
INTEGRATED DEVELOPMENT

ENVIRONMENT USING CLOUD COMPUTING

(IDECC)

A major project report submitted in partial fulfilment of the requirement for

the award of degree of

Bachelor of Technology

In

Computer Science & Engineering/Information Technology

Submitted by

SANSKAR RAI (201256)

RISHABH KESARWANI (201532)

Under the guidance & supervision of

DR. NISHANT SHARMA

Department of Computer Science & Engineering and Information

Technology

Jaypee University of Information Technology, Waknaghat, Solan –

173234 (India)

I

CERTIFICATE

This is to certify that the work which is being presented in the project report titled

“Integrated Development Environment using Cloud Computing (IDECC)” in partial

fulfilment of requirements for the award of the degree of B.Tech in Computer Science &

Engineering / Information Technology and submitted to the Department of Computer

Science & Engineering And Information Technology, Jaypee University of Information

Technology, Solan is an authentic record of work carried out by Sanskar Rai (201256) and

Rishabh Kesarwani (201532) during the period from August 2023 to May 2024 under the

supervision of Dr. Nishant Sharma (Assistant Professor(SG), Department of Computer

Science & Engineering And Information Technology)

Sanskar Rai Rishabh Kesarwani

(201256) (201532)

The above statement made is correct to the best of my knowledge

Dr. Nishant Sharma

Assistant Professor (SG)

Computer Science & Engineering and Information Technology

Jaypee University of Information Technology, Solan

II

DECLARATION

We hereby declare that the work presented in this report entitled “Integrated Development

Environment using Cloud Computing (IDECC)” in partial fulfilment of the requirements

for the award of the degree of Bachelor of Technology in Computer Science &

Engineering / Information Technology submitted in the Department of Computer Science

& Engineering and Information Technology, Jaypee University of Information Technology,

Waknaghat is an authentic record of our own work carried out over a period from August

2023 to May 2024 under the supervision of Dr. Nishant Sharma (Assistant Professor(SG),

Department of Computer Science & Engineering And Information Technology)

The matter embodied in the report has not been submitted for the award of any other degree

or diploma.

Sanskar Rai Rishabh Kesarwani

(201256) (201532)

This is to certify that the above statement made by the candidates is true to the best of my

knowledge.

Dr. Nishant Sharma

Assistant Professor (SG)

Computer Science & Engineering and Information Technology

Jaypee University of Information Technology, Solan

III

ACKNOWLEDGEMENT

Firstly, we express our heartiest thanks and gratefulness to almighty God for His Divine

Blessing makes us possible to complete the project work successfully. We are really grateful

and wish our profound indebtedness to our Supervisor Dr. Nishant Sharma, Assistant

Professor (SG), Department of Computer Science & Engineering and Information

Technology, Jaypee University of Information Technology, Solan. Deep Knowledge & keen

interest of my supervisor in the field of “Cloud Computing” to carry out this project. His

endless patience, scholarly guidance, continual encouragement, constant and energetic

supervision, constructive criticism, valuable advice, reading many inferior drafts and

correcting them at all stages have made it possible to complete this project.

We would like to express our heartiest gratitude to Dr. Nishant Sharma, Department of

Computer Science & Engineering and Information Technology, for his kind help to finish

our project. We would also like to generously welcome each one of those individuals who

have helped us straightforwardly or in a roundabout way in making this project a win. In

this unique situation, we might want to thank the various staff individuals, both educating

and non-instructing, which have developed their convenient help and facilitated our

undertaking.

Finally, we must acknowledge with due respect the constant support and patience of our

parents.

Sanskar Rai Rishabh Kesarwani

(201256) (201532)

IV

TABLE OF CONTENTS

Certificate………………………………………………………………………...…………I

Declaration……………………………………………………………………...………….II

Acknowledgement……………………………………………………………...…………III

Table of Contents………………………………………………………………………….IV

List of Tables……………………………………………………………………………...VI

List of Figures…………………………………………………………………………….VII

Abstract...………………………………………………………………………………..VIII

Chapter(s)

 1 Introduction………………………………………………………...………1

 1.1 Introduction……………………………………………………...…1

 1.2 Problem Statement…………………………………………..……..3

 1.3 Objective…………………………………………...……………….3

 1.4 Significance & Motivation of the Project Work…………………….4

 1.5 Organisation of Project Report……………………………………...5

 2 Literature Survey……………………………………………………...……7

 2.1 Overview of Relevant Literature……………………………….......7

 2.2 Key Gaps in the Literature Review…………………………..….…21

 3 System Development……………………………………………...………27

V

 3.1 Requirements & Analysis…………………………………...…….27

 3.2 System Design…………………………………...………………..44

 3.3 Data Warehousing……………………………………..………….50

 3.4 Implementation…………………………………………...……….51

 3.5 Key Challenges………………………………………………...….54

 4 Testing...……………………………...……………………………...……55

 4.1 Testing Strategy……………...……………………………………55

 5 Results & Evaluation…………………………………………...…………59

 5.1 Results……………………………………………………...……..59

 5.2 Comparison with Existing Solutions………………………………63

 6 Conclusion & Future Scope……………………………………...………..65

 6.1 Conclusion…………………………………………………...……65

 6.2 Future Scope…………………………………………...………….66

References……………………………………………………………………...…………67

VI

LIST OF TABLES

Table 2.1 Review of Azure & its Services………………………………………….….7

Table 2.2 Automated Dockerisation of Python Application………………...……..….8

Table 2.3 Building Cloud using Docker, Kubernetes, GCP……………………...……9

Table 2.4 Software Containerization in Docker……………………………………...11

Table 2.5 Literature Review on Azure…………………………………...…………..12

Table 2.6 Review on Docker…………………………………………………...…….13

Table 2.7 Advantages of Browser Based IDE………………………………………..15

Table 2.8 Study on Real Time Collaborative Browser IDE…………………………..16

Table 2.9 Automatic Software Deployment of Azure………………………………..17

Table 2.10 Literature on a Browser Based IDE, Adinda………………………………18

Table 2.11 Literature Review on Browser Based IDEs………………………………..20

VII

LIST OF FIGURES

Figure 3.1 Working of Browser Based IDE…………………………………………..45

Figure 3.2 Difference between Local OS & Remote OS……………………………..47

Figure 3.3 High Level System Design………………………………………………..49

Figure 3.4 Home Page React Code…………………………………………………...52

Figure 3.5 My Labs Page React Code………………………………………………..52

Figure 3.6 Authentication & Authorization code in Django………………………….53

Figure 3.7 Creating virtual image in azure using Django…………………………….53

Figure 4.1 Python container metrics over a simple python code……………….…….56

Figure 4.2 Python container metrics over a small ML code……………………….…57

Figure 5.1 Home Page of the Website…………………………………………...…...61

Figure 5.2 New Project Section of the Website………………………………………62

Figure 5.3 My Labs Section of the Website…………………………………………..63

Figure 5.4 Hosted Application on URL………………………………………………64

VIII

ABSTRACT

This project report is about the development of IDECC, Integrated Development

Environment using Cloud Computing (IDECC). Every developer's nightmare is creating

a development environment for every small or big project which includes all the

dependencies used in the project, maintaining these dependencies and then installing them

again if some error occurs, and making the environment again. IDECC aims to remove this

hassle for every developer by introducing Browser-based Integrated Development

Environment, by removing the need of creating a development environment on PC, IDECC

provides us with a list of programmable languages and Frameworks which you can launch

in IDE just by a single click, in your browser. No need to install dependencies on your PC

and maintain a development environment, IDECC aims to increase the learning, by

removing unwanted hassles, mostly daunting for new coders. IDECC will improve

collaboration between team members working on any project and increase each other's

knowledge. The frontend of the system will be built using React and the backend using

Django. The Development Environments will be containerised in Cloud Storage, which

when needed will go and run up a virtual machine with the same configurations, and will be

ready to use by the developer. Using Azure, Scalability of the Virtual Machines will also be

easy. IDECC aims to revolutionise the way development is done in the Software

Development community, opening doors to new boundaries.

1

CHAPTER 1: INTRODUCTION

1.1. INTRODUCTION

In the dynamic world of software development, innovation is all about how smoothly one

can build their code, collaboratively and without the complications from intricate setup

processes. Developers sometimes find themselves caught up in the complications of

establishing development environments, varying from one pc to another, from one type of

OS to another, a procedure that not only wastes a lot of time but also creates a barrier to

fluid coding. Recognizing this issue our main project embarks on a transformative journey

to reinvent the fundamental nature of software development.

At its core, our major project strives to address difficulties that poses a difficulty for every

developer during the earliest stages of project - the work of setting up development

environments. This issue is not only time consuming but also often leads to compatibility

concerns, which limits the exchange of code and also the natural flow of project activity.

Our objective is to create a cloud based Integrated Development Environment (IDE)

platform that not only frees developers from the hassles of setting up development

environment but also helps them with collaborative coding environment.

1.1.1 UNDERSTANDING THE CHALLENGES WE CONFRONT

The foundation of this project comes in the fact that developers irrespective of their

experience, become tangled with the difficulties of customizing development

environments. This procedure is loaded with tiresome manual setups and

compatibility concerns, which works as a speed breaker in the lifecycle of software

development. The time spent on setting up development environment immediately

affects our time in the project. Moreover, the disparities in development environment

between the team members can lead to sluggish project efforts.

Our initiative seeks to not only remove this difficulty from the life of individual

developers but also from the team and collaborative members as a whole. Our project

acknowledges this issue and wants to provide the answer – a cloud-based IDE

platform that not only removes the challenges of setting up a development

2

environment but also assures a harmonized environment allowing the developers to

code easily between team members.

1.1.2 EMPOWERING DEVELOPERS: THE PROJECT’S OBJECTIVES AND

GOALS

By developing a cloud-based IDE platform, we seek to simplify environment setup.

The platform attempts to deliver pre-configured environments optimized for a number

of programming languages and frameworks. This seeks to ease the load of laborious

setup, enabling the developers to leap straight into coding with minimal friction. The

platform also strives to standardise development environments. The cloud-based IDE

will strive to provide a common development environment across the team, reducing

compatibility difficulties and creating a uniform coding ecosystem. All this will lead

to an increase in productivity and collaboration: By addressing the limitations given

by the environment arrangement, our project aims to boost productivity and aiding

develop a culture of invention and collaboration withing the team.

1.1.3 NAVIGATING THE TECHNOLOGICAL FRONTIER: THE TOOLS AND

TECHNOLOGIES

The implementation of our concept demands a hand-picked selection of cutting-edge

technologies. Our cloud-based IDE platform harnesses the power of cloud-computing,

offering developers with on-demand access to scalable and dynamic environment.

Containers play the key function in our project, encapsulating the entire development

and maintaining consistency throughout different phases of the software development

lifecycle. Continuous Integration/Continuous Deployment (CI/CD) is also being

evaluated to employ to provide seamless testing and deployment procedures to boost

the entire development workflow.

Moreover, the user interface is made as friendly as possible, making it easy for the

user to browse through the website. All the famous languages and frameworks will be

integrated through the website for the user to use. User will have the option to visit

their prior projects, as well as make new ones.

3

The pre-loaded environments will be containerised using Docker. The website

containing the Docker containers are expected to be placed on Azure Cloud Service

supplied by Microsoft to allow latency free communication between the user and

website experience.

Our project intends to emerge as an easy-to-use experience for every developer. By

introducing a cloud-based IDE platform, we aim to envision a future where developers

are not bounded by the shackles of manual configuration of development

environment, a platform providing seamless collaboration, and a platform where

developers are free to test to try on anything without having to worry about anything.

As we set sail on this adventure, the objective is clear – a transformed software

development landscapes that thrives on efficiency, collaboration and the unrestrained

creativity of developers.

