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ABSTRACT 

 

One of the main issues with digital design across a wide range of applications, from data 

centres to embedded and battery-powered devices, is the creation of energy-efficient 

circuits. Many different techniques have been developed in the past few years to boost 

speed while lowering power consumption, and there are some intriguing potential 

benefits. The basic tenet of this strategy is that significant savings in hardware design 

metrics like key path delay, design space, and power consumption can be achieved by 

lowering the output's accuracy requirement. This is the fundamental idea that guides 

such a strategy. Conversely, this paradigm can only be applied in situations where a 

preexisting tolerance for small and insignificant errors has been established. The 

domains of media processing, machine learning, and data mining are a few instances of 

possible uses. It's interesting to observe that the number of applications that primarily 

rely on data and machine learning has increased recently. Multiplier is growing in 

popularity for image/signal processing applications. In the era of real-time applications, 

multipliers are becoming more and more important. Adders are essential to the design 

and operation of digital circuitry and signal processing applications in a wide range of 

computer types, including microprocessors and digital signal processors (DSPs). The 

main problem that needs to be solved when adding is the propagation of delay in the 

carry chain. As the bit-width of the input operands increases, the carry chain length 

grows and becomes more stretched out. When it comes to Very Large-Scale Integration 

(VLSI), the best adder designs are classified as having a Parallel. A half adder and a full 

adder are the essential building blocks for adding the final sum in the final addition step 

of each of the three Wallace tree multiplier designs. A range of compressors must be 

employed for the installation of the energy-efficient approximate multiplier blocks; 

VIVADO 18.1 Design Tool is used for all simulations. Furthermore, the suggested 

adders

 

 

 

 

 

 

 

 



 

 

 

 

 

 

CHAPTER 1 

 

INTRODUCTION 

 

 

We chose to create multipliers using various adders since they are utilized in many 

different engineering domains. VLSI is the process by which an integrated circuit (IC) is 

constructed on a single chip from millions or billions of MOS transistors. VLSI got its 

start in the 1970s with the creation and broad application of MOS (Metal Oxide 

Semiconductor) integrated circuit chips, which made advanced semiconductor and 

telecommunication technologies possible. CPU and memory chips are designed using 

VLSI devices. The fundamental goal of VLSI technology development is to make ICs 

capable of performing a limited number of tasks. An electronic circuit may contain a CPU, 

ROM, RAM, and other glue logic components. All of them could be combined into one by 

IC designers. 

Design Flow: -The technique in which we build an integrated circuit (IC) using millions or 

billions of MOS transistors on a single chip is known as VLSI. VLSI circuits are used, 

such as in personal computers, graphic cards, digital cameras, camcorders, cell phones, 

embedded processors, anti-lock braking systems in cars, personal entertainment systems, 

medical electronic systems, etc. The requirements of today's electronic gadgets and sysms 

are ideally suited to VLSI technology. VLSI technology must be growing to drive 

advancements in electronics due to the rising demand for smaller, more compact, reliable, 

and functioning devices. The number of jobs is increasing in the VLSI design as India 

develops.

 

 

 

 



 

                                                                                                                                                                                                                                                                                                                         

 
 

Figure 1.1 VLSI Design Flow [1] 

 

 

System Generator: - The goal of the intended final product is written in this step. System specification 

should include considerations for architecture, performance, and how the system will communicate with 

the external environment. 

 

Architectural Design: - Aspects of architectural design include the integration of analogue and mixed-

signal blocks, memory management, internal and external connectivity, power requirements, process 

technology, and layer stack selection. 

 

Functional Design: - The primary goal of this is to create a high-performance architectural design while 

adhering to the specification's cost constraints. 

Logic Design: - The structure of the desired design complements the behavioural representation of the 

desired design. Testability, performance improvement, and logic minimization are the three 

fundamental criteria for logic design. 



 

 

 

 

Circuit Design: - The logic building blocks of the intended design are replaced by electronic circuits, 

which are composed of electronic components like resistors, capacitors, and transistors. 

Physical Design: - The intended system's real layout has been completed, showing where each 

component will go in the circuit and how they are all connected. 

 

Fabrication: - The intended design is sent to be manufactured once it has been confirmed and actually 

laid out. The term "tape out" describes the process of transferring the intended design to the production 

line. The process of producing the data required for manufacturing is referred to as "streaming out." 

 

Packaging and Testing: - Once the desired design is manufactured, functional chips are packaged. 

