computational demands, and enhances fault tolerance. Furthermore, the approach introduces

a space-efficient data processing method within worker computers, optimizing storage space

utilization.

Real-time updates and notifications, facilitated by RabbitMQ, ensure users are promptly

informed upon completion of compression tasks, enhancing the overall user experience and

system transparency. In essence, the proposed methodology not only addresses these

identified gaps but sets a forward-looking standard for efficient and reliable cloud data

transfer.

21

CHAPTER 3: SYSTEM DEVELOPMENT

3.1 REQUIREMENTS AND ANALYSIS

A detailed examination of current ways to secure cloud data transfer finds a common

shortcoming in successfully using compression techniques to meet the constraints posed by

huge file sizes. Despite embracing compression, many previous systems struggle with

scalability and reliability difficulties. This research emphasises the vital importance of a

paradigm shift in tackling these difficulties in order to assure a more efficient and trustworthy

cloud data transport infrastructure.

The computational intensity associated with compression job execution appears as a major

challenge. The possibility of server failures looms large, especially when the server lacks the

requisite capabilities to meet the processing demands. This vulnerability not only jeopardises

the system's stability, but it also raises worries about potential data loss, which is crucial in

any data-centric application.

The use of RESTful API for compression requests adds another degree of complication.

Because of the sequential nature of RESTful API, it is necessary to wait for the compression

process to be completed before replying to user queries. This not only affects system

responsiveness but also increases the chance of server failures, especially in cases with

numerous users submitting compression requests at the same time. The combination of these

difficulties creates a significant risk to the integrity and stability of the data transmission

process.

The combination of Kubernetes and RabbitMQ emerges as a strategic requirement to handle

these complexities and improve the overall system design. Kubernetes' dynamic scaling

features protect against server problems caused by computational intensity. Kubernetes

guarantees optimal resource utilisation by automatically distributing compression worker

nodes based on the length of the compression request queue. This dynamic scaling approach

not only reduces the chance of server breakdowns, but it also promotes scalability, allowing

the system to handle variable workloads with ease.

22

Simultaneously, RabbitMQ delivers a queuing system that decouples compression requests

from direct RESTful API calls via its Advanced Message Queuing Protocol (AMQP). This

deliberate decoupling not only avoids the need to wait for the compression process to

complete before replying to users, but it also guarantees that requests are processed in an

ordered manner. The queuing mechanism speeds up the processing of requests even if the

server restarts, contributing to the system's stability and fault tolerance.

In summary, the requirements analysis emphasises the need for a sophisticated solution that

handles the issues given by enormous file quantities, processing intensity, and probable

server breakdowns. The combination of Kubernetes with RabbitMQ is a critical step towards

developing a strong and scalable cloud data transmission system that not only overcomes

existing shortcomings but also establishes a precedent for more effective and dependable

data processing in cloud settings.

3.2 PROJECT DESIGN AND ARCHITECTURE

Many contemporary approaches to cloud data transfer lack effective utilization of

compression techniques for the reduction of large file volumes. Furthermore, among those

that do employ compression, a deficiency in scalability and reliability is frequently observed.

The implementation of compression tasks is computationally intensive, posing the risk of

server crashes in instances where the server lacks adequate resources. The use of RESTful

API for compression requests exacerbates this issue, as it necessitates waiting until the

compression process is complete. Concurrent submission of compression requests by

multiple users further amplifies the risk of server crashes, potentially resulting in data loss.

Our approach involves using RabbitMQ Advanced Message Queuing Protocol (AMQP) to

route compression requests to a different server's dedicated queue [14]. We used Kubernetes

to construct compression worker nodes that continually check the queue for incoming

requests. The length of the compression request queue determines the dynamic allocation of

nodes: as the queue length rises, new nodes are deployed to handle requests, and when the

queue length reaches zero, excess nodes are scaled down. If a node fails while processing a

request, the request is requeued and the node is restarted.

23

We use a streaming technique within the compression node to obtain file byte data from

Amazon S3. As depicted in Figure 1, the compression algorithm analyzes the streaming byte

data, and the resultant compressed file byte stream is transmitted to the S3 uploader.

Figure 1: Compression Node Pseudo Code

Unlike the conventional strategy, which entails waiting for a file download, storing locally,

compressing, and then uploading to S3, as seen in Figure 2, our streaming byte data method

greatly decreases processing time and the requirement for considerable server storage space.

This is very useful when compressing files with bigger sizes than the available local storage.

24

Figure 2: File Compression Optimised Approach

Figure 3: File Compression Default Approach

The conventional approach, in figure 3 for handling file uploads and storage involves waiting

for the entire file to be uploaded and stored locally on the server. Once fully uploaded, the

server reads the complete file from local storage into memory, compresses the file data using

an algorithm like gzip or bzip2, writes the compressed data back to local storage, and finally

uploads the compressed file to a remote storage service like Amazon S3. This method

requires sufficient local storage space to temporarily hold both the original and compressed

versions of potentially large files. Additionally, the multiple read/write operations to local

25

storage can be slow and inefficient, and holding the entire file in memory during compression

can strain the server's memory resources for very large files.

In contrast, the streaming byte data method (in figure 2) streamlines this process by

eliminating the need for excessive local storage and reducing memory usage. As the file is

being uploaded, the server reads the incoming byte stream directly from the network socket,

without storing the entire file locally.

The byte stream is simultaneously compressed on-the-fly using a compression algorithm like

gzip or bzip2, without storing the original file data in memory. The compressed byte stream

is then immediately uploaded to the remote storage service without any intermediate local

storage.

This approach significantly reduces the need for local storage space, as the original file is

never stored locally. By avoiding storing the entire file in memory, it also reduces the

memory footprint, making it more suitable for handling very large files. The compression

and uploading happen concurrently as the file is being uploaded, resulting in faster

processing times, especially for large files. It eliminates the multiple read/write operations

to local storage, improving overall efficiency.

Upon completing the compression process, the results are dispatched to a designated result

queue. The compressed file's key and URL are updated in the database, and a notification

email is sent to the user with whom the file is shared.