1.2. PROBLEM STATEMENT

Every programming language and/or framework require very intricacies sets of

dependencies, libraries for the language to be developed properly and that too in a

maintained development environment which comes out as a problem not only for rookie

programmers but also for seasoned ones and is quite a hassle to set it up each and every time

a new project is to be made by the developer, even if the project is only a Hello World.

Setting up the development environment in IDEs has been a long-time headache in the

software development community.

1.3. OBJECTIVES

The objectives of this project include features that every developer whether it be a new

programmer or a seasoned developer, everyone will find it appealing to work on.

1.3.1 CREATING AN IDEAL PLATFORM

Our main objective stands to develop an ideal platform for every user so that even a

newbie will find it easy and appealing to work on the application. These may include

generating a user-friendly website, easy and appealing for everyone. Keeping the

process smooth and fast for the user, because no one likes too much buffering time.

4

All the while providing every feature that is important and necessary for the

application to work.

1.3.2 COORDINATING JOINT VENTURE ACTIVITIES

No developer works alone, they always work in a team. Keeping this in mind we want

to provide our user(s) with proper collaborative features so that any team can work on

their project easily while fully collaborating with each other.

1.4. SIGNIFICANCE AND MOTIVATION OF THE PROJECT WORK

1.4.1 EXPLORING THE IMPORTANCE

The primary objective of this program is to radically reinvent the way developers

approach their profession by lowering the harsh hurdles connected with setting up

development environments. This project is designed to alter the industry by providing

an all-encompassing platform that stimulates innovation, boosts efficiency, and

streamlines operations.

1.4.2 GIVING DEVELOPERS MORE AUTHORITY

The most important thing is to allow developers, whether novice and experienced, to

concentrate their attention on what actually matters: code. By making the difficult

process of developing environments easier, this project frees developers from the

shackles of setup concerns. This helps developers to unleash their creative potential

and push the boundaries of software engineering.

1.4.3 INNOVATIVE COLLABORATION TECHNIQUES

Furthermore, the effort has the potential to radically transform the collaborative

operations of development teams. Creating uniform development environments for

team members increases communication, lowers compatibility difficulties, and speeds

5

up project timeframes. This will develop a climate receptive to new ideas and amiable

teamwork, resulting in higher-quality software products.

1.4.4 THE INSPIRATION FOR THE PROJECT

This project was prompted by a desire to make complex things easier and procedures

more efficient. The idea derives from a common desire to alleviate developers of the

stress of complex setup processes so that they may focus on generating code. It's an

invitation to cultivate an environment in which innovation thrives, creativity soars,

and cooperation knows no bounds.

1.5. ORGANIZATION OF PROJECT REPORT

1.5.1 CHAPTER 1: INTRODUCTION

The opening chapter of our project report, contains the overview of the whole project.

The Introduction chapter includes the complete overview of the project, the opening

chapter also contains the problem statement, it also contains the main usage of the

project, its advantages, use cases. The motivation for the team to work on this project

is also mentioned in the Introduction chapter highlighting its significance as well.

1.5.2 CHAPTER 2: LITERATURE RESEARCH

Every project work is started by doing proper research firsthand to map out the

necessary technology that is going to be used in the project, to scope out the necessary

precautions, the help that can be found by someone who has already encountered it

and all of the things. This chapter includes all the relevant literature papers that our

team has studied and deemed it usable for our project, it includes all the different

technological stacks that are to be used, some papers on similar project, understanding

the deployment and different things necessary for the completion and usage of this

project.

6

1.5.3 CHAPTER 3: SYSTEM DEVELOPMENT

The required technological stacks, deployment servers, programming languages etc

are covered in this chapter. This chapter covers the major infrastructure details of the

system, including the hardware, software, and networking components. It also

provides a pseudo code of the system's main functions and a diagram of the database

structure. The necessary images needed for understanding the flow of data,

networking etc. are displayed in this chapter of the report. It gives us the in depth

understanding of the whole technological need of the project.

1.5.4 CHAPTER 4: TESTING

This chapter covers the testing details of the system, including the methodology used

and the results of the tests.

1.5.5 CHAPTER 5: RESULTS AND EVALUATION

The results of the project are shown in this section of the report. It contains all the

findings and the progress of the report. In this section we have also compared our

findings and work with already existing applications to give an outline of what else

needs to be done in the project.

1.5.6 CHAPTER 6: CONCLUSIONS AND FUTURE SCOPE

In this part of the report the conclusion that can be derived from the work are

discussed, all the findings and results are discussed here. The future scope of this

project discusses what else is left to be done and the improvements that can be done

in the already created project.

7

CHAPTER 2: LITERATURE SURVEY

2.1 OVERVIEW OF RELEVANT LITERATURE

A.

Title Microsoft azure: Cloud platform for application service deployment [1]

Author VP Desai, KS Oza, PP Shinde, Dr. PG Naik

Year 2021

Summary This research paper presents an in-depth assessment of Microsoft Azure's web

application deployment and administrative features. The paper gives a thorough

assessment of a number of Azure services, stressing their appropriateness for

various application scenarios. Azure App Service, Azure Cloud Services, and

Azure Virtual Machines are among the services provided.

Microsoft Azure Application Framework

Azure App Service is a fully managed Platform as a Service (PaaS) solution

that simplifies web application setup, scalability, and management. The article

describes the core features of Azure App Service, as well as how many

operating systems, programming languages, and frameworks it supports. It also

stresses how scalable and user-friendly Azure App Service is, making it a

fantastic solution for both small and large-scale apps.

Azure Web Services

Azure Cloud Services, a more typical IaaS (Infrastructure as a Service) offering,

provides more control over the underlying infrastructure. The paper not only

describes the complicated capabilities of Azure Cloud Services, such as load

balancing and auto scaling, but also demonstrates how to implement them. It

emphasizes how well-suited Azure Cloud Services are for applications that

demand more exact infrastructure control.

8

Azure Virtual Machines

Azure Virtual Machines offer a completely configurable IaaS solution for

applications that require utmost control and flexibility. The document describes

the process of constructing and administering virtual machines, as well as the

different types of Azure Virtual Machines that are available, such as Windows

and Linux instances. It highlights how Azure Virtual Machines may be

expanded and adapted to meet the demands of high-performance applications.

Comparative Analysis

The report compares and contrasts Azure App Service, Azure Cloud Services,

and Azure Virtual Machines, highlighting the merits and drawbacks of each. It

supports readers in identifying the appropriate deployment choice for their

unique application demands and preferences.

This research paper is a wonderful resource for learning and using Microsoft

Azure's web application deployment and administration features. This research

report will be very beneficial as we develop our services on Azure.

Table: 2.1 Review of Azure and its services

B.

Title Automated Dockerisation of Python-based Web Apps [2]

Author SK Shreekar

Year 2020

Summary The author of the paper discusses the issues of containerizing Python

applications and offers an automatic Dockerisation method created exclusively

for Python-based projects.

The aforementioned Python framework automates the production of Docker

images, the execution of Docker containers, and the creation of Docker files,

9

thereby speeding up the Dockerisation process. Depending on the use case, this

framework may greatly enhance the productivity of Dockerizing Python-based

apps while lowering the possibility of errors and possibly eliminating the need

for manual intervention entirely.

The automation is performed through two steps: generation of the Docker file,

construction of the Docker image, and container execution. Following the

generation of the Docker file, the framework automatically builds the Docker

image.

Reduced mistakes, reproducibility, consistency, and efficiency are among the

advantages of the automated Docker architecture.

The suggested framework provides a useful tool for developers in DevOps

teams, boosting the productivity and consistency of the Dockerisation process.

The authors' work underlines the value of automation in accelerating the

Dockerisation process and proving Docker's potential.

Table: 2.2 Automated Dockerisation of Python Application

C.

Title Building Modern Clouds: Using Docker, Kubernetes & Google Cloud Platform

[3]

Author Jay Shah, Dushyant Dubaria

Year 2019

Summary The study paper looks into the intricacies of modern cloud infrastructure and its

implementation with Docker, Kubernetes, and the Google Cloud Platform. The

essay gives an in-depth discussion of these technologies and their roles in the

development of scalable, robust, and cost-effective cloud systems.

10

The paper's author initially introduces us to the concept of cloud computing,

highlighting its advantages over traditional on-premises architecture. He then

discusses Docker, a containerization platform that allows applications and their

dependencies to be bundled into self-contained, lightweight containers. Docker

containers are useful for cloud deployments because they enable isolation,

mobility, and consistency.

Later, the author explores Kubernetes, a container orchestration system that

simplifies containerized application management. Kubernetes facilitates

container deployment, scaling, and management across a cluster of servers,

providing efficient resource consumption and high availability.

The paper then focuses on the Google Cloud Platform (GCP), a full cloud

computing suite that comprises compute, storage, networking, and databases.

GCP, with its scalability, dependability, and security features, provides a robust

framework for constructing modern clouds.

The article emphasizes the scalability, resilience, cost-effectiveness, and agility

of using Docker, Kubernetes, and GCP. Although we do not anticipate adopting

GCP, this study paper offers our team with a clear understanding of how Docker

and Kubernetes interact with one another and may benefit us in our future

initiatives.

The article's author explores the issues of containerizing Python programs and

presents an automatic Dockerisation approach built particularly for Python-

based projects.

The previously mentioned Python framework automates the development of

Docker images, the execution of Docker containers, and the creation of Docker

files, hence expediting the Dockerisation process. Depending on the use case,

this framework will considerably boost the productivity of Dockerizing Python-

based apps while decreasing the risk of errors and, in some situations, totally

removing the need for manual intervention.

11

The automation is performed in two steps: the development of the Docker file,

the construction of the Docker image, and the execution of the container.

Following the generation of the Docker file, the framework builds the Docker

image automatically.

The automated Docker architecture has various advantages, including decreased

errors, reproducibility, consistency, and efficiency.

The recommended framework is a great tool for developers working in DevOps

teams, as it enhances the productivity and consistency of the Dockerisation

process. The authors' work underscores the relevance of automation in

expediting Dockerisation and proving Docker's potential.

Table: 2.3 Building Cloud using Docker, Kubernetes and GCP

D.

Title Software Containerisation with Docker [4]

Author RC Diaz Alonso

Year 2017

Summary Since the release of Docker, containerization has emerged as a disruptive

technology, allowing software applications and their dependencies to be

bundled into lightweight, isolated containers.

The paper by Diaz Alonso digs into the complexity of software containerization

with Docker, providing a complete review of its ideas, benefits, and

implementation. The notion of containers and its advantages over traditional

virtualization techniques are described at the beginning of the paper. It

emphasizes the lightweight nature of containers, their ability to share the host

operating system kernel, and how their isolation features aid in the avoidance

of application conflicts.

12

This document delves into deeper depth regarding the development, operation,

and management of Docker containers. It describes how to produce Docker

images from Docker files and then use those images to launch containers. It

also introduces the concept of Docker orchestration, which allows you to

manage many containers as a single service.

By demystifying the concepts of containers, Docker images, and Docker files,

the article walks readers through the process of constructing, running, and

maintaining Docker containers. The essay also illustrates the advantages of

Docker for software development and deployment, making it a great resource

for anyone researching containerization technologies.

Table: 2.4 Software Containerisation in Docker

E.

Title Microsoft Azure: Planning, Deploying, and Managing Your Data Centre in the

Cloud [5]

Author Julian Soh, Marshall Copeland, Anthony Puca, Mike Manning, and David

Gollob

Year 2015

Summary This book goes into the complex world of Microsoft Azure and leads readers

through the process of creating, implementing, and maintaining cloud-based

data centres. The book, aimed for both corporate leaders and IT specialists,

gives a full assessment of the benefits, challenges, and variables to consider

when picking Azure for data centre requirements.

The planning phase comprises a complete analysis of the company's present IT

burden, applications, infrastructure, and business goals. The authors underline

13

the significance of aligning cloud adoption with strategic goals, enabling a

smooth transition, and leveraging on Azure's benefits.

