

FPGA Implementation of Power-Efficient

Multiplier

Major Project report submitted in partial full-filment of the requirement for

the degree of

BACHELOR OF TECHNOLOGY

IN

ELECTRONICS AND COMMUNICATION ENGINEERING

BY

MANAS JAIN (201017)

SAKSHAM (201004)

UNDER THE GUIDANCE

Prof. (Dr). SHRUTI JAIN

 Department of Electronics and Communication Engineering Jaypee

University of Information Technology Waknaghat, Solan-173234,

TABLE OF CONTENTS

 TITLE PAGE NO.

 DECLARATION i.

CERTIFICATE ii.

ACKNOWLEDGEMENT iii.

LIST OF ABBERVIATIONS iv.

LIST OF FIGURES v.

LIST OF TABLES vi.

ABSTRACT

vii.

 CHAPTER-1: INTRODUCTION 1

 1.1 VLSI 1

 1.1.1 Design Flow 1

 1.1.2 Motivation 4

 1.1.3Wallace Tree Multiplier 6

 1.1.4 Application 6

 1.2 Array Multiplier 7

 1.2.1 Application 7

 1.3 Vedic Multiplier 8

 1.4 Software and Hardware Used 10

 1.4.1VIVADO 18.1 10

 1.4.2 VERILOG 10

 1.4.3 FPGA 10

 1.4.3.1 Logic Block Organization 12

 1.4.3.2 Locations of Logic Block Pins

12

 CHAPTER-2: LITERATURE REVIEW 14

 2.1 List of Literature Review 17

 CHAPTER-3: METHODOLOGY

18

DECLARATION

 3.1 Array Multiplier 19

 3.2 Vedic Multiplier 23

 3.3 Wallace Tree Multiplier(WTM)

29

CHAPTER: 4 IMPLEMENTATION OF WALLACE TREE

MULTIPLIER USING DIFFERENT LOGIC

34

 4.1 Implementation of WTM using AOI Logic. 34

 4.2 Implementation of WTM using NAND Logic 34

 4.3 Implementation of WTM using NOR Logic 35

 4.4 Implementation of WTM using OAI Logic 35

 4.5 Implementation of WTM using NOR Logic On FPGA

37

CHAPTER 5: - IMPLEMENTATION OF WALLACE TREE

MULTIPLIER USING NOR LOGIC.

38

 5.1 Implementation of WTM using NOR Logic for 4-bit 38

 5.2 Implementation of WTM using NOR Logic for 8-bit 39

 5.3 Implementation of WTM using NOR Logic for 16-bit 40

 5.4 Implementation of WTM using NOR Logic for 32-bit

41

CHAPTER 6: -WALLACE TREE MULTIPLIER USING 4:2

COMPRESSORS

43

 6.1 Half-Adder 43

 6.2 Full-Adder 45

 6.3 4:2 Compressor 47

 6.4 4-bit Adder 49

 6.5 Proposed Wallace Tree Multiplier

52

 CONCLUSION AND FUTURE WORK 55

 LIST OF PUBLICATION 56

 REFERENCE 57

 We at this moment declare that the work reported in the Bachelor of Technology Project

Report entitled “FPGA Implementation of Power Efficient Multiplier” submitted at

Jaypee University of Information Technology, Waknaghat, India is an authentic record

of our work carried out under the supervision of Prof (Dr.) Shruti Jain. We have not

submitted this work elsewhere for any other degree or diploma.

 Manas Jain Saksham

 201017 201004

 This is to certify that the above statement by the candidates is correct to the best of my

knowledge.

Dr. Shruti Jain

 Date:

 Head of the Department/Project Coordinator

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY
WAKNAGHAT, P.O. – WAKNAGHAT,

TEHSIL – KANDAGHAT, DISTRICT – SOLAN (H.P.)

PIN – 173234 (INDIA) Phone Number- +91-1792-257999

(Established by H.P. State Legislature vide Act No. 14 of 2002)

CERTIFICATE

This is to certify that the work reported in the B.Tech. project report entitled “FPGA implementation

of Power-Efficient Multiplier”which is being submitted by MANAS JAIN (201017) &

SAKSHAM (201004) in fulfillment for the award of Bachelor of Technology in Electronics and

Communication Engineering by the Jaypee University of Information Technology, is the record

of candidate’s work carried out by him under my supervision. This original work has not been

submitted partially or fully anywhere else for any other degree or diploma.

Dr. Shruti Jain

Associate Dean (Innovation)

Professor, Department of Electronics & Communication Engineering

Jaypee University of Information Technology, Waknaghat

ACKNOWLEDGEMENT

I am really grateful and wish my profound indebtedness to the supervisor Dr. Shruti Jain,

Professor and Associate Dean (Innovation), Jaypee University of Information Technology.

Deep knowledge & keen interest of my supervisor in the field of “VLSI” to carry out this

project. Her endless patience, scholarly guidance, encouragement, energetic supervision,

valuable advice, reading many inferior drafts, and correcting them at all stages made it

possible to complete this project.

I want to express my heartiest gratitude To Dr. Rajiv Kumar, H.O.D Department of

Electronics and Communication Engineering for his kind help in finishing my project.

Finally, I must acknowledge with due respect the constant support and patience of my

parents.

Manas Jain (201017)

Saksham(201004)

LIST OF ABBREVIATIONS

1. VLSI = Very Large-Scale Industry

2. DSP = Digital Signal Processing

3. XSG = Xilinx System Generator

4. FPGA = Field Programmable Gate Arrays

5. HA = Half Adder

6. FA = Full Adder

7. MUL. = Multiplier

8. IC = Integrated Circuits

9. DIP = Dual In-Line Packaged

10. PGA = Pin Grid Array

11. BGAs= Ball Grid Arrays

12. CPU = Central Processing Unit

13. ROM = Read Only Memory

14. RAM = Random Access Memory

15. UDP =User-defined primitive

16. S = Sum

17. C= Carry

18. SD = SC

19. WTM= Wallace Tree Multiplier

20. ASIC = Application-Specific Integrated Circuit

21. MOS = Metal Oxide Semiconductor

22. HDL = Hardware Descriptive Language

23. RTL = Register Transfer Level

24. CPLD = Complex Programmable Logic Device

25. CLB = Configurable Logic Blocks

 LIST OF FIGURES

Figure No Figure Name Page

No.