26

Figure 4: Result Queue Pseudo Code

The usage of RabbitMQ ensures that each request is eventually processed, even if the server

restarts after a crash, ensuring dependability. Kubernetes is critical in dynamically expanding

compression worker nodes to handle rising request volumes, allowing for quicker user

request processing. Furthermore, it assists in scaling down nodes once all requests have been

satisfied, optimising resource utilisation and lowering expenses.

RabbitMQ and Kubernetes work together to optimise load balancing and strengthen our

system's stability. RabbitMQ orchestrates a decentralised queue system by implementing the

Advanced Message Queuing Protocol (AMQP), in which compression requests are sent to a

dedicated queue on a different server [22]. At the same time, Kubernetes manages the

dynamic scaling of compression worker nodes in response to the changing length of the

compression request queue.

As the demand for compression activities fluctuates, this dynamic placement of nodes

guarantees an optimal distribution of processing resources. Furthermore, RabbitMQ's

dedication to permanent message storage and delivery techniques ensures the eventual

27

execution of every request, even in the face of server restarts following a crash, reinforcing

our system's stability.

Kubernetes, on the other hand, is critical in dynamically altering the number of compression

worker nodes based on system demand, reducing resource fatigue and potential server

failures. The orchestration platform also aids in fault recovery by restarting compression

nodes automatically in the case of faults during request processing. RabbitMQ and

Kubernetes' seamless collaboration not only improves load balancing but also optimises

resource use, enabling a durable and responsive cloud data transmission architecture.

28

Figure 5: Architecture of our proposed solution with Kubernetes and RabbitMQ

29

Following Figure 5, the architecture of our proposed solution is a testament to the synergy

between modern cloud infrastructure management and message queuing technologies. The

diagram provides a visual representation of the intricate system designed to enhance the

efficiency and reliability of cloud data transfer, particularly when dealing with large files that

require compression.

Kubernetes Control Panel and Worker Nodes:

At the core of the architecture lies the Kubernetes Control Panel, which serves as the

command center for orchestrating the deployment and management of containerized

Compression Worker nodes. These nodes are dynamically provisioned across a cluster of

servers, ensuring that the system can scale horizontally to meet varying demand levels. The

Kubernetes Control Panel monitors the length of the compression request queue and adjusts

the number of active worker nodes accordingly. This elasticity is crucial for maintaining high

availability and performance without incurring unnecessary costs due to over-provisioning.

RabbitMQ Queuing System:

RabbitMQ plays a pivotal role in the architecture, acting as the message broker that

decouples the compression tasks from the main application server. By routing compression

requests to a dedicated queue, RabbitMQ ensures that the system can handle a high volume

of concurrent requests without the risk of server crashes. This queuing system also provides

resilience, as it can requeue tasks in the event of node failure, ensuring that no request is lost.

Amazon S3 Storage Integration:

The architecture seamlessly integrates with Amazon S3, a scalable cloud storage solution, to

store and retrieve file data. The use of S3 allows the system to leverage AWS's robust

infrastructure for data durability and accessibility. The streaming technique employed by the

Compression Worker nodes to interact with S3 storage minimizes the need for local storage

and reduces the memory footprint, which is particularly beneficial when processing large

files.

Email Notification System:

30

An automated email notification system is incorporated into the architecture to inform users

of the completion of compression tasks. This system is triggered once the compressed file is

successfully uploaded back to S3 and the database is updated with the new file key and URL.

The email notification provides users with a link to access the compressed file, enhancing

the user experience by keeping them informed and engaged.

Database and Code Repository:

The architecture includes a database component, which is responsible for maintaining

records of file metadata, compression results, and user information. This database is essential

for tracking the state of each file throughout its lifecycle in the system. Additionally, a code

repository is included to manage the versioning and deployment of the system's codebase,

ensuring that updates and maintenance can be performed with minimal disruption.

In conclusion, the architecture depicted in Figure 5 is a robust and scalable solution for cloud

data transfer and compression. It leverages the strengths of Kubernetes for container

orchestration and RabbitMQ for message queuing, combined with the reliability of Amazon

S3 storage. This design ensures that the system can handle large-scale compression tasks

with high efficiency and reliability, providing a seamless experience for users and

maintaining the integrity of their data.

31

3.3 IMPLEMENTATION

3.3.1 COMPRESSION WORKER

This Node.js script is intended to be a consumer of a RabbitMQ message queue, especially

the "compression_request_queue." Its major goal is to process incoming messages by

extracting information, getting a corresponding video file from AWS S3, compressing the

video with FFmpeg, and then sending the compressed video back to S3.

The AWS S3 setup is set up with the AWS SDK and credentials obtained via environment

variables. Similarly, the RabbitMQ connection URL is retrieved from the environment

variables. To manage promises efficiently, the script makes use of asynchronous functions

and the 'await' keyword. Temporary files are created with the 'tmp' library and are deleted

after the compression operation is finished.

Following a successful compression and upload, the script sends a message to a new

RabbitMQ queue called "compression_result_queue," which contains information about the

compressed movie. To provide resilience, the entire process is encased behind a thorough

error-handling structure. In summary, this script connects RabbitMQ with AWS S3, resulting

in a video compression service that listens for requests, compresses them, and sends the

results via a separate message queue.