The book then gets into the intricacies of installing Azure, providing step-by-

step instructions for creating and configuring virtual machines, storage

accounts, networks, and security groups, among other Azure services. The

writers handle a wide range of IT infrastructures by discussing cloud-based and

on-premises deployment scenarios.

Following the installation of the Azure infrastructure, the book concentrates on

running the cloud data centre efficiently. This includes monitoring how

resources are used, maximizing performance, and ensuring security and

compliance regulations are followed. The authors provide extensive

descriptions of Azure's administrative tools and services so that readers may

keep control over their cloud-based data centre.

Because of its detailed methodology, insightful ideas, and real-world examples,

the book is an invaluable resource for anyone embarking on an Azure cloud

adventure.

Table: 2.5 Literature Review on Azure

F.

Title Docker: Lightweight Linux Containers for Consistent Development and

Deployment [6]

Author Dirk Merkel

Year 2014

Summary Environments for development and deployment have always required to be

dependable and efficient. Traditional virtualization technologies, even when

they function effectively, could have a substantial overhead that restricts

14

mobility and agility. The author of this research paper developed Docker, a

unique containerization strategy that leverages lightweight Linux containers, to

establish stable and portable development environments.

Docker containers are self-contained software packages that encapsulate a

program's code, dependencies, and runtime environment. This functionality

allows the application to execute smoothly across a wide range of hardware

platforms and operating systems. Docker containers share the host kernel,

which greatly decreases overhead and resource needs, allowing for faster

startup times and greater resource utilization than traditional virtual machines.

The four most frequently mentioned Docker benefits are efficiency, isolation,

portability, and consistency.

Docker containers reduce mistakes and irregularities by keeping constant

conditions throughout the development, testing, and production phases. Docker

containerized apps may be quickly deployed on a wide range of platforms,

including cloud servers and laptop computers, with no compatibility

difficulties. Docker containers separate various applications from one another,

preventing conflicts and maintaining system stability. Docker containers

separate various applications from one another, preventing conflicts and

maintaining system stability.

The authors' Docker work provides a viable answer to the issues associated with

dependable and effective software development and deployment, and it marks

a substantial advancement in containerization technology. Docker is a popular

solution for modern software development teams due to its lightweight

architecture, portability, and isolation qualities, which enable them to create and

launch apps more quickly and reliably.

Table: 2.6 Review on Docker

15

G.

Title Browser Based IDE to Code in Cloud [7]

Author Lakshmi M Gadhikar, Lavanya Mohan, Megha Chaudhari, Pratik Sawant,

Yogesh Bhusura

Year 2013

Summary As cloud computing has risen in popularity, the necessity for cloud-based

development tools has skyrocketed. Browser-based Integrated Development

Environments (IDEs) have developed as a viable alternative to standard

desktop IDEs for cloud coding.

The ability to work with the code, the project, and the team from any location

and on any internet-connected device is the most crucial aspect of an IDE. This

permits distant cooperation and promotes developer accessibility.

Thanks to browser-based integrated development environments (IDEs),

developers may communicate in real time with multiple users on the same

codebase. This real-time collaboration enhances team productivity and fosters

information exchange.

Browser-based IDEs, which are usually cloud-hosted and available as

subscription services, eliminate the upfront expenditures associated with

traditional desktop IDEs. Cloud IDEs are appealing to both consumers and

enterprises due to their low cost.

Developing teams and projects can grow, and cloud IDEs can stay up with

them. Because of its scalability, cloud IDEs may enable large-scale

development initiatives.

Numerous studies have been undertaken to evaluate the advantages of

browser-based integrated development environments (IDEs) over traditional

16

IDEs, and all have determined that modern IDEs outperform classic desktop

IDEs.

There are three sorts of IDEs: general purpose, which supports a wide range of

features and programming languages, professional, and specialized. Language-

specific integrated development environments (IDEs) are ones that are

developed particularly for and only support a certain language type. Web apps

are designed or created with the use of web-based IDEs.

Despite the issues related with browser-based integrated development

environments (IDEs), such as accessibility and collaboration, the IDE's speed

should not be compromised. This means that the IDE can work flawlessly on

cloud containers rather than PCs, even if the hardware specs are inadequate.

Given that the IDE may involve sensitive data, they must ensure sufficient

security. The IDE must support multiple programming languages.

The merits and downsides of browser-based IDEs are eventually explored in

the paper's conclusion. Browser-based IDEs have the potential to drastically

transform the software development industry if these challenges are handled.

Table: 2.7 Advantages of Browser Based IDE

H.

Title Real-time collaborative coding in a web IDE [8]

Author M. Goldman, G. Little, R.C. Miller

Year 2011

Summary The capacity of developers to collaborate efficiently is crucial to the success of

a project in software development. Traditional desktop-based IDEs, despite

being strong tools, frequently fail to enable smooth collaboration, especially

when engineers are geographically scattered. Collabode, a web-based

17

integrated development environment (IDE) created expressly to facilitate real-

time collaborative coding, was proposed as a solution to this problem by

Goldman, Little, and Miller (2011).

Collabode's web-based architecture has various advantages over traditional

IDEs. For starters, it eliminates the requirement for software installation,

allowing developers to utilize the IDE from any internet-connected device.

Because of this improved accessibility, developers can collaborate remotely no

matter where they are physically located.

Second, thanks to Collabode's real-time collaboration features, developers may

edit in tandem and interact simply. By allowing developers to remark on one

other's work in real time, real-time code change watching encourages a sense

of shared codebase ownership.

One of Collabode's primary features is its error-mediated integration technique.

By identifying and reporting any defects when developers make changes to the

code, Collabode ensures that only error-free updates are merged into the shared

repository. This error-aware method preserves the integrity of the codebase and

avoids conflicts.

Collabode is an important contribution to the field of web-based integrated

development environments (IDEs), paving the way for more efficient and

collaborative software development processes. Collabode is an essential tool

for modern development teams since it stimulates knowledge sharing, improves

code quality, and boosts developer productivity by leveraging web technologies

and real-time collaboration features.

Table: 2.8 Study on Real Time Collaborative Browser IDE

I.

Title Automatic Software Deployment in the Azure Cloud [9]

18

Author Jacek Cala, Paul Watson

Year 2010

Summary The study paper presents a mechanism for automatic software deployment on

the Azure cloud. The framework defines the infrastructure and software

configurations for the application using Azure Resource Manager (ARM)

templates. The framework then handles the application's deployment to the

Azure cloud automatically via Azure Pipelines.

When compared to traditional manual deployment techniques, the framework

offers various advantages. It is more efficient since apps may be deployed in

minutes rather than hours or days. It is more dependable since it is less prone to

human error. It is also more scalable because it can be used to deliver

applications to a variety of situations.

The framework has been used to successfully deploy several apps to the Azure

cloud. According to the designers, the framework dramatically decreased the

time and effort required to launch apps. They also found that the framework

increased the dependability and quality of the deployments.

The methodology provided in the study article proposes a possible new way for

handling software deployment on the Azure Cloud. The framework has been

used to successfully launch multiple apps on the Azure Cloud and is effective,

dependable, and scalable.

Table: 2.9 Automatic Software Deployment of Azure

J.

Title Adinda: a knowledgeable, browser-based IDE [10]

Authors Arie Van Deursen, Ali Mesbah, Bas Cornelissen, Andy Zaidman, Martin

Pinzger, Anja Guzzi

Year 2010

19

Summary Integrated development environments, or IDEs, are increasingly core software

development tools. To aid programmer development, they feature a variety of

functions included as editing, formatting, debugging, deployment, extensions,

and more. Classic IDEs, on the other hand, offer severely limited accessibility

and collaboration functionality.

The authors of this study established the Adinda idea to address this issue for

developers; it has a web-based architecture and gives a number of advantages

over standard desktop-based IDEs.

To begin with, because it is web-based, there is no need to install it on desktop

PCs. Users have access to their projects and works from anywhere, allowing

programmers to collaborate, work remotely, and share their work with others.

Second, Adinda's browser-based methodology promotes real-time

communication among developers. Adinda makes an attempt to use web

technologies such as WebSocket and Ajax, which enable parallel debugging,

code editing, and communication among numerous developers working on the

same piece of code. This in-the-moment collaboration enhances team

productivity and knowledge.

Adinda's creative approach to IDE design garnered her considerable praise from

the software development community. For example, a study conducted by the

Adinda founders and research paper writers demonstrated that Adinda

dramatically reduced development time when compared to a regular desktop

IDE.

An additional analysis suggested that Adinda goes to significant pains to find

potential problems that could benefit programmers in their work.

All of Adinda's talents and research suggest that with appropriate web

technology and knowledge-aware approach application, a very strong IDE may

be built. Adinda supports software development teams in more effectively

20

interacting, being more productive, and delivering better code. Adinda's

capabilities are projected to extend more as web technologies evolve, enabling

for more efficient and collaborative software development processes.

Table: 2.10 Literature on a Browser IDE Adinda

K.

Title An interactive environment for real-time software development [11]

Authors Persson, P. and Hedin, G

Year 2002

Summary As a result, this study delves at how organizations throughout the world manage

performance assessments, asking us to get our hands dirty. The literature review

acts as a guide for us, indicating why this study is the star of the academic

performance assessment show. These systems for judging success, you see, are

the actual MVPs of the academic world. The sculpture is designed to resemble

a detective.

Wolf's Performance Appraisal Diagnostic Model from 2003 is currently their

go-to tool. According to scholarly study, higher education institutions that seek

to improve their academic ranking must grasp the complexity of measuring

academic performance. Furthermore, how do they obtain the inside

information? They built an international alliance with 19 universities from five

continents, allowing us a front-row seat to the world's opinion of performance

ranking.

The major consequence is that the comparison study is essentially an

afterthought in the argument over academic performance rankings. It

investigates the factors that influence institutions' evaluation procedures using

Wolf's diagnostic model as a framework. The findings are not just for show;

they are crucial for refining current models and generating unique performance

21

grading schemes tailored to individual educational institutions around the

world. The main objective of a real-time system is to return the output by the

deadline and at the correct moment. A real-time setup that misses deadlines

must be assessed. When real-time systems attempt to track the amount of time

necessary to accomplish operations in real-time, users find it engaging. The

objective of the researchers is to match these forms of user- and real-time

environment-presented expectations with the software used in this study paper.

Table: 2.11 Literature Review on Browser IDEs

2.2 KEY GAPS IN THE LITERATURE REVIEW

1 Browser-based IDEs and their use in the software industry.

Browser-based integrated development environments (IDEs) have altered the

software development sector by giving a smooth and accessible programming

environment that crosses geographical and device boundaries. With these cloud-

hosted IDEs, developers can now code, debug, and launch programs straight from

their web browsers, removing the need for numerous setups and local device

installations.

Browser-based integrated development environments (IDEs) give developers a

highly resource-rich and scalable workplace by leveraging cloud infrastructure.

Because local hardware limits are no longer an issue, developers may work on

sophisticated apps without worrying about system constraints. Furthermore, cloud-

based IDEs boost teamwork and real-time code editing between geographically split

teams by giving increased collaboration options.

They help to overcome the constraints of standard IDEs. Developers may access

their work environment from any device with an internet connection, whether it's a

desktop, laptop, tablet, or smartphone. Developers can work whenever and wherever

they desire because of this independence, without sacrificing their uniqueness or

productivity.

Browser-based integrated development environments (IDEs) improve the

development workflow by adding necessary tools and functionalities directly into

the IDE environment. Developers gain real-time access to code completion, syntax

22

highlighting, debugging tools, and code integration with well-known version control

systems such as Git. This excellent technique boosts code quality while saving

development time.

Browser-based integrated development environments (IDEs) have risen in

popularity in the software industry, particularly among front-end and web engineers.

