

License plate detection for road littering

A major project report submitted in partial fulfilment of the requirement

for the award of degree of

Bachelor of Technology

in

Computer Science & Engineering / Information Technology

Submitted by

Aditya Partap Singh (201108)

Shrest Agarwal (201110)

Divyan Rajveer Singh Rana (201555)

Under the guidance & supervision of

Prof. Dr. Vivek Kumar Sehgal

Professor and Head, Fellow IEI, SM-IEEE, SM-ACM (SG)

Department of Computer Science & Engineering and

Information Technology

Jaypee University of Information Technology, Waknaghat, Solan -

173234 (India)

Acknowledgement

Firstly, we express our heartiest thanks and gratefulness to almighty God for His divine

blessing makes it possible for us to complete the project work successfully. We are really

grateful and wish to be profoundly indebted to Supervisor Prof Dr. Vivek Kumar Sehgal,

Professor and Head, Fellow IEI, SM-IEEE, SM-ACM (SG)Department of CSE Jaypee

University of Information Technology, Waknaghat. Deep Knowledge & keen interest of our

supervisor in the field of “Artificial Intelligence /Information Security” to carry out this

project. His endless patience, scholarly guidance, continual encouragement, constant and

energetic supervision, constructive criticism, valuable advice, reading many inferior drafts

and correcting them at all stages have made it possible to complete this project. We would

like to express our heartiest gratitude to Prof Dr. Vivek Kumar Sehgal Department of CSE,

for his kind help to finish our project. We would also generously welcome each one of those

individuals who have helped us straightforwardly or in a roundabout way in making this

project a win. In this unique situation, we might want to thank the various staff individuals,

both educating and non-instructing, which have developed their convenient help and

facilitated our undertaking. Finally, we must acknowledge with due respect the constant

support and patients of our parents.

Aditya Partap Singh

(201108)

Shrest Agarwal

(201110)

Divyan Rajveer Singh Rana

(201555)

 III

Table of Content

Title Page No.

Candidate’s Declaration I

Certificate II

Acknowledgement III

List of Figures IV

List of Abbreviations V

Abstract VI

Chapter 1: Introduction

 1.1 Introduction

 1.2 Problem Statement

 1.3 Objectives

 1.4 Significance and Motivation of the Project Work

 1.5 Organization of Project Report

Chapter 2: Literature Survey

 2.1 Overview of Relevant Literature

 2.2 Key Gaps in the Literature

Chapter 3: System Development

 3.1 Requirements and Analysis

 3.2 Project Design and Architecture

 3.3 Data Preparation

 3.4 Implementation

 3.5 Key Challenges

Chapter 4: Testing

 4.1 Testing Strategy

 4.2 Test Cases and Outcomes

Chapter 5: Results and Evaluation

 5.1 Results

 5.2 Comparison with Existing Solutions (if applicable)

Chapter 6: Conclusions and Future Scope

 6.1 Conclusion

 6.2 Future Scope

References

List of Figures

• Fig.3.1 DFD for license plate detection

• Fig3.2 DFD for model training

• Fig.3.3 Architecture of YOLO model

• Fig.3.4 Original Image

• Fig.3.5 Image with bounding boxes

• Fig.3.6 Bounding box regression

• Fig.3.7 IOU calculation and grid selection

• Fig.3.8 Directory in the project folder

• Fig.3.9 code snippet 1

• Fig.3.10 code snippet 2

• Fig.3.11 code snippet 3

• Fig.4.1 Input image

• Fig.4.2 Output image

• Fig.4.3 Annotated text file

• Fig.4.4 Graphs showing loss and performance curves

• Fig.5.1 Original video

• Fig.5.2 Output of given video

• Fig.5.3 Litter detection

• Fig.5.4 Trained model classes

• Fig.5.5 Trained model labels

• Fig.5.6 Output of video file

• Fig.5.7 Output of code in terminal

IV

List Of Abbreviations

1. YOLO: You Only Look Once

2. CNN: Convolutional Neural Network

3. R-CNN: Region-based Convolutional Neural Network

4. SVM: Support Vector Machine

5. ELA: Error Level Analysis

6. COCO: Common Objects in Context

7. CUDA: Compute Unified Device Architecture

8. GPU: Graphics Processing Unit

9. CPU: Central Processing Unit

10. SSD: Single Shot Detector

11. ReLU: Rectified Linear Unit

12. NMS: Non-Maximum Suppression

13. IOU: Intersection Over Union

 V

Abstract

Compared to conventional transportation vehicles, construction vehicles have various

driving circumstances and environmental factors. They consequently encounter particular

difficulties when working at construction and evacuation sites. Therefore, even if the

learning strategy for construction trucks is the same as that for conventional transportation

vehicles like cars, study must be done to overcome these issues while implementing

autonomous driving. The aim of this thesis study has been identified as being fulfilled by the

following objectives. to determine appropriate and very effective CNN models for tracking

and real-time object identification of construction vehicles. Analyse these CNN models'

categorization performance. Present the results after comparing them to one another. The

experiment and the literature review are appropriate research methods to use in answering

the research questions. A survey of the literature has been done to determine the best object

detection models for real-time object tracking and recognition. Since then, tests have been

conducted to evaluate the performance of the selected object detection models. The literature

research has determined that the most appropriate and effective algorithms for real-time

detection and tracking of scaled construction trucks are the Faster R-CNN model, YOLO,

and Tiny-YOLO. These algorithms' classification performance has been computed and

contrasted with one another. The findings have been made public. Among the algorithms,

YOLO has been determined to have a greater F1 score and accuracy, followed by Faster R-

CNN. Consequently, the optimal algorithm for the real-time recognition and tracking of

scaled construction vehicles has been determined to be YOLO. The outcomes resemble the

literature's comparison of these three algorithms' classification performance.

 VI

Chapter 1: Introduction

1.1 Introduction

The process of recognizing objects in videos and images is known as Object recognition.

This computer vision technique enables the autonomous vehicles to classify and detect

objects in real-time. An autonomous vehicle is an automobile that has the ability to sense

and react to its environment so as to navigate without the help or involvement of a human.

The object detection and recognition are considered to be one of the most important tasks as

this is what helps the vehicle detect obstacles and set the future courses of the vehicle.

Therefore, it is necessary for the object detection algorithms to be highly accurate. Selecting

the appropriate algorithm for autonomous driving is crucial since it necessitates real-time

object detection and recognition, even though there are numerous machine learning and deep

learning methods available for object detection and recognition, such as Support Vector

Machine (SVM), Convolutional Neural Networks (CNNs), Regional Convolutional Neural

Networks (R-CNNs), You Only Look Once (YOLO) model, etc. In order for the vehicle

controllers to solve optimisation problems at least once every second, it is imperative that

the algorithms be quick, accurate, and able to detect things in an image in real-time, as robots

are not as quick as humans to do so.

Littering is a pervasive issue that raises serious issues with the environment, public health,

and welfare of local communities. Innovative strategies that not only enforce anti-littering

legislation but also increase awareness and encourage responsible conduct are needed to

address this issue. We want to automate the process of detecting and holding litterers

accountable for their actions by leveraging the power of Python, YOLOv8, and EasyOCR.

This project acts as a deterrence to future littering behaviour in addition to offering a more

effective method of punishment.

1

1.2 Problem Statement

Litter buildup in public areas and along roadsides is a widespread problem that poses health,

aesthetic, and environmental risks worldwide. Littering is still a major issue even with efforts

to reduce it through waste management programmes and public awareness campaigns.

Conventional approaches to detecting and cleaning up litter are frequently costly, time-

consuming, and labour-intensive. In order to solve the ongoing problems with object

detection, this project makes use of You Only Look Once (YOLO), a creative and effective

neural network design.

Finding the right balance between speed and accuracy is one of the main problems with

object detection. Numerous current solutions sacrifice one for the other, making them less

useful in situations when processing in real time is crucial. The research acknowledges this

trade-off and looks to YOLO, which is renowned for processing whole images in a single

forward pass, as a solution that can successfully balance speed and accuracy. This article

focuses on using Python to implement YOLOv8, the most recent version of YOLO that

offers improvements in terms of accuracy and computing efficiency.

We suggest a project aimed at creating an automated system for trash detection from moving

cars utilising machine learning methods in order to overcome this difficulty. To enable

timely and focused cleanup activities, the main goal is to develop a system that can reliably

recognise and categorise various kinds of trash items in real-time.