32

def consume_messages():

 try:

 queue_name = "compression_request_queue"

 connection = amqp.connect(rabbitmqURL)

 channel = connection.create_channel()

 channel.queue_declare(queue=queue_name, durable=False)

 print(f"Waiting for messages from queue \"{queue_name}\"...")

 def callback(ch, method, properties, body):

 json_message = json.loads(body)

 print(f"Received message from queue \"{queue_name}\":", json_message)

 s3_key = json_message["s3Key"]

 download_params = {"Key": s3_key, "Bucket": os.getenv("AWS_S3_BUCKET")}

 download_stream = s3.get_object(**download_params)["Body"].read()

 tmp_file = tmp.NamedTemporaryFile(delete=False,

suffix=os.path.splitext(s3_key)[1])

 output_file_path = tmp_file.name

 ffmpeg.input("pipe:").output(output_file_path).run(input_data=download_stream)

 upload_params = {"Key": f"compressed_{s3_key}", "Body":

open(output_file_path, "rb"), "Bucket": os.getenv("AWS_S3_BUCKET")}

 upload_result = s3.upload_file(**upload_params)

 print(upload_result)

 send_to_compression_result_queue({

 "CompressedFileUrl": upload_result["Location"],

 "CompressedFilekey": upload_result["Key"],

 "shareid": json_message["shareid"]

 })

 print("Compression Done")

 ch.basic_ack(delivery_tag=method.delivery_tag)

 channel.basic_consume(queue=queue_name, on_message_callback=callback)

 channel.start_consuming()

 except Exception as error:

 print("Error:", error)

33

3.3.2 COMPRESSION RESULT PROCESSING WORKER CODE

The provided code defines a Node.js function intended for consuming messages from a

RabbitMQ queue named "compression_result_queue." The function establishes a connection

to the RabbitMQ server using the AMQP library and processes incoming messages

asynchronously. Upon receiving a message, the function parses it as JSON and updates a

document in a MongoDB collection using Mongoose. Specifically, it sets properties related

to the compression status and the location of the compressed file. Subsequently, the function

triggers an email notification using the email-handler utility, providing details such as the

sender's name, the file's download URL, and the email address of the recipient. Finally, the

function acknowledges the receipt of the message to RabbitMQ.

In summary, this code segment is responsible for handling messages from the

"compression_result_queue," updating a MongoDB document with compression-related

information, sending an email notification, and acknowledging the message receipt.

34

const amqp = require("amqplib");

const fileShareModel = require("../models/fileShareModel");

const emailHandler = require("../utils/email-handler.js");

const rabbitmqURL = process.env.AMQP_URL;

async function consumeMessages_compression_result_queue() {

 try {

 const queueName = "compression_result_queue";

 const connection = await amqp.connect(rabbitmqURL);

 const channel = await connection.createChannel();

 channel.prefetch(1);

 await channel.assertQueue(queueName, { durable: false });

 console.log(`Waiting for messages from queue "${queueName}"...`);

 channel.consume(queueName, async (message) => {

 if (message !== null) {

 const jsonMessage = JSON.parse(message.content.toString());

 console.log(`Received message from queue "${queueName}":`, jsonMessage);

 const uploadResult = await fileShareModel.findOneAndUpdate(

 { shareid: jsonMessage.shareid },

 {

 "file.compressed": true,

 "file.location": jsonMessage.CompressedFileUrl,

 "file.key": jsonMessage.CompressedFilekey,

 },

 { new: true }

);

 console.log(jsonMessage.shareid);

 emailHandler.sendFileSharingEmail({

 senderName: uploadResult.file.shared_by,

 fileUrl: process.env.BaseUrl + "/download/" + uploadResult.shareid,

 emailReceiver: "<" + uploadResult.email + ">",

 });

 console.log("Email sent to: ", uploadResult.email);

 channel.ack(message);

 }

 });

 } catch (error) {

 console.error("Error:", error);

 }

}

module.exports = consumeMessages_compression_result_queue;

35

3.4 WEB INTERFACE

Our user-centric web interface acts as the user-centric gateway to our secure cloud data

transfer system, guaranteeing a smooth and straightforward experience throughout the data

transfer lifecycle.

3.4.1 AUTHENTICATION AND REGISTRATION

The registration and authentication module ensures that users have a safe onboarding

experience. Users may easily register accounts using a simplified registration interface, and

sophisticated authentication procedures protect user data and provide secure access to the

system.

Figure 6: Login Page Interface

36

Figure 6 showcases the login page interface, designed with simplicity and security in mind.

Upon accessing our platform, users are greeted with a clean and intuitive login page. Here,

users can securely log in to their accounts by entering their credentials, which are verified

through robust authentication procedures before granting access to the system.

Figure 7: Signup Page Interface

Figure 7 presents the signup page interface, providing users with a straightforward

registration process. Our signup page is designed to streamline the account creation process,

guiding users through a series of minimalistic and easy-to-follow steps. Users are prompted

to input necessary registration details, such as username, email address, and password,

ensuring a seamless registration experience. Behind the scenes, advanced authentication

protocols safeguard user data, including encryption techniques and secure password hashing,

to fortify the integrity of user accounts and protect against unauthorized access.

By leveraging these intuitive registration and authentication interfaces, we prioritize both

user convenience and data security, fostering trust and confidence in our platform's user

experience.

37

3.4.2 UPLOAD INTERFACE

The upload interface is intended to be simple and efficient. Users may easily upload files by

utilising an easy and user-friendly interface. This module supports a wide range of file types

and sizes, allowing users to easily begin the data transfer process.

Figure 8: Upload File Interface

3.4.3 SHARE INTERFACE(S)

Sharing data securely is a key feature made possible by our online interface. The share

interface allows users to designate recipients and define access rights, allowing for regulated

and secure file sharing. This feature improves user collaboration and information

distribution.

38

Figure 9: Share File Without Compression Interface

Figure 10: Share File With Compression Interface

39

3.4.4 EMAIL NOTIFICATION

Our system relies on keeping users informed. The email notification module delivers

automatic emails to users when compression procedures are completed successfully. This

not only keeps consumers informed, but also allows them to track and regulate their data

flows.

Figure 11: Email Notification Screenshot

40

3.4.5 DOWNLOAD INTERFACE

The download interface facilitates the retrieval of compressed files with simplicity and

speed. Users can access their shared files securely through a dedicated download interface,

completing the data transfer cycle seamlessly.

Figure 12: Download File Interface

3.4.6 SYSTEM INTERFACE FLOWCHART

To provide a comprehensive understanding of the user journey within our web interface, we

have included a detailed flowchart that visually represents the interaction between the

various modules and interfaces of our system.

Figure 13 illustrates the flow of actions a user can take, from logging in or signing up for an

account to uploading, sharing, and downloading files. This flowchart serves as a visual guide

to the logical sequence of operations and decision points that users encounter as they navigate

through our secure cloud data transfer system.