Because of their ease of use, accessibility, and cloud-based architecture, they are

perfect for remote teams and collaborative projects. As cloud technologies expand,

the use of browser-based integrated development environments (IDEs) is likely to

grow, affecting the process of developing and distributing software.

The introduction of browser-based IDEs, which have spawned new paradigms and

promoted a more collaborative and agile atmosphere, has profoundly affected

software development techniques. The ability of developers to iterate quickly,

receive real-time feedback, and communicate with team members in a seamless

manner accelerates and improves software development cycles.

Browser-based integrated development environments (IDEs) represent a significant

shift in the software development environment by presenting developers with a

flexible and user-friendly platform that overcomes traditional barriers. Because of

their cloud-based design, device agnosticism, and rapid development workflow, they

are a crucial tool for current software development teams. Browser-based IDEs will

shape future software development, and their effect on the software industry will

only expand as they evolve.

2 Using Docker for containerization.

Docker provides a lightweight and portable approach of packing applications, which

has fundamentally revolutionized the software development and deployment

landscape. Docker containers encapsulate an application's code, runtime, system

tools, system libraries, and settings to create a self-contained environment that can

work on any system that has Docker installed. This enables continual application

execution across all contexts and avoids the need for elaborate installation

procedures.

One key feature of Docker is its portability, which allows developers to seamlessly

transfer their applications from development to production settings without worrying

about compatibility issues. Furthermore, Docker containers are segregated from one

23

another, eliminating conflicts and guaranteeing that each application runs

independently of other containers that are currently in use.

Docker containers are also efficient and lightweight since they employ shared host

resources rather than constructing separate virtual machines. In addition to

decreasing the stress on the host system, this resource-sharing method reduces

container startup time and memory footprint.

Containers are frequently produced and executed regardless of infrastructure or

environment thanks to Docker's repeatability features. Reproducibility is crucial for

accelerating testing and deployment procedures as well as keeping consistent

application behaviour.

3 Setting up environments for each different language in Docker.

One of Docker's best features is that it is a relatively portable technology. This means

that migrating your Docker containers from one computer to another will be a

breeze. This might be pretty handy if you need to deploy your application to a

production environment or work on your code from several machines.

Docker containers demand less memory and may start up rapidly. This can be a big

help if you're working on a less powerful development machine.

With Docker's support, we can create a virtual machine from an existing image and

set it up for user access. These properties enable us to containerize programs or,

more significantly, our desired setup environments, which we will make easily

accessible to the user. A pre-built Development Environment image will speed up

the server setup procedure and the application in general.

4 Azure for website and container deployment.

Microsoft Azure, a popular cloud platform with a wide range of services, is well-

suited for website and container deployment. Azure gives developers and IT

professionals unrivalled scalability, security, and flexibility as they create, launch,

and manage applications.

Azure App Service [12] is a vital component for deploying and managing web apps,

giving a number of deployment solutions to satisfy a wide range of application

demands. With its uncomplicated setup and configuration, Azure App Service

24

streamlines the process of developing a web application, whether you're starting

from scratch or migrating an existing application.

Azure App Service supports a wide number of programming languages and

frameworks, including ASP.NET, Node.js, PHP, and Java. Developers can choose

the technologies that best match the needs of their applications due of its

adaptability. Furthermore, Azure App Service supports a range of deployment

options, including App Service Plans, WebJobs, and Functions, offering users

flexibility in resource allocation and scaling.

Azure Container Instances (ACI) [13] emerges as a solid solution for containerized

applications, enabling straightforward container deployment and maintenance

without the requirement for infrastructure administration. ACI frees developers to

focus on creating and launching applications by reducing the complexities of

standard container orchestration technologies.

Developers may easily use Azure Container Registry, a private container registry

within Azure, or Docker Hub to deploy containers with ACI. The capacity of ACI

to auto-scale assures optimum resource allocation, optimizing both cost-

effectiveness and performance.

Azure App Service and ACI work in collaboration with Azure Pipelines [14], a

continuous integration and delivery (CI/CD) platform that enables automated

deployments and simplified release management. Azure Pipelines accelerates the

development process and provides predictable and consistent application releases by

automating the build, test, and deployment processes.

Azure Deployment Manager [15] features a centralized orchestration framework.

Developers may use Azure Deployment Manager to define and manage deployment

sequences, ensuring that apps are delivered with the correct configuration and in the

correct order.

Azure stresses security as well, giving a secure foundation for our installations.

Azure delivers network security, data encryption, and identity and access

management.

Despite all of these advantages, the pay as you go strategy for deploying this type of

website is the most practical and successful. Images are saved in the cloud and used

to spin up virtual machines on demand; if a virtual machine is idle for a lengthy

period of time, a fresh image of the computer is created, tagged with the user, and

stored again in storage. This procedure is repeated for each succeeding instance,

25

suggesting that the pay as you go model is the most reasonable and rational

alternative for deploying our program.

5 Automatic Scaling of Azure Virtual Machines [16].

Scalability is one of the key advantages of using virtual machines (VMs). Virtual

machines (VMs) can be swiftly scaled to meet changing project demands. As a

result, they are a great alternative for projects with different requirements.

There are two sorts of scaling options: vertical scaling and horizontal scaling. The

capacity to extend a virtual machine's (VM) RAM, CPU, or storage is referred to as

"vertical scalability." Increase the hardware on the physical server where the virtual

machine is running to do this. Vertical scalability is a good solution for projects with

predictable workloads. Horizontal scalability refers to the ability to add more virtual

machines (VMs) to a pool of VMs. This can be performed by installing new virtual

machines (VMs) on extra physical servers. Horizontal scaling is a viable option in

circumstances when workload fluctuations are a problem.

The Pay as You Go [17] price section also tackles the scalability of a virtual machine.

The automated scaling capability relieves the cloud administrator of the load of

scaling by automatically scaling the servers up and down if particular circumstances

are satisfied.

Azure offers virtual machine scalability and provides a user-friendly dashboard that

displays the historical performance of each machine as well as the projected

consumption pattern.

6 Microsoft Azure vs Amazon Web Services vs Google Cloud Platform.

Azure, AWS, and GCP are the three cloud computing heavyweights. Each offers a

diversified range of services to satisfy a wide range of needs and tastes. But, in the

midst of all of this competitiveness, Azure emerges as the clear champion, luring

customers with an unrivalled combination of innovation, scalability, and

affordability.

Azure's cutting-edge technologies, such as Azure Cognitive Services, which employ

artificial intelligence to deliver apps with human-like skills, show the company's

forward-thinking approach. Its focus on scalability guarantees that it can respond to

changing needs, whether managing traffic surges or integrating new applications.

26

Azure also shines in terms of cost-effectiveness, offering a choice of pricing options

that are tailored to match the demands of diverse enterprises and guarantee that their

cloud expenditure is optimized. This is the entire rationale for our usage of Azure in

this project, as well as our dedication to it; we seek to fully use Azure to the degree

that it can offer us.

7 Azure Virtual Machines, Docker Containers, Browser IDEs [18].

From all of the Research Papers, Extensive Browsing, Using Some Cloud IDEs, and

everything else, we can finally say that a cloud service provider like Azure to contain

the project's servers and all of its virtual machines, a script to create development

environments to create Docker Images, and a fully functional website are the main

building blocks for our project, and after successfully fulfilling these three

prerequisites, we can say that our project will start looking like goo. VMs provide a

scalable and secure platform, Docker integrates all dependencies into one, enabling

seamless portability and deployment, and Browser IDEs provide a cloud-based

development environment that enables developers to code, debug, deploy, and

interact.

27

CHAPTER 3: SYSTEM DEVELOPMENT

The development of the cloud based integrated development environment system was a

hands-on experience for us. Creating a generalized system for this means that we need to

create something that can be modified later and tailored to specific needs.

3.1 REQUIREMENTS AND ANALYSIS

3.1.1 CLOUD COMPUTING

Introduction

Cloud computing is a massive development in the quickly developing field of

information technology that has fundamentally revolutionized the underlying

dynamics of data processing, management, and accessibility. Businesses and

industries have entered a paradigm with unsurpassed efficiency, scalability, and

flexibility with the emergence of cloud computing.

This section goes into a comprehensive review of the wide issue of cloud computing.

It digs deeply into the fundamental requirements and extensive analyses that underpin

this game-changing technology. This section tries to provide a clear road map for

understanding, implementing, and maximizing the potential of cloud-based solutions

in a variety of sectors and companies by undertaking a complete assessment of the

necessary conditions and analytical aspects.

The disruptive significance of cloud computing resides in its ability to operate beyond

traditional boundaries, creating a dynamic ecosystem of computer resources and

services. It has radically altered the way any enterprise view IT infrastructure by

giving them on-demand access to a common pool of reconfigurable resources such as

networks, servers, storage, and applications. This accessibility, together with minimal

maintenance costs and regular network availability, captures the heart of cloud

computing's disruptive influence.

The section aims to break down the fundamental criteria needed to navigate the

intricate web of cloud-based services in this large ecosystem. Furthermore, it tries to

28

highlight the analytical elements essential for a thorough understanding and strategic

deployment of cloud computing across a range of industry sectors.

The purpose of this research is to uncover the essence of cloud computing's disruptive

potential and provide stakeholders, decision-makers, and tech enthusiasts with a

thorough understanding of its basic components, prerequisites, and analytical

frameworks. This section strives to open the door to the infinite possibilities of cloud

computing and to inspire efficiency, scalability, and innovation in the digital age by

doing so.

Essential Characteristics of cloud:

1. On-Demand self-service

The concept of "on-demand self-service" symbolizes a crucial feature that enables

users with unrivalled freedom and flexibility when it comes to using computer

resources. This crucial feature announces a paradigm shift by enabling users to

autonomously acquire and control computer power without the requirement for direct

human engagement from service providers.

● Unauthorized Use of Computer Resources

With on-demand self-service, users can get and use computer resources according

to their own requirements. It reduces the traditional limits imposed by human

intermediaries or cumbersome procurement procedures, allowing for the self-

service provisioning of resources such as server time and network storage.

● Managing Resources Automatically

Using this functionality, users can automatically access and assign processing

capacity in response to changing needs. This independence enables for the instant

acquisition of resources without the need for manual approvals, allowing for a

swift responsiveness to changing needs.

● Eliminating Customer-Service Provider Interaction

The capacity of on-demand self-service to eliminate the requirement for constant

human touch with service providers while allocating resources is crucial. This

autonomy liberates users from time and geographical constraints, allowing them

to access and control computer resources quickly and effectively.

● Cloud Users' Repercussions

29

For cloud users, on-demand self-service implies a fundamental shift in

operational agility. It helps organizations to instantly distribute and employ

resources, granting them previously unheard-of power and flexibility. This

feature helps users to manage their computing environment proactively by

facilitating scalability, cost-efficiency, and the smooth adaptation of resources to

changing workloads.

Essentially, on-demand self-service becomes a pillar of the cloud computing

environment, transforming the interaction between user and provider by empowering

users to acquire, manage, and optimize computing resources promptly and

autonomously. Its impact is seen across a wide spectrum of enterprises, affecting how

cloud-based services are accessed and used in today's fast-paced, ever-changing

digital environment.

2. Broad network access.

In the context of cloud computing, the essential feature of wide network access

provides an unequalled accessibility paradigm that enables users to effortlessly

leverage cloud-based capabilities on a range of devices and platforms. This feature

underscores the inclusive and universal nature of cloud services, making it easier to

use them with a range of client platforms and standard procedures.

The availability of abilities in general Through the Network Broad network

connectivity ensures that the cloud architecture's capabilities and services are

continually accessible over the network. Cloud services can now be available from a

range of computer devices, including laptops, workstations, tablets, and mobile

phones, thanks to this access. It also goes beyond the limits of specific devices or

platforms.