Figure 1.1 VLSI Design Flow 2

Figure 1.2 Wallace Tree Multiplier 6

Figure 1.3 Array Multiplier 7

Figure 1.4 Urdhva Sutra To multiply 2bits. 8

Figure 1.5 Urdhva Sutra To multiply 4bits. 9

Figure 1.6 Zed Board (FPGA Board) 11

Figure 1.7 CLBs 11

Figure 1.8 Logic Block 12

Figure 1.9 Logic Block Pins 13

Figure 3.1 Methodology 18

Figure 3.2 Circuit Diagram of Array Multiplier 19

Figure 3.3 SC of 2bits Array Multiplier 19

Figure 3.4 Waveform of 2bit Array Multiplier 19

Figure 3.5 SC of 4bits Array Multiplier 20

Figure 3.6 Waveform of 4bit Array Multiplier 20

Figure 3.7 SC of 8bits Array Multiplier 21

Figure 3.8 Waveform of 8bit Array Multiplier 21

Figure 3.9 SC of 16bits Array Multiplier 22

Figure 3.10 Waveform of 16bit Array Multiplier 22

Figure 3.11 Circuit Diagram of Vedic Multiplier 23

Figure 3.12 SC of 2bits Vedic Multiplier 24

Figure 3.13 Waveform Of 2bits Vedic Multiplier 24

Figure 3.14 SC of 4bits Vedic Multiplier 25

Figure 3.15 Waveform Of 4bits Vedic Multiplier 25

Figure 3.16 SC of 8bits Vedic Multiplier 26

Figure 3.17 Waveform Of 8bits Vedic Multiplier 26

Figure 3.18 SC of 16bits Vedic Multiplier 27

Figure 3.19 Waveform Of 16bits Vedic Multiplier 27

Figure 3.20 Circuit Diagram of WTM 29

Figure 3.21 SC of 2bits WTM 30

Figure 3.22 Waveform Of 2bits WTM 30

Figure 3.23 SC of 4bits WTM 30

Figure 3.24 Waveform Of 4bits WTM 31

Figure 3.25 SC of 8bits WTM 31

Figure 3.26 Waveform Of 8bits WTM 32

Figure 3.27 SC of 16bits WTM 32

Figure 3.28 Waveform Of 16bits WTM 32

Figure 4.1 SC of 4bits WTM Using AOI logic. 34

Figure 4.2 Waveform Of 4bits WTM Using AOI logic. 34

Figure 4.3 SC of 4bits WTM Using NAND Logic. 34

Figure 4.4 Waveform Of 4bits WTM Using NAND Logic. 34

Figure 4.5 SC of 4bits WTM Using NOR Logic. 35

Figure 4.6 Waveform Of 4bits WTM Using NOR Logic. 35

Figure 4.7 SC of 4bits WTM Using OAI Logic. 35

Figure 4.8 Waveform Of 4bits WTM Using OAI Logic. 36

Figure 4.9 FPGA Implementation of 4bits WTM using NOR Logic 37

Figure 4.10 FPGA Implementation of 4bits WTM using NOR Logic 37

Figure 5.1 SC of 4bits WTM using NOR Logic 38

Figure 5.2 Waveform of 4x4WTM using NOR Logic. 38

Figure 5.3 SC of 8bits WTM using NOR Logic 39

Figure 5.4 Waveform of 8bits WTM using NOR Logic. 39

Figure 5.5 SC of 16-bit WTM using NOR Logic 40

Figure 5.6 Waveform of 16-bitsWTM using NOR Logic. 40

Figure 5.7 SC of 32-bit WTM using NOR Logic 41

Figure 5.8 Waveform of 32-bit WTM using NOR Logic. 41

Figure 6.1 Diagram of Half-Adder 43

Figure 6.2 SC of Half-Adder 44

Figure 6.3 Waveform Of Half-Adder 44

Figure 6.4 FPGA implementation of Half-Adder 44

Figure 6.5 Diagram of Full-Adder 45

Figure 6.6 SC of Full-Adder 46

Figure 6.7 Waveform Of Full -Adder 46

Figure 6.8 FPGA implementation of Full-Adder 46

Figure 6.9 Diagram of 4:2 Compressor 47

Figure 6.10 SC of 4:2 Compressor 48

Figure 6.11 Waveform Of 4:2 Compressor 48

Figure 6.12 FPGA implementation of 4:2 Compressor 48

Figure 6.13 Diagram of 4-bit Adder 49

Figure 6.14 SC of 4-bit Adder 50

Figure 6.15 Waveform Of 4-bit Adder 51

Figure 6.16 FPGA implementation of 4-bit Adder 51

Figure 6.17 Diagram of Proposed WTM 52

Figure 6.18 SC of Proposed WTM 53

Figure 6.19 Waveform Of Proposed WTM 53

Figure 6.20 FPGA implementation of Proposed WTM 54

LIST OF TABLES

S. No Title Page

No.

3.1 Comparative Table of Utilization of Array

Multiplier

22

3.2 Comparative Table of Utilization of Vedic

Multiplier

28

3.3 Comparative Table of Utilization of WTM 32

4.1 Comparative table of Utilization of WTM using

different logic.

36

5.1 Comparative table of Utilization of WTM using

NOR Logics for different bits.

