
i

AI BASED SOCIAL SUMMARIZER

A major project report submitted in partial fulfillment of the requirement

for the award of degree of

Bachelor of Technology

in

Computer Science & Engineering / Information Technology

Submitted by

Sumeet Birendra Singh (201214)

Under the guidance & supervision of

Dr. Deepak Gupta

Department of Computer Science & Engineering and

Information Technology

Jaypee University of Information Technology, Waknaghat,

Solan - 173234 (India)

ii

CERTIFICATE

This is to certify that the work which is being presented in the project report titled “AI Based

Social Summarizer” in complete fulfilment of the requirements for the award of the degree of

B.Tech in Computer Science And Engineering and submitted to the Department of Computer

Science And Engineering, Jaypee University of Information Technology, Waknaghat is an

authentic record of work carried out by “Sumeet Birendra Singh (201214)” during the period

from August 2023 to May 2024 under the supervision of Dr. Deepak Gupta, Assistant Professor

(SG) Department of Computer Science and Engineering, Jaypee University of Information

Technology, Waknaghat.

Sumeet Birendra Singh

(201214)

The above statement made is correct to the best of my knowledge.

Dr. Deepak Gupta

Assistant Professor (SG)

Computer Science & Engineering and Information Technology

Jaypee University of Information Technology, Waknaghat

iii

CANDIDATE’S DECLARATION

I hereby declare that the work presented in this report entitled ‘AI Based Social Summarizer’

in partial fulfilment of the requirements for the award of the degree of Bachelor of Technology

in Computer Science & Engineering / Information Technology submitted in the Department

of Computer Science & Engineering and Information Technology, Jaypee University of

Information Technology, Waknaghat is an authentic record of our own work carried out over a

period from August 2023 to May 2023 under the supervision of Dr. Deepak Gupta (Assistant

Professor (SG), Department of Computer Science & Engineering and Information Technology).

The matter embodied in the report has not been submitted for the award of any other degree or

diploma.

(Student Signature with Date)

Sumeet Birendra Singh

201214

This is to certify that the above statement made by the candidate is true to the best of my

knowledge.

(Supervisor Signature with Date)

Supervisor Name: Dr. Deepak Gupta

Designation: Assistant Professor (SG)

Department: Computer Science & Engineering and Information Technology

Dated:

iv

ACKNOWLEDGEMENT

Firstly, i express our heartiest thanks and gratefulness to almighty God for His divine blessing

makes it possible to complete the project work successfully.

I would like to express our sincere gratitude to our supervisor, Dr. Deepak Gupta, for his

valuable guidance and support throughout the development of our project, titled "AI Based

Social Summarizer."

His expertise has played a great role in our progress so far. I am grateful for his willingness to

review our work and provide feedback, we am confident that his guidance will lead us to the

successful completion of our project. We am truly honored and thus i extend our heartfelt

gratitude for his mentoring and contributions to my project.

I would also generously welcome each one of those individuals who have helped us

straightforwardly or in a roundabout way in making this project a win. In this unique situation,

i might want to thank the various staff individuals, both educating and non-instructing, which

have developed their convenient help and facilitated our undertaking.

No expression of appreciation is complete without recognition of the prayers, good wishes,

advice and moral support of my affectionate parents, which helped me immensely to achieve

my goal.

v

TABLE OF CONTENTS

LIST OF ABBREVIATIONS vii

LIST OF FIGURES viii

LIST OF TABLES x

ABSTRACT xi

1 INTRODUCTION …………………………………………………………………1

1.1 Introduction …………………………………………………………………………....1

1.2 Problem Statement ……………………………………………………………….........2

1.3 Objectives ………………………………………………………………………….….3

1.4 Significance and motivation of the project report ……………………………….........5

1.5 Organization of project report ………………………………………………………...6

2 LITERATURE SURVEY ………………………………………...…….7

2.1 Overview of relevant literature ……………………………………………………….7

2.2 Key gaps in the literature ……………………………………………………….........16

3 System Development …………………………………………………...18

3.1 Requirements and Analysis …………………………………………………….........18

3.2 Project Design and Architecture ………………………………………………...…...20

3.3 Data Preparation ……………….……………………………………………….….…25

3.4 Implementation ………………………………………………………………………26

3.5 Key Challenges ………………………………………………………………………38

4 Testing …………………………………………………………………...40

4.1 Testing Strategy ………………………………………………………………………40

vi

4.2 Test Cases and Outcomes …………………………………………………………….41

5 Results and Evaluation …………………………………………….......50

5.1 Results …………………………………………………………………………….….50

6 Conclusions and Future Scope ………………………………………...54

6.1 Conclusion …………………………………………………………………………...54

6.2 Future Scope ………………………………………………………………………....55

REFERENCES …………………………………………………………….56

vii

LIST OF ABBREVIATIONS

S. No. Short Form Full Form

1 AI Artificial Intelligence

2 LLM Large Language Model

3 GPT Generative Pre-Training

4 RNN Recurrent Neural Network

5 CNN Convolutional Neural Network

6 UI User Interface

7 BERT Bidirectional Encoder Representations from transformers

8 NLU Natural Language Understanding

9 LAMA Language Model Analysis

10 CoT Chain of Thoughts

11 HTML Hyper Text Markup Language

12 CSS Cascading Style Sheet

13 JSON JavaScript Object Notation

viii

LIST OF FIGURES

S. No. Title Page

No.

3.1 Representation of the project entities 19

3.2 Idea of LangChain 22

3.3 Flow chart 24

3.4 Representation of linkedin_lookup_agent.py file 27

3.5 Representation of custom_chains.py file 28

3.6 Representation of script in the style.css file 29

3.7 Continued representation of script in the style.css file 30

3.8 Representation of script in index.html file 31

3.9 Representation of linkedin.py file 32

3.10 Representation of tools.py file 33

3.11 Representation of app.py file 34

3.12 Representation of ice_breaker.py file 35

3.13 Continued representation of ice_breaker.py file 36

3.14 Representation of output_parsers.py file 37

4.1 Representation of frontend application 41

4.2 Representation of terminal while testing the ProxyCurl API 42

4.3 Representation of chains file 42

ix

S. No. Title Page

No.

4.4 LinkedIn profile from the URL produced by API 43

4.5 Representation of terminal while testing the ProxyCurl API for test case 2 43

4.6 LinkedIn profile from the URL produced by API for test case 2 44

4.7 Representation of test case 1 for OpenAI API testing 45

4.8 Representation of console for test case 1 45

4.9 Representation of frontend output for test case 1 46

4.10 Representation of test case 2 for OpenAI API testing 47

4.11 Representation of console for test case 2 48

4.12 Representation of frontend output for test case 2 49

5.1 Passing the LinkedIn profile user name 50

5.2 Representation of console 51

5.3 Representation of frontend output 52

x

LIST OF TABLES

1.1 Literature review of research papers………………………………………………15

i

ABSTRACT

It can be hard and tedious to keep up with important social media details from websites like

LinkedIn in present times as there is a lot of information overload and profiles flooding all over

the platform some of which seem to be irrelevant. Thus, the development of an effective social

summarizer web application based on AI that integrates LinkedIn data compresses it into concise

and meaningful abstracts, and communicates the data is needed to address this issue. This would

provide customers with a handy means of getting updates on all essential information about

some users globally in the internet world. The rise of generative AIs such as Generative Pre-

Training 3 (GPT3) can be attributed to the development of Large Language Model (LLM) based

applications. These models have been quite efficient in natural language processing and

production applications though several applications of these LLMs have not yet been discovered

or even thought of, be simple LLMs have a wider scope in varying domains which when applied

can be of great use.

LLMs have been used for text summarizing and content extraction. Previous studies on social

summarization have concentrated on the processing of data from LinkedIn networks

respectively. Agents and scraping approaches have been used to collect data from several

sources which was preprocessed later. Nevertheless, adding advanced AI features such as LLMs

which most current summaries lack could greatly improve the quality of output summaries.