● Entry Points Identified

The employment of standardized access mechanisms is vital to broad network

access. Users can communicate with cloud-based services utilizing these

standardized protocols and interfaces, which allow compatibility and

interoperability across heterogeneous thin and thick client systems.

● Encouragement of the Use of a Variety of Devices

30

Cloud services provide seamless access regardless of a device's form factor or

computing capability by encouraging usage across many platforms and devices,

such as thin or thick clients. This adaptability promotes user comfort and

flexibility by allowing cloud services to be used on devices that match specific

needs or organizational goals.

● User Experience Consequences

Cloud computing provides its consumers with a varied spectrum of network

access, resulting in a more comprehensive and adaptable experience. It

overcomes the hurdles caused by device-specific limitations, allowing users to

effortlessly access and use cloud services across multiple platforms. This

enhances accessibility and productivity.

3. Resource Pooling

Resource pooling is an important component of cloud computing architecture because

it provides a dynamic model in which the provider's computer resources combine and

are appropriately shared among several clients. This feature leverages a multi-tenant

paradigm to dynamically assign various physical and virtual resources in response to

changing client demand.

● Multi-Tenant Resource Allocation

In the context of resource pooling, cloud providers employ a multi-tenant model

to share resources among numerous users or tenants. This pooling technique

maximizes resource consumption by sharing resources like storage,

computational power, memory, and network bandwidth across several users in an

ideal manner.

● Assignment and reallocation in real time

The key to resource pooling is its dynamic character; rather than being statically

allotted, resources are dynamically distributed and reassigned in response to

changing customer demands. This dynamic allocation assures optimal resource

consumption by allowing for varying workloads and eliminating under- or

overprovisioning.

● Location Abstraction and Independence

Customers acquire an impression of location freedom as a result of resource

pooling. Users can express their preferences at a higher level of abstraction, such

as choosing the area or data centre where their resources are given, even if they

31

frequently have no explicit control over the precise physical location of the

resources that are distributed.

● Customer Repercussions

Users of cloud services benefit from greater scalability and flexibility as a result

of resource pooling. Because of it, users can access and use resources without

having to worry about the complexity of the physical infrastructure. This

abstraction enhances cost-effectiveness and efficiency by allowing users to scale

resources up or down based on their needs.

As a result, resource pooling is crucial to cloud computing, enabling an environment

in which resources are dynamically regulated and effectively utilized to suit the needs

of a diverse collection of users. It shows how computing paradigms are changing

toward a shared, adaptive, and flexible infrastructure that provides scalable resources

in a virtualized context.

4. Rapid Elasticity

Rapid elasticity is a unique property of cloud computing that demonstrates the

exceptional adaptability and scalability that cloud services give to consumers. This

key feature helps clients to rapidly supply and de-provision capabilities by allowing

them to dynamically scale computer resources in response to changing demands.

● Demand-driven flexible scaling

Quick flexibility provides for the smooth and fast changing of processing power to

match current demand. This versatility is illustrated by the ability to rapidly scale

resources inward during periods of low consumption or outward during periods of

high demand, guaranteeing optimal resource allocation at all times.

● Automation of Provisioning and Release

Automation is commonly employed in quick flexibility to provision and release

resources while eliminating the demand for human engagement. This automation

speeds the process, allowing for speedy alterations to resource distribution without

requiring substantial administrative labour or manual intervention.

● The concept of infinite potential

From the user's perspective, the possibilities that might be supplied in a cloud

environment frequently appear to be nearly unlimited. By allowing users to

appropriate computing resources in any quantity at any moment, this feature enables

an environment in which scaling limits are essentially non-existent.

32

3.1.2 SERVICE MODELS OF CLOUD: SOFTWARE AS A SERVICE

Software as a business (SaaS) is a prominent business model in cloud computing that

offers clients with access to provider-hosted apps that are set up over a cloud

infrastructure. Users interact with programs directly through the internet in this

paradigm, eliminating the need for local installs. They accomplish this through the use

of a web browser or a program interface.

● Client Device Interoperability

By letting users access apps from a number of client devices, SaaS promotes

flexibility and accessibility. Users can use apps using a program interface or a

thin client interface, such as a web browser, allowing for seamless device-to-

device interaction without the need for specialized local installations.

● Consumers' Disengagement from Infrastructure Management

A major feature of SaaS is the consumer giving control over infrastructure

management. Users do not manage or control the underlying cloud infrastructure,

which comprises servers, network components, operating systems, and storage.

Furthermore, with the exception of a few user-specific setup choices, users often

have no control over the real capabilities of any application.

● The provider is responsible for the infrastructure's upkeep.

The supplier controls all infrastructure upkeep and administration under the SaaS

model, assuring flawless application performance and delivery. This arrangement

relieves users of the effort of managing the infrastructure, allowing them to focus

exclusively on enjoying the software's features.

● Customer Impacts

When clients use SaaS, the paradigm simplifies application access and provides

a hassle-free experience without the requirement for infrastructure upkeep. Users

often have limited control over application setups outside user-specific options,

therefore this ease comes at the tradeoff of less customization.

Software as a Service (SaaS) is the apex of accessibility and simplicity in cloud-based

software distribution. By making programs easily accessible over the cloud, SaaS

relieves users of infrastructure administration. This boosts productivity and

33

accessibility while maintaining application availability across a number of client

devices.

3.1.3 INTEGRATED DEVELOPMENT ENVIRONMENT

An Integrated Development Environment (IDE) is a comprehensive software tool

meant to improve and accelerate the software development process. It functions as a

graphical user interface (GUI) workbench, consolidating several features and tools

necessary for developing software applications into a single location.

● Workbench for Software Development

An IDE, which serves as a centralized workspace, integrates all of the software

development tools. It provides an integrated environment that includes all the

necessary tools for developing applications successfully, including version

control systems, data structure browsers, code editors, debuggers, and other

crucial utilities.

● Streamlining Developers' Workflow

An IDE's primary goal is to facilitate developers' workflow by providing a

standardized interface that removes the need to switch between various tools or

applications. The smooth integration of features such as code editing, debugging,

version control, and project management allows developers to work quickly and

effectively in a single environment.

● The learning curve and increasing production

By combining tools, an IDE offers developers a uniform interface and

dramatically boosts productivity. It speeds up the completion of numerous

development processes, simplifies action execution, and provides a single user

interface (UI) for connected components. This homogeneity minimizes the

learning curve for developers who utilize several languages or work on multiple

projects.

● A Wide Range of Tools and Languages are Supported

One of the most remarkable features of an IDE is its ability to support a wide

range of programming languages and tools. It fulfils the demands of developers

34

working with a range of programming languages by providing language-specific

features like syntax highlighting, auto-completion, and debugging tools.

● Evolution of Development Practice

Previously, developers had to traverse through numerous tools for debugging,

linking, editing, and compilation. Today's IDEs merge these features into a single

unified platform, greatly simplifying the development process and promoting an

environment in which developers can efficiently manage their projects from

conception to implementation.

An Integrated Development Environment (IDE) is a vital technology that enhances

software development processes by unifying relevant tools, streamlining procedures,

and presenting developers with a unified and effective workspace for constructing

complex and dependable software applications.

3.1.4 SHELL: INTERFACE TO THE UNIX SYSTEM

The shell is vital in the UNIX system because it acts as a bridge between users and the

underlying operating system. It operates by taking user input, running instructions or

programs in response to that input, and then showing the results when the execution

is complete. The shell, in essence, provides a user-interactive environment for

command execution, application execution, system management, and shell script

management.

● Important Characteristics

Fundamentally, the shell supports the execution of UNIX programs and

commands. It decodes user commands and turns them into instructions that the

operating system can grasp and execute. Once a program has finished running,

the output is displayed to the user via the shell.

● Shells of Various Shapes

Shells, like operating systems, come in a variety of flavours or varieties, each with

its own set of recognized commands and capabilities. Bash (Bourne Again Shell),

C Shell (csh), Korn Shell (ksh), and other popular shells provide configurable

features and command syntaxes based on user preferences or required system

requirements.

35

● Quick command and execution

The shell shows the command prompt (symbolized by characters such as '$') to

tell the user that it is ready for input. When requested, users can input commands

by typing them in. When the Enter key is pushed, the shell scans the input and

searches for the first word—a string of characters separated by tabs or spaces—

to determine which command should be run.

● Function in Command Interpretation

The shell's principal job is to understand and execute user instructions within the

operating system. It functions as a command translator, understanding user input,

locating the relevant application or command, and commencing execution based

on user inputs.

● Relevance to System Interaction

Because it serves as a conduit for user interaction with the operating system, the

shell is a crucial part of UNIX-based systems. Its features include shell script

automation, program execution, command interpretation, and an easy-to-use

interface that lets users run programs, effectively manage system operations, and

automate tasks.

3.1.5 PYTHON: A HIGH-LEVEL PROGRAMMING LANGUAGE [19]

Python is a well-liked high-level programming language that is easy to learn, flexible,

and uncomplicated. Since its invention in the late 1980s by Guido van Rossum, Python

has gained popularity across a variety of industries thanks to its user-friendly syntax,

extensive standard library, and active community.

● Readability and Usability

Python's emphasis on readability and simplicity is one of its distinguishing traits.

Because of the language's compact and straightforward syntax, programmers can

express thoughts and concepts in less lines of code than in other languages. Its

readability not only makes the code easier to use and maintain, but it also aids in

code comprehension.

● Flexibility and a Large Library

Python's vast library and framework ecosystem provides developers with a wealth

of resources and tools for a wide range of applications. Python's vast standard

36

libraries, which encompass web development, data analysis, machine learning,

and scientific computing, contribute to its versatility in a wide range of domains.

● Typing Comprehended and Adaptive

Python is an interpreted language, which means that it executes code without first

compiling it. This feature allows for brief code section trials and testing, which

aids in rapid prototyping and development. Python also includes dynamic typing,

which promotes flexibility while requiring type consistency due to variables'

potential to change types dynamically while being executed.

● Philosophies of Open Source and Community

The Python community makes significant contributions to the language's

evolution. The active community of Python developers and enthusiasts fosters

cooperation, knowledge sharing, and ongoing advancement. Since it is open-

source, contributions are welcome and lead to frequent updates, enhancements,

and a robust community of third-party modules and packages.

● Applications in a Variety of Fields

Python is widely used in many different fields, including web development (using

frameworks like Django and Flask), scientific computing, automation, scripting,

data analysis and visualization (using libraries like Pandas, NumPy, and

Matplotlib), artificial intelligence and machine learning (using TensorFlow and

PyTorch), and many more. Both inexperienced and seasoned developers find its

versatility and ease of use appealing.

Finally, Python's appeal in the programming community can be due to its simplicity,

versatility, vast library, and welcoming community. Python is an excellent choice for

beginners, experts, and businesses searching for a powerful yet approachable

programming language for a variety of jobs and solutions due to its adaptability and

accessibility.

3.1.6 DJANGO: A HIGH-LEVEL PROGRAMMING LANGUAGE [20]

Django is a strong, high-level web framework built on Python that is known for its

scalability, efficiency, and adherence to the maxims "explicit is better than implicit"

and "don't repeat yourself" (DRY). Django, a web development framework, makes it

37

simple to design complex, database-driven websites. It accomplishes this by providing

a wide range of tools and functionalities.

● Quick Development Structure

Django's principal objective is to make it easier to construct web applications. It

simplifies core web development activities and lets you to construct feature-rich

websites with less coding work thanks to its many built-in capabilities and

conventions.

● Model-View-Template (MVT) Architecture

Django code components are arranged using the Model-View-Template (MVT)

architectural design, which is comparable to the Model-View-Controller (MVC)

architecture. This separation of responsibilities increases maintainability and

scalability by clearly distinguishing and maintaining data models (Model), user

interface logic (View), and presentation templates (Template).