Packaging is configured early in the intended design process, along with the application, cost, and form 

factor criteria. A few possible package types are Ball Grid Arrays (BGAs), Pin Grid Arrays (PGAs), 

and Dual In-Line Packaged (DIPs). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

MOTIVATION 

 

In the computing system, the consumption of energy is an avital parameter. Nowadays, 

everyone needs high computational speed with low power consumption devices. Emerging 

high-performance applications require increasingly big datasets to be processed with high 

efficiency. 

With the growing demands of electronic devices, important changes occurred in the 

electronic community, especially in the VLSI world. In the VLSI world, digital circuits 

play a vital role and are highly complex as they consist of a large number of transistors 

and logic gates at their most detailed level. Gordon Moore in 1965 states that every year 

the transistor count on integrated circuit (IC) doubles. But later on, Moore observed that 

not every year but about every two years the transistor count on IC doubles. This 

observation is known as Moore's Law. According to Moore's Law, the processing speed of 

the device increases as the transistor count doubles in every 2 years due to improvements 

in technology. As a consequence of shrinking dimensions, Robert Dennard 1974 observed 

a few things with every technology generation power consumption remains the same if 

transistor density doubles. Dennard scaling law is formulated after his observation which 

states that power density remains constant as the transistor size gets smaller. When the 

computation performance of Moore's law (transistors double approximately every 2 years) 

is combined with the Dennard scaling then the transistor doubles about every 1.5 years 

and the performance per watt even grows faster. In around 2005-2007, there is a 

breakdown of Dennard scaling. The main reason for the breakdown in Dennard scaling is 

the risk of thermal runaway [2].Multiplier: -In digital signal processing (DSP) 

applications we mainly used multipliers. Out of all the arithmetic operations now in use, 

the multiplier is the most widely used. It is employed to multiply two numbers using a 

variety of methods. To form an efficient multiplier our main focus is on the four aspects, 

i.e., speed, power consumption, area, and accuracy.   We are trying to cover this in all 

existing popular Wallace tree multipliers. Finally, we compared the performance 

characteristics of each multiplier, including speed, time delay, area, complexity, accuracy, 

and power consumption [3]. 

 

 

 



 

 

 

 

Types Of Multipliers: - 

 

❖ Array 

 

❖ Wallace Tree 

 

❖ Vedic 

 

❖ Parallel 

 

❖ Serial 

 

❖ Approximate  

 

❖ Logarithmic 

 

❖ Sequential 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

WALLACE TREE MULTIPLIER 

 

 It takes less time for accumulation in this multiplier because the generated partial 

products are added in parallel. The partial product reduction of the 8 x 8 Wallace 

multiplier is displayed in Figure 1.2. The blue dotted circle in Figure 4.2 represents the 

half adder, and the red dotted circle the full adder. However, the Wallace multiplier is 

unique from other multipliers, such as array multipliers, in that it adds up all partial 

products. The Wallace tree multiplier has multiple stages where all partial products are 

added. The parallel addition of three rows is considered at every level, which facilitates 

and expedites the process. Any group that has less than three rows is kept the same and 

moves directly on to the next addition step. 

 

 

 

Figure 1.2: - WTM[4] 

 

 

Application: Microprocessors in personal computers, graphic card chips, digital camera 

or camcorder chips, cell phone chips, embedded processors, anti-lock braking systems for 

cars, personal entertainment systems, medical electronic systems, etc. are all examples of 

devices that use VLSI circuits. 

 



 

 

 

 

 

ARRAY MULTIPLIER 

 

 

The items in the conventional array multiplier are added using the carry-save addition 

method. Depending on how the carry save adding mechanism works, the first row will 

either have full adders or half adders. If complete adders are used in the first row of the 

partial products, then Cin will be taken to be zero. 

To generate partial products and test each bit of the multiplier one at a time, a sequence of 

add-and-shift micro-operations is required. Two binary values can be multiplied in a single 

micro-operation using a combinational circuit that generates the product bits concurrently. 

This method multiplies two values quickly because it only takes the signals a short time to 

pass through the gates that make up the multiplication array. However, prior to the 

invention of integrated circuits, an array multiplier was not cost-effective due to its high 

gate count requirement. 

 

Figure 1.3: - Array multiplier 

Application: Arithmetic operations such as filtering, Fourier transformation, and image 

coding are carried out using array multipliers. 