The requirement for solid training datasets that accurately reflect the variety of real-world

situations represents another major obstacle. This study is to investigate techniques for

efficiently training and fine-tuning YOLOv8 utilising pertinent datasets, acknowledging the

significance of both dataset quality and diversity. By doing this, the research hopes to

improve the generalisation capabilities of the model, guaranteeing accurate and dependable

object recognition in a variety of application cases and domains.

2

1.3 Objectives

● Data collection:

Assemble a large, annotated collection of pictures that show different kinds of trash, a range

of environmental circumstances, and varying car speeds. The base for training and assessing

machine learning models will be provided by this dataset.

● Annotating the data:

After acquiring the images, we annotate the data with accurate labels by manually drawing

bounding boxes around the objects in every image in our training dataset.

This facilitates the training and evaluation of our model.

● Real-time license plate detection:

Implement real-time license plate detection to enhance the process of digital media content

authentication and verification. This includes ensuring the authenticity and reliability of

images and videos, particularly in situations where authenticity is crucial.

● EasyOCR license plate recognition:

Implement EasyOCR to accurately recognize and extract alphanumeric characters.

● Litter Detection:

Develop a model to accurately detect and classify litter.

 3

1.4 Significance and Motivation of the Project Work

An important first step in addressing the pervasive issue of environmental damage brought

on by littering is my endeavour to identify and log the license plates of cars that leave trash

behind. Littering is more than just an aesthetic problem; it endangers the environment, public

health, and welfare of communities. By automating the identification and enforcement

process, my project provides a possible answer to this problem by utilizing cutting-edge

technologies like Python, YOLOv8, and EasyOCR.

Conventional approaches to policing anti-littering legislation have frequently proven

resource-intensive and ineffectual. Nonetheless, my project offers a more effective and

possibly more efficient way to execute the law. It keeps people responsible for their actions

and discourages future littering behaviour by automatically recording the license plate

information of cars that are detected littering. Deterrence plays a critical role in cultivating a

culture of accountability and environmental respect.

Through its detection and recording procedure, it highlights the negative effects of littering

and raises community awareness of the need to maintain clean, pollution-free public areas.

This teaching component is crucial for encouraging individuals to adopt new behaviours

over the long run and to feel stewards of the environment.

Furthermore, this project can support current environmental programs and laws that try to

lessen trash. It can help with focused interventions and initiatives to reduce littering at the

local, regional, and national levels by offering useful data on hotspots and trends associated

with littering. In this sense, my idea solves the immediate problem of trash while

simultaneously making a larger contribution to the cause of healthier and more sustainable

societies.

4

Chapter 2: Literature Survey

2.1 Overview of Relevant Literature

[1] YOLO9000: Better, Faster, Stronger, Joseph Redmon, Ali Farhadi, University of

Washington, Allen Institute for AI (2017)

This Paper presents YOLO9000, a cutting-edge, real-time object identification system

capable of detecting over 9000 object categories. First, we suggest several enhancements to

the YOLO detection approach, both unique and based on previous work. The updated model,

YOLOv2, performs admirably on standard detection tasks such as PASCAL VOC and

COCO. The same YOLOv2 model may operate at multiple sizes thanks to a revolutionary,

multi-scale training strategy, providing an easy compromise between speed and accuracy.

Tools/Technologies:

The YOLOv2 research report will most likely discuss enhancements and alterations made to

the original YOLO framework. In this context, common tools and technologies may include:

1.Framework for the Darknet:The Darknet framework, created by Joseph Redmon, is

frequently used to achieve YOLO.

2.CNNs (Convolutional Neural Networks): YOLOv2, like its predecessor, is expected to

leverage CNNs for effective feature extraction and object detection.

3.CUDA: GPU acceleration through CUDA is commonly employed to enhance the speed of

neural network computations.

4.Datasets: The model is likely trained and evaluated on datasets such as COCO (Common

Objects in Context) for benchmarking and comparison.

5

Result:

The real-time detection systems YOLOv2 and YOLO9000 are presented in this paper.

YOLOv2 is state-of-the-art and works better than other detection techniques on a variety of

detection datasets. Additionally, it can be used with varying image sizes to provide a smooth

trade-off between accuracy and speed.

YOLO9000 is a real-time framework that simultaneously optimizes detection and

classification to detect over 9000 item categories. We combine our combined optimisation

strategy to train on both ImageNet and COCO simultaneously and use WordTree to aggregate

data from multiple sources. A major step forward in closing the dataset size difference

between detection and classification is the YOLO9000.

[2] YOLOv3: An Incremental Improvement Joseph Redmon Ali Farhadi University of

Washington (2018)

This paper has improved YOLO with a slew of minor design tweaks. In this paper they

trained this fantastic new network. It's a little larger this time, but it's more accurate. It's still

fast, don't worry. At 320X320, YOLOv3 runs in 22 ms at 28.2 mAP, which is as precise as

SSD but three times faster. When compared to the old.5 IOU mAP detection metric,

YOLOv3 is quite good. It reaches 57.9 AP50 in 51 ms on a Titan X, compared to RetinaNet's

57.5 AP50 in 198 ms, which is equivalent performance but 3.8 faster.

Tools/Technologies:

The tools and technologies utilised in YOLOv3 are anticipated to have comparable aspects

as its predecessors, with some potential enhancements or adjustments. Common components

may include:

1.Darknet Framework: YOLO models are typically implemented using the Darknet

framework, which was developed by Joseph Redmon. Darknet is a neural network

framework written in C and CUDA, and it is specifically designed for YOLO.

2.Convolutional Neural Networks (CNNs): YOLOv3, like its predecessors, heavily relies on

convolutional neural networks for feature extraction and object detection tasks.

6

3.CUDA: GPU acceleration through CUDA is commonly used to speed up the training and

inference processes of deep neural networks, including YOLO models.

4.Python and associated libraries: While the paper may not explicitly mention programming

languages, it's common to use Python along with deep learning libraries such as TensorFlow

or PyTorch for research and implementation.

5.Datasets: YOLOv3 is likely trained and evaluated on benchmark datasets such as COCO

(Common Objects in Context) or others relevant to object detection tasks.

6.pre-trained models: Transfer learning may be employed, using pre-trained models on large

datasets to initialize the weights of the YOLOv3 network before fine-tuning on specific

object detection datasets.

Results:

The improvements made by YOLOv3 over its predecessors would be described in detail in

the paper's results section. Metrics like speed, accuracy, and efficiency of object detection

could be included. In order to highlight the model's advantages and disadvantages, it might

also discuss how the model performed on particular issues or datasets.

[3] YOLOv4: Optimal Speed and Accuracy of Object Detection Alexey Bochkovskiy,

Chien-Yao Wang∗ Institute of Information Science Academia Sinica, Taiwan Hong-

Yuan Mark Liao, Institute of Information Science Academia Sinica, Taiwan(2020)

The goal of this study is to improve Convolutional Neural Networks' (CNNs') object

detection capability in real time and accuracy. The study investigates a wide range of

characteristics intended to increase CNN accuracy, taking into account both general features

that can be applied to various models and tasks and specialised features that are specific to

particular models and circumstances. Weighted-Residual-Connections (WRC), Cross-Stage-

Partial-connections (CSP), Cross mini-Batch Normalisation (CmBN), Self-adversarial-

training (SAT), and Mish-activation are some of the prominent universal features.

7

Several unique features, including DropBlock regularisation, CIoU loss, and Mosaic data

augmentation, are introduced and combined in this research. The objective is to develop a

cutting-edge object identification model that may be used in a variety of applications by

running in real-time on traditional GPUs. With a real-time speed of about 65 frames per

second on a Tesla V100 GPU, the suggested model, dubbed YOLOv4, produces impressive

results, displaying a 43.5% Average Precision (AP) and 65.7% AP50 for the MS COCO

dataset.

In order to train a quick and precise object detector, users with ordinary GPUs, such the 1080

Ti or 2080 Ti, can use the developed model, which is highlighted in the article as having

practical relevance. In order to make state-of-the-art procedures more effective and

appropriate for single-GPU training, the authors tweak and optimise them. They also explore

the impact of novel Bag-of-Freebies and Bag-of-Specials methods during detector training.

Among the contributions of this work are the creation of an effective object detection model

that can be applied widely, an investigation into the effects of cutting-edge object detection

techniques, and adjustments to improve the effectiveness of currently available single-GPU

training methods. The goal of the research is to advance object detection capabilities across

multiple domains by offering a robust and useful real-time object detection solution. The

suggested model's source code is made accessible to the general public for additional

research and application.