41

Figure 13: System Interface Flowchart

42

3.5 KEY CHALLENGES

a. Managing Large Tasks Without Crashing

The Problem: When dealing with large amounts of data, our servers might get overburdened

and crash. This is equivalent to carrying too much and dropping everything. How We Dealt

With It: Kubernetes, our virtual manager, comes into play. It's like having a super-smart

organiser who calls in reinforcements (compression worker nodes) when the job becomes

too much. These worker nodes handle the hard labour and elegantly quit when finished. This

dynamic scaling aids in the prevention of server crashes.

b. Making Compression Dependable and Versatile

The Problem: Some data compression technologies are ineffective when dealing with large

numbers of users or complex jobs. It's like trying to cram too much into a tight box - things

might get out of hand.

How We Dealt With It: Kubernetes takes another step forward. It monitors the compression

request queue and modifies the number of compression worker nodes based on the amount

of jobs that are waiting. As a result, our system remains adaptable and dependable, smoothly

handling shifting workloads. RabbitMQ also helps to keep things organised by ensuring that

compression requests are fulfilled in a timely way.

c. Avoiding Chaos with a Large Number of Users

The Problem: Imagine everyone trying to compress their files at the same time; this might

cause pandemonium and perhaps destroy our system.

How We Dealt With It: We utilise RabbitMQ to construct a queue or queue for compression

requests rather than permitting a free-for-all. Each request waits patiently for its time,

avoiding a chaotic rush. This not only maintains order but also decreases the danger of server

breakdowns during periods of high user activity.

d. Even after a crash, data can be saved.

The Problem: Server breakdowns are like unforeseen obstacles, and if not managed

appropriately, they can result in data loss.

43

How We Dealt With It: RabbitMQ demonstrates its tenacity once more. It maintains track of

all compression requests that are queued. So, even if our server crashes and has to restart, it

resumes where it left off, guaranteeing that no data is lost. Furthermore, if a compression

worker node meets a problem, the request is simply requeued, and the node is given another

opportunity.

e. Streaming allows you to complete tasks more quickly.

The Difficulty: Traditional techniques entail a step-by-step procedure of obtaining files,

storing them, compressing them, and finally uploading. It takes time and space to make a

sandwich, wrap it, and then consume it.

How We Dealt With It: We used a streaming strategy, which is similar to constructing a

sandwich on the go. We process huge files in real-time instead of downloading and storing

them. This not only expedites the process but also reduces the need for large amounts of

server storage space, making it more efficient and agile.

44

45

CHAPTER 4: TESTING

4.1 TESTING STRATEGY

In the development of our secure cloud data transfer system, a comprehensive testing strategy

has been devised to ensure the reliability and functionality of the entire system. This strategy

encompasses multiple levels of testing, each designed to address specific aspects of the

system's performance and security.

At the foundational level, unit testing focuses on verifying the functionality of individual

components, such as compression nodes, RabbitMQ integration, and Kubernetes scaling

mechanisms. This ensures that each component operates as intended in isolation. Moving to

integration testing, we assess the seamless interaction between different system components,

evaluating communication channels and ensuring integrated components work together

without errors.

System testing, a pivotal phase, involves end-to-end tests that simulate real-world user

scenarios. This includes assessing compression requests, dynamic scaling, and database

updates. Furthermore, performance testing evaluates the system's responsiveness and

resource utilization under various conditions, such as high loads and concurrent user

requests. Security testing, a critical aspect, aims to identify and address potential

vulnerabilities in the data transfer process, including penetration testing and access control

assessments.

Scalability testing explores the system's ability to adapt to varying workloads by simulating

increasing compression requests and observing how Kubernetes scales compression worker

nodes. Lastly, reliability and recovery testing intentionally induces failures and crashes to

observe how the system recovers, ensuring data consistency even in unexpected scenarios.

4.1.1 LOCUST TESTING

As a pivotal component of our comprehensive testing strategy, Locust testing and stress

testing play distinctive roles in ensuring the robustness and reliability of our secure cloud

data transfer system.

46

Locust testing is a targeted approach aimed at examining specific focal points or critical areas

within the system. In the context of our secure cloud data transfer, Locust testing involves a

meticulous examination of key functionalities, components, or modules. This focused testing

strategy allows us to ensure that critical aspects, such as the compression algorithm,

RabbitMQ integration, and Kubernetes dynamic scaling, perform optimally under varying

conditions [24].

For example, in Locust testing of the compression algorithm, we scrutinize its efficiency,

accuracy, and ability to handle diverse file types. Similarly, Locust testing of RabbitMQ

assesses its message queuing capabilities, ensuring that compression requests are

appropriately queued and processed in the desired order. Locust testing aids in identifying

and rectifying issues specific to crucial components, contributing to the overall reliability of

the system [25].

4.1.2 STRESS TESTING

Stress testing, on the other hand, is designed to evaluate the system's robustness under

extreme conditions and beyond its anticipated operational capacity. This type of testing

simulates scenarios where the system is subjected to high loads, concurrent user requests, or

resource constraints to assess its performance boundaries and potential points of failure.

In the context of our secure cloud data transfer system, stress testing involves pushing the

system to its limits in terms of compression requests, file sizes, and concurrent user

interactions. By doing so, we aim to identify how the system behaves under intense pressure,

uncover potential bottlenecks, and ensure that it gracefully degrades rather than failing

catastrophically. Stress testing is crucial for understanding the system's scalability, resource

utilization, and its ability to recover from adverse conditions.

In summary, while Locust testing hones in on specific critical areas, stress testing takes a

more holistic approach by subjecting the entire system to extreme conditions. Together, these

testing methodologies contribute to a robust testing strategy that ensures the resilience and

reliability of our secure cloud data transfer system across various scenarios and usage

patterns.

47

4.2 TEST CASES AND OUTCOMES

Within these testing categories, specific test cases have been developed to assess critical

functionalities. In the compression process category, test cases focus on validating the

accuracy of file compression and ensuring that compressed data aligns with expectations.

Queue management test cases simulate different scenarios of compression requests in the

queue, evaluating how RabbitMQ handles queuing to maintain the correct order of

processing.