● Battery-Powered Concept and Integrated Parts

One of Django's differentiating features is its "batteries-included" approach,

which provides a large range of built-in components and functionalities. These

capabilities, which include an ORM (Object-Relational Mapping) for database

connection, a sophisticated admin panel for site administration, URL routing,

form handling, authentication, and strong security measures, substantially

simplify the design process.

● Scalability and adaptability

Django's ability to manage projects of different size and complexity proves its

scalability. Django's essential stability is retained thanks to its modular

architecture, while developers can integrate new features via third-party packages

or extensions, boosting flexibility.

● Community help and documentation

Django has a strong community that supports cooperation, information exchange,

and constant development. Its extensive documentation and profusion of tutorials

make learning and troubleshooting information easily accessible to developers.

● Case Studies and Applications

38

Django applications can be found in a wide range of web development projects,

including scientific computing platforms, social media sites, e-commerce

websites, content management systems (CMS), and others. Because of its

adaptability and scalability, it is the finest solution for both small-scale projects

and enterprise-level systems.

3.1.7 JAVASCRIPT [21]

JavaScript is a dynamic and adaptive computer language that is mostly used for web

development. Brendan Eich introduced JavaScript in the mid-1990s, and it has matured

into a vital tool for developing dynamic, interactive websites with features that improve

user interaction and experience.

● Client-Side Scripting Language

JavaScript is extensively utilized as a client-side scripting language in web

browsers. It lets web developers to communicate with webpage elements,

dynamically update information, respond to user activities, and create interactive

features without requiring server-side processing.

● The Versatility and Nature of Different Paradigms

JavaScript is a multi-paradigm programming language that may be used to write

both object-oriented and procedural programs. Developers may add a number of

capabilities, including as asynchronous programming, DOM manipulation, event

management, and more, due to its adaptability.

● Environmental Concerns and Widespread Use

JavaScript is a widely used internet technology that is crucial for web

development. Its ecosystem offers a bevy of tools and frameworks (like React,

Angular, and Vue.js) that facilitate development and make it easier to construct

complex, feature-rich online apps.

● Asynchronous Programming using Promises and Async/Await

Because JavaScript is asynchronous, it can execute without generating a block,

making it handy for tasks such as receiving data from servers or completing

lengthy procedures without crashing the user interface. Async/Await and

39

Promises, two contemporary JavaScript technologies, simplified asynchronous

code administration and boosted readability.

● Server-Side Development with Node.js

With the debut of Node.js, the sphere of application for JavaScript was enlarged

from the browser to server-side development. JavaScript may now be used to

develop scalable and effective server applications, providing for high-

performance server-side programming, thanks to Node.js' event-driven design.

● Uniformity and Constant Development

JavaScript is continually being updated and developed in order to improve

language features, security, and speed. Standardization groups such as

ECMAScript aid in the preservation of consistency and interoperability among

diverse JavaScript implementations.

● Several Use Cases

JavaScript is widely used and adaptable, with applications in a variety of domains

including web development, mobile app development (using frameworks such as

React Native and Ionic), game development (using frameworks such as Phaser

and Three.js), server-side applications, IoT (Internet of Things), and more.

JavaScript is a vital component of current web development, allowing programmers

to create dynamic, responsive, and engaging web applications for a number of

platforms. This underscores JavaScript's significance in the digital world.

3.1.8 REACT: THE LIBRARY FOR WEB AND NATIVE USER INTERFACES [22]

Facebook invented React, a sophisticated and popular JavaScript library for designing

user interfaces (UIs). React, a prominent framework recognized for its efficiency,

adaptability, and component-based design, has altered how web developers construct

dynamic, interactive products.

● Component-Based Architecture

React's architecture is founded on components. React allows developers to create

complex user interfaces by assembling reusable and encapsulated user interface

40

components. This modular paradigm increases code reuse, speeds up

development, and simplifies maintenance.

● Advanced DOM for Efficient Rendering

React makes use of Document Object Model (DOM) virtualization to boost

rendering efficiency. Because it builds an in-memory model of the actual DOM,

React can efficiently update and render just the components that have changed.

This method increases application speed by eliminating needless re-renders.

● Declarative and proactive

Because React is declarative, developers may describe the user interface (UI)

based on its present state rather of needing to specify how to update the DOM.

The reactive nature of React also ensures that user interface components

automatically adapt to changes in data or state, making UI and data

synchronization easier. JSX, or JavaScript Syntax Extension, is utilized by React.

JSX is an extension that allows programmers to write JavaScript code that seems

like HTML. This method streamlines the design of component structures, making

it easier to visualize and maintain user interface elements inside the codebase.

● Data Flow in Only One Direction

React implements a unidirectional data flow, in which information goes entirely

in one way from parent to child components. Debugging is simpler since the

consistent and transparent data flow makes it easy to determine the source of

faults within the application.

● Rich Ecosystem and Community Support

React has a healthy ecosystem thanks of a number of modules and utilities that

extend its features (such as Redux for state management and React Router for

routing). The abundance of tools, tutorials, and pre-built components offered by

the powerful community support makes creation straightforward.

● Interoperability Across Multiple Platforms

React's versatility extends beyond online apps. Native applications for the iOS

and Android platforms can be produced using frameworks such as React Native,

which uses React's component-based architecture. As a result, internet and mobile

apps can share a substantial percentage of the codebase.

41

● Usage and Industry Acceptance

Because of the rising acceptance of React across a range of industries, developers

can now construct interactive user interfaces for social networking platforms, e-

commerce websites, streaming services, and more. Because of its performance,

flexibility, and ease of use, it is the favoured solution for many web development

projects.

By promoting component-based architecture, superb rendering, and a declarative

technique, React has significantly revolutionized the online development scene. It has

also provided developers with a strong and efficient toolkit for developing scalable

and interactive user interfaces.

3.1.9 DOCKER [23]

Docker is a sophisticated platform that harnesses containerization technology to

simplify program development, delivery, and operation. It provides a standardized

technique of packaging applications and their dependencies into lightweight, portable

containers to ensure interoperability across varied settings.

● Containerization Technology

Docker employs containerization technology to encapsulate applications, as well

as their libraries and dependencies, inside containers. Because of the isolation,

portability, and low weight of these containers, programs can function reliably in

a range of settings, from development to production.

● Docker Images and Containers

Docker is based on two core concepts: images and containers. Docker images are

architectural blueprints that specify an application's requirements and

environment. These images are used to generate containers, which are instances

that run as executable, isolated packages and ensure consistent application

performance regardless of the underlying infrastructure.

● Mobility and Consistency

Docker's most significant characteristics are its stability and portability. Because

Dockerized programs may operate on any system that supports Docker,

developers may design apps in one environment and deploy them effortlessly

42

across numerous platforms, including cloud environments, without encountering

compatibility difficulties.

● Development Process Simplified

Docker simplifies the software development process by making it easy to

establish self-contained and repeatable environments. Developers can use Docker

Compose to build multi-container configurations, compose programs, and

manage the multiple services required for development, testing, and debugging.

● Scalability and resource efficiency

Docker's container-based architecture enables for scalability and optimal resource

use. Because containers share resources with the host system, they can run

independently in numerous isolated instances on the same machine. Because of

its scalability, Docker is an ideal solution for constructing microservices-based

systems.

● Environment and Docker Hub

Docker Hub, as a centralized repository for Docker images, offers a massive

library of pre-built images donated by users. This ecosystem accelerates

development by allowing developers to use pre-existing photos, edit them as

needed, and then share their improved images with others.

● Acceptance in the Industry and Applications

Docker is widely deployed in a range of industries, ranging from cloud computing

and IoT to software development and DevOps. It is applied in the automation of

container orchestration (using tools such as Kubernetes), continuous integration

and delivery (CI/CD), and repetitive development environments.

● Prospective Trends and Continuous Improvement

Docker is still changing as technology does. It maintains up with the newest

containerization technology breakthroughs, fixing security vulnerabilities,

increasing performance, and partnering with the community to expand its feature

set.

Docker has fundamentally transformed the way programs are produced, packaged,

and deployed by providing a consistent and effective technique of controlling

43

application environments through containerization. This strategy has boosted the

agility, scalability, and portability of current software development operations.

3.1.10 AZURE CONTAINER SERVICES

Azure is a cloud computing platform which provides cloud related services. Azure is

developed by Microsoft. Azure offers a wide range of cloud services, including

computing, analytics, storage, networking, machine learning and artificial intelligence

tools. Azure allows user to deploy, host and manage applications and services through

Microsoft-managed data centres. User can use Azure to launch Virtual Machines from

a wide range of operating systems, store data in databases, internet of things (IoT)

solutions.

Azure provides some services related to containers and use of these containers.

Generally called Azure Container Services (ACS). These include storing the container

in some specified cloud storage called Azure Container Registry (ACR), using these

stored containers to deploy or host applications called Azure Container Apps (ACA),

to do so the Azure automatically makes a cloud container environment and then hosts

the application and gives us a link to follow to our application.

Azure Container Registry enables developers and organisations to securely store and

manage their docker container images in the cloud. Some features of ACR include

Private Registry, Scalability, Integration with Azure Services, Security, Geo-

Replication and Webhooks.

Azure Container Apps (ACA) is a fully managed serverless container service. It

enables developers to run containerized applications without managing infrastructure

that lies behind an application. ACA removes all the complexities of container

orchestration that comes with it and also removes the burden of infrastructure

management. Key features of ACA can include serverless infrastructure, supports

docker containerization, ACA supports automatic scaling, compatibility with other

azure services and pay-as-you-go pricing model making it easy to deploy anytime. It

also includes Log Monitoring and Analytics.

44

3.2 SYSTEM DESIGN

3.2.1 BASIC DESIGN IDEA

The system architecture of the cloud-based IDE is designed to ease code development,

compilation, and execution in a distributed environment. In this client-server

architecture, a web browser serves as the client, while a backend consisting of web

servers and compilers serves as the backend. This is a more detailed explanation of

how the system works:

User Interaction:

A user is someone who accesses the IDE using a web browser. The user initiates

actions such as authoring, running, and debugging code.

Client-side, web browsers serve as the client interface. It is in charge of managing

input/output processes and displaying the IDE's graphical user interface (GUI). When

users conduct operations, such as executing a software, they send requests to the web

server.

Figure 3.1: Working of Browser based IDE

Server-Side:

The web server serves as the IDE's middleware as well as its primary processing unit.

It assesses requests received from web browsers to decide what needs to be done. In

45

response to code execution requests, it bundles the code parameters and communicates

them to the compiler service.

A compiler is a specialized service that compiles and runs code. It compiles the code

in an isolated and secure environment, then runs it using the code parameters it

acquired from the web server. Following that, the web server receives the compilation

and execution results, which may contain error warnings or output data.

Response Flow:

The web server processes the results depending on the information provided by the

compiler. This could include repairing any problems that happened during

compilation or execution, as well as formatting the output.

After receiving the processed results from the web server, the web browser delivers

the output or error notifications to the user.

Resource management and cleanup:

Following execution, the compiler service cleans away any leftover junk to guarantee

optimal system resource management. In preparation for the next action, this entails

deleting temporary files, reallocating memory, and resetting the environment.

3.2.2 LOCAL OS DEVELOPMENT VS REMOTE OS DEVELOPMENT

Figure 3.2: Difference between Local OS and Remote OS

46

Local Development:

● VS Code on Local OS: The developer's computer is where the development

environment is immediately configured. The local operating system houses the

codebase, extensions, and all of the tools.

● Theme/UI Extension: These are functional and graphical add-ons for the local

Visual Studio Code that improve the user interface and overall experience. They

have no effect on the remote server; they solely have an effect on the local

development environment.

● Direct Interaction: Using their computers, developers write, test, and execute the

code directly. Compilers, debuggers, source code, and the whole development

stack are all hosted locally.