There are several other applications of LLM in the AI domain that have been proven to

revolutionize. Though the use of LLMs has been limited to certain fields it can be employed in

several cases which are yet to be discovered. Also, LangChain is a powerful Python-based

framework not known to everyone that provides the complete infrastructure, tools, and overall

environment in general to develop certain projects. LLM coupled with the use of LangChain or

related framework can do wonders in the Artificial Intelligence domain.

1

CHAPTER 1: INTRODUCTION

1.1 INTRODUCTION

There are various social networking platforms such as LinkedIn, which is very important in

professional activities. It is used for posting one’s professional successes and networking with

other individuals who share similar interests while also seeking employment opportunities. It is

not simple as a lot of data is present there which nobody can tell is true or not. Therefore, new

applications should be developed to use the strength of artificial intelligence to help tackle this

issue of information overload.

The purpose of this project is to address the information overload challenges that exist in the

social media environment using generative AI technology. Our web-based application will go

through numerous critical phases, i will utilize the specially designed agents and APIs to gather

data from LinkedIn. Data preprocessing will remove noise and useless information. Our

application will majorly deal with the integration of LLM driven by LangChain. This will allow

for precise, logical, and contextually relevant summaries of the accumulated data. Summaries

will reflect the very specific key ideas of the original content.

I will develop an appropriate user interface, in which the users can state their specific

requirements as well as view the summaries presented. I will use Flask to build our application

and it will comprise of friendly interface for users and an integrated AI backend. For this to

work, communication between components must be seamless.

I propose a solution that uses generative AI methods with effective data gathering and processing

by creating this AI-based Social Summarizer. Our project would meet the growing demand for

clear information. The application would aim to provide users with a tool that makes reading

social media profiles an effective experience through the combination of technology and user-

centric design. This web application would be able to provide the medium where the user could

look for a brief description of some person primarily the summary generated would be from

2

his/her LinkedIn profile. The core of the AI-based Social Summarizer relies on the extraction of

relevant information from LinkedIn profiles. To accomplish this, the project leverages the

ProxyCurl API, a robust tool designed for secure and ethical data scraping from LinkedIn. This

ensures compliance with LinkedIn's terms of service while allowing the project to access profile

information seamlessly.

The project makes use of the ChatGPT3.5 Turbo, which is a strong language model that

comprehends and produces natural language. Applying this model makes it possible for social

summarizers powered with AI technology to extract informative write-ups of LinkedIn profiles.

To ensure that the generated summaries capture the nuances and salient features of each profile,

the LangChain framework is used for enhancement.

This AI-powered social summarizer will be seen as one of the uncommon approaches in the area

of AI-driven social network analysis. The project can change the way people access and navigate

through LinkedIn profiles by using LLM’s advanced language models, ethically scraped data,

and web applications connected to external APIs.

1.2 PROBLEM STATEMENT

As the number of users on LinkedIn continues to grow exponentially, leading to uncountable

profiles, getting to a certain significant profile becomes an increasingly challenging task. The

vast volume of information load makes it difficult for the user to fetch the relevant details about

a person they are looking for in the desired way. This problem is unaddressed due to the absence

of intelligent tools that can distill and summarize necessary information from LinkedIn profiles.

This major project deals with the lengthiness of LinkedIn profiles as it is one of the critical

issues while going through the platform. Understanding many shades of every profile has

become a tedious task for the majority of its users as the platform increasingly finds its use

among professionals for networking and communication purposes. However, it is difficult to

analyze traditional profiles using old means designed for such purposes as there exists a lot of

information that can affect an individual’s personality. Thus, this calls for a smart approach that

3

simplifies the generation of profile summaries allowing customers to comprehend required

information within a small space.

The underlying idea of the AI-based social Summarizer is that it can redefine user engagement

with LinkedIn profiles. Manual profile analysis is not feasible, and users are also unaware of

key details hidden in long contents. Advanced language models and data scraping help tackle

the limitations by giving users a quick but useful way of comprehending profiles.

The adoption of AI-based social summarizers is likely to produce positive outcomes including

increased user efficiency, better understanding of profile information, and more precise starting

points for communicating with others depending on the created summaries. The success of the

project will be determined by users’ input, the quality of summaries, and its success in everyday

use.

1.3 OBJECTIVES

1.3.1 CONTENT SUMMARIZATION:

The main goal of the development of an AI-based Social Summarizer is building a strong

system for generating content summaries taking into account the power of LLM. Textual

information is vast on social media profiles, especially the sites like LinkedIn. Making an

intelligent natural language system necessary. To understand the basis of each LinkedIn profile,

OpenAI’s ChatGPT3.5 Turbo has been used. This can get major data including career events,

skills, schooling, and others to create brief but meaningful outlines.

Content summarization is made up of extracting significant parts of information, such that the

system correctly presents every detail associated with each profile. LLM facilitates the

contextual approach that understands that the profession is broad and varies in scope or field

among different individuals. The system seeks to give relevant summaries of important issues

as most people struggle to get meaning out of too much information available on these sites.

4

1.3.2 LANGCHAIN INTEGRATION:

The project uses LangChain technology to provide better summary outputs. LangChain is

essential for improving the validity, uniformity, and general soundness of language

development. Whereas LLM like ChatGPT3.5 Turbo is good at producing text, LangChain

serves as an additional level that provides a meaningful storyline in the generated summaries.

The major achievement contributed by LangChain is in generating summaries not only with

accuracy but also with well-structured logic based on relationships among different parts of the

texts. To tackle such an issue of separated summaries, a process for integrating these results

into natural language has been provided. The duo of LLM and LangChain improves the

understandability and fluency of the created content.

1.3.3 USER-FRIENDLY INTERFACE:

The AI-based social summarizer works under advanced language processing and its interface

is a web application developed using Flask. It should have a friendly interface that provides

easy access and use, leading to the success of this endeavor and to make the summary tool

feasible.

Thus, it acts as a link between content summary, integration with LangChain, data extraction,

and users’ needs. This makes it easy for users to enter the LinkedIn username and access the

process of summary generation. It has a simple design that renders easy to follow the

constructed summaries. The aim is to provide an effective UI coupled with several other

features that give higher productivity at any time.

The summaries produced by this process are made accessible to users through a user-friendly,

simple and easy to access interface where professionals, employers, and individuals can find

relevant information about various LinkedIn profiles without much efforts. A user-friendly

design improves on the practical aspects of the AI Based Social Summarizer that can be

understood by different users having different skill levels.

5

1.4 SIGNIFICANCE AND MOTIVATION OF THE PROJECT WORK

The project is significant due to its potential to revolutionize the way people access and extract

information from LinkedIn profiles. Also, this addresses the issue by bringing in use the

advanced technologies, including LLM and LangChain, to cater to the summarization process.

The system's ability to suggest conversation topics based on the summarization output improves

its value even more. This feature would not only help initiating conversations but also enhance

the overall user experience. Hence, the AI-Based Social Summarizer can be considered as a

transformative tool, offering users a time-efficient and insightful means of getting through the

struggles of social media profiles. The AI-Based Social Summarizer might prove significant for

professionals, recruiters, and individuals seeking to optimize their interactions on LinkedIn. By

employing OpenAI's ChatGPT3.5 Turbo, the project ensures that the generated summaries are

not only accurate but also contextually relevant and desired.

The motivation behind the "AI-Based Social Summarizer" project is from the recognition of

existing challenges in the realm of profile analysis on professional networking platforms.

Traditional methods of manually sifting through extensive profiles not only consume valuable

time but also risk missing out on crucial details. The motivation to develop an automated

summarization tool is rooted in the desire to empower users with a more efficient and effective

means of profile comprehension.

The scraping of data from LinkedIn via the ProxyCurl API adds another layer of motivation by

addressing ethical considerations. The project is designed to adhere to LinkedIn's policies,

ensuring that data extraction is conducted ethically and securely. This commitment to ethical

practices aligns with the broader motivation to create a tool that not only meets technical

excellence but also upholds ethical standards in data usage. Also, the motivation to develop and

learn the advanced technologies in Artificial Intelligence like LLM based applications, learning

about the LangChain framework and it’s working along with third party APIs had driven the

working on the project.