Tools and Technologies:

Tools and Technologies Used: YOLOv4's tools and technologies are anticipated to

incorporate elements comparable to its predecessors, with potential enhancements or

adjustments. The following are examples of common components:

1.Framework for the Darknet: The Darknet framework is frequently used to implement

YOLO models, particularly YOLOv4. Darknet is a neural network framework written in C

and CUDA that was created exclusively for YOLO. It enables GPU acceleration via CUDA,

which contributes to the model's ideal performance and efficiency.

8

2.CNNs (Convolutional Neural Networks): As a deep learning model, YOLOv4 is built on

the foundations of convolutional neural networks. CNNs play an important role in picture

feature extraction and object detection applications.

3.CUDA: GPU acceleration using CUDA is widely used to speed up neural network

computations. Parallel processing on GPUs greatly benefits YOLO models, notably

YOLOv4.

4.Python and its dependencies: Python is commonly used for research and implementation,

along with deep learning packages such as TensorFlow or PyTorch. Although these

technologies are not specifically mentioned in the study, they are commonly utilised in the

deep learning community.

5Datasets: YOLOv4 was most likely trained and assessed using object detection benchmark

datasets such as COCO (Common Objects in Context) or others.

6.Models that have already been trained: Transfer learning can be used to initialise the

weights of the YOLOv4 network using pre-trained models on broad datasets before fine-

tuning on individual item detection datasets.

Result:

For inference time verification, we run YOLOv4 on widely used GPUs of the Maxwell,

Pascal, and Volta systems and compare it with other state-of-the-art techniques because

different approaches use different GPU architectures.

[4] YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object

detectors Chien-Yao Wang1, Alexey Bochkovskiy, and Hong-Yuan Mark Liao, Institute

of Information Science, Academia Sinica, Taiwan(2022)

YOLOv7, an advanced object detection model, is presented in this paper. It outperforms all

known real-time object detectors across a wide range of frames per second (FPS) and excels

in both speed and accuracy. With an Average Precision (AP) of 56.8%, YOLOv7 outperforms

other real-time object detectors running at 30 frames per second or more on the GPU V100

9

in terms of accuracy. Significantly, in terms of speed and accuracy, the YOLOv7-E6 variant

outperforms transformer-based detectors like SWIN-L Cascade-Mask R-CNN and

convolutional-based detectors like ConvNeXt-XL Cascade-Mask R-CNN.

The goal of the research is to enable real-time object detection across a wide range of

computing environments and devices, from mobile GPUs to GPUs in edge and cloud

environments. In contrast to mainstream approaches that focus mainly on optimising

architecture, YOLOv7 emphasises training process optimization without raising inference

costs by introducing trainable bag-of-freebies methods.

In this paper, new problems in dynamic label assignment and model re-parameterization are

discussed and useful solutions are suggested. In particular, it presents a coarse-to-fine lead-

guided label assignment technique and a planned re-parameterized model to improve

training efficiency for models with several output layers.

The development of trainable bag-of-freebies techniques, the recognition and handling of

novel obstacles in the evolution of object detection, the introduction of "extend" and

"compound scaling" strategies for effective parameter and computation utilisation, and the

accomplishment of a 40% parameter reduction and a 50% computation reduction for cutting-

edge real-time object detectors are among the contributions.

With its increased detection accuracy and faster inference speed, YOLOv7 represents a major

breakthrough in real-time object detection. The source code is released for public use in order

to facilitate additional research and development.

Tools and Technologies:

The specific tools and technologies utilised in YOLOv7 would be mentioned in the paper or

supporting documentation. However, given the historical background of the YOLO series,

popular tools and technology might include:

10

1.Deep Learning Architecture: Popular deep learning frameworks such as PyTorch or

TensorFlow are frequently used to create YOLO models.

2.CUDA: CUDA GPU acceleration for easier neural system inference and training.

3.Datasets: Standard object detection datasets are likely to be used in training and evaluation,

and the publication may detail the specific datasets used.

Result:

In this study, we present a novel architecture and model scaling approach for real-time object

detection. Moreover, we find that new research areas are generated by the evolution of object

identification algorithms. We found the dynamic label assignment allocation problem and

the re-parameterized module replacement problem during the research phase. We propose

the trainable bag-of-freebies method to improve the accuracy of item detection in order to

tackle the problem. We developed the YOLOv7 family of object detection systems, which

yield state-of-the-art outcomes, based on the aforementioned.

[5]DynamicDet: A Unified Dynamic Architecture for Object Detection Zhihao Lin

Yongtao Wang, Jinhe Zhang Xiaojie Chu Wangxuan, Institute of Computer

Technology, Peking University(2020)

In this paper, we introduce DynamicDet, a dynamic framework for object detection that uses

adaptive inference to achieve an impressive trade-off between computational efficiency and

accuracy. By presenting a novel dynamic architecture, an adaptive router for multi-scale

analysis, an optimization strategy based on detection losses, and a variable-speed inference

strategy, DynamicDet tackles the difficulties in creating potent dynamic detectors.

Cascaded detectors and a router make up DynamicDet's dynamic architecture, which gives

users the option to exit inference with multi-scale data. In order to facilitate dynamic decision

making, an adaptive router is introduced that automatically evaluates the difficulty scores of

images based on multi-scale features. Additionally, variable-speed inference techniques and

hyperparameter-free optimization strategies designed for the suggested dynamic architecture

are presented in the paper.

11

DynamicDet is effective in achieving new state-of-the-art accuracy-speed trade-offs for real-

time object detection, as demonstrated by extensive experiments on the COCO benchmark.

In terms of inference speed, for example, the DynamicDet variant Dy-YOLOv7-W6

outperforms similar models such as YOLOv7-E6 by 12%, YOLOv7-D6 by 17%, and

YOLOv7-E6E by 39% while retaining similar accuracy. With its single dynamic detector

that can adjust to a variety of application scenarios, the suggested framework offers notable

improvements in real-time object detection.

Tools and Technologies:

1.Deep Learning Architecture: Popular deep learning frameworks, such as PyTorch or

TensorFlow, are frequently used to create YOLO models, notably YOLOv5. PyTorch has

been used by Ultralytics, the organisation connected with YOLOv5.

2.CUDA: GPU acceleration with CUDA is commonly used to accelerate deep neural

network training and inference procedures. Parallel processing on GPUs is often

advantageous for YOLO models.

3.Python and its dependencies: Python is a popular programming language for deep learning

research. For general-purpose tasks, researchers frequently use libraries such as NumPy,

SciPy, and scikit-learn, as well as deep learning libraries.

4.Datasets: YOLOv5 was trained and tested on COCO (Common Objects in Context) or

other datasets relevant to object detection, segmentation, and instance segmentation tasks.

5.Models that have already been trained: Transfer learning can be used to initialise the

weights of the YOLOv5 network before fine-tuning on specific tasks by employing pre-

trained models on huge datasets.

Result:

In this study, we present a novel architecture and model scaling approach for real-time object

detection. Moreover, we find that new research areas are generated by the evolution of object

identification algorithms.

12

We found the dynamic label assignment allocation problem and the re-parameterized module

replacement problem during the research phase. We propose the trainable bag-of-freebies

method to improve the accuracy of item detection in order to tackle the problem. We

developed the YOLOv7 family of object detection systems, which yield state-of-the-art

outcomes, based on the aforementioned.

[6] YOLOX: Exceeding YOLO Series in 2021 Zheng Ge, Songtao Liu, Feng Wang

Zeming Li Jian Sun Megvii Technology(2021)

This paper presents YOLOX, a high-performance object detector that makes inventive

enhancements to the YOLO series. YOLOX uses a leading label assignment strategy called

SimOTA in conjunction with sophisticated detection techniques like a decoupled head. The

model surpasses previous benchmarks on the COCO dataset and achieves state-of-the-art

results across a wide range of models.

The YOLOX versions perform exceptionally well. YOLOX-Nano outperforms NanoDet by

1.8% AP on COCO, achieving 25.3% AP with just 0.91M parameters and 1.08G FLOPs.

YOLOX outperforms the current best practice by 3.0% AP, increasing the widely used

YOLOv3 to 47.3% AP on COCO. YOLOX-L outperforms YOLOv5-L by 1.8% AP and

achieves 50.0% AP on COCO at 68.9 FPS on Tesla V100, with parameters similar to

YOLOv4-CSP and YOLOv5-L. YOLOv4-Tiny and NanoDet are inferior to YOLOX-Tiny

and YOLOX-Nano by 10% AP and 1.8% AP, respectively.