Resource Dependency:

● The local machine's resources CPU, memory, and storage directly affect the

development environment's performance and capabilities.

● Remote Development: VS Code server on remote OS: Frequently hosted in the

cloud, VS Code server operates on a remote computer or server. The codebase

and development environment are hosted on this distant server.

● Workspace Extension: The remote server is configured with workspace-specific

extensions. Compilers, linters, and other instruments necessary for the

development process might be among them.

● Source Code: Without needing to clone the code onto their local computers,

developers can view and edit it thanks to the source code being hosted on the

remote server.

● Terminal Processes: To utilize the resources of the remote server, terminal

processes such scripts, test runners, and build commands are run there.

● Running the Application: It is advantageous to test in an environment that is

similar to the production setup because the application operates in the remote

environment.

● Debugger: To troubleshoot remotely, the IDE on the local workstation establishes

a connection with the remote environment.

47

Principal Disparities:

● Consistency of Environment: Since all team members connect to the same remote

setup, remote development guarantees uniformity in the development

environment.

● Resource Utilization: Since heavy-duty tasks are transferred to the distant server,

remote development places less strain on the local machine's resources.

● Accessibility: Remote development is perfect for distributed teams and remote

work situations since it can be accessible from any location.

● Security: Keeping the source code on a distant server can increase security,

particularly if the server is housed in a secure network or cloud environment.

● Complexity of Setup: Setting up local development environments for particular

projects can be quicker and easier, but ensuring uniformity throughout teams can

be difficult. Although it involves initial server configuration, remote development

has the potential to be more manageable and scalable over time.

In conclusion, remote development takes place on an external server and offers

benefits in terms of consistency, teamwork, and resource efficiency, whereas local

development is contained within a developer's computer.

3.2.3 HIGH LEVEL SYSTEM DESIGN

1. Client Interface:

Web-based Frontend: This interface serves as the user's entry point, providing

a visually appealing and intuitive environment for code editing and interaction. It

must support various devices and browsers, offering a responsive design for

optimal user experience.

Authentication: Implementing robust authentication mechanisms ensures secure

user access to the IDE, employing protocols like OAuth or SAML for secure

identity verification, access control, and user session management.

48

Figure 3.3: High Level System Design

2. Backend Services:

Code Editor and Compiler/Interpreter Services: These server-side

components handle code editing functionalities, compilation, and execution of

code across various programming languages.

File Storage: Utilizing cloud-based storage solutions enables efficient and

scalable storage for code files and project data, offering reliability, accessibility,

and data redundancy.

Database: Storing user information, project configurations, and metadata

requires a reliable and scalable database system to ensure data integrity and

efficient retrieval.

3. Collaboration Tools:

Version Control Integration: Integrating with version control systems like Git

allows users to manage code versions effectively, ensuring collaboration and code

history preservation.

49

Real-time Collaboration: Facilitating simultaneous work on the same project by

multiple users through real-time editing, commenting, and sharing of code

changes.

4. Cloud Infrastructure:

Scalable Compute Resources: Leveraging cloud-based scalable compute

resources ensures the IDE can handle varying workloads and user demands

effectively.

Containerization and Orchestration: Employing Docker and Kubernetes

streamlines deployment, enhances resource utilization, and enables efficient

management of services.

Load Balancing: Distributing incoming traffic across servers ensures optimal

performance, availability, and reliability.

5. Security:

Data Encryption: Implementing robust encryption protocols for data in transit

and at rest to safeguard sensitive information.

Access Control: Implementing role-based access control (RBAC) ensures users

have appropriate permissions, limiting access to critical resources.

Network Security: Deploying firewalls, VPNs, and intrusion detection systems

to protect against external threats and unauthorized access.

6. Monitoring and Logging:

Performance Monitoring: Utilizing tools like Prometheus or AWS CloudWatch

to monitor system health, performance metrics, and resource utilization.

Logging: Collecting and analysing logs to identify issues, troubleshoot errors,

and ensure compliance with auditing requirements.

7. Integration with Other Cloud Services:

APIs for Extensibility: Providing APIs allows integration with various cloud-

based services, databases, AI/ML platforms, enhancing the IDE's capabilities.

50

Serverless Tasks: Utilizing serverless functions for specific, on-demand tasks

that can scale automatically based on usage.

8. DevOps:

Continuous Integration/Continuous Deployment (CI/CD): Automating

deployment pipelines using CI/CD tools ensures swift and reliable delivery of

code changes to production environments, facilitating faster iterations and

updates.

9. User Support and Documentation:

Help Centre: Offering comprehensive user guides, FAQs, and support channels

to assist users in utilizing the IDE efficiently.

Interactive Tutorials: Providing interactive tutorials helps onboard new users

and ensures they understand and utilize the platform's features effectively.

10. Disaster Recovery and Data Backup:

Regular Backups: Implementing regular backups ensures data safety and

minimizes the risk of data loss.

Redundancy: Utilizing redundant systems and disaster recovery strategies to

maintain high availability and minimize service disruptions in case of failures or

disasters.

3.3 DATA WAREHOUSING

The vast amount of data accessible can be used creatively in a cloud-based Integrated

Development Environment (IDE) with data warehousing to improve user experience:

● Customized work Environments: By evaluating users' work patterns and preferences,

the IDE may automatically alter settings, offer tools, and provide templates that

correspond to specific coding approaches, boosting productivity and comfort.

● Suggestions for Events and Workshops: Using information about user interests and

previous event participation, appropriate workshops, hackathons, or seminars can be

presented, supporting lifetime learning and skill building.

51

● Collaboration and networking opportunities: By connecting users with similar

abilities or interests, the IDE can identify possible project partners, increasing

innovation and a community of practice.

● Resource Optimization: By evaluating consumption patterns, cloud resources can be

allocated more effectively, ensuring that users have access to the processing power they

require while not overburdening the system.

● Personalized Learning Pathways: The IDE can recommend learning modules,

documentation, and tutorials based on the learner's learning objectives and current skill

level.

● Real-time Code Analysis and Feedback: By leveraging data from numerous coding

projects, the IDE may deliver real-time recommendations, error detection, and code

optimization guidance to increase code quality and efficiency.

● Project Trend Analysis: Using information on the most popular frameworks,

languages, and tools within their user base, people can select technologies that are in

demand or becoming more popular.

● Improved Security: By monitoring and analysing code patterns and network

connections, the system may detect and alert users of potential security concerns in their

projects.

● Predictive troubleshooting: Using previous data and trends, the IDE can anticipate

and handle frequent problems or bottlenecks that developers may encounter.

● Integration with Academic and Research Activities: Educational institutions can

improve academic outcomes and accelerate procedures by merging research projects,

coursework, and academic activities into an integrated development environment

(IDE).

A data warehousing-enabled cloud-based IDE can greatly improve user experience by

enabling flexibility, higher productivity, and a comprehensive awareness of user

requirements and habits.

3.4 IMPLEMENTATION

3.4.1 FRONTEND IMPLEMENTATION

Figure 3.4 & Figure 3.5 show the implementation code of the Frontend Website, made

using React Framework. HTML, CSS & JS are used to implement this.

52

Figure 3.4: Home Page React Code

Figure 3.5: My Labs Page React Code

3.4.2 BACKEND IMPLEMENTATION

Backend of the project is made in python-based Django framework. And Rest

Architecture has been used for standardisation and scalability. (refer Figure 3.6 & 3.7)

53

Figure 3.6: Authentication & Authorization code in Django

Figure 3.7: Creating Virtual Image in Azure using Django

54

3.5 KEY CHALLENGES

The major issues we faced during the development process include the following:

• Starting on the project was a big hurdle because we found it very hard to point

ourselves in the right direction.

• Creating the Docker file was a little bit challenging to implement at first.

• Configuring Django to Azure was quite hard and challenging as Azure subscription

was throwing error.

55

CHAPTER 4: TESTING

4.1 TESTING STRATEGY

The IDE on Cloud will be tested using a combination of manual and automated testing.

Manual testing will be performed by small group of students to verify the functionality of

the IDE on Cloud. Automated testing will be performed using a variety of tools, such as

Selenium and pytest, django Tests.

Manual Testing:

Manual testing will be performed on the following areas:

● User interface

● Functionality

● Performance

● Security

Automated Testing:

Automated testing will be performed on the following areas:

● User interface

● Functionality

● Performance

Automated testing tools will be used to verify the functionality of the IDE on Cloud and to

identify any potential bugs.

The IDE on Cloud will be automatically tested using a variety of tools, such as:

● Selenium

● Unittest

Django's unit tests use the Python standard library module unittest. To define tests, this

module uses a class-based methodology. This means that each test has its own class, which

is inherited from the unittest.the TestCase class.

56

Before you can construct a unit test, you must first create a new class that derives from

unittest. Study of a single case. The class's next step is to define one or more "test"-starting

methods. Each test method should evaluate a separate aspect of your code.

For example, if you're developing a unit test for a function that adds two numbers, you could

call it "test_add_numbers." This technique would require two parameters: the first being the

number to be added, and the second being the second number. The procedure would

compare the outcome to the projected value after adding the two integers. If the outcome

matched the expected value, the test would pass. Otherwise, the test would fail.

After you've defined your test methods, you can execute them by invoking the

unittest.main() function. This function will execute every test in the current file and will also

print a report with the results. The report will indicate the number of tests done, the number

of tests that passed, and the number of tests that failed.

Django also includes a variety of tools to help you write unit tests. The coverage module

can be used to determine the test coverage of your code, and the unittest.mock module can

be used to mock out dependencies in your tests.

Also, Azure provides Log Analytics and Monitoring data to the user or developer so that

one can manage their resources effectively saving cost.

Figure 4.1: Python container metrics over a simple python code

To test how much load is being exerted on our docker container images servers we ran a

python code of a countdown timer for 30 minutes and using the metrics analysis of Azure,

57

we got the graph in Figure 4.1 average CPU core usage and Working set of memory in

bytes.

import time

def countdown(time_sec):

 while time_sec:

 mins, secs = divmod(time_sec, 60)

 timeformat = '{:02d}:{:02d}'.format(mins, secs)

 print(timeformat, end='\r')

 time.sleep(1)

 time_sec -= 1

 print("stop")

countdown(1800)

As we can see the maximum CPU usage was gone up to 0.08 cores when the server launched

initially, after that the average was roughly around 0.03 cores and the memory being used

is around 200 MB, note that 1 core of CPU and 1 GB memory was provided showing that a

lot of memory and CPU is underutilized meaning we can save resources by assigning even

less resources to simple tasks.

Next, we wanted to run the same python container under same configuration a Machine

Learning code and test the strain on the system once again.

Figure 4.2: Python container metrics over a small ML code

58

As we can see in Figure 4.2 the average CPU utilization increased and also the average

memory has jumped from 200 MB to 300 MB, we used numpy library in this and made it

multiply two random 1000 row matrices over themselves.

import numpy as np

def main():

 matrix_size = 1000

 matrix_a = np.random.rand(matrix_size, matrix_size)

 matrix_b = np.random.rand(matrix_size, matrix_size)

 result = np.dot(matrix_a, matrix_b)

if __name__ == "__main__":

 main()

From these two experiments or trials run we can say that the CPU utilization depends

directly on the type of code we are running, but even so the maximum utilization of CPU

doesn’t reach 1 core or even 0.5 core hence we can save our billing and resources by

providing less resources to the machine, and depending on heavy usage the user may select

different resource or the system will scale itself.

59

CHAPTER 5: RESULTS AND EVALUATION

5.1 RESULTS

5.1.1 ANALYSIS

Cloud based IDE removes all the headaches of the developer to setup their own

personal environment in their local system as IDECC will make it for them within few

minutes, while doing the same in their own system will take up a lot of time depending

on the complexities and the dependencies of different languages or frameworks.