6

1.5 ORGANIZATION OF PROJECT REPORT

The report is organized as follows:

● Chapter 1 is all about the idea of the need of the proposed system and how it can help. In

present times we deal with a lot of information overload on social networking platforms.

Therefore, i describe a problem statement and how to deal with it with the help of LLM and

I have also defined a set of objectives for this project.

● Chapter 2 outlines the existing related work in the field of LLMs and LangChain powered

web applications in Artificial Intelligence. It further presents the outputs which i eventually

compare and discuss in this report.

● Chapter 3 puts forward the system that is formulated to cater the summarization of LinkedIn

profiles precisely and is designed to work to fetch the information about a user. This is

where we cover the requirements, project design and implementation along with challenges

faced.

● Chapter 4 is all about testing the system for the accuracy and precision of the generated

summary of the desired profile discussing the test strategy, test cases and outcomes thus

produced.

● Chapter 5 puts forward the analysis of the results in depth and also with content to existing

work in the field.

● Finally, Chapter 6 presents the conclusion of the study. It also contains the application

contribution with future scope of the project.

7

CHAPTER 2: LITERATURE SURVEY

2.1 OVERVIEW OF RELEVANT LITERATURE

M Konda et al. [1], demonstrated how to combine OpenAI and LangChain to construct a basic

client-server application based on LLM dubbed "Answer Bot." A client-side API was made

accessible for connecting to and invoking a Flask-based Python server. A basic user interface

was constructed after the endpoint was tested with Postman. The tech stack featured the Open

AI GPT 3.5 model (gpt-3.5-turbo), the LangChain framework, Python, Flask for server-side

web server support, and the Streamlit framework for the client's user interface. created a server

providing the API for talking with the server, designed in Streamlit, and successfully deployed

LangChain. The client then makes a call to this API to obtain the results.

Dash ICT et al. [2], posted another article that provides a detailed investigation of using

LangChain and some of the trendiest subjects. The author also detailed how he established his

chatbot, which he utilizes in conjunction with proprietary APIs to assist users and give insights

from their web data. An AI based personal shop advisor was developed to aid consumers in

reviewing their online store data and making advice on how to increase sales and where to

commit more cash to improve average revenue per visitor. The Chatbot verified an endpoint

depending on the user's response to the query using the app's API swagger file in order to obtain

vital data from the app's backend for corrective feedback. It goes over LLM again, as well as

its text production, translation, summarizing, answering queries, finishing papers, and language

comprehension capabilities. It also offers free and paid models such as GPT-3 (Generative Pre-

trained Transformer 3), Falcon LLM, and LLaMA. Using the Planner agent as a tool to improve

planning and analysis of user inputs, it updated the prompt template while keeping the app's

API in mind. The planner agent analyzes the yaml file, converts all endpoints into tools that the

agent can use, generates a plan with all the APIs that must be called in order to provide the best

response to a human question, calls these APIs in order to analyze the data, and returns the best

response to the user.

8

Keita et al. [3], illustrates how to design a system that can communicate with any PDF and

image file. The entire chat system's workflow was documented from beginning to end. The user

must first submit the document to be processed, which could be in image or PDF format. The

second module was built up to recognize the file format and then start the appropriate content

extraction process. The Data Splitter module was used to separate the document's information

into smaller bits. Finally, the chunk converter translated the chunks into embeddings, which

were then saved in the vector storage. In the last phase, each chunk held an answer to the user's

query, and the results were provided to the user in the form of a JSON response. The approach

employed was decided by whether the input document was an image or a PDF. To extract data

from a specific type of file, utilized a LangChain library with a lot of separate components. A

larger document, such as a research paper, may, on the other hand, comprise numerous sections.

Chunk embeddings are created. A vector store was designed to identify the response to a given

query concerning a defined collection of chunks that are most comparable to that query. It

constructed a dictionary with two keys, the confidence level associated with the query's answer.

When communicating with the PDF document, we had to specify the file's path as well as the

question to which we wanted our model to answer. The model responded like a human in a

matter of seconds. Depending on the length of the document, putting a human through the same

process could take minutes or even hours.

C. Greyling et al. [4], focused on utilizing LangChain to the HuggingFace inference API for a

Q&A chatbot. It was then followed by a few real-world examples of how to use LangChain and

HuggingFace to insert context into a debate utilizing a few-shot learning technique. offered a

simple example of how to govern conversational context in an LLM-based chatbot. An LLM

was employed in a generating process, and the LLM got the initial input. This initial query

includes a description of the chatbot, the first human input, and the LLM response. To continue

the conversation, a fresh additional block was delivered. The LLM's response is well-informed

and based on the context of the blocks provided collectively. Simply, the conversational flow

buffered each discussion turn. Furthermore, it suggested two approaches for resolving lengthy

conversations, deleting the first part of the conversation history at specific moments by

truncating the conversational history. This method is comparable to using rolling logs to limit

the size of log files. The second way is to utilize LLMs to record the history of the debates as

9

they occur. Discusses on the ChainBufferMemory that is a form of memory that adds all

previously sent text both input and output to the context that is provided with each user message.

LangChain introduced three ways to context management: combination, summary, and

buffering. The application code that uses the HuggingFace inference API was successfully

executed.

S. Talebi et al. [5], published research work on the use of LLMs. In this situation, three phases

of dealing with LLMs were presented, as well as an introduction to them. It is described a

language model that is smaller and more general than a huge language model. Not all squares

are rectangles, just as not all rectangles are squares. All LLMs are language models, it is a

relatively recent innovation in artificial intelligence and machine learning. ChatGPT was

characterized as a chat interface that ran on the GPT-3 LLM (which has since been improved

to either GPT-3.5 or GPT-4 as of this writing). It evaluated both qualitative and quantitative

sorts of LLM depending on the number and type of metrics utilized or displayed.

A. Biswas et al. [6], offered a chatbot that overcomes the shortcomings of typical chatbots. The

most recent ChatGPT API version was used. OpenAI's GPT-3.5-Turbo big language model

recognizes and produces natural language or code. It is one of the most capable and

competitively priced devices in Open AI's current GPT3.5 series. The ConversationChain,

which has a simple memory type that preserves all previous inputs and outputs and appends

them to the passed context; and the memory made out of a buffer that can take n user interactions

as a context summary, which can provide an overview of prior talks, were employed. Both can

occasionally be present in the same memory at the same time. Front-end programming was

utilized to create the chatbot utilizing an online DataButton platform that comprised an

integrated code editor (IDE), a package plus configuration maintenance environment, and a

real-time development viewing area (localhost). Because DataButton makes use of the Streamlit

framework, the code was written in basic Streamlit syntax. This resulted in the successful

development of a Memory Bot that can be further customized and expanded with one's own

datasets. It can have genuine human-like discussions while still being aware of the talks and

context.

10

O. Topsakal et al. [7], stresses at the usage of LLMs in the rapid development of applications.

This article focuses on the open-source software library LangChain. It begins with talking about

revolution in AI highlighting ImageNet Challenge [8], [9] and implementation of reinforcement

learning [10]. LLMs have gained popularity since they can handle a number of duties including

as writing code, explaining things, writing essays, and troubleshooting. LLMs have been

utilized by millions of individuals courtesy to OpenAI's ChatGPT. The core emphasis of the

research is LangChain, which is aimed to speed up the development of specialized AI

applications employing LLMs. LangChain is well-known in the field of artificial intelligence

for its smooth integration with a varied variety of apps and data sources. The paper analyzes

LangChain's core parts, such as its chains and components, which serve as adaptive, use-case-

specific pipelines and modular abstractions, respectively. Using a variety of real-world

examples, the study clarifies this framework's ability to accelerate the development of LLM-

based applications. A "prompt" is an LLM's input. They are commonly generated dynamically

in an LLM application and contain the user's input (question). LangChain provides a set of

classes for building prompts by employing numerous customizable Prompt Templates. A

prompt template is a repeatable way for constructing a prompt. The chain is typically made up

of an LLM and a prompt. When an application requires a flexible chain of calls to LLMs and

other tools that rely on user input, agents can be deployed. An agent selects the correct tool

from a selection of tools to utilize for user input. The development of LLMs, such as OpenAI's

ChatGPT, signifies a paradigm change in AI research with multiple applications. Because of its

versatility to interface with a large number of data sources and applications, the open-source

library LangChain is a helpful resource in the AI field. LangChain's modular architecture, which

provides pipelines that can be customized for various use cases, speeds up the creation of LLM

applications. This work contributes to the topic on LLM application development in an intent

to motivate additional research into LangChain and comparable technologies.