Using recent developments in anchor-free detectors, label assignment strategies, and end-to-

end (NMS-free) detectors, the authors decide to begin their optimizations with YOLOv3.

The skilled updates to YOLOv3 lead to notable gains in accuracy. With support for ONNX,

TensorRT, NCNN, and Openvino, the YOLOX code is released.

13

In the report's conclusion, they describe how they used a single YOLOX-L model to win first

place in the Streaming Perception Challenge (Workshop on Autonomous Driving at CVPR

2021). The advancements and insights presented here are intended to further the field of real-

time object detection by providing developers and researchers with useful experiences in

real-world scenarios.

Tools and Technologies:

1.Deep Learning Architecture: YOLOX, like other YOLO variations, is most likely built with

a well-known deep learning architecture known as CSP Darknet53 with an SSP Layers as a

backbone to extract high dimensional features from input image. Commonly used libraries

include PyTorch and TensorFlow. Details on the exact framework used can be found in the

official repository or in the article.

2.CUDA: Because YOLO models are computationally costly, GPU acceleration via CUDA

is widely utilised to accelerate neural network computations. This might also be used by

YOLOX for training and inference.

3.Python and its dependencies: Python is a popular programming language for deep learning

research. For implementation, researchers frequently employ NumPy, SciPy, and other

machine learning-specific libraries.

4.Datasets: YOLOX may have been trained and tested using benchmark datasets like as

COCO (Common Objects in Context) or other object detection datasets. The dataset used

can have an impact on the model's performance.

5.Models that have already been trained: Deep learning frequently employs transfer learning.

Before fine-tuning on specific tasks, YOLOX may use pre-trained models on huge datasets

for initialization.

Results:

The YOLOX high-performance anchor free detector is comprised of several experienced

upgrades to the YOLO series, which we present in this study. Thanks to its advanced label

assignment strategy, anchor-free detection, decoupled head, and other cutting-edge

14

sophisticated detection techniques, YOLOX outperforms its competitors in terms of speed

and accuracy across all model sizes. We are proud to report that we have achieved an

impressive 47.3% AP on COCO, outperforming the current best practice by 3.0% AP with

our improved design of YOLOv3, which is still one of the most widely used detectors in the

industry due to its broad compatibility. We anticipate that this study will help researchers and

developers obtain real-world experience.

[7] PP-YOLO: An Effective and Efficient Implementation of Object Detector Xiang

Long, Kaipeng Deng, Guanzhong Wang, Yang Zhang, Qingqing Dang, Yuan Gao, Hui

Shen, Jianguo Ren, Shumin Han, Errui Ding, Shilei Wen (2021)

This paper tackles the problem of finding a fair trade-off between efficiency and

effectiveness in object detection while taking into account real-world hardware constraints.

Rather than suggesting a new detection model, the emphasis is on putting into practice a

balanced-performance object detector called PP-YOLO, which is based on the popular

YOLOv3 architecture. The objective is to improve accuracy with nearly unchanged

inference speed by utilizing different existing techniques that only slightly increase FLOPs

and model parameters.

The balanced effectiveness (45.2% mAP) and efficiency (72.9 FPS) of PP-YOLO

outperform current state-of-the-art detectors such as YOLOv4 and EfficientDet. The

enhancements are achieved by carefully combining several techniques, giving developers a

recipe to gradually improve their detectors. Two noteworthy approaches are applying MixUp

for data augmentation and using ResNet as the foundation. In contrast to YOLOv4, this work

does not investigate alternative backbone networks, techniques for augmenting data, or

Neural Architecture Search (NAS) for hyperparameter search.

The practical application of tricks with little effect on efficiency is emphasized in the paper,

which makes PP-YOLO a good option for everyday situations. The suggested model

outperforms YOLOv4 in terms of accuracy and speed, showing an increase in mAP from

15

43.5% to 45.2%. The authors think that investigating alternative backbones, utilizing NAS

for hyperparameter optimization, and applying data augmentation methods can all lead to

even greater improvements.

Tools and Technologies:

1.Deep Learning Architecture: Like many other object identification models, PP-YOLO is

most likely built with a popular deep learning framework called PaddlePaddle . Commonly

used libraries include PyTorch and TensorFlow.

2.CUDA: CUDA-based GPU acceleration is often used in deep learning for training and

inference to improve computation speed. This might is used by PP-YOLO for more efficient

processing.

3.Python and its dependencies: Python is a popular programming language in the deep

learning domain. For implementation, libraries such as NumPy, SciPy, and other machine

learning-specific libraries may be utilised.

4.Datasets: PP-YOLO may have been trained and evaluated using benchmark datasets such

as COCO (Common Objects in Context) or other object identification datasets. The dataset

used can have an effect on the model's performance.

5.Models that have already been trained: Deep learning frequently employs transfer learning.

Before fine-tuning on specific tasks, PP-YOLO may leverage pre-trained models on big

datasets for initialization.

Result:

This work presents PP-YOLO, a novel PaddlePaddle-based object detector implementation.

PPYOLO outperforms other state-of-the-art detectors such as YOLOv4 and EfficientDet in

terms of accuracy (COCO mAP) and speed (FPS). In this paper, we examine several

approaches and show their practical application by combining them on the YOLOv3

detector.

16

[8] Rethinking the Backbone Architecture for Tiny Object Detection Jinlai Ning,

Haoyan Guan and Michael Spratling, Department of Informatics, King’s College

London, London, UK(2021)

The prevalence of images containing small targets in real-world scenarios makes tiny object

detection a special challenge in computer vision. Standard deep neural network backbones

meant for larger objects are frequently used in existing methods for tiny object detection,

which produces less-than-ideal outcomes. In order to improve tiny object detection, this

paper presents a novel solution by suggesting "bottom-heavy" versions of backbones that

give processing higher-resolution features priority.

The main finding is that standard backbones that use large strides in early layers or max-

pooling produce lower-resolution feature maps that do not adequately capture information

needed to identify small objects. By delaying downsampling processes, the suggested

changes free up resources for earlier layers' improved feature extraction without adding to

the already heavy computational load. Using datasets like CIFAR100 and ImageNet32, the

study also looks into the effects of pre-training these modified backbones on images of the

right size.

Results from experiments on the WiderFace and TinyPerson datasets show that detectors

using the suggested backbones perform better than the state-of-the-art techniques currently

in use. The effectiveness of the suggested strategy is demonstrated by the gains that are made

without adding more parameters overall. This work offers a new insight into the backbone

architecture of tiny object detection, highlighting the significance of maintaining high-

resolution data in early layers to improve detection accuracy overall. The results point to a

paradigm change away from conventional backbones for enhanced performance in the

difficult field of small object detection.

17

Tools and Technologies:

1.Deep Learning Architecture: YCNet is built with a popular deep learning framework like

PyTorch or TensorFlow. Researchers frequently select a framework depending on their tastes

and the needs of their studies.

2.CUDA: CUDA-based GPU acceleration is used by YCNet to improve processing

efficiency.

3.Python and its dependencies: Python is used for implementation, libraries such as NumPy,

SciPy, and other machine learning-specific libraries are also utilised.

4.Datasets: YCNet is trained and assessed using benchmark datasets like as COCO (Common

Objects in Context) . The dataset used can have an effect on the model's performance.

Result:

To evaluate the proposed backbone, a number of designs that have previously been shown to

provide state-of-the-art performance on TinyPerson and WiderFace were analyzed. Our

suggestion was to replace the standard backbone with a bottom-heavy (BH) counterpart. The

suggested backbones performed better than the originals in every instance.

[9]EfficientDet: Scalable and Efficient Object Detection Mingxing Tan Ruoming Pang

Quoc V. Le Google Research, Brain Team (2020)

With an emphasis on object detection, the paper discusses the growing significance of model

efficiency in computer vision. The authors thoroughly examine the design decisions made

for neural network architecture and suggest important optimizations to increase efficiency

without compromising accuracy. Taking into account the unequal contribution of features at

different resolutions, they introduce a Weighted Bi-directional Feature Pyramid Network

(BiFPN) for multi-scale feature fusion. Furthermore, a Compound Scaling Method is put

forth that scales resolution, depth, and width consistently throughout the object detection

architecture's constituent parts. This all-encompassing scaling strategy, which draws

inspiration from EfficientNets, works well for enhancing accuracy and productivity.