42

6.1 Truth table of Half-Adder 43

6.2 Truth table of Full-Adder 45

6.3 Truth table of 4:2 Compressor 47

6.4 Truth Table of 4-bit Adder 50

6.5 Comparison of table of Utilization of WTM 54

ABSTRACT

One of the main issues with digital design across a wide range of applications, from data

centres to embedded and battery-powered devices, is the creation of energy-efficient

circuits. Many different techniques have been developed in the past few years to boost

speed while lowering power consumption, and there are some intriguing potential

benefits. The basic tenet of this strategy is that significant savings in hardware design

metrics like key path delay, design space, and power consumption can be achieved by

lowering the output's accuracy requirement. This is the fundamental idea that guides

such a strategy. Conversely, this paradigm can only be applied in situations where a

preexisting tolerance for small and insignificant errors has been established. The

domains of media processing, machine learning, and data mining are a few instances of

possible uses. It's interesting to observe that the number of applications that primarily

rely on data and machine learning has increased recently. Multiplier is growing in

popularity for image/signal processing applications. In the era of real-time applications,

multipliers are becoming more and more important. Adders are essential to the design

and operation of digital circuitry and signal processing applications in a wide range of

computer types, including microprocessors and digital signal processors (DSPs). The

main problem that needs to be solved when adding is the propagation of delay in the

carry chain. As the bit-width of the input operands increases, the carry chain length

grows and becomes more stretched out. When it comes to Very Large-Scale Integration

(VLSI), the best adder designs are classified as having a Parallel. A half adder and a full

adder are the essential building blocks for adding the final sum in the final addition step

of each of the three Wallace tree multiplier designs. A range of compressors must be

employed for the installation of the energy-efficient approximate multiplier blocks;

VIVADO 18.1 Design Tool is used for all simulations. Furthermore, the suggested

adders

CHAPTER 1

INTRODUCTION

We chose to create multipliers using various adders since they are utilized in many

different engineering domains. VLSI is the process by which an integrated circuit (IC) is

constructed on a single chip from millions or billions of MOS transistors. VLSI got its

start in the 1970s with the creation and broad application of MOS (Metal Oxide

Semiconductor) integrated circuit chips, which made advanced semiconductor and

telecommunication technologies possible. CPU and memory chips are designed using

VLSI devices. The fundamental goal of VLSI technology development is to make ICs

capable of performing a limited number of tasks. An electronic circuit may contain a CPU,

ROM, RAM, and other glue logic components. All of them could be combined into one by

IC designers.

Design Flow: -The technique in which we build an integrated circuit (IC) using millions or

billions of MOS transistors on a single chip is known as VLSI. VLSI circuits are used,

such as in personal computers, graphic cards, digital cameras, camcorders, cell phones,

embedded processors, anti-lock braking systems in cars, personal entertainment systems,

medical electronic systems, etc. The requirements of today's electronic gadgets and sysms

are ideally suited to VLSI technology. VLSI technology must be growing to drive

advancements in electronics due to the rising demand for smaller, more compact, reliable,

and functioning devices. The number of jobs is increasing in the VLSI design as India

develops.

Figure 1.1 VLSI Design Flow [1]

System Generator: - The goal of the intended final product is written in this step. System specification

should include considerations for architecture, performance, and how the system will communicate with

the external environment.

Architectural Design: - Aspects of architectural design include the integration of analogue and mixed-

signal blocks, memory management, internal and external connectivity, power requirements, process

technology, and layer stack selection.

Functional Design: - The primary goal of this is to create a high-performance architectural design while

adhering to the specification's cost constraints.

Logic Design: - The structure of the desired design complements the behavioural representation of the

desired design. Testability, performance improvement, and logic minimization are the three

fundamental criteria for logic design.

Circuit Design: - The logic building blocks of the intended design are replaced by electronic circuits,

which are composed of electronic components like resistors, capacitors, and transistors.

Physical Design: - The intended system's real layout has been completed, showing where each

component will go in the circuit and how they are all connected.

Fabrication: - The intended design is sent to be manufactured once it has been confirmed and actually

laid out. The term "tape out" describes the process of transferring the intended design to the production

line. The process of producing the data required for manufacturing is referred to as "streaming out."

Packaging and Testing: - Once the desired design is manufactured, functional chips are packaged.

Packaging is configured early in the intended design process, along with the application, cost, and form

factor criteria. A few possible package types are Ball Grid Arrays (BGAs), Pin Grid Arrays (PGAs),

and Dual In-Line Packaged (DIPs).

MOTIVATION

In the computing system, the consumption of energy is an avital parameter. Nowadays,

everyone needs high computational speed with low power consumption devices. Emerging

high-performance applications require increasingly big datasets to be processed with high

efficiency.

With the growing demands of electronic devices, important changes occurred in the

electronic community, especially in the VLSI world. In the VLSI world, digital circuits

play a vital role and are highly complex as they consist of a large number of transistors

and logic gates at their most detailed level. Gordon Moore in 1965 states that every year

the transistor count on integrated circuit (IC) doubles. But later on, Moore observed that

not every year but about every two years the transistor count on IC doubles. This

observation is known as Moore's Law. According to Moore's Law, the processing speed of

the device increases as the transistor count doubles in every 2 years due to improvements

in technology. As a consequence of shrinking dimensions, Robert Dennard 1974 observed

a few things with every technology generation power consumption remains the same if

transistor density doubles. Dennard scaling law is formulated after his observation which

states that power density remains constant as the transistor size gets smaller. When the

computation performance of Moore's law (transistors double approximately every 2 years)

is combined with the Dennard scaling then the transistor doubles about every 1.5 years

and the performance per watt even grows faster. In around 2005-2007, there is a

breakdown of Dennard scaling. The main reason for the breakdown in Dennard scaling is

the risk of thermal runaway [2].Multiplier: -In digital signal processing (DSP)

applications we mainly used multipliers. Out of all the arithmetic operations now in use,

the multiplier is the most widely used. It is employed to multiply two numbers using a

variety of methods. To form an efficient multiplier our main focus is on the four aspects,

i.e., speed, power consumption, area, and accuracy. We are trying to cover this in all

existing popular Wallace tree multipliers. Finally, we compared the performance

characteristics of each multiplier, including speed, time delay, area, complexity, accuracy,

and power consumption [3].