Dynamic scaling scenarios are tested to trigger varying compression request loads and

observe Kubernetes' response, confirming its ability to dynamically scale compression

worker nodes based on workload changes. Additionally, data integrity test cases assess the

accuracy and consistency of data updates in the database after the completion of the

compression process.

This comprehensive set of test cases ensures that the system not only meets functional

requirements but also performs reliably, securely, and efficiently under diverse conditions.

The outcomes of these tests will guide us in refining and optimizing the system to deliver a

secure and robust cloud data transfer solution.

48

49

CHAPTER 5: RESULTS AND EVALUATION

5.1 RESULTS

In our study, we conducted a comprehensive comparison of three deployment scenarios for

the cloud data transfer and compression system: a single instance setup, deployment with

Kubernetes autoscaling with max allowed nodes set as 5, and deployment with Kubernetes

scaling based on compression queue length in RabbitMQ with max allowed nodes set as 5

and scale at multiple of 5 requests.

Single Instance Deployment:

The single instance deployment served as the baseline for our comparison. In this

configuration, a lone server handled compression requests without dynamic scaling

capabilities. The results indicated limitations in handling concurrent requests, leading to

potential bottlenecks during periods of high demand. The lack of scalability resulted in

longer processing times and an increased risk of server crashes, especially under heavy

workloads.

Kubernetes Autoscaling Deployment:

The Kubernetes autoscaling deployment demonstrated significant improvements in

performance and reliability. By leveraging Kubernetes, the system dynamically allocated

and unallocated compression worker nodes based on overall demand. The autoscaling

mechanism effectively managed varying compression queue lengths, ensuring optimal

resource utilization. This approach resulted in faster request processing times, improved

system responsiveness, and a reduced likelihood of server crashes under varying workloads.

Kubernetes Scaling based on Compression Queue Length:

Our innovative approach involved dynamically scaling compression worker nodes based on

the length of the compression request queue in RabbitMQ. As the queue length increased,

new nodes were deployed to handle the surge in requests, and surplus nodes were scaled

down during periods of low demand. This strategy exhibited superior adaptability to

fluctuations in workload, offering an efficient balance between resource utilization and

responsiveness. The dynamic scaling based on compression queue length proved effective

in preventing potential bottlenecks and optimizing overall system performance.

50

For the same compute power resources, we will be taking 5 single instances and a kubernetes

cluster with scaling between 0 to 5 nodes. In single instances we can’t scale down when we

don’t require and hence we get a fixed cost that is usually high. Whereas in kubernetes with

auto scaling we can switch the numbers of nodes running according to the processing demand

required to write now. We have assumed here that all requests are sent in batches at the start

of the hour.

Figure 14: Compute Time Comparison Between Different Approaches Graph

No of requests send

in Single Instance

Kubernetes

(Default Autoscale,

max_pods=5)

Kubernetes

(Custom Autoscale,

max_pods=5)

10 3.0 3.0 1.8

100 30.0 16.7 6.4

500 150.0 132.5 32.2

1000 300.0 246.7 64.2

Table 2: Compute Time Comparison Between Single Instance, Kubernetes Autoscaling,

and Kubernetes Scaling based on Queue Length

The comparison highlights the substantial benefits of leveraging Kubernetes for dynamic

scaling in cloud data transfer and compression systems. While Kubernetes autoscaling

provides an effective solution, our innovative approach of scaling based on compression

51

queue length in RabbitMQ offers additional advantages in terms of adaptability and resource

optimization.

The choice between these approaches depends on specific performance requirements,

workload characteristics, and cost considerations. Ultimately, our methodology provides a

flexible framework that can be tailored to meet diverse operational needs in cloud-based data

transfer and compression scenarios.

Figure 15: Absolute Cost Comparison Between Different Approaches Graph

No of Compression

request Single Instance

Kubernetes

(Default Autoscale,

max_pods=5)

Kubernetes

(Custom Autoscale,

max_pods=5)

10 0.0667 0.0800 0.0815

100 0.6667 0.7144 0.7430

500 3.3333 3.4333 3.5741

1000 6.6667 6.5778 7.1296

Table 3: Absolute Cost Comparison Between Single Instance, Kubernetes Autoscaling, and

Kubernetes Scaling based on Queue Length Graph

52

The table 3 compares the absolute cost between three different configurations: a single

instance, Kubernetes with default autoscaling with a maximum of 5 pods, and Kubernetes

with custom auto scaling also with a maximum of 5 pods. For a workload of 10 units, the

single instance had the lowest absolute cost at 0.0667, followed by the default Kubernetes

autoscaling at 0.0800, and the custom Kubernetes autoscaling was highest at 0.0815.

As the workload increased to 100 units, the single instance cost was 0.6667, the default auto

scaling was 0.7144, and the custom scaling was 0.7430. At 500 units, the single instance was

3.3333, default scaling 3.4333, and custom scaling the highest at 3.5741. However, when the

workload reached 1000 units, the custom Kubernetes autoscaling configuration had the

lowest absolute cost at 7.1296, compared to 6.6667 for the single instance and 6.5778 for the

default autoscaling.

This suggests that for higher workloads, the custom Kubernetes autoscaling configuration

becomes more cost-effective than a single instance or the default auto scaling settings. The

ability to customize the scaling allowed better utilization of resources as demands increased.

But for lighter workloads up to 500 units, the single instance was the most cost-efficient

option based on this data with a maximum of 5 pods.

53

Figure 16: Compute Time vs Max Node Graph

Max_Node value set as Time to Compute (in minutes)

Max_Node = 5 30

Max_Node = 7 21.5

Max_Node = 10 15

Table 4: Compute Time vs Max Node Graph

The table 4 presents data that compares the compute time required for different maximum

node configurations in a system or environment. Specifically, it showcases the compute time

when the maximum number of nodes is set to 5, 7, and 10, respectively.

From the data, it is evident that increasing the maximum number of nodes results in a

reduction in the compute time required to complete a task or process. When the maximum

number of nodes is set to 5, the compute time is 30 units. However, when the maximum

number of nodes is increased to 7, the compute time decreases to 21.5 units, reflecting a

significant improvement in performance.

