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ABSTRACT 

The web of platforms that connect us has changed the way we interact, but it also houses 

hatred and aggression. This may be the reason why users perceive the platform as unsafe and 

not welcoming. 

RNNs and DNNs have achieved improved outcomes in Deep learning field of study. This 

article aims to demonstrate the approaches and the technique of building a deep neural 

network architecture with "attention mechanism" that prioritizes detecting negative 

language. 

The research evaluates two issues online communication faces due to negativity as well as 

Deep Learning models such as RNNs and DNNs. It afterwards talks about a new deep 

learning model with the attention mechanism for better identification of toxic language. The 

aforementioned model is tested against real-world online comments and proves to be more 

precise in categorizing negative remarks as compared to the existing techniques. 

The research findings offer crucial insights into the development of tools focused on 

combating online negativity. This deep learning mechanism aided by the attention 

mechanisms enables professionals to look into online interactions and build a conducive 

online environment. The suggested model will be the foundation of the future researches in 

this field. It will be the answer to the online harassment and will be the cause of positive 

communication. 
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CHAPTER 1: INTRODUCTION 

1.1 INTRODUCTION 

The rise of user-generated content in the era of online communication has been made possible 

by the widespread use of social media platforms. Nevertheless, there is a serious drawback 

to this enormous ocean of online interactions: the abundance of hurtful and poisonous 

remarks. Online communities may suffer as a result of these hurtful remarks, which can 

promote animosity, silence marginalized voices, and foment negativity. In order to solve this 

problem, scientists have developed efficient automatic comment classification systems that 

can recognize and report harmful remarks with accuracy by utilizing deep learning 

techniques. 

Researchers have a great chance to create and assess deep learning models for harmful 

comment classification during the Jigsaw Comment Classification Challenge on Kaggle. 1.8 

million English Wikipedia comments classified as toxic, severe toxic, obscene, threat, insult, 

and identity-hate made up the dataset for this task. With the help of this extensive dataset, 

researchers were able to investigate different deep learning architectures and methods for the 

challenging task of classifying poisonous comments. 

Sentiment analysis and poison identification are two NLP tasks that have seen a rise in the 

use of recurrent neural networks (RNNs), especially Long Short-Term Memory (LSTM) 

networks. Because LSTMs can capture long-range dependencies in sequential data, they are 

an excellent choice for understanding the subtleties and context of human language. LSTMs 

are useful in identifying trends and minor indicators that point to toxicity in comments when 

it comes to classifying toxic comments. 

Additionally, Deep Neural Networks (DNNs) have shown encouraging results in the 

classification of poisonous comments. DNNs can discriminate between language that is 

harmful and language that is not because of their several layers of interconnected neurons, 

which enable them to build complex language representations. In order to effectively classify 

hazardous remarks, researchers have developed hybrid architectures that integrate LSTMs 

and DNNs, leveraging the benefits of both techniques. 

In this project, the use of deep neural networks, specifically LSTMs and DNNs, is explored 

for the problem of negative comment categorization using the Jigsaw Comment 
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Categorization Challenge dataset. The theoretical underpinnings of these deep learning 

algorithms are discussed along with their advantages and disadvantages in classifying 

poisonous comments. Subsequently, an extensive synopsis of current deep learning 

techniques for the classification of harmful comments is provided, scrutinizing their 

structures, tactics for training, and techniques for assessment. 

Using LSTMs and DNNs, a unique deep learning model for harmful comment classification 

is provided, building upon this basis. To improve its capacity to identify harmful language, 

the model uses attention mechanisms to concentrate on the most noticeable portions of the 

remarks. The assessment of the model is conducted using the Jigsaw Comment Classification 

Challenge dataset, showing both its competitiveness and its ability to detect harmful 

comments. 

The creation of reliable and precise techniques for classifying negative comments will have 

a big impact on encouraging online safety and civility. Through the efficient identification 

and removal of harmful remarks, these platforms can promote online communities that are 

more inclusive and courteous, enabling users to participate in productive and significant 

exchanges. Our research aids in this effort by offering a cutting-edge deep learning technique 

that can accurately identify and categorize critical remarks, opening the door for a more civil 

and courteous online environment. 

 

Fig 1.1: NLP architecture 
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Natural Language Processing (NLP) is an indispensable tool for the negative comment 

classification, which makes computers to be able to understand and analyze human language 

properly. The question is how the process starts. It starts with the text preprocessing, where 

the NLP techniques are applied to the text data to make it clean and standard. These 

techniques include tokenization, removing stopwords, and stemming or lemmatization. The 

next step, which is feature extraction, is in which the important features are extracted from 

the text data using the Techniques like Bag of Words, TF-IDF, Word Embeddings, and 

Contextual Word Embeddings. Sentiment analysis, one of the main tasks in the classification 

of negative comments, is the process of finding out the feeling that the text exhibits, like 

positive, negative, or neutral. Machine learning models, combined with the NLP techniques, 

are the ones used for classification using the algorithms such as SVM, Random Forests, 

Naive Bayes, or deep learning models. The evaluation metrics such as the accuracy, the 

precision, the recall, and the F1-score are the means to the performance of the model. In the 

end, the application of NLP in negative comment classification will be a game-changer in 

many fields, among which are social media monitoring, customer feedback analysis, online 

content moderation, and market research, so to say, the brand will get proactive management 

of its reputation, the user experience will be enhanced, and data-driven decision-making 

processes will be guided. 

 

1.2 PROBLEM STATEMENT 

User-generated comments and feedback are flooding the internet in an unprecedented amount 

due to the exponential rise of online content and the widespread use of social media 

platforms. It is quite difficult to accurately identify and classify negative comments in this 

enormous sea of data. The main concern is coming up with and putting into practice efficient 

ways to categorize unfavorable comments. The main objective is to develop reliable and 

effective Natural Language Processing (NLP) models that can identify and classify negative 

attitudes conveyed in textual data on their own. 

The essence of a complex task is captured in this problem statement, which calls for the 

creation of sophisticated NLP tools. The main goal is to develop approaches that are resilient 

to the changing environment of online communication while also navigating the intricacies 

of many linguistic expressions. Novel ways to textual data processing and analysis are 

needed to obtain a detailed knowledge of negative attitudes within the dynamic environment 
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of user-generated material. As such, the project entails developing natural language 

processing (NLP) models that not only improve accuracy but also exhibit effectiveness in 

managing the vast amount and diversity of unfavorable remarks that are circulating over the 

internet. Resolving this issue is essential to preserving a positive online atmosphere and 

promoting more knowledgeable and productive exchanges. 

 

1.3 OBJECTIVES 

The main objectives of this study are: 

1. Study the existing literature on Negative Comment classification and summaries 

them and find key gaps in them. 

2. Develop NLP model that can effectively categorize negative comments based on 

their sentiment using TensorFlow and the Jigsaw Comment Classification 

Challenge dataset. 