Types Of Multipliers: -

❖ Array

❖ Wallace Tree

❖ Vedic

❖ Parallel

❖ Serial

❖ Approximate

❖ Logarithmic

❖ Sequential

WALLACE TREE MULTIPLIER

 It takes less time for accumulation in this multiplier because the generated partial

products are added in parallel. The partial product reduction of the 8 x 8 Wallace

multiplier is displayed in Figure 1.2. The blue dotted circle in Figure 4.2 represents the

half adder, and the red dotted circle the full adder. However, the Wallace multiplier is

unique from other multipliers, such as array multipliers, in that it adds up all partial

products. The Wallace tree multiplier has multiple stages where all partial products are

added. The parallel addition of three rows is considered at every level, which facilitates

and expedites the process. Any group that has less than three rows is kept the same and

moves directly on to the next addition step.

Figure 1.2: - WTM[4]

Application: Microprocessors in personal computers, graphic card chips, digital camera

or camcorder chips, cell phone chips, embedded processors, anti-lock braking systems for

cars, personal entertainment systems, medical electronic systems, etc. are all examples of

devices that use VLSI circuits.

ARRAY MULTIPLIER

The items in the conventional array multiplier are added using the carry-save addition

method. Depending on how the carry save adding mechanism works, the first row will

either have full adders or half adders. If complete adders are used in the first row of the

partial products, then Cin will be taken to be zero.

To generate partial products and test each bit of the multiplier one at a time, a sequence of

add-and-shift micro-operations is required. Two binary values can be multiplied in a single

micro-operation using a combinational circuit that generates the product bits concurrently.

This method multiplies two values quickly because it only takes the signals a short time to

pass through the gates that make up the multiplication array. However, prior to the

invention of integrated circuits, an array multiplier was not cost-effective due to its high

gate count requirement.

Figure 1.3: - Array multiplier

Application: Arithmetic operations such as filtering, Fourier transformation, and image

coding are carried out using array multipliers.

VEDIC MULTIPLIER

The Urdhva Tiryakbhyam Sutra was utilized in this. In Urdhva Tiryakbyham Sutra,

"Vertically and Crosswise" is the actual meaning. This sutra applies to all multiplication

situations. The partial products and their total are computed simultaneously using this

method. Figure 1.4 illustrates the procedures for multiplying two numbers by two using

the Urdhva Tiryakbyham Sutra. As seen in Figure 1.5, the same process can be expanded

to include 4x4 multiplication.

Figure 1.4: - Using the Urdhva Sutra to multiply two by two.

Figure 1.5: - Using the Urdhva Sutra to multiply 4 by 4.

The 2-bit multiplier serves as the foundation for higher order multipliers like 4bits, 8bits,

and 16bits multiplication.

SOFTWARE AND HARDWARE USED

 VIVADO 18.1

The software package Xilinx With new features for high-level synthesis and system-on-a-

chip development, Vivado Design Suite takes the place of Xilinx ISE. Designs written in

Hardware Description Language (HDL) are synthesised and analysed using it. Using

Vivado, the design flow has been entirely revised and redesigned.

 VERILOG

 The most advanced technique for creating digital and computer systems is the Verilog

hardware description language. A digital system can be modeled using the C-like language

Verilog HDL, which also has some Pascal syntax. Verilog is simple to learn since it uses a

syntax that combines C and Pascal. The most popular HDL on the market is Verilog.

Combinational and sequential logic, as well as storage devices that are level-sensitive and

edge-triggered, can all be described using the Verilog HDL. Any ASIC, FPGA, or CPLD

design may be swiftly prototyped and debugged using the VIVADO simulation. It is a

user-friendly environment that shows all of the ports and variables from a module to a

logic gate. Algorithms, Boolean equations, and specific logic gates can all be modeled

using Verilog.

The Verilog language includes logic primitives such as AND, OR, NAND, and NOR

gates. A user-defined primitive (UDP), which can be instantiated into a module similarly

to a built-in primitive, is another option available to designers UDPs can be any logic

function such as a multiplexer, decoder, encoder, or flip-flop. Three main modeling

structures, namely dataflow, behavioral, and structural, can be used to represent designs. It

is also possible to develop modules using a mixed-design approach, which combines the

aforementioned constructs with native and user-defined primitives.

FPGA: A field programmable gate array (FPGA) is a fully fabricated IC chip in which the

interconnections can be programmed to implement different functions. Thousands of logic

gates on an FPGA device must be coupled to implement any logic function. It has three

main components as shown in Fig 1.3.

• Array of configurable logic blocks (CLBs)

• Programmable interconnects

• I/O buffer

Figure 1.6: - Zed Board FPGA Board

Figure 1.7: - CLBs [5]

In the FPGA-based design, the functionality of the design is initially described in a

behavioral netlist. Hardware description languages like Verilog or VHDL are used for

this. The gate-level design is created once the netlist has been synthesized.

The logic blocks are then mapped into the accessible logic cells as the next step. The

mapping of technology is the name of this technique. Placement and routing come next,

configuring the CLBS and defining linkages. The next stage is to create the bit stream and,

using a software interface, download it into an FPGA chip. The FPGA chip can thereafter

perform the necessary function so long as the power is ON or once it has been

reprogrammed. The use of an FPGA-based design has the advantage of having a very

quick design cycle, which makes it ideal for developing low-cost, low-volume prototypes.

A concept can be swiftly implemented in hardware to determine whether it is worthwhile

to implement in a significant number of instances. However, performance is not optimized

in FPGA-based designs. An FPGA-based design typically takes a few hours to a few days

to complete.

Logic Block Organization: Figure 1.4 shows the pin positions for the FPGA logic block

in which the output pin is connected to routing wires in which both of the channels have

the right and lower logic block, however, each input can only be accessed from one side of

the logic block.

Figure 1.8: - Logic Block [5]

Locations of Logic Block Pins: Each input pin of a logic block can be wired to any of the

adjacent wiring segments in the channel. Any wiring segment in the channels next to a

logic block output pin can be connected to it. Thus, using the standard FPGA notation, Fc

= W (tracks per channel). The situation should be evident from the logic block pins as

shown in Figure 1.5.

Figure 1.9: - Logic Block Pins [5]

The power-efficient multiplier will be simulated using VIVADO18.1.