Wei et al. [11], looked at language models' ability to construct a logical chain of thought, or a

sequence of brief words that resembles the type of reasoning a human may use in response to an

inquiry. Experiments reveal that when pressed to induce a chain of thought, sufficiently big

language models perform better on reasoning problems with flat scaling curves. This research

explored the use of chain of thought prompting to improve the reasoning task performance of

11

language models. Before arriving at a solution, language models could construct a logical path

of thought, comparable to how people do when faced with a multi-step reasoning difficulty.

When ordinary few-shot urging is insufficient for a certain reasoning activity, chain of thought

prompting is easy to utilize and increases overall performance. Importantly, the trial results hint

to the likelihood that successful chain of thought prompting is an emergent attribute of model

scale, which means that its benefits become apparent only at a sufficiently large model scale

(about 100B parameters). The datasets investigated were the SingleOp [12], SingleEq [13],

AddSub [14], ASDiv [15], MultiArith [16], and GSM8K [17]. Several complex left-to-right

transformer language models with just decoders were utilized. The models were pre-trained

using a combination of web publications, dialog data, and Wikipedia. Chain of thought

prompting is a basic and often utilized method that was studied in this work to improve reasoning

in language models. As shown by tests on symbolic, arithmetic, and commonsense reasoning,

chain of thought processing is an emergent property of model size that permits sufficiently big

language models to execute reasoning tasks that would otherwise have flat scaling curves. It is

expected that increasing the spectrum of reasoning problems that language models can handle

will inspire additional study into language-based reasoning methodologies. CoT prompts foster

more thorough and logical reasoning. The model's performance variations are dictated by

prompt quality.

Xiao et al. [18], introduced P-Tuning, a revolutionary technique that blends discrete prompts

with trainable continuous prompt embeddings. Natural language understanding (NLU) can be

accomplished by using natural language patterns to prompt a pre-trained language model.

However, preliminary research indicates that manual discrete prompts frequently result in

unstable performance; for example, changing a single word in the prompt can result in a

substantial reduction in performance. P-Tuning not only minimizes the time gap between

discrete prompts to stabilize training, but it also enhances performance on a range of NLU tasks

such as SuperGLUE and LAMA. It works effectively for adjusted or frozen language models

in both fully-supervised and few-shot conditions. The datasets and tools used were LAMA-

TREx (LAMA-34k and LAMA-29k) and AutoPrompt. P-tuning improves best knowledge

probing outcomes. Furthermore, P-tuning outperforms prior discrete prompt searching

algorithms as AutoPrompt [19] and LPAQA [20] on the same-size models. As this indicates,

12

distinct prompts may not be the ideal method. This work presented the P-Tuning technique,

which combines discrete and continuous prompts. In both the few-shot and fully-supervised

scenarios, P-tuning is useful with both tuned and frozen language models. It increases

performance and stabilizes training for the adaptability of pre-trained language models. GPT-3

goes beyond pattern memorization to indicate linguistic understanding. Excellent performance

on a number of language-related tasks.

Liu et al. [21], presented a new work coupled with a discussion of Bidirectional Encoder

Representations from Transformers (BERT). This paper illustrates that considerable

performance benefits are attainable and models (Transformers) function best when matched

with this method. It also indicated higher transferable representations and language

comprehension. This enables for enhanced generalization and insights into contextual

representations. It was utilized as a pre-trained language model to improve a range of natural

language processing jobs. This study created a thorough framework for both extractive and

abstractive models and proved how BERT may be productively applied to text summarization.

Many intersections Transformer layers are built on top of the encoder to build the extractive

model. A new fine-tuning schedule for abstractive summarization was presented in order to

alleviate the mismatch between the pre-trained encoder and the non-pre-trained decoder. This

is accomplished by deploying distinct optimizers for each. A two-staged fine-tuning technique

was also presented, which could help to boost the quality of the summary supplied. Experiments

were done utilizing three datasets, and the findings demonstrated that the model consistently

provides cutting-edge outcomes in both extractive and abstractive settings [22]. This work

shows how pretrained BERT may be employed in text summarization. A unique encoder at the

document level was also introduced, as well as a basic framework for abstractive and extractive

summarization. The focus of this research was on document encoding for summary. As a result,

in terms of generating coherent summaries, the system proposed in this research beats earlier

summary systems.

13

A Radford et al. [23], revealed great improvements on a range of tasks, including textual

entailment, question answering, semantic similarity assessment, and document classification.

can be performed by discriminatively fine-tuning a language model on each particular task

following generative pre-training on a variety of unlabeled text. Although huge unlabeled text

corpora are routinely available, labeled data for these specific tasks is limited, limiting the

performance of discriminatively trained models. In contrast to other methods, due to the

application of task-aware input transformations during fine-tuning, successful transfer was

achieved with minimal model architectural changes. The usefulness of this method has been

proved over a wide range of natural language understanding criteria. Through pre-training on a

vast corpus with extended portions of continuous text, model got considerable expertise and the

capacity to handle long-term dependencies. These abilities were then successfully used to

discriminative tasks such as text classification, entailment determination, question answering,

and semantic similarity evaluation, enhancing the state of the art on 9 of the 12 datasets

investigated.

A. Vaswani et al. [24], presented the Transformer, a revolutionary neural network design that

altered tasks involving natural language processing (NLP), was the first attempt that came near

to bringing about a revolution. Vaswani et al. published it in 2017. Convolutional neural

networks (CNNs) were extensively used prior to transformers and was utilized in NLP

applications, but they had several drawbacks. The authors suggested a fully attention-based

model that outperformed earlier methods while being easier to train and more parallelizable.

The key idea behind the Transformer is the self-attention mechanism, which allows the model

to determine the relative relevance of multiple phrases or tokens in a sequence while processing

the sequence. Because it does not employ sequential processing, the Transformer beats RNNs

and CNNs in capturing word dependencies. The Transformer architecture is made up of an

encoder and a decoder. The encoder and decoder are built of multiple layers, each of which use

position-wise feed-forward neural networks and a self-attention mechanism. Using the self-

attention method, the model can pay attention to different words in the input sequence and

recognize their associations. In order for the self-attention mechanism to work, the query, key,

and value linear transformations of the input must be computed. Following these input

projections into various subspaces, the model computes attention ratings for each query and key

14

pair. The output of the self-attention layer is obtained by adding the corresponding values,

which are weighted depending on these scores. In addition to the self-attention technique, the

Transformer features positional encoding to incorporate the word order in the sequence. For

this, many datasets were applied. Hyperparameters were chosen following testing on the

development set. When possible, the maximum output length during inference to input length

+ 50 was terminated as soon as practicable [25]. The Transformer may be learned significantly

faster than systems based on recurrent or convolutional layers. This Transformer design

surpassed the competition in terms of competitive performance, faster training times, and

excellent efficacy in parallelization and capturing long-range links.

15

Table 1.1: Literature review of research papers

S. No. Paper Title

[Cite]

Journal/ Conference

(Year)

Tools/ Techniques/

Dataset

Results Limitations

1. Oguzhan Topsakal et.al.,

“Creating LLM Applications

Utilizing LangChain: A Primer on

Developing LLM Apps Fast” [7]

All Sciences Proceedings

(2023)

LLM based API for making

an API call.

Insights into LangChain's usage,

fostering rapid application

development using LangChain

for LLM applications.