3. To integrate and deploy the developed model on a web application. 

 

1.4 SIGNIFICANCE AND MOTIVATION OF THE PROJECT REPORT 

Accurately classifying negative comments holds immense significance for various 

applications, including: 

 Enhancing user experience: Online platforms seek to foster a positive and 

welcoming environment for users. By filtering out negative comments, online 

platforms can foster a more positive and welcoming environment for users. 

 Moderating online communities: Moderating online communities effectively 

requires the ability to identify and address potentially harmful or offensive content 

promptly. Effective negative comment classification can assist moderators in 

identifying and addressing potentially harmful or offensive content promptly. 

 Sentiment analysis: Understanding sentiment distribution in online discourse can 

provide valuable insights into public opinion and trends. 
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1.5 ORGANIZATION OF PROJECT REPORT 

Chapter 1: Introduction 

This chapter discusses application of deep neural networks for the assortment of negative 

comments. The advantages and disadvantages of DNNs and LSTMs in this task are in focus. 

Besides, the current deep learning techniques for classifying of has been outlined this. 

Chapter 2: Literature Review 

 This chapter aims to present various literature review of existing research on the need of 

negative comment classification. It tells us about various algorithms and compares which 

one is reliable to use. Here the major key gaps present in those literature are addressed. 

Chapter 3: System Development  

The chapter explains the various stages of the project and also describes the various security 

features and methods used. The chapter also describes the requirements, methodology and 

the problems faced in the project.  

Chapter 4: Testing  

This chapter presents a very detailed analysis of the testing strategy that has been used in the 

project, and also talks about the various checks employed at different stages of the project to 

correctly classify comments 

Chapter 5: Result and Evaluation  

This chapter decribes the result obtained in the previous chapter, it also showcases various 

important portions of the project. 

Chapter 6: Conclusion and Future Scope  

This is the final chapter and there is a summary of the project and its limitations, also 

suggesting improvements in the field of negative comment classification. This chapter also 

talks about the future scope of the project that what all changes in future can be further made 

in order to make the system more secure thus enhancing overall performance of the project. 
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CHAPTER 2: LITERATURE SURVEY 

2.1  OVERVIEW OF RELEVANT LITERATURE 

Evaluating available studies is an important requirement to know what categories of negative 

comments are identified. This overview focuses on the past investigations, techniques, and 

progresses in the field of discovering and classifying negative comments. How things are 

done, their theory, and real-life uses give an estimate of what is currently happening in this 

area. This will now help us to know what problems are left and where things should go next 

in a process of classifying the negative comments. 

 

T. Pagano et al [1], proposes a way for analyzing trends in machine learning model bias and 

fairness measures while taking the sensitive features and application environment into 

account. The approach is predicated on the assessment of fourteen fairness criteria in the 

context of three different machine learning model applications: recommendation systems, 

computer vision, and natural language processing. The findings demonstrate that while 

certain indicators show similar trends across various application domains, others do not. The 

authors come to the conclusion that consideration should be given to the application's unique 

context when selecting fairness criteria. 

 

Emad Alawneh et al [2], proposes a novel method called Term Frequency-Inverse Document 

Frequency (TF-IDF), which uses machine learning techniques to detect sexual harassment. 

The goal of the suggested approach is to improve the categorization of different kinds of 

malevolent human behavior, such as sexual harassment and cyberbullying. 

Through testing on a Twitter dataset, the authors showed that their suggested approach could 

identify sexual harassment with an 81% accuracy rate. This shows that the technique may be 

useful for locating and reporting possibly harassing information on digital media. 

 

S.Zaheri  et al [3], propose a unique use of Natural Language Processing (NLP) algorithms 

to divide unstructured material into categories that are benign and harmful. They especially 

suggest using an accuracy of more than 70% utilizing a Long Short-Term Memory (LSTM) 
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model. Compared to the widely used Naive Bayes technique, which only managed an 

accuracy of 50%, this is a much greater accuracy. The authors think that an open-source tool 

to aid in anti-bullying efforts may be created by app developers using their LSTM model. 

 

Jacob Devlin et al [4], propose Bidirectional Encoder Representations from Transformers 

(BERT), a unique method for language encoding. BERT is a pre-trained model designed to 

learn deep bidirectional representations from unlabeled text. It is jointly trained on both left 

and right context in all layers. With just one additional output layer, the pre-trained BERT 

model may then be improved to create cutting-edge models for a range of applications, such 

as language inference and question answering. BERT has strong conceptual and experimental 

qualities. It achieves new state-of-the-art results on eleven natural language processing tasks: 

it improves the GLUE score to 80.5% (7.7% point absolute improvement), the MultiNLI 

accuracy to 86.7% (4.6% absolute improvement), the SQuAD v1.1 question answering Test 

F1 to 93.2, and the SQuAD v2.0 Test F1 to 83.1. 

 

Jing Qian et al [5],  propose a cutting-edge strategy for eradicating hate speech online known 

as "generative hate speech intervention." With this strategy, hate speech is automatically 

addressed in internet chats by automatically generated responses. Additionally, two fully 

labeled large-scale datasets for hate speech intervention collected from Reddit and Gab are 

proposed by the authors. These datasets contain discussion threads, labels for hate speech, 

and intervention responses produced by Mechanical Turk employees. In addition, the authors 

assess how well-liked automatic response generating methods perform on these fresh 

datasets and examine the datasets to understand typical intervention approaches. 

 

Anna Schmidt et al [6], propose carrying out a survey on natural language processing (NLP)-

based hate speech identification. They present key directions that have been explored in the 

use of natural language processing (NLP) to automatically detect different types of 

statements. They also talk about those methods' shortcomings. 

The authors come to the conclusion that the optimal method for detecting hate speech varies 

depending on the particular application and that there is no one ideal method. Additionally, 

they want greater investigation into hate speech detection, including the creation of improved 
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datasets, the investigation of novel natural language processing algorithms, and the 

assessment of various methods using actual data. 

 

Ziqi Zhang et al [7], propose a cutting-edge method based on deep neural networks for 

identifying hate speech on Twitter. Their method is able to extract word sequence and order 

information from short texts by combining convolutional and gated recurrent networks. On 

six of the seven datasets, the authors show that their methodology outperforms current 

methods, yielding F1 scores that are 1 to 13% higher. Additionally, they offer a fresh dataset 

for Twitter hate speech detection. 

 

Thomas Davidson et al [8], propose a cutting-edge method for automatically identifying hate 

speech on social media that solves the challenge of separating hate speech from other 

unpleasant words. Their method entails teaching a multi-class classifier to distinguish 

between three types of tweets: those with hate speech, those with profanity, and those with 

neither. The authors use a dataset of tweets that were contributed by the public to show that 

their method can achieve high accuracy. 

 

Ghosh and Nath et al [9], suggest a new method which is a combination of both the existing 

and the innovative methods. The advice is based on the fact that other works have been 

carried out to overcome the obstacles in other aspects of natural language processing. 