Further increasing the maximum number of nodes to 10 leads to an even greater reduction

in compute time, with the value dropping to 15 units. This trend suggests that allocating more

54

nodes to the system can effectively distribute the workload across multiple resources, leading

to faster computation and improved overall performance.

It is important to note that while increasing the maximum number of nodes can enhance the

compute time, there may be trade-offs in terms of resource utilization, cost, and system

complexity. Determining the optimal number of nodes often involves balancing these factors

based on the specific requirements and constraints of the application or environment.

Additionally, it would be beneficial to have more data points or a broader range of maximum

node values to better understand the relationship between the number of nodes and compute

time. This could provide insights into potential diminishing returns or other non-linear

behaviors that may arise as the number of nodes increases further.

5.2 COMPARISON WITH EXISTING SOLUTIONS

The table compares three approaches to Kubernetes scaling: Single Instance, Kubernetes

Autoscaling, and Kubernetes Scaling based on Queue Length, across key metrics such as

scalability, reliability, processing time, and cost.

In terms of scalability, the Single Instance approach is limited, while Kubernetes Autoscaling

shows improved scalability, and Kubernetes Scaling based on Queue Length demonstrates

optimized scalability.

Regarding reliability, the Single Instance method poses a higher risk of server crashes,

particularly during peak loads. In contrast, Kubernetes Autoscaling enhances reliability

through dynamic node management, and Kubernetes Scaling based on Queue Length

achieves improved reliability by proactively scaling based on workload.

In processing time, the Single Instance has longer processing times, while Kubernetes

Autoscaling reduces processing times through dynamic scaling. Kubernetes Scaling based

on Queue Length goes further by achieving additional reductions in processing times with

adaptive scaling.

55

Lastly, the cost aspect indicates that the Single Instance approach results in suboptimal

resource usage and increased costs. Kubernetes Autoscaling enables efficient resource

utilization, making it cost-effective. Meanwhile, Kubernetes Scaling based on Queue Length

optimizes resource usage and is associated with cost-efficient scaling strategies.

 Single Instance Kubernetes

Autoscaling

Kubernetes Scaling

based on Queue

Length

Scalability Limited Improved scalability Optimized scalability

Reliability Higher risk of server

crashes, especially

during peak loads

Enhanced reliability

through dynamic node

management

Improved reliability,

proactive scaling based

on workload

Processing Time Longer processing

times

 Reduced processing

times due to dynamic

scaling

Further reduction in

processing times with

adaptive scaling

Cost Suboptimal resource

usage, increased costs

Efficient resource

utilization, cost-

effective

Optimized resource

usage, cost-efficient

scaling

Table 5: Comparing Single Instance, Kubernetes Autoscaling, and Kubernetes Scaling

based on Queue Length

56

Figure 17: Monthly Cost Comparison Between Different Approaches Graph

Number of requests

processed per hour

Monthly Cost (in USD)

Single Instance

(5 replicas)

Kubernetes

(Default Autoscale,

max_pods=5)

Kubernetes

(Custom Autoscale,

max_pods=5)

10 60.000 0.720 0.733

100 60.000 4.000 6.417

500 60.000 31.800 32.167

Table 6: Monthly Cost Comparing Single Instance, Kubernetes Autoscaling, and

Kubernetes Scaling based on Queue Length

The comparison of deployment strategies in table 6 and figure 16, reveals the cost advantages

of leveraging Kubernetes autoscaling, especially when dealing with high traffic volumes or

fluctuating demand. As the number of requests per hour increases, the cost benefits of

Kubernetes autoscaling become more pronounced compared to a single instance deployment.

For lower request rates, the cost differences between the deployment strategies are relatively

minor, with the single instance being the most expensive option, followed by the default

57

Kubernetes autoscaling and the custom Kubernetes autoscaling with a maximum of 5 pods

being slightly higher than the default autoscaling.

However, as the request rate rises, the cost advantage of Kubernetes autoscaling becomes

apparent. The single instance cost remains fixed, while the default Kubernetes autoscaling

and the custom Kubernetes autoscaling with a maximum of 5 pods exhibit potential cost

savings compared to the single instance deployment.

The cost savings of Kubernetes autoscaling are most significant at higher request rates. In

these scenarios, the single instance cost remains the highest, but the default Kubernetes

autoscaling cost and the custom Kubernetes autoscaling with a maximum of 5 pods cost are

substantially lower, representing substantial cost reductions compared to the single instance

deployment.

The data demonstrates that Kubernetes autoscaling can optimize resource utilization and

reduce operational costs by dynamically adjusting the number of pods based on the load.

This makes Kubernetes autoscaling an attractive solution for enterprises seeking to maximize

resource efficiency, minimize infrastructure expenses, and maintain high availability and

scalability for their applications, particularly in scenarios with high traffic volumes or

fluctuating demand.

58

59

Chapter 6: CONCLUSIONS AND FUTURE

SCOPE

6.1 CONCLUSION

In this comprehensive exploration of secure cloud data transfer, our methodology, anchored

by the symbiotic relationship between RabbitMQ's Advanced Message Queuing Protocol

(AMQP) and Kubernetes, has demonstrated noteworthy achievements in addressing

fundamental challenges. The strategic allocation of compression worker nodes dynamically

based on queue length has proven to be a resilient solution, ensuring not only efficient

resource utilization but also the scalability and reliability necessary for handling diverse

workloads.

The adoption of a streaming approach for file byte data processing from S3 marks a paradigm

shift in traditional methods. By circumventing the need for intermediate steps such as local

saving, this approach significantly diminishes processing time and minimizes the demand

for extensive server storage space. This innovation proves particularly advantageous when

dealing with large file volumes, enhancing the overall efficiency and responsiveness of the

data transfer process.

However, a nuanced acknowledgment of the project's limitations is imperative. The

computational intensity inherent in compression tasks remains a persistent challenge, albeit

mitigated through the dynamic scaling capabilities of Kubernetes. Continuous vigilance and

proactive measures are essential to fortify the system against potential security threats,

emphasizing the need for perpetual advancements in security protocols.