Security concerns in LLM

application development.

2. Jason Wei et.al., “Chain of

Thought Prompting Elicits

Reasoning in LLMs” [11]

Advances in Neural

Information Processing

Systems 35, NeurIPS

(2022)

SingleOp, SingleEq,

AddSub, ASDiv,

MultiArith, GSM8K

CoT prompts lead to more in-

depth and coherent reasoning.

Model performance varies based

on prompt quality.

Performance can still vary

depending on prompt design.

Limited exploration of prompt

variations.

3 Xiao Liu et al., “GPT Understands,

Too” [18]

AI Open (2021) LAMA-TREx dataset

(LAMA-34k and LAMA-

29k)

AutoPrompt

GPT-3 exhibits linguistic

comprehension beyond pattern

memorization. Strong

performance in various linguistic

tasks.

There were instances where

GPT-3 generates incorrect or

irrelevant responses

4. Yang Liu et.al., “Text

Summarization with Pre-Trained

Encoders” [21]

Association for

Computational Linguistics

(2019)

Summarization datasets:

CNN/DailyMail news

highlights dataset,

Improved performance in terms

of generating coherent

summaries, surpassing previous

summarization methods.

Challenges in achieving

fluency and accuracy.

5. Alec Radford et.al., “Improving

Language Understanding by

Generative Pretraining” [23]

OpenAI (2018) Natural language inference:

SNLI, MultiNLI, etc.

Question Answering:

RACE, Story Cloze

Sentence similarity

Improved language

understanding, transferable

representations. Enables better

generalization, insights into

contextual representations.

Challenges in handling out-of-

distribution inputs.

6. Ashish Vaswani et.al., “Attention

Is All You Need” [25]

Neural Information

Processing Systems,

NeurIPS (2017)

Various language datasets Competitive performance, faster

training times. Effective in

capturing long-range

dependencies, parallelization

Less effective for tasks

requiring structured outputs.

16

2.2 KEY GAPS IN THE LITERATURE

While these papers/articles revolutionized the Artificial Intelligence domain there are some key

gaps:

In A. Vaswani et al.’s work, the model used here faced difficulties when dealing with very long

sentences or extensive variations. Training very big models can prove costly when it comes to

computing resources and they still can prove to be unreasonable for any research or industrial

application.

In A. Radford et al.’s work, it is significant to note that different evaluation metrics may be

required for different tasks, and improvement of one parameter does not mean better

performance. The scalability of the approach is not discussed. The study considers benchmark

datasets used in research, its application in real life situation has not been fully addressed.

In Liu et al.’s work the LLM used BERT can be very demanding when it comes to

computations. The proposed framework was not enough to address large datasets and for

different domains. However, the paper did not discuss on how readable the generated

summaries were.

In Liu, Xiao et al.’s paper there was no information provided about how prompt embeddings are

created but have been discussed many times in the paper. The paper addresses briefly the quality

of P-Tuning in few-shot situations in general but does not study its behavior in different contexts.

The paper overlooks the possible influence of P-tuning on the transformed models.

In Jason Wei et al. the author talked about chain-of-thought prompts which may not offer a

clear way to measure improvements numerically in terms of scores. Pre-training method and

process can influence the output accuracy of a given model greatly. The description is not

explicit for each dataset.

O. Topsakal et al.’s paper made no mention about LangChain’s limitations and barriers in its

usage but kept on talking about its positive aspects. Developer experience was not discussed

while working on user information and adopting to challenges. The paper lacks a detailed look

at other available frameworks or libraries offering similar services.

17

In A. Biswas et al.’s work there was no discussion on how the proposed architecture would deal

with extended conversations. No discussion of its performance aspect with respect to the how

it handles several users at the same time and keeping up with the conversation. Data security

and privacy concerns where there as conversational agents were used.

In S. Talebi et al.’s work it was not clear how LLMs distinguish themselves from other language

models. The details about LLMs were not specified by the article that how using ChatGPT will

make an impact when one updates these models. No practical examples where LLMs such as

GPT 3.5 was used.

18

CHAPTER 3: SYSTEM DEVELOPMENT

3.1 REQUIREMENTS AND ANALYSIS

3.1.1 SOFTWARE REQUIREMENTS:

● PyCharm IDE: To cater the need for user friendly interface and environment for

development and testing.

● ProxyCurl API: The system must be capable of securely and ethically scraping data from

LinkedIn profiles using the ProxyCurl API.

● OpenAI's ChatGPT3.5 Turbo: Integration with OpenAI's ChatGPT3.5 Turbo is a critical

component for generating accurate and contextually relevant summaries of LinkedIn

profiles.

● LangChain: The LangChain technology must be integrated to enhance the consistency of

the generated summaries. This involves ensuring a logical and structured flow of

information in the summaries for improved user comprehension.

● Flask Web App: The development of a user-friendly web application using Flask is

essential.

3.1.2 HARDWARE REQUIREMENTS:

There are no special requirements concerning hardware other than those needed to run all of the

necessary software and the entire project itself.

3.1.3 TECHNICAL ANALYSIS:

The project brings together various modern AI technologies such as LLM using OpenAI’s

ChatGPT3.5 Turbo model and LangChain. These particular technologies have been chosen due

to their ability to produce good quality and rich summaries with focus on natural language

processing and understanding. Flask is perfectly suitable as a web application framework

19

according to the ease of use and the range of customizations. The flask program helps to

integrate the backend processes easily and has user friendly interface.

3.1.4 LANGUAGE AND TOOL ANALYSIS:

Python is used as a main programming language due to its flexibility and vast libraries of web

development, data scraping, natural language processing, etc. The frontend development is done

using HTML and CSS creating an appealing and responsive user interface. Use of APIs such as

ProxyCurl API, SerpAPI, and GPT 3.5 API is an extension made in this regard. These are used

for data extraction and language processing in order to produce the final output. For our AI-

Based Social Summarizer to be strong, flexible and efficient these technologies, programming

languages, as well as other tools are chosen.

Figure 3.1: Representation of the project entities

20

3.2 PROJECT DESIGN AND ARCHITECTURE

This section covers the design and architecture of the project, the development of “AI-Based

Social Summarizer” is based on a holistic approach that ensures that different elements can

work with each other to provide an excellent system. The following components play an

important role in shaping the architecture.

3.2.1 DATA SCRAPING MODULE:

The extraction of the information is done through the ethical way by using ProxyCurl API.

Through ProxyCurl, LinkedIn’s security is assured and hence adheres to platform policies. This

part provides the vital information including experiences, skills, and educational achievements

on personal profiles for further processing.

3.2.2 LANGUAGE PROCESSING MODULE:

The system employs ChatGPT3.5 Turbo and LangChain. ChatGPT3.5 Turbo performs content

summarization by presenting main points of the scraped data in a precise form referring to the

context. Integrating LangChain leads to better logicality of the summaries, making them more

relevant for consumption.

3.2.3 WEB APPLICATION MODULE (FLASK):

As for the user interface, it is a Flask-based web application that enables smooth interaction

between the users and the system. The user interface is easy to use and requires users to simply

enter in a LinkedIn profile username resulting in the data scraping and language processing

algorithms. After that, the application showcases the created summaries and conversation starter

(ice-breaking) points in an easy-to-read fashion.

3.2.4 SERP API:

SerpAPI is an API to access Google search results on real time basis. It handles proxies, solves

captchas, and parse all rich structured data for further use. In order to improve the produced

summarization, the approach uses this for searching the most relevant data about the LinkedIn

21

pages. Furthermore, it helps to build the context of all the summaries providing the user with a

broader view on one’s web-presence.

3.2.5 INTEGRATION WITH LLM:

OpenAI API provides variety of models with different capabilities, ChatGPT3.5 Turbo is one

of them. It understands and generates natural language contexts. In regard to the project, the

extracted data is sent to the API by the system, resulting in syntactically and semantically

correct summaries. The output goes through the LangChain technology in order to make

summaries more logical.