Lexicon-based methods, though they have efficiency, are quite hard with the intricacies of 

language and sarcasm. Machine learning, on the contrary, is data-hungry and can be biased 

towards a particular domain, specific to what it is designed for. Ghosh and Nath's hybrid way 

of the problem is left right on the track of these problems. It consists of sentiment lexicons 

that are used to build a solid base for semantic understanding, and at the same time, machine 

learning models are used to catch the subtle aspects of language use within a given domain. 

The authors have proved by their experiments on various datasets that their method is a 

hybrid one that increases the accuracy and reliability of sentiment analysis which makes it 

well-designed for the complicated and continuously changing world of computational social 

systems. 
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Gupta and Kumar et al [10], switch to ensemble learning, a strong method for improving the 

accuracy and the generalizability of sentiment analysis models. This method, unlike the one-

classifier methods, uses the advantages of different base classifiers, such as decision trees, 

support vector machines, and neural networks ((1), (2)). The main concept is to tactically 

merge the forecasts from the different classifiers to get a stronger and more reliable result 

((3)) The authors very well investigate the effectiveness of ensemble learning in the various 

datasets and domains. Their conclusions for the most part are that ensemble methods are 

better than individual classifiers, which made them the top choice in the field of sentiment 

analysis [5]. This research gives a new perspective on the importance of ensemble methods 

on sentiment analysis models, thus, the creation of more reliable and precise classifiers with 

real-world applications is on the way. 

 

Jiang, Tang, and Wang et al[11], conduct a complete overview of sentiment analysis, a fast 

growing area with many practical applications. "A Review of Sentiment Analysis Methods 

and Applications" is a title of the paper that paints the current situation, discusses the different 

approaches, solves the problems and shows the possible future trends. 

The authors give a detailed account of the sentiment analysis environment, which includes 

the lexical-based methods, machine learning techniques, the deep learning models, and the 

hybrid methods. The analysis of the previous research on the websites provides readers with 

the complete information on the various techniques that are available in the process of 

studyingAlso, the paper analyzes the different fields for the use of sentiment analysis that are 

social media analysis, customer feedback analysis and market sentiment analysis. The 

literature of the different authors is of all the fields of the research, hence the review becomes 

a great source of information for the researchers, practicians and policymakers. The study 

that deals with the current picture of sentiment analysis research and its applications in 

different areas of life is especially suitable for those who are interested in this research and 

its usage across the different fields. 

Table 2.1 typically summarizes the relevant literature. It provides an overview of the existing 

research, including methods, datasets, and evaluation metrics used in that field 

 



10 
 

Table 2.1: Summary of the Relevant Literature 

S.No

. 

Paper Title Journ

al/Co

nfere

nce 

Tools/Techniques Result Limitations 

1. Context-Based 

Patterns in Machine 

Learning Bias and 

Fairness Metrics: A 

Sensitive Attributes-

Based Approach 

Universi

ty of 

Surrey, 

2023 

 

Jigsaw dataset, FairFace 

dataset, 

MovieLens100K dataset 

BERT achieved high 

accuracy, precision, 

and recall despite 

dataset imbalance; 

AUPRC and 

specificity offered 

valuable performance 

insights. 

 

The study focused 

on gender as the 

sensitive attribute; 

more attributes 

and models could 

enhance 

understanding. 

2. Sentiment Analysis-

Based Sexual 

Harassment 

Detection Using 

Machine Learning 

Techniques  

IEEE, 

2021 

 

The dataset was 

collected from an online 

reporting system called 

“maps.safecity” using a 

crawler agent  

The model achieved 

81% accuracy using 

SGD classifier with 1-

gram; the results 

demonstrated the 

superior of SGD 

compared to the other 

tested classifiers in all 

evaluation metrics. 

 

The scale of 

training data 

restricts the 

identification of 

malicious human 

behavior patterns. 

Therefore, to 

enhance 

efficiency, testing 

malicious human 

activities with 

larger data is 

required. 

3. Toxic Comment 

Classification  

SMU 

Data 

science 

Review, 

2020 

Naïve Bayes [NB] 

Classifier, LSTM/RNN 

Algorithm, EC2 

 

LSTM achieved 

nearly 20% higher 

True Positive Rate 

than Naive Bayes, 

improved recall and 

F1 score. 

Dataset 

undisclosed. SVC, 

CNN, multi-label 

classification, 

SVM tuning, 

explore other 

DNN techniques 

(CNN) 
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4. BERT: Pre-training of 

Deep Bidirectional 

Transformers for 

Language 

Understanding  

Cornell, 

Universi

ty, 

2019 

 

Transformer 

Architecture, Fine-

Tuning, Masked 

Language Model 

(MLM), BooksCorpus, 

Stanford Question 

Answering Dataset 

(SQuAD) 

 

BERT, pre-trained on 

vast text data, excelled 

in NLP tasks like text 

classification, 

question answering, 

and named entity 

recognition, showing 

strong contextual 

understanding 

 

Limitations 

include high 

computational 

demands and 

struggles with out-

of-domain data 

and common-

sense reasoning 

due to reliance on 

text patterns. 

 

5. A Benchmark Dataset 

for Learning to 

Intervene in Online 

Hate Speech 

Associat

ion for 

Comput

ational 

Linguist

ics, 

2019 

 

NLP tools, two fully-

labeled large-scale hate 

speech intervention 

datasets collected from 

Gab2 and Reddit 

 

Classification models 

perform better on Gab 

due to larger, balanced 

data. SVM and LR 

outperform neural 

networks. 

 

Diverse Reddit 

and Gab datasets, 

varying in size, 

comment length, 

and label 

distribution, pose 

unique challenges 

for hate speech 

tasks. 

 

6. A Survey of Hate 

Speech Detection 

using Natural 

Language Processing 

ACL 

Antholo

gy, 

2017 

 

NLP techniques, Hate 

Speech Detection 

dataset, the Twitter Hate 

Speech dataset, and the 

Wikipedia Talk Pages 

dataset. 

 

Diversity of 

Approaches, 

Importance of Data, 

Multilingual 

Challenges, 

Contextual 

Understanding, 

Evaluation Metrics 

 

Subjectivity and 

Ambiguity, Data 

Bias, Adversarial 

Attacks, Online 

Platform-Specific 

Challenges 

 

7. Detecting Hate 

Speech on Twitter 

Using a Convolution-

GRU Based Deep 

Neural Network 

ESWS, 

2017 

Deep Learning Model, 

Text Preprocessing, 

Evaluation Metrics, 

Twitter Data, WZ-L 

Dataset 

 

neural network based 

methods consistently 

outperformed SVM 

and SVM+, by as 

much as 9% on the 

WZ-LS dataset 

 

presence of 

abstract concepts 

such as ‘sexism’, 

‘racism’ or ‘hate’ 

is very difficult to 

detect if solely 

based on textual 

content 

 

8. Automated Hate 

Speech Detection and 

the Problem of 

Offensive Language 

Cornell 

Universi

ty, 2017 

 

Machine Learning 

Algorithms, NLP tools, 

Twitter Data, 

Crowdsourced 

Annotations 

The paper showcases 

model performance 

using metrics and 

discusses 

differentiating 

Model 

generalization to 

diverse hate 

speech, defining 

context-dependent 
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 offensive language 

from hate speech in 

online content. 