 CHAPTER -2

LITERATURE REVIEW

 Chatterjee et al. (2022) [6] suggest dividing an unsigned approximate multiplier

architecture into three parts. To increase hardware savings without sacrificing accuracy,

the least significant part, or the part that contributes the least to the partial product (PP), is

replaced with a new constant compensation term. A new 4:2 approximate compressor

simplifies the PPs in the middle section, and an effective yet basic error correction

module corrects the approximation error. Since estimating this part of the multiplier will

lead to a significant error, it is implemented with exact logic. The experimental results of

the 8-bit multiplier show reductions in power and power-delay products of up to 47.7%

and 55.2%, respectively, compared with the exact design's 36.9% and 39.5%.

Ravindran et al.(2022)[7] Create an app for edge detection using an approximation

multiplier. This work is based on the idea that several applications can tolerate a certain

level of approximation in the design, and that approximation can significantly reduce the

device's required speed, area, and time. In this work, the multiplier is modeled based on an

approximate VERILOG (HDL) computation using Xilinx. For approximation purposes,

the multiplier must therefore meet better area, power, and timing requirements. As a

specific application, image processing is the main focus of the design. Advantages over

conventional multipliers in terms of areas, power, and time are highlighted in the design.

The suggested multiplier is modeled using Modelsim, synthesized using Xilinx Vivado,

and generated using Verilog HDL.

Sabetzadeh et al.(2023) [8] This brief introduces an extremely effective error-correcting

approximation multiplier. The least significant half of the product is handled as a constant

compensating term by the suggested multiplier. The second half is meticulously calculated

to yield an extremely high hardware-accuracy trade-off. Furthermore, a simple-yet-

efficient error compensation module (ECM) is introduced, which greatly improves

accuracy. HSPICE is used to simulate the proposed multiplier, which uses 7nm tri-gate

FinFET technology. There is an average improvement when comparing the suggested

design

Strollo et al.(2022) [9] Apply static segmentation to analyse multiplier approximations. In

these circuits, each of the two n-bit operands generates a segment of m bits or a set of m

contiguous bits. The two segments are fed into a tiny m×m internal multiplier, which

modifies its output accordingly to yield the required result. We study signed and unsigned

multipliers, and we suggest a novel segmentation strategy for the latter. We also offer

straightforward and efficient correction methods that, with less expensive hardware, can

significantly lower the approximation error.

Neyazet al.(2020)[10] carries out various 4-bit and 8-bit multiplier types. Multipliers are

widely used and even necessary components of many signal processing applications in the

modern digital world. All of the various 4- and 8-bit multipliers are implemented and

compared in this essay. To compare the designs, the implementation makes use of both the

FPGA and the ASIC. The FPGA is implemented using the Xilinx Artix-7 FPGA-equipped

NEXYS 4 DDR. The results demonstrate that the Wallace tree has the lowest power delay

product in an ASIC implementation and the lowest delay in an FPGA implementation,

respectively. The FPGA and ASIC implementations of the Baugh Wooley architecture

take up the least amount of space.

Moaiyeri et al. (2022) [11] Proposals for energy- and quality-efficient approximate

multipliers are presented, based on novel approximation compressors. To minimise the

number of transistors, we generate the complemented partial products using NAND gates.

New approximation compressors are also built with different performance and accuracy

levels. As a result, three hybrid approximate multipliers that offer various hardware

efficiency and accuracy trade-offs are put forth. The suggested architectures are simulated

using the 7nm FinFET model, a contemporary technology, using HSPICE. Furthermore,

MATLAB is used to assess the approximation multipliers' performance in neural network

and image processing applications.

Immareddy et al. (2022)[12] Multiplication is one of the basic operations in all digital

systems. New challenges have emerged in the development of VLSI (Very Large-Scale

Integration) as a outcome of the digital systems assessment. In digital signal processing,

multipliers are typically utilised. These days, the advancements in technology are driving

up demand for this. Many different multiplier designs have been developed to increase its

speed. The numerous investigations that have been conducted since 2015 are examined in

this document. This article looks at studies that employ various multipliers. Prior to

comparing the adders, obtain the Ripple. A Carry Look Forward Adder is in the middle of

the spectrum and effectively balances the difficulties presented by time and space.

Multipliers came into focus after adders were created and assessed. Wallace Tree

Multiplier was first selected, followed by Parallel Multiplier. In the meantime, it was

found that the latency was greatly decreased by Wallace Tree applications that used Carry

Save Adders. Research manuscripts are compared and analysed using a variety of criteria

in this review. An overview of our current knowledge of these multipliers can be found in

this publication. In this comparative analysis, timeline plays a part.

 Ram et al. (2022)[13] This work provides a Han-Carlson adder and an FPGA

implementation of a modified Wallace multiplier. High-quality multipliers are essential

because they are the main components of microprocessing circuits and signal processing

boards. One way to create delay-efficient multipliers is to modify a suitable adder to

accommodate the addition of partial products. To improve the adder's features, like power

levels and area usability, the traditional Wallace tree multiplier must use the Han-Carlson

adder instead of the ripple carry adder. With the aid of the XILINX programme, the

enhanced Wallace multiplier is simulated and coded in Verilog HDL. Using the SPARTAN

3E FPGA kit, the multiplier's performance is confirmed.

 Toan et al. (2020)[14] demonstrates how to use recently proposed approximation logic

compressors at various accuracy levels to efficiently create approximate multipliers on

Field Programmable Gate Arrays (FPGAs). In comparison with the state-of-the-art works,

our approximate multiplier designs provide higher power-delay-area products (PDAP)

increases at comparable accuracies. Furthermore, our solutions outperform the Lookup

Table based multiplier intellectual properties available on an FPGA in terms of delay,

occupied area, and dynamic power dissipation. Specifically, we can achieve up to 7.1 x, 8.3

x, and 5.0 x PDAP increases with our proposed 8-, 16-, and 32-bit multipliers.

LIST OF LITERATURE REVIEW

Serial

No.