3.2.6 LANGCHAIN INTEGRATION:

LangChain is a framework for developing applications using language models. It enables

context aware applications and used to connect language models. This framework consists of

several libraries and provides chains and agents the important entity in AI. The language

processing pipeline incorporates this technology. Making sure that it considers the consecutive

nature of the summary story and maintaining proper sequence to facilitate consistency by

processing the GPT3.5 Turbo output. The presentation of this information is made structural as

LangChain has been able to explain it within its context and this makes the summaries to be of

good quality.

22

Figure 3.2: Idea of LangChain

23

3.2.7 FLASK WEB APPLICATION:

Flask provides an interface for users to interact with the system. Once users enter the LinkedIn

profile username, web scraping data extraction module gets triggered. Then the raw data will

be processed thorough language processing module and finally presented to a customer through

the web-interface. The application also gives users suggestions of what to chat about, following

up on the summarized information.

3.2.8 DATA FLOW:

The data flow within the system follows a sequential process:

● Via a Flask web interface, the user places an input of a LinkedIn profile URL.

● Data scraping module is triggered by the web application by use of ProxyCurl API to pull

the desired data.

● Scraped data is related to a language processing component relying on OpenAI’s

ChatGPT3.5 Turbo for content recapitulation.

● Once the output is processed, it will guarantee cohesion and consistency for ease of

comprehension and fluency in the flow.

● At the same time, SerpAPI obtains extra data from relevant Google queries about the

LinkedIn page.

● A user is presented with an extensive summary of his/her profile that was supplemented

with third party data as well as suggested discussion topics.

24

Figure 3.3: Flow chart

This interaction flow ensures an uninterrupted user experience, utilizing the power of each file

to deliver accurate and relevant summaries of LinkedIn profiles within the Flask web

application. The architecture is carefully designed to balance efficiency, security, and user-

friendly approach, making the "AI-Based Social Summarizer" a powerful and accessible tool

for professionals and users on LinkedIn.

25

3.3 DATA PREPARATION

This section is all about the process of collecting and refining data from LinkedIn using

ProxyCurl API and employing SerpAPI for integrating external information from Google

searches.

3.3.1 LINKEDIN DATA SCRAPING:

For scraping data ethically from LinkedIn profiles, ProxyCurl API is used keeping in mind the

policies of the platform. This involves extracting a range of information from the profile like

full name, professional experiences, skills, educational background, and other relevant details.

This extracts the information in JSON format which can further be implemented in some sort

of application or can be accessed by simply printing the value. One API call costs one credit.

This API provides the data ethically ensuring system’s adherence to valid scraping practices

and the data hence collected can be put to further use for developing applications such as the

‘AI Based Social Summarizer’.

3.3.2 SERPAPI:

This API is basically used to scrape Google searches, here this is utilized to gather additional

context from Google searches about the LinkedIn profiles. This helps in understanding an

individual’s existence online by providing supplementary information beyond the LinkedIn.

This helps in improving the prepared summaries by scraping data from search results which

eventually offers users a more knowledge about the individual’s online activity and professional

life. This also extracts the information in JSON format which can further be implemented in

some sort of application or can be accessed by simply printing the value. And same as ProxyCurl

one API call costs one credit.

The prepared data from these API is properly formatted for optimal utilization by LLM -

ChatGPT 3.5 Turbo and LangChain framework for generating desired summaries. LangChain

enhances the logical structure of the generated summaries whereas the ChatGPT 3.5 LLM is

used to distill the required information.

26

3.4 IMPLEMENTATION

This section showcases the implementation done so far in regards to the project undertaken.

The AI Based Social Summarizer is a Flask web application designed to analyze the LinkedIn

profiles and generate concise summaries about an individual along with topics (Ice Breakers)

on which the conversation can be started. The project is based on advanced AI technologies

including LLMs and LangChain. This summarization and ice-breaking functionalities are in

existence by OpenAI’s GPT-3.5 Turbo API. And the data extraction is facilitated by ProxyCurl

API while SerpAPI is used for scraping Google searches.

3.4.1 PROJECT CODE:

Set up a working directory in PyCharm IDE and imported and created desired files. The project

is organized into several modules to ensure maintainability.

● Agents:

This consists of two files init.py that is an initialization file and linkedin_lookup_agent.py

which has import statements importing functions and classes from various modules and also

functions related to agents. The lookup function initializes a ChatGPT 3.5 Turbo model for

language processing. PromptTemplate is defined specifying that the input variable would

be the name of the person. A tool is defined specifying the get_profile_url function for

scraping LinkedIn profile URLs. The agent is initialized and the agent type is specified as

ZERO_SHOT_LEARNING. agent_run method is called to generate a response and finally

LinkedIn username is returned by the lookup function.

27

Figure 3.4: Representation of linkedin_lookup_agent.py file

● Chains:

This again consists of two files init.py that is an initialization file and custom_chains.py

which defines the LangChain chains used for generating summaries and conversation

topics. Several classes and functions are imported from the LangChain library. Two

instances of ChatOpenAI are created and configured with different temperature settings;

these are llm used for creating summaries and llm_creative for generating ice-breakers. The

code defines three functions each returning an instance of LLM Chain. get_summary_chain

is designed to generate a short summary and two interesting facts about a person based on

LinkedIn information. get_interests_chain is designed to generate three topics of interest

based on LinkedIn information.

28

Figure 3.5: Representation of custom_chains.py file

29

● Static:

It consists of CSS for styling the web application and an image used in the application.

Figure 3.6: Representation of script in the style.css file

30

Figure 3.7: Continued representation of script in the style.css file

31

● Template:

Contains index.html, the HTML template for rendering the web application interface and

also includes the JavaScript for the code.

Figure 3.8: Representation of script in index.html file

● Third parties:

It comprises init.py, the initialization file and also linkedin.py which implements

functionalities related to LinkedIn, including the interaction with the ProxyCurl API.

scrape_linked_in function is responsible for scraping information from a LinkedIn profile.

Function uses requests.get method to get requests to the specified api_endpoint with

parameters, including LinkedIn profile URL and authorization headers. The response is

converted to JSON using response.json() and the processed data is returned.

32

Figure 3.9: Representation of linkedin.py file

● Tools:

It also comprises init.py, the initialization file and also tools.py which contains utility

functions used throughout the project. CustomSerpAPIWrapper class is initialized with the

super call to the parent class SerpAPIWrapper. get_profile_url function searches for

LinkedIn profile pages based on a given name. This handles interaction with SerpAPI for

obtaining information related to LinkedIn profiles and relevant information.

33

Figure 3.10: Representation of tools.py file

34

● Venv- Library Roots:

This part of the code includes header files and python standard library. It also contains

scripts for activating virtual environments.

● .env:

It is the file that contains configuration files like environment variables and other sensitive

information like API keys.

● app.py:

This is the main application file responsible for handling web requests and integrating

various components of the project. It starts by importing necessary modules from Flask and

a custom ice_breaker module. The process route handles POST requests made from the

front end, calls the ice_breaker_with function and results in a JSON response. Also, this is

the HTML file for the application and all the other files are integrated here.

Figure 3.11: Representation of app.py file

35

• ice_breaker.py:

This implements the ice-breaking functionality using GPT3.5 Turbo LLM from OpenAI

API to generate conversation starter topics. Starts by importing required modules and

functions like lookup from linkedin_lookup_agent and many more. ice_break_with function

takes LinkedIn user’s name as input, looks up their username and scrapes the data using

scrape_linkedin_profile and returns a tuple containing the summary, icebreaker, topics of

interest.

Figure 3.12: Representation of icebreaker.py file

36

Figure 3.13: Continued representation of ice_breaker.py file

● output_parsers.py:

This part of the code formats the output generated by the summarizer for user-friendly

presentation along with conversation starters. The code defines three Pydantic models

(Summary, IceBreaker, TopicOfInterest) and output parsers for these models. to_dict

method converts model instances into a dictionary. Instances are created for each of the

models that are summary which represents the summary and interesting facts, IceBreaker

represents a list of icebreakers that could be used, TopicOfInterest represents the topics that

might interest an individual.