 

hate speech, and 

identifying subtle 

forms like sarcasm 

can be 

challenging. 

 

9. A Hybrid Approach f

or Sentiment Analysi

s 

IEEE Tr

ansactio
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2.2  KEY GAPS IN THE LITERATURE 

1. Insufficiently uniform datasets and assessment metric 

Even though negative comment classification is becoming more and more popular, it is still 

challenging to compare and assess various methods due to the absence of standardized 

datasets and assessment measures. This is because negative language is inherently subjective 

and context-dependent, making it difficult to compile a single dataset that accurately captures 

every scenario for negative comments. 

2. Limited awareness of language and cultural quirks 

Current negative comment classification models frequently fail to capture the subtleties of 

negative language, which varies greatly across cultures and languages. Misclassifications 

may result from this, especially when responding to remarks made by underprivileged or 

underrepresented groups 

3. Having trouble with irony and sarcasm: 

Irony and sarcasm are common language strategies used to express negativity, but machine 

learning models may have trouble picking them out. Because of this, these models could 

overlook or even mistakenly identify as positive instances of subtle negative language. 

4. Talking about how language has evolved: 

Language is dynamic; new slang phrases, memes, and internet jargon appear on a daily basis. 

For negative comment classification models to continue to work, certain modifications must 

be accommodated. 

5. Keeping bias at bay and ensuring justice: 

Models for classifying negative comments have the capacity to reinforce or magnify 

linguistic and societal prejudices already present. Fairness and equity must be taken into 

consideration when developing these models in order to prevent the reinforcement of 

negative stereotypes or discrimination. 

6. Examining how it affects interpersonal relationships: 

The extensive application of technologies for classifying negative comments may have 

unexpected effects on interpersonal communication. It is crucial to think about these systems' 

ethical ramifications and potential effects on online communities. 
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7. Progressing from simple detection to comprehension: 

As vital as it is to identify critical remarks, it is just as significant to comprehend the 

motivations behind their utilization. By addressing the underlying reasons of negativity, this 

better understanding can encourage more productive and positive online relationships. 
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CHAPTER 3: SYSTEM DEVELOPMENT 

3.1  REQUIREMENTS AND ANALYSIS 

 

3.1.1 FUNCTIONAL REQUIREMENTS 

The following is included in the functional requirements: 

1. Negative Comment Recognition: The system should accurately recognize negative 

comment depicting six classes. It should handle variations in language such as 

sarcasm and irony. 

2. Flaging Comments: Real-time processing of flagging comments after identifying as 

negative comment 

3. User Interface: User-friendly interface (Streamlit App) for identifying negative 

comment 

 

3.1.2 NON-FUNCTIONAL REQUIREMENTS 

The following have been included in the non-functional requirements: 

1. Performance: To allow for quick moderation or intervention, the system ought to be 

able to categorize comments in real-time. 

With no loss of precision or efficiency, the system ought to be able to manage a large 

number of comments. 

2. Context Awareness: The sentiment of a comment should be accurately determined 

by the algorithm by taking its context into account. 

Irony, sarcasm, and other nonliteral language should be handled by the system. 

3. Scalability: The system should be scalable to accommodate a growing user base. 

Efficient use of computational resources to handle increased demand. 
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3.1.3 HARDWARE REQUIREMENTS 

The hardware requirements are as follows: 

1. CPU: 2.0GHz or above 

NLP model execution and training require a strong CPU. Large datasets or 

sophisticated models are best served by a multi-core CPU running at a high clock 

speed.   

 

2. Storage: 1TB or above 

To store the NLP models itself as well as the training and testing datasets, a quick and 

dependable storage disk is required. 

 

3. Network: 100Mbps or above 

To download the training and testing datasets and the NLP models, a fast internet 

connection is required. It is advised to have a gigabit Ethernet connection or higher. 

 

4. RAM: 8GB or above 

For the NLP models to load, as well as the training and testing datasets, a suitable 

quantity of RAM is required. It is advised to have at least 16GB of RAM for large 

datasets. 

 

5. GPU: If needed 

The training and operation of NLP models can be greatly accelerated using a GPU, 

particularly for deep learning models. NLP can still be performed with a CPU-only 

system, therefore a GPU is not strictly required. 

 

3.1.4 PROPOSED SOLUTION 

For the classification of unfavorable comments, a hybrid strategy integrating deep 

learning and machine learning methods is suggested. To achieve high accuracy 

adaptability, and context awareness, this methodology combines the best features of 

both approaches. 
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3.2  PROJECT DESIGN AND ARCHITECTURE 

Design and architecture of the project is shown in Fig 3.1. It gets these data from Kaggle 

(open datasets) and trains an exact model (CNN-LSTM) to recognize the patterns in text. 

Then data is cleaned, expanded, and split into parts used for training, validating, and then 

testing the achieved accuracy. The system, however, does not give only the simple "toxic" 

or "not toxic" label. The specialized additional datasets will be applied to distinguish 

different types of toxic communication, such as insults, threats, or hate speech  

Fig 3.1: Project Architecture 

 

3.2.1 Data Preparation 

Source of Data  

The data from Kaggle's "Toxic Comment Classification Challenge" is utilized. This dataset 

is different because it has human volunteer labels for the comments left by Wikipedia editors. 

These labels categorize comments into six distinct classes: infamous of the essential concept 

of the same sub group through the creation of admiration, and desired approval by leading 

and having a name that will be remembered in the silliest terms or tests. This is accomplished 

through identity hate, vulgarity, and threats, insults, and general and severe toxicity. This 
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minute classification system gives the model not only the ability to recognize negativity but 

also set the specific quality of it.  

Nevertheless, the data collection procedure was not smooth and there were some problems 

in it. The inconsistencies that were spotted in various labels called for a manual review and 

re-labeling of some of the comments. The detailed maintenance of the data quality limits the 

possible errors, thus, the model learns from the correct classifications and, as a result, 

acquires a reliable performance. 

3.2.2 Data Processing 

Examine Data  

Used pandas to analyze the data. Figure 3.2 shows that there are more than 150,000 

comments overall. All classes, however, have relatively low means, indicating that the 

majority of responses are positive. Therefore, during the processing step, we must weigh the 

positive and negative remarks equally. 

 

Fig 3.2: The count and mean of the classes as output of describe() 

Additionally, it was discovered that not enough comments are included in some classes. Over 

15,000 comments have been flagged as toxic, although fewer than 500 of them are dangerous. 

It is simple for the models to overfit and produce low accuracy for the validation and test set 

when there are so few comments in some classes. 
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Fig 3.3: Number of comments in each class 

 

Data Augmentation 

The model was trained with the data augmentation technique in order to overcome the bias 

that existed in the comment classification dataset. The problem arose as comments were 

labelled using multiple labels, thus the majority classes (overrepresented) and minority 

classes (underrepresented) were overrepresented. To handle this problem, the scientists used 

a software library named nlpaug. This tool really smartly substituted the words in comments 

with their synonyms. Data augmentation, in the form of new variations of the original 

comments, produced artificially a large number of the minority classes. This method was a 

means of preventing the model to be limited by the most popular comment types, thus 

resulting in a more reliable and broadly applicable model, capable to classify negativity in 

all the categories. 