Contributions to the field are substantial, encompassing a pioneering approach to cloud data

transfer that marries message queuing and dynamic scaling. This amalgamation not only

confronts existing challenges head-on but also establishes a blueprint for creating systems

that are not only scalable and reliable but also secure in cloud environments.

In concluding, while celebrating the successes and strengths of our methodology, it is

paramount to recognize that technological landscapes are dynamic. Future iterations of this

60

project will inevitably involve refinements and enhancements. The collaborative nature of

the cloud computing domain encourages ongoing exploration and innovation, urging us to

stay agile and receptive to emerging trends and technologies.

The conclusion, therefore, marks not the termination but a transition point—a juncture from

which we propel ourselves into a future where cloud data transfer systems are not only robust

and secure but also adaptive and innovative in the face of evolving technological landscapes.

6.2 FUTURE SCOPE

Looking ahead, the future scope of our secure cloud data transfer project extends beyond

immediate optimizations. One avenue for exploration involves the integration of edge

computing to decentralize data processing, potentially reducing latency and enhancing the

overall user experience. By distributing compression tasks closer to the data source, we could

further streamline the transfer process.

Moreover, a future direction could involve the implementation of a user-friendly interface

and dashboard, providing clients with transparent insights into the status of their compression

requests, resource utilization, and overall system performance. This not only enhances user

experience but also empowers users with more control and visibility into the data transfer

process.

In the realm of security, ongoing efforts will be dedicated to staying abreast of emerging

threats and implementing advanced encryption techniques. Continuous monitoring and

regular updates to security protocols will be crucial in maintaining the robustness of the

system against evolving cyber threats.

Collaborative efforts with industry partners and stakeholders can provide valuable insights

and potentially lead to standardization in cloud data transfer practices. Sharing our

experiences and lessons learned could contribute to a collective knowledge pool, fostering

advancements in the broader field of cloud computing.

61

Finally, the adaptability of our methodology opens doors to integration with emerging

technologies such as blockchain. Exploring the synergy between secure data transfer and

blockchain's decentralized and tamper-resistant nature could pave the way for enhanced data

integrity and security.

In essence, the future scope of our secure cloud data transfer project encompasses a holistic

approach to innovation, spanning technological advancements, user-centric features,

enhanced security measures, and collaborative efforts to shape the evolving landscape of

cloud-based data processing.

62

63

REFERENCES

1. C. V. Raghavendran, G. Satish, S. V. Penumathsa, and J. M. Gummadi, "A Study on

Cloud Computing Services," Int. J. Eng. Tech. Res., vol. 4, p. 67, 2016.

2. M. Attaran and J. Woods, "Cloud computing technology: improving small business

performance using the Internet," J. Small Bus. Entrepren., vol. 13, pp. 94-106, 2018,

doi: 10.1080/08276331.2018.1466850.

3. A. Poniszewska-Marańda and E. Czechowska, "Kubernetes Cluster for Automating

Software Production Environment," Sensors, vol. 21, no. 5, p. 1910, 2021, doi:

10.3390/s21051910.

4. R. Satrio Hadikusuma, Lukas, and K. Bachri, "Survey Paper: Optimization and

Monitoring of Kubernetes Cluster using Various Approaches," Sinkron, vol. 8, pp.

1357-1365, 2023, doi: 10.33395/sinkron.v8i3.12424.

5. K. Senjab, S. Abbas, N. Ahmed et al., "A survey of Kubernetes scheduling

algorithms," J Cloud Comp, vol. 12, p. 87, 2023, doi: 10.1186/s13677-023-00471-1.

6. S. Vinoski, "Advanced Message Queuing Protocol," IEEE Internet Comput., vol. 10,

no. 6, pp. 87-89, Nov. 2006, doi: 10.1109/MIC.2006.116.

7. F. Iqbal, M. Gohar, H. Alquhayz, S.-J. Koh, and J.-G. Choi, "Performance evaluation

of AMQP over QUIC in the internet-of-thing networks," J. King Saud Univ. Comput.

Inf. Sci., vol. 35, no. 4, pp. 1-9, 2023, doi: 10.1016/j.jksuci.2023.02.018.

8. S. Dixit and M. M. P, "Distributing Messages Using Rabbitmq with Advanced

Message Exchanges," Int. J. Res. Stud. Comput. Sci. Eng., vol. 6, no. 2, pp. 24-28,

2019, doi: 10.20431/2349-4859.0602004.

9. P. Boisrond, "A Position Paper on Amazon Web Services (AWS) Simple Storage

Service (S3) Buckets," May 2021. [Online]. Available:

doi.org/10.13140/RG.2.2.17727.84640

10. M.-N. Garcia, S. Argyropoulos, N. Staelens, M. Naccari, M. Rios-Quintero, and A.

Raake, "Video Streaming," in Quality of Experience, S. Möller and A. Raake, Eds.

Cham: Springer, 2014, pp. 389–430. [Online]. Available:

https://doi.org/10.1007/978-3-319-02681-7_19

11. A. B. Kamath and C. B. H, “A Comparison between RabbitMQ and RESTful API

for Communication between Micro-Services Web Application,” Int. Res. J. Eng.

Technol., no. May, pp. 4665–4667, 2020, [Online]. Available: www.irjet.net.

64

12. C. -C. Chang, S. -R. Yang, E. -H. Yeh, P. Lin and J. -Y. Jeng, "A Kubernetes-Based

Monitoring Platform for Dynamic Cloud Resource Provisioning," GLOBECOM

2017 - 2017 IEEE Global Communications Conference, Singapore, 2017, pp. 1-6,

doi: 10.1109/GLOCOM.2017.8254046.

13. Eng, K., Muhammed, A., Abdullah, A. et al. An Estimation-Based Dynamic Load

Balancing Algorithm for Efficient Load Distribution and Balancing in

Heterogeneous Grid Computing Environment. J Grid Computing 21, 7 (2023).

https://doi.org/10.1007/s10723-022-09628-9

14. Lu, X., Pan, Z. & Xian, H. An efficient and secure data sharing scheme for mobile

devices in cloud computing. J Cloud Comp 9, 60 (2020)

15. Peinl, Rene & Holzschuher, Florian & Pfitzer, Florian. (2016). Docker Cluster

Management for the Cloud - Survey Results and Own Solution. Journal of Grid

Computing. 14. 10.1007/s10723-016-9366-y.