37

Figure 3.14: Representation of output_parsers.py file

The AI Based Social Summarizer project uses a technological stack consisting of web

development using Flask, OpenAI’s GPT3.5 Turbo model for AI capabilities, profile scraping

of LinkedIn via ProxyCurl API and Google searches scraping by SerpAPI. The use of

LangChain is crucial for generation of concise and rich valid summaries and ice-breaking

topics.

38

3.4.2 ALGORITHM PROPOSED:

● User accesses the web application through Flask based interface and inputs the LinkedIn

username which needs to be summarized.

● The application triggers the LinkedIn data scraping module using ProxyCurl API data

ethically.

● Extracting the relevant information such as experiences, skills and education etc.

● Google searches integration is performed by SerpAPI to gather additional information

related to LinkedIn profiles.

● Content summarization is done by integrating ChatGPT-3.5 Turbo model of OpenAI API

which enables the generation of coherent summaries of the LinkedIn profile.

● LangChain framework is integrated with the project code to enhance the logicality of the

generated summaries.

● Output parsers are employed to parse the generated summaries and additional information

which is further represented to the user with a clear and organized view of summarized

LinkedIn profile and suggested conversation topics.

3.5 KEY CHALLENGES

Below mentioned are the key challenges faced and their solution during the implementation of

the project:

● Working in the field which is new and less discovered is always challenging, so was the

case with the implementation of this project as there are not many resources available to go

through as and when needed. For this, as the project started the next steps in the project got

clear automatically.

● The first challenge in our implementation was ethical data scraping from LinkedIn, as while

scraping data one needs to obey the guidelines specified by the platform, keeping in mind

the privacy and related security concerns. To address this issue, ProxyCurl API was used

for ethical data scraping without violating the policies of the platform.

39

● OpenAI recently updated their API accessing procedure billing that had to be done prior to

using the API and it is no longer free, which was again challenging. To address this issue,

billing of 5$ was done to get access to the OpenAI API.

● Handling diverse search results produced by SerpAPI and its integration to the summarizing

process of the project. To address this issue, A parsing mechanism was employed to extract

relevant information from different search results providing more information about an

individual.

● Learning about the LangChain framework was a tough task as it is vast and has plenty of

functionalities and its integration into the project flooded the code with errors. To address

this issue, resolving the errors caused due to LangChain integration was the only way, it

was a long process; few of them still occur at times.

● Having no prior experience with Flask development was challenging the development of

the user interface that needed to be intuitive and should be capable of presenting complex

information in appealing format. This was managed anyhow and also the library root

provided with the dedicated templates for HTML, hence the web application was carefully

designed to present the summaries and other information in simple and organized manner.

● Managing all the external dependencies and third-party libraries was a tedious task leading

to a lot of code errors and compatibility issues. To address this issue, online resources helped

tackle many of the issues along with LangChain documentation.

40

CHAPTER 4: TESTING

4.1 TESTING STRATEGY

● For testing purposes in each module, unit testing was performed by using the print

statements in between lines of the code while debugging whenever encountered the errors.

The above strategy made it clear which part of the code was responding and which was not.

● Except the above generic approach of testing to ensure seamless integration amongst

different modules connection between them, the importing modules were being checked if

the code was responding.

● Errors are the best indicators of a fault in the code. Thus, rectifying the errors was the main

method adopted.

● Also had to fetch new API keys and integrate them with the rest of the code since the API

keys, especially the ProxyCurl API, had a limited fixed number of credits which were

mostly exhausted while running these tests.

● The above method and checking if the API key being used was valid and if the API is

responding correctly served as a major component of testing, this is discussed with a test

case in the following section.

● The user interface developed using Flask, HTML and CSS, underwent testing to ensure that

it is responsive and accessible. Manual testing of the web application was performed.

Coupled with other uncommon developer-specific testing methods it was ensured that the

project works fine enough and offers a smooth user experience.

41

4.2 TEST CASES AND OUTCOMES

4.2.1 TESTING THE PROXYCURL API:

On entering the username of an individual, we want to know about on the web application and

upon clicking the ‘Do Your Magic’ button we test if the project is able to make a request to

the ProxyCurl API.

Figure 4.1: Representation of frontend application

For this we go back to the terminal and check if the call to the API was made or not.

42

Figure 4.2: Representation of terminal while testing the ProxyCurl API

As we can see from the figure that the API call was successfully made and the LinkedIn URL

to the profile was provided. Upon clicking the link, we check if we found the actual profile we

were looking for.

Figure 4.3: Representation of LinkedIn profile from the URL produced by API

43

As we can see that we got the profile we were looking for and hence it can now be summarized,

and summary hence generated can be seen on the web application.

Let’s run one more test for the same:

Figure 4.4: Representation of test case 2

Figure 4.5: Representation of terminal while testing the ProxyCurl API for test case 2

44

Figure 4.6: LinkedIn profile from the URL produced by API for test case 2

Thus, we can say that our project passes the test case of ProxyCurl API call. Similarly, the call

for SerpAPI and OpenAI API showcased success too.

4.2.2 TESTING THE OPENAI API:

The ChatGPT3.5 Turbo LLM by OpenAI API could be tested by the same process of passing

the input to the Flask front end. By providing the name of the LinkedIn user whose profile’s

summary we are interested in generating in the input section of the flask frontend, we saw in

the previous section that the code implemented was able to fetch the LinkedIn profile of that

particular user, thus in this section we tested whether the heart and soul of the whole project

summaries were being generated in a desired way or not by the help of ChatGPT3.5 Turbo

LLM.

45

Figure 4.7: Representation of test case 1 for OpenAI API testing

After entering the user name of the LinkedIn user we hit the ‘Go’ button lets see what actions

does this trigger in the console:

Figure 4.8: Representation of console for test case 1

46

Hence we can see the output in the console, what happens here is that on hitting the go button

the processes in the background get triggered which in return by the help of the ProxyCurl API

and Serp API fetch the required LinkedIn data related to that particular LinkedIn user along with

ChatGPT 3.5 Turbo model which provides summarized and concise information about the same.

Alone showing the result in the console is not enough we need the output on our Flask based

frontend:

Figure 4.9: Representation of frontend output for test case 1

47

Hence we can say that the frontend part is also working completely fine since the summary

generated was presented on the frontend cleanly and concisely, easy to read with genuine

information, and simple, easy-to-understand language providing valuable insights about the

user’s profile.

For better understanding let's test the code again for another LinkedIn user, the process would

remain the same, on hitting the ‘Go’ button upon entering the user name we could see the output

in the console for some time and frontend too. Let us look at the console part first:

Figure 4.10: Representation of test case 2 for OpenAI API testing

48

Figure 4.11: Representation of console for test case 2

So now we know what information will be shown on our front end, the summarized information

generated by applying the ability of ChatGPT 3.5 Turbo model which would present the required

data in a very readable and user-friendly manner. The project code has been tested on numerous

such test cases and hence can be considered to perform well enough as expected by generating

a crisp and clear profile summary.

49

Let us take a look at our frontend part for this test case:

Figure 4.12: Representation of frontend output for test case 2

50

CHAPTER 5: RESULTS AND EVALUATION

5.1 RESULTS

The result of this project is that I was successfully able to build a simple user-friendly Flask

web application that takes the LinkedIn username of an individual as input and generates the

summary of his/her or some other LinkedIn user’s profile.

Let us finally test the project code for a LinkedIn user to evaluate the final result. This starts

with entering the profile name of that LinkedIn user in the input field of the Flask-based front

end:

Figure 5.1: Passing the LinkedIn profile user name

Now let's check the console to see if the username we provided is being processed or not this

can only be visible and accessible to the developer side as once this gets deployed or in for

production services, the background processes will get abstracted, and only the frontend would

be visible. But still, to evaluate the result let's look into the console:

51

Figure 5.2: Representation of console

It is evident that by incorporating the ChatGPT 3.5 Turbo model and Langchain, a summary, as

well as an icebreaker topic, is being generated. To have a clear picture of the summary generated

let us get back to the Flask-based frontend where the final output would be displayed.