 

 

 

 

 

 

Fig 3.4: Amount of comments in each class before and after augmentation 

 

Data Cleaning 

Raw comment data needed some cleaning up before it could be used for the development of 

the negative comment classification model. The data cleaning procedure used the possibility 

of using Regular Expressions (regex) to detect and remove the unnecessary parts from the 

comments. Regex patterns were like search-and-replace tools, which were used to strip out 

punctuation, line breaks and contractions. This text normalization refined the comments into 

a better and more consistent version. Cleaner data offers several advantages: It simplifies the 
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training procedure for the model, thus, the model will be able to concentrate on the main idea 

of the comments, and eventually, it will be easier to judge negativity and to create a more 

accurate and efficient model in identifying negativity. 

Data Processing 

The data processing stage was vital in the comment data being ready for the model training. 

This process was not a single method, it was a complex process. The other way was that 

indeed ten datasets were designed very carefully to be able to develop and test the model 

 Sub-dataset Creation: The initial dataset was split into six different sub-datasets, 

each for one of the comment classification (e. g. labeled and unlabeled). g. in addition 

to this, online users can easily block or report the individuals who commit these 

actions, which are identity hate, insult, etc. This gives the model the possibility to 

concentrate on particular negativity categories during the training. 

 Balancing the Scales: In each sub-dataset, there is the problem of class imbalance. 

Systematically selected 

  comments to guarantee that each sub-dataset has an equal amount of positive (non-

negative) and negative comments. This is important because models usually show 

better performance when they are trained on datasets that are balanced. 

 Training, Validation, Testing, and Overfitting Sets: Every sub-set was divided into 

four important parts: training, validation, testing, and overfitting sets. The training set 

is the primary data for the model to be educated from. The validation set assists in the 

fine-tuning of hyperparameters which in turn, avoids the occurrence of overfitting 

(memorizing the training data instead of learning the general patterns). The testing 

set presents an unbiased way of evaluating the model's capability on the data which 

is not seen by the model. Lastly, the overfitting set is like a backup which assists in 

detecting and solving the overfitting problems during the training phase. 

  

 



21 
 

 

Fig 3.5: Visualization of dataset structure 

 

3.2.3 ARCHITECTURE 

In order to accomplish multi-label classification, the group employed six 

CNN_LSTM Binary Classification Models. Initially, GloVe Embedding was used to 

transform the input data into word vectors. Similar sets of vocabulary were found in 

negative remarks. Accordingly, word patterns in sentences were recognized using two 

convolution layers, independent of their placement. A maxpool layer in each 

convolution layer provides one output feature for every sentence from each kernel, 

allowing it to adapt to changes in sentence length.  

 

LSTM: 

LSTM (Long Short-Term Memory), a special kind of neural network, perform great 

in the domain of texts understanding. Unlike regular neural networks which do not 

have an option of considering the context of the entire sentence, LSTMs are ideal for 

tasks such as comment categorization as positive or negative. 
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For sentiment analysis, LSTMs process words as strings of sequences. They relate 

the words to each other and look at the whole sentence to know the emotional 

connection. In this way, they are capable of appropriately processing complex 

sentences and retaining information from long-range dependencies in text. Through 

being taught on labeled data, LSTMs learn how to classify comments rules that 

improve decision-making in different domains. 

 

 

 

Fig 3.6: Model Architecture 

Since the comment labels are multi-hot encoded, the objective of this study is multi-labelling 

categorization. To ensure that every classifier is fully trained, the training strategy depicted 

in Fig 3.6 was utilized. A CNN_LSTM binary classifier was trained using six balanced binary 
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datasets, each containing data from a class. For every comment, a multi-hot encoded final 

prediction was generated by combining the outputs of the binary classifiers. 

 

3.3  IMPLEMENTATION 

3.3.1 DOWNLOADING ESSENTIAL SOFTWARE 

 Python 3: The main language for data science and machine learning applications is 

Python. It offers a wide range of libraries and tools to manage modeling, analysis, 

and data manipulation. 

 

 TensorFlow: Google created the well-known open-source machine learning 

framework TensorFlow. It offers an adaptable and potent toolkit, which includes 

Long Short-Term Memory (LSTM) models, for constructing and training neural 

networks. 

 

 Keras: Keras is a high-level TensorFlow API for constructing neural networks. It 

makes it simpler to define, compile, and train models, which facilitates experimenting 

with various architectures and hyperparameters. 

 

 Pandas: pandas is a Python package for manipulating and analyzing data. It offers 

effective tools and data structures for managing, cleaning, and preparing tabular data. 

 

 NLTK: A comprehensive collection of libraries and tools for natural language 

processing (NLP) applications is called the Natural Language Toolkit (NLTK). Along 

with other text processing approaches, it offers modules for tokenization, stemming, 

lemmatization, and stop word removal. 

 

 NumPy: NumPy is an essential Python package designed for use in scientific 

computing. For numerical computations, especially with big datasets, it offers 

effective data structures and algorithms. 

 Seaborn or Matplotlib: These Python data visualization packages are both used for 

data visualization. They offer tools for visualizing data distributions, trends, and 

correlations through the creation of plots, charts, and graphs. 
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 Jupyter Notebook: Python has an interactive computing environment called Jupyter 

Notebook. It makes exploratory data analysis and model creation easier by enabling 

the integration of code, text, and visualizations in a single document. 

 

 Gradio: Gradio is another Python library designed for creating UIs for machine 

learning models with minimal code. It provides a simple interface for developers to 

build interactive interfaces for their models, allowing users to input data through 

widgets and view model predictions in real-time. Gradio's versatility and ease of use 

make it a popular choice for quickly deploying and sharing machine learning models. 

 

 Streamlit: Streamlit is a powerful Python library that allows for rapid development 

of interactive web applications for machine learning and data science projects. With 

its simple and intuitive API, developers can easily create and share data-driven 

applications using Python scripts. 

3.3.2 Import Necessary Libraries 

 

 

 

Fig 3.7: Importing necessary libraries 
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3.3.3 Data Preprocessing 

●load the dataset for the Jigsaw Comment Classification Challenge: To read the 

dataset from a CSV file, use pandas. 

 

 

 

 

Fig 3.8: Loading Dataset 

 

● Prepare the textual data: Perform text cleaning operations, such as stemming 

or lemmatizing words, converting text to lowercase, eliminating punctuation, 

eliminating stop words, and removing HTML tags. 

 

● Vectorize the text data: Using methods like word embedding or bag-of-words, 

transform the preprocessed text data into a numerical representation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 3.9: Text Vectorization 
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3.3.4 MODEL TRAINING 

Define the LSTM model. For binary classification, employ a sequential model 

architecture with an embedding layer, one or more LSTM layers, and a dense output 

layer activated by sigmoid function. 