Year

Work

Remarks

1. 2022[

6]

How does Wallace tree methods

Work?

Implemented the Wallace tree method.

2. 2022[

7]

How edge detection is calculated and

detect in multiplier?

Implement an Approximate Multiplier with

Edge Detection Application.

3. 2023[

8]

Calculation of Power Of multiplier. Implemented the Power Efficient

Approximate Multipliers.

4. 2022[

9]

Make Wallace multiplier using less

number of logic resources.

Implemented the multiplier which requires

less logic resources but produces some error.

5. 2020[

10]

Different Bits implementation of

Multipliers.

Implements the different types of 4-bit and

8-bit multipliers.

6. 2022[

11]

Matrix Vector Importance. Implements the matrix vector multiplier.

7. 2022[

12]

Multiplier Works Implements the multiplier.

8.

2022

[13]

FGPA implementation.

FPGA implementation of Wallace multiplier

with the help of Han-Carlson adder.

9. 2020

[14]

Multi-Level Approximate Multiplier.

FPGA implementation of Multi Level

Approximate Multiplier.

CHAPTER 3

METHODOLOGY

In this project, various multipliers like Array, Wallace Tree, and Vedic multipliers are

designed. The implementation for 2×2, 4×4, 8×8,16×16 bits was done using Verilog

coding in VIVADO. The various parameters such as a number of slices, number of IOB,

and power were compared for different multipliers. The designs are optimized for higher

speed, less power, and fewer numbers of IOB & Slice which is the main requirement for

the Image / Signal processing. The designs were further implemented on the FPGAs

platform using the bitstream. The results of various multipliers like Vedic, Array, and

Wallace tree were compared based on different performance parameters and different bits.

We are moving on with the applications of the best multiplier among them.

Figure 3.1: - Methodology

ARRAY MULTIPLIER

 In the traditional array multiplier, the items are added via carry save addition. The

first row will either contain half adders or full adders based on the carry save

adding mechanism. Cin will be assumed to be zero if complete adders are used in

the first row of the partial products.

Figure 3.2: -Circuit Diagram of Array Multiplier

Figure 3.3: -SC of 2bits Array Multiplier

Figure 3.4: - Waveform of 2bits Array Multiplier

Figure 3.5: - SC of 4bits Array Multiplier

Figure 3.6: -Waveform of 4bits Array Multiplier

Figure 3.7: - SC of 8x8 Array Multiplier

Figure 3.8: - Waveform of 8x8Array Multiplier

Figure 3.9 SC of 16x16 Array Multiplier

Figure 3.10 Waveform of 16x16Array Multiplier

Table 3.1: Comparative table of device utilization Array Multiplier

The table shows the utilization of Array Multipplier for different-differnet bits.

VEDIC MULTIPLIER

The Urdhva Tiryakbhyam Sutra was utilised in this. In Urdhva Tiryakbyham

Sutra, "Vertically and Crosswise" is the actual meaning. This sutra is applicable to

all multiplication situations. The partial products and their total are computed

simultaneously using this method.

The proposed multipliers simulated 2*2, 4*4, 8*8, 16*16 Vedic Multiplier using

designed Half and Full Adder in Vivado.

Figure 3.11: - Circuit Diagram of Vedic Multiplier

Figure 3.12: -SC of 2bits Vedic Multiplier

Figure 3.13: - Waveform of 2bits Vedic Multiplier

Figure 3.14: -SC of 4bits Vedic Multiplier

Figure 3.15: - Waveform of 4bits Vedic Multiplier

Figure 3.16: -SC of 8bits Vedic Multiplier

Figure 3.17: - Waveform of 8bits Vedic Multiplier

Figure 3.18: -SC of 16x16 Vedic Multiplier

Figure 3.19: - Waveform of 16x16Vedic Multiplier

Table 3.2: Comparative table of device utilization Vedic Multiplier

The table shows the utilization of Vedic Multiplier for different-different bits.

WALLACE TREE MULTIPLIER

However, the Wallace multiplier is distinct from the array multiplier in that it adds

up all partial products. The Wallace tree multiplier has multiple stages where all

partial products are added.

Each level accounts for the addition of three rows in parallel, which expedites the

process. Any group that has less than three rows is kept the same and moves

directly on to the next addition step.

Figure 3.2: - WTM

Figure 3.21: -SC of 2bits WTM

 Figure 3.22: -Waveform of 2bits WTM

Figure 3.23: -SC of 4bits WTM

 Figure 3.24: - Waveform of 4bits WTM

Figure 3.25: - SC of 8bits WTM

Figure 3.26: -Waveform of 8bits WTM

Figure 3.27: - SC of 16bits WTM

Figure 3.28: -Waveform of 16x16 WTM

 Table 3.3: Comparative table of Utilization of Wallace Tree Multiplier

This table shows the utilization of WTM for different-different bits

In this study, we designed Three different Multipliers —array, Vedic, and Wallace

tree with varying bit sizes of 2x2, 4x4, 8x8, and 16x16. A comprehensive

comparison based on specific parameters (No. of slices, No. of LUTs, Power) was

conducted, leading to the determination that the Wallace tree multiplier

outperformed the alternative.

CHAPTER 4

IMPLEMENTATION OF WALLACE TREE MULTIPLIER

USING DIFFERENT LOGIC.

Further analysis was performed on the Wallace tree multiplier, considering four

distinct gate types—AOI, NAND, NOR, and OAI.

● Implementation WTM using AOI Logic: -

Figure 4.1: -SC of 4X4 WTM AOI Logic.

Figure 4.2: - Waveform of 4x4Wallace Tree Multiplier using AOI Logic.

● Implementation of WTM using NAND Logic: -

Figure 4.3: -SC of 4bits WTM using NAND Logic.

Figure 4.4: -Waveform of 4bits WTM using NAND Logic.

● Implementation of WTM using NOR Logic: -

Figure 4.5: -SC of 4bits WTM using NOR Logic.

Figure 4.6: -Waveform of 4bits WTM using NOR Logic

● Implementation of WTM using OAI Logic: -

Figure 4.7: -SC of 4bits WTM using OAI Logic.