18

The result of these advancements is a new family of object detectors called EfficientDet,

which shows state-of-the-art performance under a range of resource constraints with fewer

parameters and floating-point operations per second (FLOPs). With 77M parameters and

410B FLOPs, the EfficientDet-D7 model achieves an astounding 55.1% COCO AP,

outperforming earlier detectors while utilizing fewer FLOPs and being much smaller. The

suggested detectors demonstrate adaptability in practical applications where latency and

model size are crucial, such as robotics and self-driving cars. In contrast to earlier detectors,

the authors' approach is shown to be effective by providing code and comprehensive results.

Tools and Technologies:

1.Deep Learning Architecture: EfficientDet is most likely built with a popular deep learning

framework like TensorFlow or PyTorch. These frameworks offer effective tools for

constructing and training deep neural networks.

2.CUDA: CUDA-based GPU acceleration is often used in deep learning for training and

inference to improve computation speed. This might be used by EfficientDet to speed up

processing.

3.Python and its dependencies: Python is a popular programming language in the deep

learning domain. For implementation, libraries such as NumPy, SciPy, and other machine

learning-specific libraries may be utilised.

4.Datasets: EfficientDet may have been trained and assessed using benchmark datasets such

as COCO (Common Objects in Context) or other object detection datasets. The dataset used

can influence the model's performance.

5.Models that have already been trained: Deep learning frequently employs transfer learning.

Before fine-tuning on specific tasks, EfficientDet may employ pre-trained models on big

datasets for initialization.

19

Result:

In this paper, we thoroughly investigate network architectural design options for effective

object detection, and we propose a customized compound scaling algorithm and a weighted

bidirectional feature network to enhance accuracy and efficiency. We develop the

EfficientDet detector family based on these optimizations, which consistently outperform

the previous art in terms of efficiency and accuracy under a wide range of resource

constraints. Compared to previous object identification and semantic segmentation models,

our scaled EfficientDet in particular achieves state-of-the-art accuracy with a significantly

smaller number of parameters and FLOPs.

[10] Focal Loss for Dense Object Detection Tsung-Yi Lin, Priya Goyal, Ross Girshick,

Kaiming He, Piotr Dollar, Facebook AI Research (2017)

This study explores the difficulties encountered by one-stage object detectors, a class of

detectors that employs a frequent, dense sampling of potential object locations, in reaching

accuracy levels commensurate with those of their extensively used two-stage counterparts,

most famously represented by R-CNN. The primary obstacle found is the significant

foreground-background class imbalance that arises during dense detector training, where an

excessive amount of easily classified negative examples impede efficient learning.

In order to address this issue, the paper presents a novel loss function known as Focal Loss.

The main idea behind Focal Loss is that it addresses the inefficiency of traditional one-stage

detectors by preventing a large number of easily classified negatives from controlling the

learning process.

The suggested approach is used in the RetinaNet one-stage detector. Experiments show that

the Focal Loss works as intended, allowing RetinaNet to outperform all current state-of-the-

art two-stage detectors in terms of accuracy while matching the speed of earlier one-stage

detectors.

20

The study disproves the widely held belief that two-stage detectors are intrinsically better

and highlights the potential of one-stage detectors when fitted with creative ways to deal

with the imbalance in classes.

The research contributes significantly to the field by shedding light on the critical role of

class imbalance during training and proposing a novel loss function that proves effective in

overcoming this obstacle. The findings offer valuable insights into enhancing the efficiency

and accuracy of object detection systems, opening avenues for further exploration and

innovation in the evolving landscape of computer vision.

Tools and Technologies:

1.ResNet-50-FPN and ResNet-101-FPN

2.Feature Pyramid Network (FPN)

3.Region Proposal Network (RPN)

4.Selective Search

5.EdgeBoxes

6.DeepMask

Result:

The introduction of the focused loss, which, by down-weighting the loss assigned to well-

classified cases, lessens the impact of negatives that are simple to classify during training.

This improves performance in challenging cases and enables the model to concentrate more

on challenging samples.

One-stage object detector:

RetinaNet predicts bounding boxes and class probabilities without the need for a second

region proposal network (RPN) since it is a one-stage object detection model. The training

and architecture processes are streamlined as a result.

21

Anchor boxes:

Anchor boxes with different scales and aspect ratios are used to accommodate variations in

item sizes and shapes. The contribution of anchor boxes to the model's adaptability in

identifying objects of different sizes is investigated in this paper.

[11] DynamicDet: A Unified Dynamic Architecture for Object Detection Zhihao Lin,

Yongtao Wang, Jinhe Zhang, Xiaojie Chu, Wangxuan Institute of Computer

Technology, Peking University

YOLOv5 is an object detection, picture semantic segmentation, and instance segmentation

unified architecture. It is based on YOLOv4, but with a number of enhancements that make

it faster, more accurate, and more adaptable. YOLOv5 is the first object detector to attain

cutting-edge performance on all three objectives.

Tools and Technologies:

1.YOLOv5 makes use of a number of tools and technologies, including:

2.PyTorch is a Python deep learning library.

3.C++ is a performance-critical programming language.

4.CUDA is a GPU-based parallel computing platform.

5.OpenCV is a computer vision library.

Results:

YOLOv5 achieves cutting-edge scores on a wide range of benchmarks, including:

1.Detection of COCO objects: 58.0 mAP

2.50.0 AP COCO instance segmentation

3.Semantic segmentation of cityscapes: 74.9 mAP

 22

2.2 Key Gaps in the Literature

Inadequate comparative evaluation between versions: The summaries that are being

offered offer a comprehensive understanding of the development of YOLO models,

particularly YOLOv2, YOLOv3, YOLOv4, and YOLOv7. Nevertheless, a noteworthy lack

of a thorough comparison analysis that directly contrasts the advantages, disadvantages, and

improvements of each edition is present. A detailed comparison could clarify the trade-offs

between speed and accuracy and draw attention to the specific improvements made in later

iterations. Comparing the development of YOLOv2 and YOLOv7 side by side would help

to provide a more nuanced understanding of the model's evolution.

Discussion of Ethical Considerations and Bias Mitigation is Limited: The summaries

mostly concentrate on technical features, instruments, and outcomes; however, they do not

go into great detail about moral issues, bias reduction, or the effects of using these object

identification algorithms on society. Since these models are widely applied in real-world

settings, it would be beneficial to include a discussion of the possible biases in training data,

the ethical implications of the technology, and the steps taken to address these problems.

Insufficient Examination of Transferability and Generalisation: Although the

summaries mention the training and assessment datasets, there is a deficiency in

investigating the extent to which these models generalise to various datasets and situations.

Evaluating the real-world applicability of YOLO models requires an understanding of how

well-suited they are to various domains, unknown data distributions, and difficult

environmental circumstances. Beyond the benchmark datasets presented, a more extensive

investigation of the models' performance in different scenarios would offer a more full

picture of their efficacy.

23

Lack of Explicit Comparison Across Different Object Sizes: Although the summaries

address the efficacy of the suggested models, there isn't any explicit comparison between

different object sizes, particularly when it comes to microscopic object identification. For

instance, the YCNet paper concentrates on enhancing the detection of small objects; yet,

nothing is known about the effectiveness of the recommended alterations throughout a range

of object sizes. To fill in a possible vacuum in the information provided, a comparative study

across various object sizes would offer insightful information about the generalisation and

adaptability of the suggested methodologies.

Inadequate Examination of Model Explain ability: The important topic of model

explainability is not sufficiently explored in the summaries. It is crucial to comprehend how

these object detection models make their predictions, particularly in situations where

interpretability and transparency are crucial, like in the legal or medical domains. There is a

lack of discussion regarding these models' interpretability and possible ramifications for their

use in delicate fields.

 24

Chapter 3: System Development

3.1 Requirements and Analysis

This section provides a thorough overview of the requirements and analysis phase,

highlighting the fundamental elements that ensure the project is implemented successfully.

3.1.1 Functional Requirements

Object Detection: Using the YOLOv8 algorithm, the system ought to be able to identify

objects in real time. A range of object classes pertinent to the application domain should be

included in the detection.

Object Tracking: To follow the identified objects over a series of frames, implement object

tracking functionality.

Processing in real time: Process video streams in real time and use GPU to provide minimal

latency for tracking and detection.

Display Interface: To view the live camera feed, create a graphical user interface (GUI).

Bounding boxes surrounding identified objects, object number, confidence score and their

tracking trajectories are shown in the video feed.

Handle multiple objects at once: Should be able to track and display multiple objects in the

camera frame at once.

3.1.2 Non Functional Requirements

Performance: Reach high performance levels that allows our hardware to handle real-time

object tracking and detection.