 Assemble the model: To train the model, specify the metrics (accuracy), optimizer 

(adam), and loss function (binary cross-entropy). 

 

 

Fig 3.10: Defining LSTM Model 

 

 



27 
 

 Educate the model: Utilizing the Keras fit() technique, train the model on the 

vectorized and preprocessed training data 

 

 

Fig 3.11: Training Model 

 

3.3.5 MODEL EVALUATION 

 Open the test dataset for the Jigsaw Comment Classification Challenge: To read the 

test dataset from a CSV file, use pandas. 

 Preprocess the test data: Treat the test data with the same care and attention that you 

would the training data 

 Assess the model: To forecast the labels (toxic, severe_toxic, obscene, threat, insult, 

identity_hate) for the test data, apply the trained model. 

 

Fig 3.12: Assessing the model 

 Determine evaluation metrics: To evaluate the model's performance on the test data, 

compute pertinent metrics including accuracy, precision, recall 

 

 

 

 

Fig 3.13: Evaluation Metrics 
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3.3.6 MODEL SAVING 

To store and utilize the trained model in the future, use the Keras save() method to 

save it to a file. 

 

 

 

 

 

 

 

 

Fig 3.14: Model Saving 

 

3.3.7 Build an interactive Streamlit App 

 This code builds a web app to classify comments as toxic. It loads a pre-trained 

model, converts text to numbers for the model, and predicts toxic types (insult, threat, 

etc.). Streamlit creates the user interface where you can type a comment, click 

"Classify", and see if it's toxic based on different categories. 

 

Fig 3.15: Streamlit code 
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3.4  ALGORITHMS AND TECHNIQUES 

3.4.1 Pseudo-Code 

// Data Preprocessing 

Load Jigsaw Comment Classification Challenge dataset 

 

Preprocess text data: 

  Convert text to lowercase 

  Remove punctuation 

  Remove stop words 

  Remove HTML tags 

  Stem or lemmatize words 

 

Vectorize text data 

 

// Model Training 

Define LSTM model: 

  Embedding layer (10000 words, 64 dimensions) 

  LSTM layer (64 units) 

  LSTM layer (32 units) 

  Dense output layer (6 units, sigmoid activation) 

 

Compile model: 

  Loss function: binary cross-entropy 

  Optimizer: adam 
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  Metrics: accuracy 

 

Train model: 

  Fit model on training data 

  Specify number of epochs 

 

// Model Evaluation 

Load Jigsaw Comment Classification Challenge test dataset 

 

Preprocess test data: 

  Apply same preprocessing steps as training data 

 

Evaluate model: 

  Predict labels (toxic, severe_toxic, obscene, threat, insult, identity_hate) for test data 

 

Calculate evaluation metrics: 

  Accuracy, precision, recall, F1-score 

 

// Model Saving 

Save trained model 
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3.4.2 TECHNIQUES 

1.  Text Preprocessing 

 Text normalization: It includes converting text to lowercase, removing HTML tags, 

punctuation, and stop words. 

 

 Stemming or lemmatization: To increase generality and decrease dimensionality, 

reduce words to their most basic forms. 

2. Text Representation: 

 Vectorization: In machine learning, tasks such as negative comment classification 

are essentially natural language processing tasks that involve the gap bridging 

between human language and algorithms. This is the place where vectorization is 

employed. It is like a translator, which means it is the one that changes words and 

sentences from comments into numerical vectors. These vectors are the main 

elements that encode the meaning and the relationships between the words, so the 

model can understand and analyze textual data. The vectorization methods, for 

instance, word embedding, are much more sophisticated than the simple word counts. 

They translate the semantic meaning of words and their relationships, so the model 

can make the difference between the negativity expressed through direct insults and 

the more subtle forms like sarcasm. Through the transformation of comments into 

numbers, vectorization allows machine learning models to discover the patterns and 

relationships in the text data and thus to classify the negative comments more 

accurately and better.vectorization 

 

 Word embedding: To capture the semantic links between words, represent words as 

vectors in a high-dimensional space. 

 Bag-of-Words (BoW): Show documents as vectors with word counts that show each 

word's existence or absence. 
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3. Neural Network Architecture: 

 Embedding Layer: Each word is transformed into its matching word embedding 

vector by the embedding layer 

 LSTM Layers: Learn patterns between words in a sentence or paragraph, capturing 

temporal dependencies in text sequences. 

 Dense Output Layer: Provides probability scores for every negative sentiment 

category from the output of the LSTM layers. 

4. Model Training and Evaluation: 

 Binary Cross-Entropy Loss: The performance of the model in the negative 

comment classification is measured by the binary cross entropy that is the main 

metric. This measure is the calculation of the divergence between the estimated 

probabilities (how probable a comment is negative) and the actual labels (negative or 

not negative). In short, it is the quantification of the accuracy of the model's forecasts 

with the truth of the reality. Binary cross entropy decrease implies the more closer 

the predictions are to the actual labels, which means that the model is the better in the 

case of differentiation between the negative comments and the non-negative ones. 

 

 Adam Optimizer: In the field of negative comment classification, the Adam 

optimizer is a key component which is used in model training. It is just a short name 

for Adaptive Moment Estimation and it is a kind of optimization algorithm that does 

the job of adjusting the learning rates for each parameter of the model. On the other 

hand, Adam does not use a fixed learning rate; it uses the past gradients (directions 

of improvement) to decide how much to update each parameter. Thus, the model is 

flexible to the changes if needed and can reach its goal faster and avoid the pitfalls of 

the wrong solutions. Moreover, Adam adds the process of bias correction to the initial 

training phases, thus, the product of the whole process is the smoother learning and 

eventually the more efficient model for detecting the negative comments. 

  Accuracy, Precision, Recall, F1-Score: Calculate the model's accuracy, precision, 

recall, and F1-score by running it through the test dataset. 
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5.  Model Saving: 

 Serializing the Model: For later usage or deployment, store the architecture, 

parameters, and weights of the trained model in a file. 

6. Baseline Model: 

 In order to create an output prediction for our baseline model, first take the glove 

embedding vectors for each word in each remark, average their values, and then run 

this average vector through a fully connected layer. Given that comments are typically 

brief and consist just a few phrases, the model should be able to extract some degree 

of toxicity with just an average vector. 

 

 

 

 

 

 

 

 

 

Fig 3.16: Baseline Model Pipeline 

7.  Deploying model in Streamlit App 

 Build an application, which was able to identify toxic comments in a web. The code 

starts with an already trained model, converts text to numbers for the model, and 

then it classifies the messages into different categories of offensive messages, such 

as insults and threats. The platform will be structured in Streamlit which in turn 

allows the users to input a comment, click the "Classify" button and get a response 

that they either have a toxic comment or not. 