16. Giannakopoulos, I., Konstantinou, I., Tsoumakos, D. et al. Cloud application

deployment with transient failure recovery. J Cloud Comp 7, 11 (2018).

https://doi.org/10.1186/s13677-018-0112-9

17. Carrión, C. Kubernetes as a Standard Container Orchestrator - A Bibliometric

Analysis. J Grid Computing 20, 42 (2022). https://doi.org/10.1007/s10723-022-

09629-8

18. Dang-Quang, Nhat-Minh, and Myungsik Yoo. 2021. "Deep Learning-Based

Autoscaling Using Bidirectional Long Short-Term Memory for Kubernetes" Applied

Sciences 11, no. 9: 3835. https://doi.org/10.3390/app11093835

19. R. Deokar, “File Transfer on Cloud using Diffie-Hellman Key Exchange in

Conjunction with AES Encryption,” National College of Ireland Project Submission

Sheet School of Computing, https://norma.ncirl.ie/6467/1/ravibabajideokar.pdf Dec.

2022

20. Begum MB, Deepa N, Uddin M, Kaluri R, Abdelhaq M, Alsaqour R. An efficient

and secure compression technique for data protection using burrows-wheeler

transform algorithm. Heliyon. 2023 Jun 23;9(6):e17602. doi:

10.1016/j.heliyon.2023.e17602. PMID: 37457815; PMCID: PMC10347677.

21. J. J. Jeya, S. Raja Ratna, G. G. Devi, M. Priya, C. Sivasankar, "An Efficient

Algorithm for Secure Key Management in Cloud Environment," in Proceedings of

the Eighth International Conference on Science Technology Engineering and

65

Mathematics (ICONSTEM), 2023, pp. 1-3, doi:

10.1109/ICONSTEM56934.2023.10142544.

22. P. SHANMUGAPRIYA, K.S.V.SRINIVAS, and RAMPAM PAVAN KUMAR,

“SECURE DATA TRANSFER BASED ON CLOUD COMPUTING,” International

Research Journal of Engineering and Technology (IRJET), vol. 09, no. 03, pp. 342–

346, Mar. 2022.

23. Abdalla, M., Eisenhofer, T., Kiltz, E., Kunzweiler, S., Riepel, D. (2022). Password-

Authenticated Key Exchange from Group Actions. In: Dodis, Y., Shrimpton, T. (eds)

Advances in Cryptology – CRYPTO 2022. CRYPTO 2022. Lecture Notes in

Computer Science, vol 13508. Springer, Cham. https://doi.org/10.1007/978-3-031-

15979-4_24

24. Pu, Y., & Xu, M. (2009). Load Testing for Web Applications. 2009 First International

Conference on Information Science and Engineering. doi:10.1109/icise.2009.720M.

Young, The Technical Writer’s Handbook. Mill Valley, CA: University Science,

1989.

25. Draheim, D., Grundy, J., Hosking, J., Lutteroth, C., & Weber, G. (2006). Realistic

load testing of Web applications. Conference on Software Maintenance and

Reengineering (CSMR’06). doi:10.1109/csmr.2006.43

11%
SIMILARITY INDEX

10%
INTERNET SOURCES

5%
PUBLICATIONS

%
STUDENT PAPERS

1 3%

2 1%

3 1%

4 1%

5 1%

6 <1%

7 <1%

8 <1%

9 <1%

Cloud based Secure Data Transfer using Exchange of
Cryptographic Keys
ORIGINALITY REPORT

PRIMARY SOURCES

ir.juit.ac.in:8080
Internet Source

www.ir.juit.ac.in:8080
Internet Source

journalofcloudcomputing.springeropen.com
Internet Source

medium.com
Internet Source

www.researchgate.net
Internet Source

www.arcjournals.org
Internet Source

www.juit.ac.in
Internet Source

dokumen.pub
Internet Source

"Proceedings of the International Conference
on Cognitive and Intelligent Computing",

Please send your complete thesis/report in (PDF) with Title Page, Abstract and Chapters in (Word File)

through the supervisor at plagcheck.juit@gmail.com

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT

PLAGIARISM VERIFICATION REPORT

Date: ………………………….

Type of Document (Tick): PhD Thesis M.Tech Dissertation/ Report B.Tech Project Report Paper

Name: ___________________________ __Department: _________________ Enrolment No _________

Contact No. ______________________________E-mail. ______________________________________

Name of the Supervisor: __

Title of the Thesis/Dissertation/Project Report/Paper (In Capital letters): ________________________

__

__

UNDERTAKING

I undertake that I am aware of the plagiarism related norms/ regulations, if I found guilty of any plagiarism and
copyright violations in the above thesis/report even after award of degree, the University reserves the rights to
withdraw/revoke my degree/report. Kindly allow me to avail Plagiarism verification report for the document
mentioned above.
Complete Thesis/Report Pages Detail:

 Total No. of Pages =

 Total No. of Preliminary pages =

 Total No. of pages accommodate bibliography/references =
 (Signature of Student)

FOR DEPARTMENT USE

We have checked the thesis/report as per norms and found Similarity Index at ………………..(%). Therefore, we
are forwarding the complete thesis/report for final plagiarism check. The plagiarism verification report may be
handed over to the candidate.

 (Signature of Guide/Supervisor) Signature of HOD

FOR LRC USE

The above document was scanned for plagiarism check. The outcome of the same is reported below:

Copy Received on Excluded Similarity Index
(%)

Generated Plagiarism Report Details
(Title, Abstract & Chapters)

 All Preliminary
Pages

 Bibliography/Ima
ges/Quotes

 14 Words String

Word Counts

Character Counts

Report Generated on

 Submission ID Total Pages Scanned

 File Size

Checked by
Name & Signature Librarian

 ………