 

 

 

 

 



 

 

 

 

 

 

VEDIC MULTIPLIER 

 

The Urdhva Tiryakbhyam Sutra was utilized in this. In Urdhva Tiryakbyham Sutra, 

"Vertically and Crosswise" is the actual meaning. This sutra applies to all multiplication 

situations. The partial products and their total are computed simultaneously using this 

method. Figure 1.4 illustrates the procedures for multiplying two numbers by two using 

the Urdhva Tiryakbyham Sutra. As seen in Figure 1.5, the same process can be expanded 

to include 4x4 multiplication. 

 

                         

 

 

Figure 1.4: - Using the Urdhva Sutra to multiply two by two. 



 

 

 

 

 

 

 

Figure 1.5: - Using the Urdhva Sutra to multiply 4 by 4. 

 

The 2-bit multiplier serves as the foundation for higher order multipliers like 4bits, 8bits, 

and 16bits multiplication. 

 

 

 



 

 

 

 

 

SOFTWARE AND HARDWARE USED 

 

     VIVADO 18.1 

The software package Xilinx With new features for high-level synthesis and system-on-a-

chip development, Vivado Design Suite takes the place of Xilinx ISE. Designs written in 

Hardware Description Language (HDL) are synthesised and analysed using it. Using 

Vivado, the design flow has been entirely revised and redesigned. 

 

      VERILOG 

 The most advanced technique for creating digital and computer systems is the Verilog 

hardware description language. A digital system can be modeled using the C-like language 

Verilog HDL, which also has some Pascal syntax. Verilog is simple to learn since it uses a 

syntax that combines C and Pascal. The most popular HDL on the market is Verilog. 

Combinational and sequential logic, as well as storage devices that are level-sensitive and 

edge-triggered, can all be described using the Verilog HDL. Any ASIC, FPGA, or CPLD 

design may be swiftly prototyped and debugged using the VIVADO simulation. It is a 

user-friendly environment that shows all of the ports and variables from a module to a 

logic gate. Algorithms, Boolean equations, and specific logic gates can all be modeled 

using Verilog.  

The Verilog language includes logic primitives such as AND, OR, NAND, and NOR 

gates. A user-defined primitive (UDP), which can be instantiated into a module similarly 

to a built-in primitive, is another option available to designers UDPs can be any logic 

function such as a multiplexer, decoder, encoder, or flip-flop. Three main modeling 

structures, namely dataflow, behavioral, and structural, can be used to represent designs. It 

is also possible to develop modules using a mixed-design approach, which combines the 

aforementioned constructs with native and user-defined primitives. 

FPGA: A field programmable gate array (FPGA) is a fully fabricated IC chip in which the 

interconnections can be programmed to implement different functions. Thousands of logic 

gates on an FPGA device must be coupled to implement any logic function. It has three 

main components as shown in Fig 1.3. 

• Array of configurable logic blocks (CLBs) 

• Programmable interconnects 

• I/O buffer



 

                                                                                                                                                                    

 

 

 

 

Figure 1.6: - Zed Board FPGA Board 

 

 

Figure 1.7: - CLBs [5]

 

 

 



 

 

In the FPGA-based design, the functionality of the design is initially described in a 

behavioral netlist. Hardware description languages like Verilog or VHDL are used for 

this. The gate-level design is created once the netlist has been synthesized. 

The logic blocks are then mapped into the accessible logic cells as the next step. The 

mapping of technology is the name of this technique. Placement and routing come next, 

configuring the CLBS and defining linkages. The next stage is to create the bit stream and, 

using a software interface, download it into an FPGA chip. The FPGA chip can thereafter 

perform the necessary function so long as the power is ON or once it has been 

reprogrammed. The use of an FPGA-based design has the advantage of having a very 

quick design cycle, which makes it ideal for developing low-cost, low-volume prototypes. 

A concept can be swiftly implemented in hardware to determine whether it is worthwhile 

to implement in a significant number of instances. However, performance is not optimized 

in FPGA-based designs. An FPGA-based design typically takes a few hours to a few days 

to complete. 

Logic Block Organization: Figure 1.4 shows the pin positions for the FPGA logic block 

in which the output pin is connected to routing wires in which both of the channels have 

the right and lower logic block, however, each input can only be accessed from one side of 

the logic block. 

 

Figure 1.8: - Logic Block [5]

 

 

 

Locations of Logic Block Pins: Each input pin of a logic block can be wired to any of the 

adjacent wiring segments in the channel. Any wiring segment in the channels next to a 

logic block output pin can be connected to it. Thus, using the standard FPGA notation, Fc 

= W (tracks per channel). The situation should be evident from the logic block pins as 

shown in Figure 1.5. 