Precision: Guarantee precise identification and monitoring outcomes, reducing the number

of false positives and negatives.

Scalability: Build the system with the ability to support different camera resolutions and

frame rates in mind.

25

Robustness: Develop a tracking system that is strong enough to withstand obstacles like

abrupt changes in object motion, temporary disappearance, and object occlusion.

Compatibility: Ascertain compatibility with various video input sources and camera models.

3.1.3 Requirements for Data

Training Data: The YOLOv8 model can be trained on a comprehensively annotated dataset

that includes all object classes pertinent to the given use case.

Video Input: A camera or a source of pre-recorded video can be used to provide video input

to the system.

Tracking Data for Objects: Keep track of object IDs, positions, and timestamps in a database

or other structured system and allow for downloading of result videos/images.

Configuration Files: To store and retrieve settings pertaining to confidence thresholds,

YOLOv8 configuration, and object tracking parameters, we will be required to use

configuration files.

Analysis

3.1.4 Methodology of Analysis

1. Justification for selection YOLO as the model used for object detection, focusing on how

accurately it can detect the objects in the video.

2.Comparing the performance and accuracy of our custom dataset to other existing datasets

like COCO.

3.1.5 Evaluation of Feasibility

1.Technical viability: YOLO is well-known and frequently utilized in object detection,

object segmentation and object classification tasks.

26

2.Economic viability: Considering that YOLO is open-source and available to everyone and

the hardware requirements are minimal, the project is financially feasible.

3.1.6 Examination of Risks

1.Identification of possible hazards, such as lack of data in custom dataset, lower number of

epochs the model is trained on and computational resource limitations.

2.Creation of procedures for handling external dependencies, optimise code for effective

real-time processing.

3.2 Project Design and Architecture

1) Collect and annotate images:

The dataset should contain sample images of the objects we want to detect. Each image in

the dataset should be labelled with the bounding boxes of the objects present in it for training.

2) Choose an object detection model:

There are many different object detection models available, each with its own strengths and

weaknesses. Some popular models include Faster R-CNN, YOLO, and SSD.

3) Crop number plate detected and pass it forward.

4) Implement OCR to detect license plate number.

5) Display the license plate number of the vehicle.

 27

DFD Diagram

Fig. 3.1 DFD for license plate detection

Fig. 3.2 DFD for Model training

28

3.3 Data Preparation

1. Data Collection:

We collect data in form of pre-recorded videos or live video feed from speed cameras in

order to collect images of the vehicle and capture its number plate. To produce a

heterogeneous dataset using a range of forgeries methods such as splicing, rotation, scaling,

filtering, retouching, and recolouring.

2. Dataset Selection:

Then we take two significant datasets were selected for algorithm analysis and testing.

A popular database for identifying visual media forgeries is the CASIA Dataset.

includes pictures divided into eight groups, some of which have had parts altered by pasting,

cutting, and other techniques, then we use our own custom dataset FIDAC Dataset: An

original dataset of photos taken with our camera. With the help of applications, we used it to

further alter images in order to simulate real-world scenarios.

3. Preprocessing Method:

We used Error Level Analysis (ELA) to implement the preprocessing method that divided

pictures into the more manageable sections of chunks of images were individually

recompressed using ELA with a predetermined 95% error rate.

In this we determined the exact difference between the re-compressed and analyzed images.

4. Suggested CNN Architecture:

Then we use Convolutional neural networks (CNN), were created with the purpose of

detecting image forgeries. The 15 layers are configured with dropout, dense, convolution,

pooling, and flattening operations.

29

We used Rectified Linear Unit (ReLU) was employed as the non-linearity activation

function. To determine whether photos are authentic or manipulated, then Sigmoid activation

function was applied to the final output layer.

5. Phase of Implementation

Firstly, we do Data Preprocessing to Enhanced forgery detection by applying ELA

representations to the images datasets that are ready to be used with the suggested CNN

architecture.

Then we perform ELA Implementation to the pipeline for detecting image forgeries to make

sure that the possible tampering regions were properly highlighted by the ELA.

6. CNN Model Development

We used TensorFlow or a comparable deep learning framework to implement the planned

CNN architecture. Model layers, activation functions, and loss functions are configured to

defined an optimization strategy (e.g., stochastic gradient descent) and initialized the model

parameters.

3.4 Implementation

3.4.1 Steps for implementing object detection using yolo:

1. Data collection: Collect a diverse set of images containing vehicles with visible license

plates. Annotate the license plates in these images with bounding boxes to prepare the

dataset for training.

2. Training the model:

Utilize YOLOv8 object detection architecture trained on the annotated dataset to detect

license plates within the images.

30

3.License plate detection:

Implement the trained YOLOv8 model to perform real-time license plate detection on

video frames. Utilize the detected bounding boxes to extract the region of interest (ROI)

containing the license plate from each frame.

4.Optical character recognition:

Pass each cropped license plate image to EasyOCR, to extract the license plate number

from the image. Ensure proper preprocessing steps, such as resizing, enhancing contrast, or

noise reduction, to optimize OCR performance.

5. Displaying results in video:

Overlay the detected license plate number onto the corresponding vehicle in the video frame.

Display the processed video with annotated license plate numbers in real-time or save it for

further analysis.

6. Stratified Sampling: If the classes in our dataset are unbalanced, the train, validation, and

test subsets all retain a proportionate representation of each class. By doing this, bias in

model evaluation and training is lessened.

8. Establish a Directory Structure:

We sort our project into folders, keeping the YOLO model weights, configuration files,

annotations, and images apart. It should follow the structure of directories required by YOLO

and is simpler to manage files during training and testing in a well-organised directory.

9. Re-train the model:

We retrain our model on our own custom dataset that we have collected.

10. Test the model:

We use our re-trained model to detect objects and verify its accuracy.

 31

11. License plate detection:

Implement license plate detection using the trained model.

12. Extract number plate:

Using EasyOCR get the license plate number of the vehicle.

3.4.2 Tools and Technologies:

• OpenCV

• Torch

• Google colab

• Jupyter notebook

• Numpy

• Matplotlib

3.4.3 Hardware Resources:

• Camera

• GPU

• CPU

3.4.4 Languages:

• Python

3.4.5 YOLO architecture:

After receiving an image as input, the YOLO algorithm employs a basic deep convolutional

neural network to identify objects in the image.

32

The CNN model's architecture, which serves as the foundation for YOLO, is displayed

below:

Fig 3.3 Architecture of YOLO Model

24 convolutional layers and two fully connected layers make up the YOLO architecture. The

preceding layers' feature space is shrunk by alternating 1 x 1 convolutional layers.

We use half the resolution (224 x 224 input image) to pretrain the convolutional layers on

the ImageNet classification task, and then double the resolution for detection.

A temporary average pooling and fully connected layer are plugged into ImageNet to pre-

train the model's first 20 convolution layers. Then, since earlier studies have shown that

incorporating convolution and connected layers into a pre-trained network enhances

performance, this pre-trained model is transformed to perform detection. The last fully

connected layer of YOLO predicts bounding box coordinates as well as class probabilities.

An input image is divided into a S × S grid by YOLO. An object's centre falls into a grid

cell, and that grid cell is in charge of detecting it.

33

Bounding boxes and confidence scores for those boxes are predicted for each grid cell. The

model's level of confidence that the box contains an object and the accuracy of the predicted

box are both indicated by these confidence scores.

For each grid cell, YOLO predicts multiple bounding boxes. We only want one bounding

box predictor to be in charge of each object during training. Depending on which prediction

has the highest current IOU with the ground truth, YOLO designates one predictor as

"responsible" for making an object prediction. As a result, the bounding box predictors

become specialised. By improving its ability to forecast specific object sizes, aspect ratios,

or classes, each predictor raises the recall score as a whole.

Non-maximum suppression is a crucial method in the YOLO models (NMS). NMS is a post-

processing step that increases object detection's precision and effectiveness. It is typical

practice in object detection to generate multiple bounding boxes for a single object in an

image. All of these bounding boxes represent the same object, even though they might

overlap or be in different locations. NMS is used to extract a single bounding box for each

object in the image and to find and eliminate unnecessary or inaccurate bounding boxes.

The algorithm operates using the four strategies listed below:

1. Residual blocks:

In the first step, the original image is divided into NxN grid cells of equal shape. The task

assigned to each grid cell is to locate the object it covers, predict its class, and provide the

probability and confidence value for that class.