52

Figure 5.3: Representation of frontend output

The findings are as follows, outlining the key outcomes and their interpretation:

LinkedIn profile summaries generated were accurate, and the core functionality on which the

project is based on content summarization using OpenAI’s ChatGPT3.5 Turbo and LangChain

proved to be favorable. The generated summaries filtered the relevant details from LinkedIn

53

profiles including interesting facts about an individual. LLM combined with LangChain ensures

a clear and concise overview of certain profiles.

Integration of SerpAPI to scrape data from Google searches enriched the summaries by

providing additional information related to LinkedIn profiles. The project adheres to the policies

of LinkedIn and respects the privacy of LinkedIn users as the API applied to scrape data is

purely ethical.

54

CHAPTER 6: CONCLUSIONS AND FUTURE

SCOPE

6.1 CONCLUSION

The AI Based Social Summarizer proved to be successful and is a significant approach in AI

driven social media analysis. The main findings of the project are about its ability to generate

accurate profile summaries using OpenAI’s ChatGPT3.5 Turbo and LangChain. Integration of

these technologies resulted in coherent and relevant summaries as well as provided topics on

which conversation can be started with an individual on the basis of his/her profile.

Despite the pros there are few limitations to our project. The user interface can be more

appealing and attractive, also other features can be provided to the web application which the

project lacks. Also, the quality of summary generated depends highly on the data availability

on LinkedIn. Project is highly dependent on third party APIs which are expensive and one

cannot always rely on third party resources. Moreover, scraping data from every networking

platform is not possible as each platform has its own policies regarding data security and user’s

privacy.

The information displayed as an output on the web application was well organized and accurate,

similar to the natural way of writing as a result, users can quickly understand the profile details.

Moreover, the Flask web application is quite simple and user-friendly thus easy to access.

The system hence designed shows readiness for cloud deployment as it is adaptable to future

growth and demand. The positive outcomes prove the effectiveness of chosen technologies and

algorithms. To conclude, the ‘AI Based Social Summarizer’ project enhanced our learning

about AI, LLM, particularly and working with them added up to our knowledge and experience.

And this can prove as a promising tool for professionals, recruiters and any individual seeking

for brief analysis on social networking platforms.

55

6.2 FUTURE SCOPE

The ‘AI Based Social Summarizer’ project lays a foundation for further development in the AI

driven social media analysis domain. The project has abundant future scope.

● It can be aligned with other emerging technologies and can be improved continuously by

training as it employs LLM, keeping it up to date with evolving patterns in the field.

● The system can be introduced with multiple languages support and translation of the

information.

● The web application can be improved a lot by designing the front end more appealing and

providing features like switching modes (dark and light) or by providing user specific

customized summaries

● The system can be integrated with other social media platforms like LinkedIn, scraping the

data from them and producing rich summaries.

● Introducing the real time data updates which can be reflected while a profile is being

analyzed.

There is a large scope of improvement in this proposed system which can enhance the overall

project eventually.

56

REFERENCES

[1] Konda, "Developing LLM-based Applications: Client-Server Answer Bot," Medium,

https://mkonda007.medium.com/developing-llm-based-applications-client-server-answer-

bot-aab54469879d, 2023.

[2] Dash ICT, "Build Chatbot with LLMs and LangChain," Medium,

https://medium.com/@dash.ps/build-chatbot-with-llms-and-langchain-9cf610a156ff, 2023.

[3] Keita, "How to Chat With Any PDFs and Image Files Using Large Language Models,"

Towards Data Science, 2023.

[4] Greyling, "Using LangChain To Create Large Language Model (LLM) Applications Via

HuggingFace," Medium, https://cobusgreyling.medium.com/langchain-creating-large-

language-model-llm-applications-via-huggingface-192423883a74, 2023.

[5] Talebi, "A Practical Introduction to LLMs," Towards Data Science,

https://towardsdatascience.com/a-practical-introduction-to-llms-65194dda1148, 2023.

[6] Biswas, "How to build a Chatbot with ChatGPT API and a Conversational Memory in

Python," Medium, 2023.

[7] Topsakal et al., "Creating Large Language Model Applications Utilizing LangChain: A

Primer on Developing LLM Apps Fast," All Sciences Proceedings, 2023.

[8] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma,

Zhiheng, Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large

scale visual recognition challenge. IJCV, 2015.

[9] Krizhevsky, Alex & Sutskever, et al. (2012). ImageNet Classification with Deep

Convolutional Neural Networks. Neural Information Processing Systems. 25.

10.1145/3065386.

57

[10] Sean D. Holcomb, William K. Porter, et al. 2018. Overview on DeepMind and Its AlphaGo

Zero AI. In Proceedings of the 2018 International Conference on Big Data and Education

(ICBDE '18). Association for Computing Machinery, New York, NY, USA, 67–71.

https://doi.org/10.1145/3206157.3206174

[11] Wei et al., "Chain of Thought Prompting Elicits Reasoning in Large Language Models,"

International Conference on Neural Information Processing Systems (NeurIPS), 2022.

[12] Roy, S., Vieira, T., and Roth, D. Reasoning about Quantities in Natural Language.

Transactions of the Association for Computational Linguistics, 2015. doi: 10.1162/tacl_a_

00118.

[13] Koncel-Kedziorski, R., Hajishirzi, H., Sabharwal, A., Etzioni, O., and Ang, S. D. Parsing

Algebraic Word Problems into Equations. Transactions of the Association for

Computational Linguistics, 2015. doi: 10.1162/tacl_a_ 00160.

[14] Hosseini, M. J., Hajishirzi, H., Etzioni, O., and Kushman, N. Learning to solve arithmetic

word problems with verb categorization. In Proceedings of the 2014 Conference on

Empirical Methods in Natural Language Processing (EMNLP), 2014. doi: 10.3115/v1/D14-

1058.

[15] Miao, S. Y., Liang, C. C., and Su, K. Y. A diverse corpus for evaluating and developing

English math word problem solvers. In Proceedings of the 58th Annual Meeting of the

Association for Computational Linguistics, 2020. doi: 10.18653/v1/2020.acl-main.92.

[16] Roy, S. and Roth, D. Solving general arithmetic word problems. In Proceedings of the 2015

Conference on Empirical Methods in Natural Language Processing, 2015. doi:

10.18653/v1/D15-1202.

[17] Cobbe, K., Kosaraju, V., Bavarian, M., Hilton, J., Nakano, R., Hesse, C., and Schulman, J.

Training verifiers to solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

[18] Liu, Xiao, Yanan Zheng, Zhengxiao Du, Ming Ding, Yujie Qian, Zhilin Yang, and Jie

Tang. "GPT understands, too." AI Open (2023).

58

[19] Taylor Shin, Yasaman Razeghi, Robert L Logan IV, Eric Wallace, and Sameer Singh. 2020.

“Autoprompt: Eliciting knowledge from language models with automatically generated

prompts,” 2020, arXiv preprint arXiv:2010.15980.

[20] Zhengbao Jiang, Frank F Xu, et al. 2020b. “How can we know what language models

know,” Transactions of the Association for Computational Linguistics, 2020, 8:423–438.

[21] Liu et al., "Text Summarization with Pretrained Encoders," Association for Computational

Linguistics, 2019.

[22] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. 2016. Layer normalization. arXiv

preprint arXiv:1607.06450.

[23] Alec Radford, K. Narasimhan, T. Salimans, and I. Sutskever, " Improving Language

Understanding by Generative Pretraining," arXiv:1801.06146 [cs.CL], 2018.

[24] Vaswani Ashish, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N.

Gomez, Łukasz Kaiser, and Illia Polosukhin. "Attention is all you need." Advances in neural

information processing systems 30 (2017).

[25] Yonghui Wu, Mike Schuster, Zhifeng Chen, et al. Google’s neural machine translation

system: Bridging the gap between human and machine translation. arXiv preprint

arXiv:1609.08144, 2016.

59

60

61