 

 

 

 

Figure 1.9: - Logic Block Pins [5] 

 

 

The power-efficient multiplier will be simulated using VIVADO18.1.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

                                          CHAPTER -2 

 

LITERATURE REVIEW 

 

        Chatterjee et al. (2022) [6] suggest dividing an unsigned approximate multiplier 

architecture into three parts. To increase hardware savings without sacrificing accuracy, 

the least significant part, or the part that contributes the least to the partial product (PP), is 

replaced with a new constant compensation term. A new 4:2 approximate compressor 

simplifies the PPs in the middle section, and an effective yet basic error correction 

module corrects the approximation error. Since estimating this part of the multiplier will 

lead to a significant error, it is implemented with exact logic. The experimental results of 

the 8-bit multiplier show reductions in power and power-delay products of up to 47.7% 

and 55.2%, respectively, compared with the exact design's 36.9% and 39.5%. 

Ravindran et al.(2022)[7] Create an app for edge detection using an approximation 

multiplier. This work is based on the idea that several applications can tolerate a certain 

level of approximation in the design, and that approximation can significantly reduce the 

device's required speed, area, and time. In this work, the multiplier is modeled based on an 

approximate VERILOG (HDL) computation using Xilinx. For approximation purposes, 

the multiplier must therefore meet better area, power, and timing requirements. As a 

specific application, image processing is the main focus of the design. Advantages over 

conventional multipliers in terms of areas, power, and time are highlighted in the design. 

The suggested multiplier is modeled using Modelsim, synthesized using Xilinx Vivado, 

and generated using Verilog HDL. 

Sabetzadeh et al.(2023) [8] This brief introduces an extremely effective error-correcting 

approximation multiplier. The least significant half of the product is handled as a constant 

compensating term by the suggested multiplier. The second half is meticulously calculated 

to yield an extremely high hardware-accuracy trade-off. Furthermore, a simple-yet-

efficient error compensation module (ECM) is introduced, which greatly improves 

accuracy. HSPICE is used to simulate the proposed multiplier, which uses 7nm tri-gate 

FinFET technology. There is an average improvement when comparing the suggested 

design

 

 

 

 



 

 

Strollo et al.(2022) [9] Apply static segmentation to analyse multiplier approximations. In 

these circuits, each of the two n-bit operands generates a segment of m bits or a set of m 

contiguous bits. The two segments are fed into a tiny m×m internal multiplier, which 

modifies its output accordingly to yield the required result. We study signed and unsigned 

multipliers, and we suggest a novel segmentation strategy for the latter. We also offer 

straightforward and efficient correction methods that, with less expensive hardware, can 

significantly lower the approximation error. 

Neyazet al.(2020)[10] carries out various 4-bit and 8-bit multiplier types. Multipliers are 

widely used and even necessary components of many signal processing applications in the 

modern digital world. All of the various 4- and 8-bit multipliers are implemented and 

compared in this essay. To compare the designs, the implementation makes use of both the 

FPGA and the ASIC. The FPGA is implemented using the Xilinx Artix-7 FPGA-equipped 

NEXYS 4 DDR. The results demonstrate that the Wallace tree has the lowest power delay 

product in an ASIC implementation and the lowest delay in an FPGA implementation, 

respectively. The FPGA and ASIC implementations of the Baugh Wooley architecture 

take up the least amount of space. 

Moaiyeri et al. (2022) [11] Proposals for energy- and quality-efficient approximate 

multipliers are presented, based on novel approximation compressors. To minimise the 

number of transistors, we generate the complemented partial products using NAND gates. 

New approximation compressors are also built with different performance and accuracy 

levels. As a result, three hybrid approximate multipliers that offer various hardware 

efficiency and accuracy trade-offs are put forth. The suggested architectures are simulated 

using the 7nm FinFET model, a contemporary technology, using HSPICE. Furthermore, 

MATLAB is used to assess the approximation multipliers' performance in neural network 

and image processing applications. 