Cloud Based IDE saves a lot of resources and cost for the user, as all of the

computation power is being used in the Cloud server. This feature of cloud computing

removes the need of personal computer with high configuration.

Cloud Based IDE also enables the idea of working collaboratively for a project team

or developer team. Many projects require collaborative effort of the team to build the

same application, working collaboratively in Cloud IDE will allow the same team

members to work on the same code sitting in different places, connected through the

internet.

The main aim of our project is to let the developers learn, make projects, collaborate

with each other without having the need to install any IDE or packages on the

computer being used by the user, provided that the developer is connected to the

internet.

5.1.2 DEFINING THE NEW APPROACH

The limitations imposed by the normal Integrated Development Environments, which

are installed in computer as already discussed are very constricting and the user may

not feel liberated while using them, if all the same features that are provided by a

classic IDE are provided in the cloud without having to install the dependencies

related to language and not having to keep care of the environment variables will

increase the productivity of the users and improve the development lifestyle of the

community as a whole. The introduction of Cloud IDE aims to increase the

60

collaboration that is seen between the coders or developers. Increasing the

collaboration level between team members will surely increase the production level

and the quality of the application being developed by the team.

Docker is helping us in making containers of the Virtual Machines and then to spin

them up on demand by the user. As more and more languages and frameworks will be

developed our aim will be to increase the languages on the IDE as well. Container

images are stored in Azure Container Registry.

Pre-Configured Environments tailored for different programming languages and

frameworks, eliminate the need for manual setup, Docker Container of the desired

Programming Language will contact the Virtual Machine and a new Virtual Machine

will start up and an IDE will be launched and then the user is ready to code. With the

User-Friendly Interface of the Website and the Integrated Development Environment

the user will find it very easy to navigate and use the services to its benefit.

With the introduction of Cloud Based IDE the collaboration between team members

increases as there are no more compatibility issues with the system and the

environment as well which creates a good coding environment within the team. With

the advantages provided by cloud computing which include services like automatic

scaling and pay as you go services will be very useful and functional for the project.

Ultimately all these will lead to increase in productivity and time saving of the team

and developer as an individual.

5.1.3 HOME PAGE

This is the Home page of the website; the developer will land here after signing in to

the website. This page gives the general overview of the application.

61

Figure: 5.1 Home Page of the Website

5.1.4 NEW PROJECT

New Project section is where the developer can start working on their new project,

which can be selected by the shown cards of available languages or frameworks.

62

Figure 5.2: New Project section of the website

5.1.5 MY LABS

Projects that are developed by user are present in the My Labs section of the website

along with their assigned name.

Figure 5.3: My Labs section of the Website

63

5.1.6 AZURE CONTAINER SERVICES

Azure Container Services are used to launch the IDE using Azure Container Registry

to store the Docker image and Azure Container Apps to launch the application.

Figure 5.4: Hosted Application on URL

5.2 COMPARISON WITH EXISTING SOLUTIONS

The existing solutions with which we have compared our project are

1. codedamn [24]

2. PW skills [25]

3. Local IDE

These are the two already existing cloud-based IDE providers with which we can

compare our project, both websites have considerable user flow as well so we know

that we are not comparing our website with stagnant IDEs.

Codedamn rather than being a purely Browser based IDE is more of a full website

providing every kind of thing a learning developer may need, codedamn provides user

with courses on different programming languages then teach them in its own IDE, it

has a section fully dedicated to problem solving which has a leaderboard of its own, a

projects section where you can apply to do a project with the help of different

64

languages, so codedamn rather than being a dedicated IDE is a lot more than that, but

the basic concept behind codedamn’s IDE lies in the frontend calling the server to run

up the Containers which then call the Virtual Machines and the system is then spun

up for the user.

PW Skills is the inspiration of our design and the initial thought of browser IDE. PW

Skills Lab is an only IDE website, it uses vscode’s IDE outline to showcase their

containers, a list of programmable languages and frameworks is present and when

selected it asks for a name for the project, after that it takes some time to spin up the

development environment and then it reaches the IDE which is an exact copy of

vscode’s [26] PC IDE. You can code in this Lab and then when you close the

IDE/Browser an image is created of the latest modification you have done on the

website which then tore it in storage, creates a new card in my labs area of the PW

Skills and then closes the virtual machine running for that particular project.

Local IDEs will be too much of a hassle to use once any developer will have the

experience of browser-based IDE, setting up a development environment, installing

dependencies and what not.

Comparing our project with codedamn’s playground and PW Skills Labs still a lot of

work has to be done, but our project seems to be headed in the right direction. Making

images from containerised Dockers is the main step and setting up of Virtual Machines

in the Cloud Infrastructure.

65

CHAPTER 6: CONCLUSIONS AND FUTURE

SCOPE

6.1 CONCLUSION

6.1.1 PROGRESS OVERVIEW

The necessary components of the project that are needed to make this browser-based

IDE are complete, the understanding of Docker containers has been achieved, images

containing pre-configured development environments will be containerised in Docker

and will be used every time to run up environments in the IDE in browser.

We have used Azure as our cloud provider as it has Azure Container Services which

include Azure Container Registry to store the Docker container images and then can

spin up the machine using Azure Container Apps.

6.1.2 MILESTONES ATTAINED

● Completion of the user interface design.

● Proper understanding of browser-based IDE

● Use case of Docker and containers

● Azure services to be used while deployment

6.1.3 CHALLENGES ENCOUNTERED

The challenges encountered during the learning of the project were mainly lack of

resources, there are not a lot of things available online about browser-based IDEs like

videos and/or articles, some research papers are available but they seem to have lack

of information on things which are important in the making of cloud IDE or are just

incomplete.

PW Skills and codedamn did give us some idea of the required things but still a lot of

things were unanswered, about the in depth working of Docker and containers.

66

Codedamn gave us a good overview of the internal working of the servers and how

the connections are made.

6.1.4 SUMMARY

We have integrated the vscode in web browser using the Azure Container Registry

and Azure Container Apps. The backend server is connected to the frontend website

using Django and React Framework. The login page and sign-up page are connected

to the backend database server which will hold the user data and map the container

images to correct user. The browser-based vscode is fully collaborative, and the code

can also be pushed outside from the system for example github as it also has internet

access. The developer will have full access to the Ubuntu system in the server, and

they can utilize the server however they want.

6.2 FUTURE SCOPE

The continuation of this project will be to integrate it with other languages and frameworks,

providing more options and variety for the user to choose from.

Docker images of all the new frameworks or languages will also be stored in the Azure

Container Registry.

Future scope includes making the website more user friendly and responsive. Improving the

login and sign-up pages is also one of our future considerations.

One more thing to consider in our future endeavours is that the creation of a new virtual

machine takes time which can increase the time taken for the user to wait by a lot, so a way

to decrease the waiting time wither by creating the virtual machine in advance or by some

other measure is important to improve the user satisfaction.

Script to automatically scale the virtual machines up or down depending on the use case is

to be made so as to avoid the extra billing cost on the admin end, and the script to shut down

the idle virtual machines after taking their docker image and storing them with respect to

each user in the cloud storage.

67

REFERENCES

[1] Desai, V. P., et al. "Microsoft azure: Cloud platform for application service deployment."

Int. J. Sci. Res. in Multidisciplinary Studies Vol 7.10 (2021).

[2] Kedambadi Shreekar, Shryni. Automated Dockerization of Python based Web Apps.

Diss. Dublin, National College of Ireland, 2020.

[3] Shah, Jay, and Dushyant Dubaria. "Building modern clouds: using docker, kubernetes

& Google cloud platform." 2019 IEEE 9th Annual Computing and Communication

Workshop and Conference (CCWC). IEEE, 2019.

[4] Díaz Alonso, Rubén Cayetano. "Software containerization with Docker." (2017).

[5] Copeland, Marshall, et al. Microsoft Azure: planning, deploying, and managing your

data center in the cloud. New York, NY: Apress, 2015.

[6] Merkel, Dirk. "Docker: lightweight linux containers for consistent development and

deployment." Linux j 239.2 (2014): 2.

[7] Gadhikar, Lakshmi M., et al. "Browser based IDE to code in the cloud." New Paradigms

in Internet Computing (2013): 59-69.

[8] Goldman, Max, Greg Little, and Robert C. Miller. "Real-time collaborative coding in a

web IDE." Proceedings of the 24th annual ACM symposium on User interface software and

technology. 2011.

[9] Cała, Jacek, and Paul Watson. "Automatic software deployment in the azure cloud." IFIP

International Conference on Distributed Applications and Interoperable Systems. Berlin,

Heidelberg: Springer Berlin Heidelberg, 2010.

[10] van Deursen, Arie, et al. "Adinda: a knowledgeable, browser-based IDE." Proceedings

of the 32nd ACM/IEEE International Conference on Software Engineering-Volume 2. 2010.

[11] Persson, Patrik, and Görel Hedin. "An interactive environment for real-time software

development." Proceedings 33rd International Conference on Technology of Object-

Oriented Languages and Systems TOOLS 33. IEEE, 2000.

[12]https://learn.microsoft.com/en-us/azure/architecture/web-apps/app-service-

environment/architectures/ase-standard-deployment [date of access:25-10-2023]

https://learn.microsoft.com/en-us/azure/architecture/web-apps/app-service-environment/architectures/ase-standard-deployment
https://learn.microsoft.com/en-us/azure/architecture/web-apps/app-service-environment/architectures/ase-standard-deployment

68

[13] https://learn.microsoft.com/en-us/azure/architecture/hybrid/hybrid-containers [date of

access:28-10-2023]

[14] https://azure.microsoft.com/en-in/products/devops/pipelines [date of access: 28-10-

2023]

[15] https://learn.microsoft.com/en-us/archive/msdn-magazine/2019/august/azure-devops-

introducing-azure-deployment-manager [date of access: 28-10-2023]

[16] https://docs.citrix.com/en-us/tech-zone/design/design-decisions/azure-instance-

scalability.html [date of access: 25-10-2023]

[17] https://azure.microsoft.com/en-in/pricing/purchase-options/pay-as-you-go [date of

access: 31-10-2023]

[18]https://learn.microsoft.com/en-us/azure/architecture/example-

scenario/infrastructure/wordpress-iaas [date of access: 08-09-2023]

[19] https://www.python.org [date of access: 08-09-2023]

[20] https://www.djangoproject.com [date of access: 12-09-2023]

[21] https://www.javascript.com [date of access: 13-09-2023]

[22] https://react.dev [date of access: 13-09-2023]

[23] https://www.docker.com [date of access: 17-09-2023]

[24] https://www.codedamn.com [date of access: 15-08-2023]

[25] https://lab.pwskills.com [date of access: 15-08-2023]

[26] https://code.visualstudio.com [date of access: 17-08-2023]

https://learn.microsoft.com/en-us/azure/architecture/hybrid/hybrid-containers
https://azure.microsoft.com/en-in/products/devops/pipelines
https://learn.microsoft.com/en-us/archive/msdn-magazine/2019/august/azure-devops-introducing-azure-deployment-manager
https://learn.microsoft.com/en-us/archive/msdn-magazine/2019/august/azure-devops-introducing-azure-deployment-manager
https://docs.citrix.com/en-us/tech-zone/design/design-decisions/azure-instance-scalability.html
https://docs.citrix.com/en-us/tech-zone/design/design-decisions/azure-instance-scalability.html
https://azure.microsoft.com/en-in/pricing/purchase-options/pay-as-you-go
https://learn.microsoft.com/en-us/azure/architecture/example-scenario/infrastructure/wordpress-iaas
https://learn.microsoft.com/en-us/azure/architecture/example-scenario/infrastructure/wordpress-iaas
https://www.python.org/
https://www.djangoproject.com/
https://www.javascript.com/
https://react.dev/
https://www.docker.com/
https://www.codedamn.com/
https://lab.pwskills.com/
https://code.visualstudio.com/

69

70

71

72

73

74