34

 Fig.3.4 Original Image Fig.3.5 Image with bounding boxes

2. Bounding box regression:

Finding the bounding boxes, which match the rectangles highlighting each object in the

image, is the next step. Bounding boxes can be added to an image in an equal number as the

number of objects it contains.

Y is the final vector representation for each bounding box. YOLO uses a single regression

module to determine the attributes of these bounding boxes.

Y = [pc, bx, by, bh, bw, c1, c2]

This is particularly crucial when the model is being trained.

• The probability score of the grid that contains an object is represented by pc. For

example, the probability score for each of the red grids will be greater than zero. Since there

is a zero (insignificant) probability for each yellow cell, the image on the right is a simplified

version.

• The bounding box's center's x and y coordinates with respect to the surrounding grid

cell are denoted by the variables bx and by.

• The bounding box's height and width in relation to the surrounding grid cell are

represented by the values bh and bw.

35

• The two classes Player and Ball are represented by c1 and c2. As many classes as

your use case calls for are possible.

Fig. 3.6 Bounding box regression

3. Intersection Over Unions or IOU:

The majority of the time, even though not all of them are significant, a single object in an

image can have several grid box candidates for prediction. The IOU, which has a value

between 0 and 1, aims to eliminate these grid boxes and retain only the ones that are

pertinent. This is the reasoning for it:

The IOU selection threshold is set by the user and can be, for example, 0.5.

Next, YOLO divides the intersection area by the union area to find each grid cell's IOU.

Lastly, it takes into account grid cells with an IOU > threshold and disregards the prediction

of grid cells with an IOU ≤ threshold.

An example of using the grid selection process on the bottom left object is shown below.

36

Fig. 3.7 IOU calculation and grid selection

4. Non-Max Suppression or NMS:

An object may have multiple boxes with IOU beyond the threshold, and leaving all those

boxes could include noise, so setting a threshold for the IOU is not always sufficient. This is

the point where we can use NMS to retain only the boxes that have the highest detection

probability score.

 37

3.4.6 Code Snippets:

Fig.3.8 Directory in the projects folder

38

Fig.3.9 code snippet-1

In order to track object identities across frames, the script incorporates the SORT (Simple

Online and Realtime Tracking) algorithm and uses the PyTorch framework for deep learning.

An image (img), bounding boxes (bbox), class names (names), optional parameters

(identities, categories, confidences, and classes), and a predefined set of colours (colours)

are the inputs of the draw_boxes function. The function creates a bounding box with a label

on the input image for each object it detects. The label contains the object category and

confidence score, as well as the object identity, if available.

39

After that, the generated image is given back. The script is appropriate for real-time object

tracking applications because it shows how to combine tracking and object detection features

with visualisation capabilities.

Fig.3.10 code snippet-2

The detect function is used to initialise and run object detection using a YOLO (You Only

Look Once) model. The path to the YOLO model weights, flags for saving images, the data

source (image or video), and options for displaying and saving the inference results are

among the parameters that the function requires.

The script loads the YOLO model with predetermined weights, configures the environment,

and chooses the suitable inference device (CPU or GPU). If GPUs are available, it also takes

half-precision computation into account. Furthermore, the function establishes the

appropriate data loader based on whether the input source is a file or a webcam.

40

Fig.3.11 code snippet-3

To define and parse command-line arguments for setting the YOLO object detection and

tracking parameters, it makes use of the “argparse” module.

The model weights, data source (image directory or video stream), inference size, confidence

and IOU thresholds, computing device (CPU or GPU), and different display and saving

options are some of the important arguments. After that, the script sets up the necessary

configuration parameters and initialises the SORT (Simple Online and Realtime Tracking)

tracker. In order to control the bounding box colours, a random seed is set and the argparse

41

arguments are printed for user confirmation. The detect function is then used to carry out the

YOLO object detection and tracking procedure. The results are then shown or saved in

accordance with the predetermined options.

In addition, the code contains an update function for the YOLO model weights, which is

helpful in resolving source change warnings. In the event that the --update flag is set, the

model weights are iterated over, the detection procedure is carried out for each, and any

optimizer information is removed from the updated weights. The script ends with a call to

the detect function, which uses the supplied command-line arguments to coordinate the entire

object detection and tracking pipeline.

3.5 Key Challenges

1.Overfitting and underfitting: Avoiding overfitting (learning the training data too well)

and underfitting (not learning enough from the data) is a typical difficulty in model

balancing. Techniques for regularisation and appropriate data augmentation can aid in

resolving these problems.

2.Inadequate Training Data: A large and diverse dataset is necessary for YOLO's training,

as it is for many other deep learning models. Insufficient or substandard data might lead to a

model that exhibits subpar performance in real-world situations.

3.Optimisation approaches: To achieve effective inference without significantly losing

accuracy when deploying YOLO on resource-constrained devices, model compression,

quantization, or other optimisation approaches may be needed.

4.Managing Clutter and Occlusions: In settings that are busy or obscured, YOLO may

have trouble correctly identifying items. Making sure the model can manage partial visibility

and overlapping objects is one way to address this difficulty.

42

5. Rotated items: Since YOLO is optimised for axis-aligned bounding boxes, it can be

difficult to detect items with different orientations, such as rotated objects. Such cases may

need the use of specialised approaches or models.

43

Chapter 4: Testing

Below is the image we are going to perform object detection on.

Fig 4.1 Input Image

Below is the result we get from our trained model of the image that we had provided.

 Fig 4.2 Output Image

44

The annotations of the image are stored in a txt file where the first number represents the

class of the object and the next four decimal numbers represent their co-ordianates.

Fig 4.3 Annotated text file

Fig 4.4 Graphs showing loss and performance curves

45

The graphs' y-axis represents the metric value or loss, while the x-axis represents the number

of epochs. The model's loss during training and validation is displayed in the graphs with the

labels "train/box_loss," "val/box_loss," "train/cls_loss," "val/cls_loss," "train/dfl_loss," and

"val/dlf_loss."

The model's performance during training and validation is displayed in the graphs with the

labels "metrics/precision(B)," "metrics/mAP50(B)," and "metrics/mAP50-95(B)". The

model's recall during validation is displayed on the graph with the label "metrics_recall(B)".

The graphs demonstrate the good performance of our custom model, with the metrics rising

and the loss declining. This suggests that the model is continuously learning from the data

and enhancing its functionality. It is crucial to remember that these graphs only display the

model's performance on the training and validation sets of data; on fresh, untested sets of

data, the model might not function as well.

46

Chapter 5: Results and Evaluation

Fig. 5.1 Original video

Fig. 5.2 Output of given video

47

 Fig. 5.3 Litter detection

 Fig. 5.4 Trained model classes

48

Fig 5.5 Trained model labels

49

Fig 5.6 Output of video file

Fig 5.7 Output of code in terminal

50

5.2 Comparison with Existing Solutions

Many of the current methods for identifying and stopping littering behaviour rely on

manual observation, which is error-prone, expensive, and time-consuming. Manual

monitoring by volunteers or law enforcement officials is time-consuming and might not

adequately cover all locations. Furthermore, manually recognising and logging licence

plate information can be laborious and prone to errors.

A few of the current options keep an eye on hotspots for trash using fixed camera systems.

Even while these systems are capable of providing constant observation, it's possible that

they lack the adaptability needed to record instances of littering that happen outside of the

monitored locations or to adjust to shifting environmental conditions.

Toll collection and law enforcement are only two of the many uses for Automated Licence

Plate Recognition (ALPR) systems. These systems are often not designed for real-time

detection in the context of littering enforcement, despite the fact that they are accurate at

detecting and recording licence plates.

In contrast, our study uses computer vision and machine learning to combine the benefits

of automated licence plate recognition with the identification of trash. Our system provides

a complete method for detecting and recording vehicles that litter by combining EasyOCR

licence plate recognition with real-time item detection. Through the provision of timely

and accurate data on littering incidents, this facilitates more effective enforcement and

helps to solve the shortcomings of current solutions.

.

51

Chapter 6: Conclusions and Future Scope

6.1 Conclusion (summarize key findings, limitations and contributions to

the field)

This project effectively created a system using a mix of Python, EasyOCR, and YOLO to

identify licence plates of cars that are fouling the road. After extensive testing and

deployment, the technology showed impressive precision in recognising licence plates from

live video streams. Utilising the advantages of EasyOCR for optical character recognition

and YOLO for object detection, the system demonstrated resilience across diverse camera

configurations and environmental circumstances. The effectiveness of the system made it

possible for vehicles involved in littering events to be quickly identified and documented,

which enabled for swift enforcement actions by the appropriate authorities.