Immareddy et al. (2022)[12] Multiplication is one of the basic operations in all digital 

systems. New challenges have emerged in the development of VLSI (Very Large-Scale 

Integration) as a outcome of the digital systems assessment. In digital signal processing, 

multipliers are typically utilised. These days, the advancements in technology are driving 

up demand for this. Many different multiplier designs have been developed to increase its 

speed. The numerous investigations that have been conducted since 2015 are examined in 

this document. This article looks at studies that employ various multipliers. Prior to 

comparing the adders, obtain the Ripple. A Carry Look Forward Adder is in the middle of 

the spectrum and effectively balances the difficulties presented by time and space. 

Multipliers came into focus after adders were created and assessed. Wallace Tree 

Multiplier was first selected, followed by Parallel Multiplier. In the meantime, it was 

found that the latency was greatly decreased by Wallace Tree applications that used Carry 

Save Adders. Research manuscripts are compared and analysed using a variety of criteria 

in this review. An overview of our current knowledge of these multipliers can be found in 



 

 

this publication. In this comparative analysis, timeline plays a part. 

       Ram et al. (2022)[13] This work provides a Han-Carlson adder and an FPGA 

implementation of a modified Wallace multiplier. High-quality multipliers are essential 

because they are the main components of microprocessing circuits and signal processing 

boards. One way to create delay-efficient multipliers is to modify a suitable adder to 

accommodate the addition of partial products. To improve the adder's features, like power 

levels and area usability, the traditional Wallace tree multiplier must use the Han-Carlson 

adder instead of the ripple carry adder. With the aid of the XILINX programme, the 

enhanced Wallace multiplier is simulated and coded in Verilog HDL. Using the SPARTAN 

3E FPGA kit, the multiplier's performance is confirmed. 

      Toan  et al. (2020)[14]   demonstrates how to use recently proposed approximation logic 

compressors at various accuracy levels to efficiently create approximate multipliers on 

Field Programmable Gate Arrays (FPGAs). In comparison with the state-of-the-art works, 

our approximate multiplier designs provide higher power-delay-area products (PDAP) 

increases at comparable accuracies. Furthermore, our solutions outperform the Lookup 

Table based multiplier intellectual properties available on an FPGA in terms of delay, 

occupied area, and dynamic power dissipation. Specifically, we can achieve up to 7.1 x, 8.3 

x, and 5.0 x PDAP increases with our proposed 8-, 16-, and 32-bit multipliers. 
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CHAPTER 3  

METHODOLOGY 

 

In this project, various multipliers like Array, Wallace Tree, and Vedic multipliers are 

designed.  The implementation for 2×2, 4×4, 8×8,16×16 bits was done using Verilog 

coding in VIVADO. The various parameters such as a number of slices, number of IOB, 

and power were compared for different multipliers. The designs are optimized for higher 

speed, less power, and fewer numbers of IOB & Slice which is the main requirement for 

the Image / Signal processing. The designs were further implemented on the FPGAs 

platform using the bitstream. The results of various multipliers like Vedic, Array, and 

Wallace tree were compared based on different performance parameters and different bits. 

We are moving on with the applications of the best multiplier among them. 

                    

 

 

Figure 3.1: - Methodology

 

 

 



 

 

 

 

 

ARRAY MULTIPLIER 

 

          In the traditional array multiplier, the items are added via carry save addition. The 

first row will either contain half adders or full adders based on the carry save 

adding mechanism. Cin will be assumed to be zero if complete adders are used in 

the first row of the partial products. 

 

Figure 3.2: -Circuit Diagram of Array Multiplier 

  

 

Figure 3.3: -SC of 2bits Array Multiplier 

 

 

Figure 3.4: - Waveform of 2bits Array Multiplier 

 

 



 

 

 

 

Figure 3.5: - SC of 4bits Array Multiplier 

 

   

 

Figure 3.6: -Waveform of 4bits Array Multiplier 

 

 

 



 

 

 

 

 

 

 

 

Figure 3.7: - SC of 8x8 Array Multiplier  

 

 

  

Figure 3.8: - Waveform of 8x8Array Multiplier 

 

 

 

 

 



 

 

 

 

 

 

Figure 3.9 SC of 16x16 Array Multiplier 

 

 

Figure 3.10 Waveform of 16x16Array Multiplier 

 

Table 3.1: Comparative table of device utilization Array Multiplier 

 

The table shows the utilization of Array Multipplier for different-differnet bits. 

 

 



 

 

 

VEDIC MULTIPLIER 

 

The Urdhva Tiryakbhyam Sutra was utilised in this. In Urdhva Tiryakbyham 

Sutra, "Vertically and Crosswise" is the actual meaning. This sutra is applicable to 

all multiplication situations. The partial products and their total are computed 

simultaneously using this method. 