Figure 4.8: -Waveform of 4bits WTM using OAI Logic.

Through meticulous evaluation, it was established that the NOR gate configuration

yielded the most optimal performance for the Wallace tree multiplier.

 Table 4.1: Comparative table of Utilization of WTM using

Different Logics.

This table shows that Wallace Tree using NOR Logic consumes the minimum power than

the other logics.

In this study, we designed WTM Using NOR, NAND, AOI and OAI Logic for 4-bit. A

comprehensive comparison based on specific parameters (No. of slices, No. of LUTs,

Power) was conducted, leading to the determination that the WTM using NOR logic

outperformed the alternative.

IMPLEMENTATION OF WTM USING NOR GATE ON FPGA

 It was established that the NOR gate configuration yielded the most optimal

performance for the Wallace tree multiplier and final generated bit stream will be

used to burn FPGA.

Figure 4.9: -: FPGA Implementation of 4bits Wallace Tree Multiplier using NOR Logic.

We took the input of the multiplier as 1111 * 1010 and the output for the same is

10010110.

Figure 4.10: FPGA Implementation of 4bits Wallace Tree Multiplier using NOR Logic.

 We took the input of the multiplier as 1110 * 1010 and the output for the same is

10001100.

CHAPTER -5

IMPLEMENTATION OF WALLACE TREE MULTIPLIER

USING NOR LOGIC.

Further analysis was performed on the Wallace tree multiplier, considering NOR

gate type— 4-bit,8-bit,16-bit and 32-bit

● Implementation ofWTM using NOR Logic for 4-bit:

.

Figure 5.1: - SC of 4bits WTM using NOR Logic

Figure 5.2: - Waveform of 4x4 WTM using NOR Logic.

● Implementation of WTM using NOR Logic for 8-bit: -

Figure 5.3: - SC of 8bits WTM using NOR Logic

Figure 5.4: - Waveform of 8bits WTM using NOR Logic.

● Implementation of WTM using NOR Logic for 16-bit: -

Figure 5.5: - SC of 16-bits WTM using NOR Logic

Figure 5.6: - Waveform of 16-bits WTM using NOR Logic.

● Implementation of WTM using NOR Logic for 32-bit: -

Figure 5.7: - SC of 32-bits WTM using NOR Logic

Figure 5.8: - Waveform of 32-bits WTM using NOR Logic.

 Table 5.1: Comparative table of Utilization of WTM using

NOR Logics for different bits.

 The table shows the utilization of WTM using NOR Logic for different-different bits.

In this study, we designed WTM using NOR logic varying bit sizes of 2x2, 4x4,

8x8, and 16x16. A comprehensive comparison based on specific parameters (No.

of slices, No. of LUTs, Power) was conducted.

CHAPTER -6

WALLACE TREE MULTIPLIER USING 4:2

COMPRESSORS

Because digital circuit complexity is increasing, power density and heat dissipation are

rising in today's (VLSI) world. The leakage current rises when the power density goes

high which causes a decline reliability and lifespan of an IC. Different computing aids are

used to conserve power and also help to enhance the speed of the circuit. Applications

such as image processing, and data mining where these multipliers are commonly used.

a) Half-Adder

Digital circuits are fundamentally constructed using half-adders. They are also used in the

process of updating arithmetic components as an optimization circuit. The precise and

accurate circuit diagram representation of the Half-adder is displayed in Figure 6.1.

Equations (6.1) and (6.2) are used to compute the final sum and carry for the

exact/precise Half-Adder, respectively.

 sum = (x1 ⊕ x2) (6.1)

 carry = (x1.x2) (6.2)

 Figure 6.1: - Diagram of Half-Adder.

Table 6.1: Truth Table of Half-Adder

A B S C

0 0 0 0

0 1 1 0

1 0 1 0

1 1 0 1

Figure 6.2: - SC of Half-Adder.

Figure 6.3: - Waveform of Half-Adder

Figure 6.4: - FPGA implementation of Half-Adder.

b) Full-Adder

The most basic compressor is the full-adder, sometimes referred to as the 3:2

compressor. It converts three inputs (A, B, Cin) into two outputs (sum, carry), as

shown in Figure 6.5. The 3:2 compressor's final Sum and Carry are determined by

applying Equations (6.3) and (6.4), respectively.

Sum = (A ⊕ B ⊕ Cin) (6.3)

Carry = (A. B) + (B. Cin) + (Cin. A) (6.4)

Figure 6.5: - Diagram of Full-Adder

Table 6.2: Truth Table of Full-Adder

A B Cin Sum Carry

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

Figure 6.6: - SC of Full-Adder.

Figure 6.7: - Waveform of Full-Adder.

Figure 6.8: -FPGA implementation of Full-Adder

c) 4:2 Compressor

In binary arithmetic, a 4:2 compressor is a digital circuit that lowers the quantity of

partial products in operations like multiplication. It streamlines the addition

process in intricate arithmetic circuits by compressing four input bits into two

output bits (a sum bit and a carry bit).

Figure 6.9: - Diagram of 4:2 Compressor

Table 6.3: Truth Table of 4:2 Compressor

 Figure 6.10: -SC of 4:2 Compressor

Figure 6.11: -Waveform of 4:2 Compressor

Figure 6.12: -FPGA Implementation of 4:2 Compressor

d) 4-bit Adder

A digital circuit that adds two 4-bit binary numbers is called a 4-bit adder. It is an

essential part of digital electronics, especially processors and arithmetic logic units

(ALUs). When binary addition is necessary in a variety of digital systems, such as

in:

• Processors' Arithmetic Logic Units (ALUs).

• Digital Signal Processing (DSPs).

• Simple digital measuring devices and calculators.

Figure 6.13: - Diagram of 4-bit Adder

TABLE6.4: - TRUTH TABLE OF 4-BIT ADDER

Figure 6.14: - SC of 4-bit Adder

Figure 6.15: - Waveform of 4-bit Adder

Figure 6.16: - FPGA implementation of 4-bit Adder

e) Proposed Wallace Tree Multiplier

Proposed Wallace Tree Multiplier consist of 4 Half-Adder, 2 4:2

compressor, 1 Full-Adder and 1 4-Bit Adder.