Together, these techniques enable the efficient categorization of critical remarks, promoting 

the growth of online communities that are more civil and productive. 
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3.5  KEY CHALLENGES 

Implementing negative comment classification using LSTM and NLP presents several key 

challenges that need to be addressed to achieve accurate and robust classification The 

primary challenges faced: 

1. Data Imbalance   

 There is an imbalance when it comes to the distributing of negative sentiment labels 

in the datasets and with the latter having more than half of the comment section 

categorized under the non-toxic category.  

 The unbalanced nature of this data may lead the model to classify them as positives 

causing overestimation in case they are actually negatives. 

2. Context and Nuance 

 While model may capture the negativity reliably, human language is subtle and 

context-sensitive that makes it hard for model to reliably determine the negative 

sentiment. 

 Models may not be able to understand sarcasm, irony and cultural references because 

the literal expression may not reflect the intended meaning 

3. Multilinguality 

 Since online information is worldwide, the relevant models should have the ability to 

deal with different languages and cultures. 

 While the Jigsaw dataset centers mostly on English, building models capable of 

accurately tagging insults in multilingual settings is critical for wider use. 

4. Model Explainablity: 

 Due to their complicated internal representations, LSTM models are called “black 

boxes”, where one cannot easily interpret their input-output relationship. 

 It’s essential to explain how they decide, because their bias and trustworthiness 

depends on this in particular when using them in critical applications 
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5. Overfitting and Generalization: 

 Effective negative comment classification should balance train and generalize. When 

a model fits the training data too closely is called overfitting and it does not translate 

into real data for learning purposes.  

 Overfitting may be avoided to some extent by using regularization techniques 

together with appropriate hyperparameter tuning to support generalization. 
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CHAPTER 4: TESTING 

4.1  TESTING STRATEGY 

To assess the performance of negative comment categorization models and guarantee their 

robustness and generalizability, an efficient testing procedure must be put into place. Here is 

a thorough testing approach that uses LSTM and NLP to classify negative comments using 

the Jigsaw Comment Classification Challenge dataset: 

1. Train-Test Split 

 Dividing the gridpoint into training, testing, and validation sections is 

required to enhance the model’s performance prediction power.  

 The training set is the instrument for the model learning process, only the 

validation set is capable of helping us in hyperparameter tuning and 

preventing overfitting, and eventually the test set, as an objective 

measurement of unknown data, serves as a confirmation of the 

performance of our final model. 

 Typically, 20% is set up for testing and 80% for training. 

2. Testing on Different Types of Negativity:Testing on Different Types of 

Negativity 

 

 A powerful classifier needs to get features to show different types of 

hostilities that can be encountered in these comments. Aside from the 

negative explicit remarks with straight insults and threats, the ability of 

implicit negativity including passive-aggressive remarks is also included. 

 Consider the misspellings and slang which is widely received online One 

of the key concerns regarding functionality of the given model relates to 

the fact that model should be accurate in capturing all these different forms 

to make it effectively applicable in real world. 
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3. K-Fold Cross-Validation 

 Use k-fold cross-validation to reduce the effects of random sampling and 

data distribution. The training set should be divided into k equal-sized 

folds at random. 

 Use each fold as a test set in turn to train the model k times. An estimate 

of the model's capacity for generalization that is more accurate is given by 

the average performance over all k folds. 

4. Model-Centric Testing 

 Engaging in unit tests for separate parts of the model containing 

TensorFlow is quite important in order to test their correct operations and 

functioning.  

 This can, meanwhile, be achieved by testing of input processing functions 

in order to validate correct preprocessing and tokenization, validating of 

the model architecture to check if the layer configuration and activation 

functions are working properly, and testing of output interpretation to see 

the correct conversion of model output to classification probability. 

5. Data Augmentation 

 Consider using data augmentation strategies to alleviate data imbalance 

and enhance model resilience.  

 Create fresh training examples, for instance, by using strategies like 

synonym replacement, back translation, and paraphrase, especially for 

classes that are underrepresented. 

6. Hyperparameter Tuning 

   Use systematic search techniques like grid search or random search to 

optimize the model's hyperparameters, which include the number of LSTM 

units, embedding size, learning rate, and regularization parameters. 

 The goal of this procedure is to identify the set of hyperparameters that 

maximizes the model's test set performance. 
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7. Error Analysis 

 Examine the test set errors of the model to find recurring errors and 

possible biases. 

 This may entail employing error analysis methods, comparing model 

predictions to human annotations, and looking at cases that were 

incorrectly classified 

8. External Evaluation 

 Analyze the model's performance on external datasets, such as real-world 

data from web platforms or other publicly available comment 

classification datasets.  

 The model's generalizability outside of the Jigsaw dataset is evaluated 

with the use of this external validation 

9. CONTINUOUS MONITORING 

 Watch the model's performance over time when fresh data become 

available. 

 To adapt to shifting sentiment distribution and language trends, this may 

need retraining the model on a regular basis or using online learning 

techniques 

10. Specific Testing Scenarios 

 

 Testing the model with certain boundaries of cases by such as extreme 

short or extremely long comments, comments with special symbols, or the 

specific examples which intended to foil the model can reveal any possible 

shortages or problems that it has.  

 

 This inclusive testing framework guarantees, therefore, that the classifier 

remains competent and adaptable for a multitude of scenarios and sets of 

inputs. 
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11. Streamlit Testing Tips 

 

 Both the Streamlit caching system to boost the efficiency of trials and the 

interactive widgets to conduct an own manual test of selected inputs and 

scenarios ensure the testing process.  

 

 In addition to that, test frameworks like pytest make the testing process 

simpler, which contributes in the arrangement of the test as well as in the 

performance of the test, this way the testing process is streamlined. 

High levels of accuracy, dependability, and user satisfaction are met by the Negative 

Comment Classification thanks to a thorough testing approach. The system is a useful tool 

since it is improved continuously through feedback loops and continuous monitoring.
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CHAPTER 5: RESULTS AND EVALUATION 

5.1 RESULTS AND EVALUATION 

It is crucial to evaluate the performance of negative comment categorization algorithms to 

ensure that they are dependable, accurate, and widely applicable. To assess how well the 

model performs on the test set, several metrics can be used. 

Quantitative Results 

The top-performing baseline model has a 0.617 training loss, a 79.7% accuracy, a 0.619 

testing loss, and a 79.4% accuracy. This implied that the project idea we have is workable. 

 

Table 5.1’s hyperparameters were used to train the most effective model. The average loss 

and accuracy across the six binary classifiers is used to compute the combined loss and 

accuracy. The optimal model has a testing loss of 0.528, accuracy of 95.3%, accuracy of 

98.6%, and training loss of 0.510. The curves are smooth and exhibit exponential 

tendencies, as seen in Fig. 5.1. Overfitting is not evident in any way. At epoch 10, the 

model's performance stabilized somewhat, but epoch 30 produced the best training and 

testing results. 