The proposed multipliers simulated 2*2, 4*4, 8*8, 16*16 Vedic Multiplier using 

designed Half and Full Adder in Vivado. 

 

Figure 3.11: - Circuit Diagram of Vedic Multiplier 

 

   

 

 

 

 

 



 

 

 

 

 

            

Figure 3.12: -SC of 2bits Vedic Multiplier 

 

 

Figure 3.13: - Waveform of 2bits Vedic Multiplier 

 

 

 



 

 

 

 

Figure 3.14: -SC of 4bits Vedic Multiplier 

 

 

 

 

Figure 3.15: - Waveform of 4bits Vedic Multiplier 

 

 

 

 



 

 

 

 

 

 

 

Figure 3.16: -SC of 8bits Vedic Multiplier 

 

 

 

 

 

Figure 3.17: - Waveform of 8bits Vedic Multiplier 

 

 

 



 

 

 

 

 

 

 

 

Figure 3.18: -SC of 16x16 Vedic Multiplier 

 

 

 

 

Figure 3.19: - Waveform of 16x16Vedic Multiplier 

 

 



 

 

 

 

 

Table 3.2: Comparative table of device utilization Vedic Multiplier 

 

The table shows the utilization of Vedic Multiplier for different-different bits. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

WALLACE TREE MULTIPLIER 

 

However, the Wallace multiplier is distinct from the array multiplier in that it adds 

up all partial products. The Wallace tree multiplier has multiple stages where all 

partial products are added.  

Each level accounts for the addition of three rows in parallel, which expedites the 

process. Any group that has less than three rows is kept the same and moves 

directly on to the next addition step. 

 

Figure 3.2: - WTM 

 



 

 

 

 

Figure 3.21: -SC of 2bits WTM 

 

                    Figure 3.22: -Waveform of 2bits WTM 

 

 

Figure 3.23: -SC of 4bits WTM 

 



 

 

 

 

                Figure 3.24: - Waveform of 4bits WTM 

 

 

 

Figure 3.25: - SC of 8bits WTM 

 

 

 



 

 

 

 

Figure 3.26: -Waveform of 8bits WTM 

 

 

Figure 3.27: - SC of 16bits WTM 

 

 

 

Figure 3.28: -Waveform of 16x16 WTM 

       Table 3.3: Comparative table of Utilization of Wallace Tree Multiplier         

 

This table shows the utilization of WTM for different-different bits 



 

 

 

             

In this study, we designed Three different Multipliers —array, Vedic, and Wallace 

tree with varying bit sizes of 2x2, 4x4, 8x8, and 16x16. A comprehensive 

comparison based on specific parameters (No. of slices, No. of LUTs, Power) was 

conducted, leading to the determination that the Wallace tree multiplier 

outperformed the alternative. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

CHAPTER 4 

IMPLEMENTATION OF WALLACE TREE MULTIPLIER 

USING DIFFERENT LOGIC. 

Further analysis was performed on the Wallace tree multiplier, considering four 

distinct gate types—AOI, NAND, NOR, and OAI.  

● Implementation WTM using AOI Logic: - 

     

 

Figure 4.1: -SC of 4X4 WTM AOI Logic. 

 

 

 

       

Figure 4.2: - Waveform of 4x4Wallace Tree Multiplier using AOI Logic. 

● Implementation of WTM using NAND Logic: - 

 

Figure 4.3: -SC of 4bits WTM using NAND Logic. 

 

 



 

 

 

Figure 4.4: -Waveform of 4bits WTM using NAND Logic. 

 

● Implementation of WTM using NOR Logic: - 

 

Figure 4.5: -SC of 4bits WTM using NOR Logic. 

 

 

Figure 4.6: -Waveform of 4bits WTM using NOR Logic 

 

 

● Implementation of WTM using OAI Logic: - 

 

Figure 4.7: -SC of 4bits WTM using OAI Logic. 

 

 



 

 

 

 

 

Figure 4.8: -Waveform of 4bits WTM using OAI Logic. 

 

 

Through meticulous evaluation, it was established that the NOR gate configuration 

yielded the most optimal performance for the Wallace tree multiplier. 

 

 

      Table 4.1: Comparative table of Utilization of WTM using 

Different Logics. 

 

 

 

This table shows that Wallace Tree using NOR Logic consumes the minimum power than 

the other logics. 