Figure 6.17: - Diagram of Proposed WTM

Figure 6.18: - SC of Proposed WTM

Figure 6.19: - Waveform of Proposed WTM

Figure 6.20: - FPGA implementation of Proposed WTM

Table 6.5: - Comparison of Different Parameters

The table shows that the Proposed WTM is best among the traditional WTM and WTM

using NOR Logic.

Conclusion and Future Work

We have studied the VIVADO and Simulink and studied how to use Xilinx

System Generator. We have successfully implemented the 2x2, 4x4, 8x8 and

16x16 bits with the help of Half-Adder, Full-Adder and Ripple Carry Adder. The

multiplier architecture i.e. Array, Vedic and Wallace Tree are simulated using

Vivado Design Suite. Synthesis and implementation are done using, ready-to-use

digital circuit development platform based on the Zed Board Field Programmable

Gate Array (FPGA). A comprehensive comparison based on specific parameters

was conducted, leading to the determination that the Wallace tree multiplier

outperformed the alternatives.

Also we performed the Wallace tree multiplier, considering four distinct gate

types—NAND, NOR, AOI, and IOA. Through meticulous evaluation, it was

established that the NOR gate configuration yielded the most optimal performance

for the Wallace tree multiplier.

Further we design the New Wallace Tree Multiplier using half-adder, full-adder,

4:2 compressor and 4-bit adder and it is founded that the Proposed Wallace Tree

multiplier is best among the Traditional Wallace Tree Multiplier and Wallace Tree

Multiplier using the Nor-Logic

In future we will implement and simulate multiplier and will used circuit in

different application.

 LIST OF PUBLICATION

References

[1] https://www.geeksforgeeks.org/vlsi-design-cycle/

[2] https://technobyte.org/multiplier-2-bit-3-bit-

digital/#:~:text=A%20multiplier%20is%20a%20combinational%20logic%20circuit%20tha

t, as%20a%20binary%20multiplier%20or%20a%20digital%20multiplier.

[3] P. Martha, N. Kajal, P. Kumari and R. Rahul, "An efficient way of implementing high

speed 4-Bit advanced multipliers in FPGA," 2018 2nd International Conference on

Electronics, Materials Engineering & Nano-Technology (IEMENTech), Kolkata, India,

2018, pp. 1-5, doi: 10.1109/IEMENTECH.2018.8465375.

[4] https://www.slideshare.net/sabihasulthana9279/multipliers-in-vlsi

[5] https://www.quora.com/What-is-meant-by-FPGA-and-which-language-is-use-for-it

[6] U. A. Kumar, S. K. Chatterjee and S. E. Ahmed, "Low-Power Compressor-Based

Approximate Multipliers With Error Correcting Module," in IEEE Embedded

Systems Letters, vol. 14, no. 2, pp. 59-62, June 2022, doi:

10.1109/LES.2021.3113005.

[7] K. G. Hemamithra, S. Lakshmi Priya, K. Lakshmirajan, R. Mohanrai and S. R. Ramesh,

"FPGA Implementation of Power Efficient Approximate Multipliers," 2018 3rd IEEE

International Conference on Recent Trends in Electronics, Information & Communication

Technology (RTEICT), Bangalore, India, 2018, pp. 1281-1285, doi:

10.1109/RTEICT42901.2018.9012325.

[8] F. Sabetzadeh, M. H. Moaiyeri and M. Ahmadinejad, "An Ultra-Efficient

Approximate Multiplier With Error Compensation for Error-Resilient

Applications," in IEEE Transactions on Circuits and Systems II: Express Briefs,

vol. 70, no. 2, pp. 776-780, Feb. 2023, doi: 10.1109/TCSII.2022.3215065.

[9] A. G. M. Strollo, E. Napoli, D. De Caro, N. Petra, G. Saggese and G. Di Meo,

"Approximate Multipliers Using Static Segmentation: Error Analysis and Improvements,"

in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 69, no. 6, pp. 2449-

2462, June 2022, doi: 10.1109/TCSI.2022.3152921.

[10] I. Sayahi, M. Machhout and R. Tourki, "FPGA implementation of matrix-vector

multiplication using Xilinx System Generator," 2018 International Conference on

Advanced Systems and Electric Technologies (IC_ASET), Hammamet, Tunisia, 2018, pp.

290-295, doi: 10.1109/ASET.2018.8379873.

[11] M. Ahmadinejad and M. H. Moaiyeri, "Energy- and Quality-Efficient Approximate

Multipliers for Neural Network and Image Processing Applications," in IEEE Transactions

on Emerging Topics in Computing, vol. 10, no. 2, pp. 1105-1116, 1 April-June 2022, doi:

http://www.geeksforgeeks.org/vlsi-design-cycle/
http://www.slideshare.net/sabihasulthana9279/multipliers-in-vlsi
http://www.quora.com/What-is-meant-by-FPGA-and-which-language-is-use-for-it

10.1109/TETC.2021.3072666.

[12] https://doi.org/10.1007/978-981-16-8550-7

[13] Ram, G.C., Subbarao, M.V., Kumar, D.G., Terlapu, S.K. (2022). FPGA Implementation of

16-Bit Wallace Multiplier Using HCA. In: Chakravarthy, V.V.S.S.S., Flores-Fuentes, W.,

Bhateja, V., Biswal, B. (eds) Advances in Micro-Electronics, Embedded Systems and IoT.

Lecture Notes in Electrical Engineering, vol 838. Springer, Singapore.

[14] N. Van Toan and J. -G. Lee, "FPGA-Based Multi-Level Approximate Multipliers for High

Performance Error-Resilient Applications," in IEEE Access, vol. 8, pp. 25481-25497, 2020,

doi: 10.1109/ACCESS.2020.2970968

https://doi.org/10.1007/978-981-16-8550-7