 

 

 

 

 

 

 

 

 

 

 

 

               a. Loss Curve                                                                      b. Accuracy curve 

Fig 5.1: Loss and Accuracy Curve 

 



41 
 

Table 5.1. Sample Model Outputs, Predictions, and Actual Labels 

Case Comment Value Type Toxic Severe 

_toxic 

Obscene Threat Insult Identity 

_hate 

1 “Well that 

explains it thanks 

for clearing it up” 

Model 

Output 

3.3293 e-

06 

0.0003 2.5801e- 

05 

0.0004 1.1351 e-

05 

0.0002 

Prediction 0 0 0 0 0 0 

Actual Label 0 0 0 0 0 0 

2 “You are ugly I 

hate you.” 

Model 

Output 

1.0000 0.9993 0.9999 0.9970 1.0000 0.9991 

Prediction 1 1 1 1 1 1 

Actual Label 1 1 1 1 1 1 

3 “Hey loser get a 

life.” 

Model 

Output 

0.9977 0.4768 0.9580 0.7029 0.9898 0.4662 

Prediction 1 0 1 1 1 0 

Actual Label 0 0 0 0 1 0 

4 “You are just so 

freaking 

beautiful.” 

Model 

Output 

1.0000 0.9928 0.9999 0.9553 0.9999 0.9949 

Prediction 1 1 1 1 1 1 

Actual Label 0 0 0 0 0 0 
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MODEL ACCURACY 

The percentage of accurately classified comments is called accuracy. Although it is an easy-

to-understand statistic, imbalanced datasets may contribute to its misleadingness. 

The model achieved an accuracy of 0.485 on the validation set, indicating its ability to 

recognize negative comment. 

PRECISION 

Precision measures the proportion of comments identified as negative that are truly negative. 

It is particularly important when the cost of false positives is high. The model achieved a 

precision of 0.829 on the validation set 

RECALL 

Recall measures the proportion of truly negative comments that are correctly identified as 

negative. It is important when the cost of false negatives is high. The model achieved a recall 

of 0.6904 on the validation set 

The saved model is integrated in the Gradio Library which identifies a comment as negative 

or not successfully 

Below are a few examples showing the working of the project: 

 

 

 

 

 

 

Fig 5.2: Gradio App 
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To make it more interactive the model is incorporated in Streamlit – 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 5.3: Streamlit App 
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CHAPTER 6: CONCLUSIONS AND FUTURE 

SCOPE 

6.1  CONCLUSION 

The Negative comment Classification has shown significant promise in accurately capturing 

and interpreting comments in real-time. Through rigorous testing, the system has proven its 

and providing valuable insights into users' experience. An effective way to combat online 

toxicity and encourage a more positive and productive online environment is through the use 

of LSTM-based negative comment classification algorithms. Through constant improvement 

and modification of these models, we can successfully identify offensive content. 

By combining machine learning algorithms and the user-friendly interface provided by 

Streamlit, a web app has been developed with high precision in identifying and classifying 

negative statements. 

The project has shown the deep learning models, especially those based on TensorFlow, to 

be accurate in text data analysis and the extraction of the meaningful information. By 

employing the pre-trained models that have been adapted for Jigsaw Comment Classification 

Challenge dataset on Kaggle, we could successfully classify the negative comments in 

different situations and domains with high accuracy. 

The Streamlit interface, which has made the classifier user-friendly and easier to use, has 

made the users able to interact with the model in real-time and to see the results visually. The 

link between Streamlit and the NLP libraries and the TensorFlow made the classifier possible 

to be easily and quickly integrated, experimented, and implemented. 
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The contributions made in this project – 

1. High Accuracy: The model is excellent at detecting the negative comments on the 

validation set. This precision guarantees it can spot various types of negativities, from the 

plain insults to the sarcasm and passive-aggressiveness which are hidden. These all-round 

detections enable the platforms to deal with the negativity in a better way. 

2. Real-Time Processing: Apart from speed, the model also offers the feature of real-time 

processing. Thus, one can instantly identify and mark the negative comments and use this 

information to take the necessary actions. Think of a forum where the negative comments 

are not allowed to be posted for review, hence, it is a more polite discussion place. 

3. User Engagement: The users positive feedback confirms that the model is user-friendly 

and it is the most effective way to promote a more positive online experience. This can be 

seen in different ways for instance, in the filtering of comment sections to prefer the 

respectful interactions and in the case of the users, the prompt for the confirmation before 

posting the comments that can be potentially negative. 

 

6.2 FUTURE SCOPE 

The Negative comment classification holds immense potential for further advancements 

and applications. The following areas present opportunities for future development: 

1. Incorporating additional data sources:  

 Employ user profiles, historical interactions, and social context to offer a more 

thorough comprehension of user sentiment and behavior. 

 In order to improve context and nuance recognition, think about combining 

audio and visual information from multimodal content. 

 

2. Improving Model Explainabilty:  

     Provide more advanced methods for interpreting and elucidating the LSTM 

models' decision-making process. 

     Investigate ways to convey and illustrate model predictions in an 

approachable way. 
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3. Addressing bias and fairness:  

     Use methods for detecting and mitigating bias to make sure that models are 

classified fairly and equally. 

     Provide strategies to recognize and correct possible bias in model architecture 

and training data. 

 

4. Enhancing cross-lingual capabilities: 

     Create multilingual LSTM models that can categorize unfavourable remarks in 

a greater number of languages. 

     Examine transfer learning strategies to make better use of your knowledge in 

one language while enhancing your performance in another. 

 

5. Enhanced Model Performance: 

 The deep learning models and the research on the more advanced architectures, 

like the transformer-based models, for example, BERT or GPT, could in the 

future, make the classifier more accurate and generalizable, more in-depth fine-

tuning of the models and the research on them. 

 

6. Multi-class Classification 

 The classifier can be used as a multi-class classification, which will divide the 

comments into different sentiment categories (positive, negative, neutral) and this 

will be helpful for more application cases.  

 

7. Real-time Sentiment Analysis: 

 The inclusion of real-time data streaming possibilities to the classifier is the major 

value add and it would enable the analysis and classification of the comments as 

they are being posted on the social media platforms or other online forums. 

Consequently, it was a prescient step towards the mitigation of the negative 

attitude.  

 

8. Domain-specific Models: 

 Developing domain-specific classifiers for particular industries or domains (e. g. 

medical, academic or technical) is a technique that helps to solve the problem of 
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specific domain objectives. g. the possibility of the application of different areas 

like agriculture, automotive, etc. ) to improve the accuracy of the prediction is the 

way to achieve this. g. The elements of the requirements, healthcare, finance and 

customer service could be the elements that will be used in the improvement of 

the classification accuracy and the specificity for specialized applications. 

  

9. User Feedback and Iterative Improvement: 

 Collecting user feedback and, by means of an iterative procedure, the classifier 

would be enhanced based on the user input and the real-world performance 

metrics thus ensuring the model will be further improved and optimized all the 

time. 

 

10. Deployment and Scalability: 

 The classifier, as a web service which can be easily scaled and will be robust, will 

be deployed on the cloud computing platforms like AWS or Google Cloud to be 

integrated with the applications that are already on the market and to be able to 

handle the high-volume usage scenarios. 
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