In this study, we designed WTM Using NOR, NAND, AOI and OAI Logic for 4-bit. A 

comprehensive comparison based on specific parameters (No. of slices, No. of LUTs, 

Power) was conducted, leading to the determination that the WTM using NOR logic 

outperformed the alternative. 

 



 

 

 

 

IMPLEMENTATION OF WTM USING NOR GATE ON FPGA 

 

 It was established that the NOR gate configuration yielded the most optimal 

performance for the Wallace tree multiplier and final generated bit stream will be 

used to burn FPGA. 

 

Figure 4.9: -:  FPGA Implementation of 4bits Wallace Tree Multiplier using NOR Logic. 

We took the input of the multiplier as 1111 * 1010 and the output for the same is 

10010110. 

 

Figure 4.10:  FPGA Implementation of 4bits Wallace Tree Multiplier using NOR Logic. 

 We took the input of the multiplier as 1110 * 1010 and the output for the same is 

10001100. 

                         



 

 

 

CHAPTER -5  

IMPLEMENTATION OF WALLACE TREE MULTIPLIER 

USING NOR LOGIC. 

Further analysis was performed on the Wallace tree multiplier, considering NOR 

gate type— 4-bit,8-bit,16-bit and 32-bit  

● Implementation  ofWTM using NOR Logic for 4-bit: 

. 

Figure 5.1: - SC of 4bits WTM using NOR Logic 

 

 

Figure 5.2: - Waveform of 4x4 WTM using NOR Logic. 

 

 

 



 

 

 

● Implementation of WTM using NOR Logic for 8-bit: - 

 

 

Figure 5.3: - SC of 8bits WTM using NOR Logic 

 

 

Figure 5.4: - Waveform of 8bits WTM using NOR Logic. 

 

 

 



 

 

 

● Implementation of WTM using NOR Logic for 16-bit: - 

 

 

Figure 5.5: - SC of 16-bits WTM using NOR Logic 

 

 

Figure 5.6: - Waveform of 16-bits WTM using NOR Logic. 

 

 

 



 

 

 

● Implementation of WTM using NOR Logic for 32-bit: - 

 

Figure 5.7: - SC of 32-bits WTM using NOR Logic 

 

Figure 5.8: - Waveform of 32-bits WTM using NOR Logic. 

 

 

 

 

 

 

 



 

 

 

 

 

      Table 5.1: Comparative table of Utilization of  WTM using 

NOR Logics for different bits. 

 

        The table shows the utilization of WTM using NOR Logic for different-different bits. 

 

In this study, we designed WTM using NOR logic varying bit sizes of 2x2, 4x4, 

8x8, and 16x16. A comprehensive comparison based on specific parameters (No. 

of slices, No. of LUTs, Power) was conducted. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

CHAPTER -6 

WALLACE TREE MULTIPLIER USING 4:2 

COMPRESSORS  

Because digital circuit complexity is increasing, power density and heat dissipation are 

rising in today's (VLSI) world. The leakage current rises when the power density goes 

high which causes a decline reliability and lifespan of an IC. Different computing aids are 

used to conserve power and also help to enhance the speed of the circuit. Applications 

such as image processing, and data mining where these multipliers are commonly used. 

a) Half-Adder 

Digital circuits are fundamentally constructed using half-adders. They are also used in the 

process of updating arithmetic components as an optimization circuit. The precise and 

accurate circuit diagram representation of the Half-adder is displayed in Figure 6.1. 

Equations (6.1) and (6.2) are used to compute the final sum and carry for the 

exact/precise Half-Adder, respectively. 

                                       sum = (x1 ⊕ x2)                                           (6.1) 

                                        carry = (x1.x2)                                             (6.2) 

 

   Figure 6.1: - Diagram of Half-Adder. 

Table 6.1: Truth Table of Half-Adder 

A B S C 

0 0 0 0 

0 1 1 0 

1 0 1 0 



 

 

 

1 1 0 1 

 

 

Figure 6.2: - SC of Half-Adder. 

 

 

Figure 6.3: - Waveform of Half-Adder 

 

 



 

 

 

Figure 6.4: - FPGA implementation of Half-Adder. 

 

 

b) Full-Adder 

The most basic compressor is the full-adder, sometimes referred to as the 3:2 

compressor. It converts three inputs (A, B, Cin) into two outputs (sum, carry), as 

shown in Figure 6.5. The 3:2 compressor's final Sum and Carry are determined by 

applying Equations (6.3) and (6.4), respectively. 