It's crucial to recognise the system's inherent limits, though. Environmental elements like

weather, illumination, and camera angles can affect how well the system works, adding noise

and decreasing accuracy under specific circumstances. Furthermore, the system's processing

demands could make it difficult to implement on devices with limited resources or in places

without access to high-performance computing facilities. Furthermore, the employment of

surveillance technology raises ethical and legal issues that make rigorous observance of

privacy and data protection laws necessary to guarantee that the system functions within

acceptable bounds.

This initiative has made a substantial contribution to the domains of environmental

preservation and computer vision. The technology offers a technological tool to law

enforcement agencies and civic authorities to efficiently prohibit and penalise littering

behaviour by identifying vehicles that leave litter on roads. The project also emphasises how

cutting-edge technologies may be used to address urgent social concerns and build cleaner,

healthier communities. In the future, greater research and development in this field may

result in improvements to licence plate identification systems, opening the door to more all-

encompassing strategies to reduce littering and protect the environment.

 52

6.1.1 Contributions to the field

The system's real-time processing of video streams is a noteworthy development that has

practical uses beyond the detection of littering. This feature makes it possible for vehicles

implicated in littering situations to be quickly identified, which allows for immediate

intervention and enforcement actions by appropriate authorities. Additionally, the system's

modular architecture improves its scalability and flexibility to various contexts and camera

configurations, enabling customisation in accordance with particular deployment

requirements and a seamless integration into current infrastructure.

This project offers a solid real-time object detection solution, which has a substantial impact

on industries including industrial automation, autonomous vehicles, and surveillance. The

use of a customised dataset guarantees that the model is customised to identify objects

pertinent to a particular setting or circumstance, fostering flexibility and enhanced efficacy.

This project tackles a major societal issue, which has considerable social impact beyond its

technological achievements. By focusing on cars that leave garbage behind, the system helps

with initiatives to preserve the environment and keep roadways clean. The initiative equips

law enforcement and civic authorities with a technical tool to efficiently prohibit and penalise

littering behaviour, hence promoting cleaner and healthier communities. This nexus of

environmental stewardship and technology highlights the potential of creative thinking to

solve difficult societal problems and promote constructive social change.

In conclusion, this project underscores the transformative potential of technology-driven

approaches in mitigating environmental issues and promoting sustainability. By developing

a robust license plate detection system, the project not only advances the state-of-the-art in

computer vision but also offers practical solutions to real-world problems.

 53

6.1.2 Future Scope

A project that detects garbage from moving cars has a very broad future scope and many

prospects for growth and development. Primarily, continued research and development

endeavours might be focused on improving the precision and effectiveness of algorithms

for detecting litter. To increase detection capabilities, this entails enhancing machine

learning models, applying sophisticated image processing methods, and investigating novel

technologies like LiDAR or infrared sensors. The detecting system can be made more

proficient at recognising different kinds of litter thrown by moving cars in a variety of

environmental situations by consistently improving it. Combining visual data from cameras

with information from GPS, accelerometers, or environmental sensors can provide valuable

contextual data, leading to more accurate detection and analysis. Additionally, designing

the system to be scalable and adaptable to different vehicle types, environments, and

operational scenarios is essential. By developing modular components or configurable

parameters, the litter detection system can be deployed across various applications, from

urban streets to rural highways, with minimal customization.

The project's capabilities can be enhanced by integrating additional object identification

features, like instance segmentation and tracking, which can make it appropriate for dynamic

applications. Working together with the research community can entail taking part in

benchmark challenges and advancing cutting-edge object identification techniques.

Integrating explainability will increase the project's future impact and satisfy the growing

need for transparent AI. Real-time applicability is ensured with a focus on hardware

optimisation and deployment on edge devices. Investigating federated learning offers a way

to use dispersed datasets to create models that protect privacy. This proactive approach

ensures that the project will continue to be relevant in the field of computer vision

developments and will be in line with the changing needs of real-world applications.

 54

References

[1] S. Koul, "An Efficient Approach for Copy-Move Image Forgery Detection Using

Convolutional Neural Network," in Proceedings of the IEEE International Conference on

Image Processing, 2022.

[2] M. Elaskily, "DTCWS Algorithm for Online Image Forgery Detection Using

Ensemble Classifier in the Pandemic," in Proceedings of the IEEE International Conference

on Information Forensics and Security, 2022.

[3] M. Elaskily, "A Novel Deep Learning Framework for Copy-Move Forgery Detection

in Images," in Proceedings of the IEEE International Conference on Information Forensics

and Security, 2022.

[4] Verma et al., "Block-Level Double JPEG Compression Detection for Image Forgery

Localization," in Proceedings of the IEEE International Conference on Image Processing,

2022.

[5] Francesco Marra, “A Full-Image Full-Resolution End-to-End-Trainable CNN

Framework for Image Forgery Detection”, in Proceedings of the IEEE International

Conference on Image Processing, 2020.

[6] Ritu Agarwal, “An efficient copy move forgery detection using deep learning feature

extraction and matching algorithm”, in Proceedings of the IEEE International Conference

on Image Processing, 2020.

[7] Bappy JH, Simons C, Nataraj L, Manjunath BS, Roy-Chowdhury AK (2019) Hybrid

LSTM and encoder-decoder architecture for detection of image forgeries. IEEE Trans Image

Process

[8] Li H, Luo W, Qiu X, Huang J (2017) Image forgery localization via integrating

tampering possibility maps. IEEE Trans Information Forensics Security .

55

[9] Durall R, Keuper M, Keuper J (2020) Watch your up-convolution: Cnn based

generative deep neural networks are failing to reproduce spectral distributions. In:

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[10] Tang, S.: (2020) Lessons learned from the training of GANs on artificial datasets.

IEEE Access 8.

[11] Amerini I, Galteri L, Caldelli R, Del Bimbo A (2019) Deepfake video detection

through optical flow based CNN. In Proceedings of the IEEE/CVF International Conference

on Computer Vision Workshops.

[12] Deng J, Guo J, Ververas E, Kotsia I, Zafeiriou S (2020) Retinaface: Single-shot

multi-level face localisation in the wild. In Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition.

[13] Ali S.S. , Ganapathi I.I, Vu N. , Ali S. D., Saxena N and Werghi N. 2022 ‘Image

Forgery Detection Using Deep Learning by Recompressing Images’ MDPI publication

[14] Christlein, V., Riess, C.C., Jordan, J., Riess, C.C., Angelopoulou, E. 2012, ‘An

evaluation of popular copy-move forgery detection approaches’. IEEE Trans. Inf. Forensics

Secur. 7, 1841– 1854

[15] Abdalla Y, M. Iqbal.T and Shehata M 2019 ‘Convolutional Neural Network for

Copy-

Move Forgery Detection’ MDPI

[16] Farid, H. 2009, ‘A survey of image forgery detection techniques’. IEEE Signal

Process. Mag. 26, 16–25

[17] Johnson MK, Farid H. 2005, ‘Exposing digital forgeries by detecting inconsistencies

in lighting’. Proceedings of the 7th workshop on ACM Multimedia and Security Workshop,

New York, pp. 1– 10

[18] Johnson MK, Farid H.2006, ‘Exposing digital forgeries through chromatic

aberration’. In Proceedings of the 8th workshop on ACM Multimedia and Security

Workshop, Geneva, Switzerland, pp. 48–55

[19] Lanh, T.V.L.T., Van Chong, K.-S., Chong, K.-S., Emmanuel, S., Kankanhalli, M.S.

2007, Meena K.B, Tyagi V : 2019, ‘Image Forgery Detection: Survey and Future Directions’

Data, Engineering and Applications pp 163–194

56

[20] Ng, T., Chang, S., Sun, Q. 2004 ‘Blind detection of photomontage using higher order

statistics’. In: IEEE International Symposium on Circuits System, pp. 7–10

[21] Popescu AC, Farid H. 2004 ‘Statistical tools for digital forensics. 6th International

Workshop on Information Hiding, Toronto’ , pp. 128–147

[22] Popescu AC, Farid H. 2005 ‘Exposing digital forgeries in colour filter array

interpolated images’. IEEE Trans Signal Process 53(10):3948–3959:

[23] Popescu AC, Farid H. 2005, ‘Exposing digital forgeries by detecting traces of

resampling’. IEEE Trans Signal Process 53(2):758–767:(2005)

[24] Schneider, M., Chang, S. 1996, ‘A robust content based digital signature for image

authentication’. In: IEEE International Conference on Image Processing. pp. 227–230

57