 

Sum = (A ⊕ B ⊕ Cin )                                 (6.3) 

 

Carry = (A. B) + (B. Cin) + (Cin. A)           (6.4) 

 

Figure 6.5: - Diagram of Full-Adder 

 

Table 6.2: Truth Table of Full-Adder 

A B Cin Sum Carry 

0 0 0 0 0 

0 0 1 1 0 

0 1 0 1 0 

0 1 1 0 1 

1 0 0 1 0 

1 0 1 0 1 

1 1 0 0 1 

1 1 1 1 1 

 



 

 

 

 

Figure 6.6: - SC of Full-Adder. 

 

 

Figure 6.7: - Waveform of Full-Adder. 

 

 

 

 

 

Figure 6.8: -FPGA implementation of Full-Adder 



 

 

 

 

c) 4:2 Compressor 

In binary arithmetic, a 4:2 compressor is a digital circuit that lowers the quantity of 

partial products in operations like multiplication. It streamlines the addition 

process in intricate arithmetic circuits by compressing four input bits into two 

output bits (a sum bit and a carry bit). 

 

 

Figure 6.9: - Diagram of 4:2 Compressor 

 

Table 6.3: Truth Table of 4:2 Compressor 

 



 

 

 

 

      Figure 6.10: -SC of 4:2 Compressor 

 

 

Figure 6.11: -Waveform of 4:2 Compressor 

 

 

Figure 6.12: -FPGA Implementation of 4:2 Compressor 

 

 

 

 



 

 

 

d) 4-bit Adder 

A digital circuit that adds two 4-bit binary numbers is called a 4-bit adder. It is an 

essential part of digital electronics, especially processors and arithmetic logic units 

(ALUs). When binary addition is necessary in a variety of digital systems, such as 

in:  

• Processors' Arithmetic Logic Units (ALUs). 

• Digital Signal Processing (DSPs). 

• Simple digital measuring devices and calculators. 

 

 

 

Figure 6.13: - Diagram of 4-bit Adder 

 

 

TABLE6.4: - TRUTH TABLE OF 4-BIT ADDER 



 

 

 

 

 

 

 

 

Figure 6.14: - SC of 4-bit Adder 

 

 

 

 



 

 

 

 

Figure 6.15: - Waveform of 4-bit Adder 

 

 

Figure 6.16: - FPGA implementation of 4-bit Adder 

 

 



 

 

 

e) Proposed Wallace Tree Multiplier 

Proposed Wallace Tree Multiplier consist of 4 Half-Adder, 2 4:2 

compressor, 1 Full-Adder and 1 4-Bit Adder. 

 

Figure 6.17: - Diagram of Proposed WTM 

 

 

 

 



 

 

 

 

Figure 6.18: - SC of Proposed WTM 

 

 

Figure 6.19: - Waveform of Proposed WTM 



 

 

 

 

Figure 6.20: - FPGA implementation of Proposed WTM 

 

 

Table 6.5: - Comparison of Different Parameters 

 

The table shows that the Proposed WTM is best among the traditional WTM and WTM 

using NOR Logic. 

 

 

 



 

 

 

 

Conclusion and Future Work 

 

We have studied the VIVADO and Simulink and studied how to use Xilinx 

System Generator. We have successfully implemented the 2x2, 4x4, 8x8 and 

16x16 bits with the help of Half-Adder, Full-Adder and Ripple Carry Adder. The 

multiplier architecture i.e. Array, Vedic and Wallace Tree are simulated using 

Vivado Design Suite. Synthesis and implementation are done using, ready-to-use 

digital circuit development platform based on the Zed Board Field Programmable 

Gate Array (FPGA). A comprehensive comparison based on specific parameters 

was conducted, leading to the determination that the Wallace tree multiplier 

outperformed the alternatives. 

 

Also we performed the Wallace tree multiplier, considering four distinct gate 

types—NAND, NOR, AOI, and IOA. Through meticulous evaluation, it was 

established that the NOR gate configuration yielded the most optimal performance 

for the Wallace tree multiplier. 

 

Further we design the New Wallace Tree Multiplier using half-adder, full-adder, 

4:2 compressor and 4-bit adder and it is founded that the Proposed Wallace Tree 

multiplier is best among the Traditional Wallace Tree Multiplier and Wallace Tree 

Multiplier using the Nor-Logic 

 

In future we will implement and simulate multiplier and will used circuit in 

different application.  
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