

I
¥

L

oY

DATA FUSION IN WIRELESS SENSORS
NETWORK

Project Report submitted in partial fulfillment of the
requirement for the degree of

Bachelor of Technology
in
COMPUTER SCIENCE & ENGINEERING

Under the Supervision of

DR. YASHWANT SINGH
By
ANKUR NADDA (091028)
SAHIL GUPTA (091263)

to

L)

JAYPEE UNIVERSITY 2F
NFORMATICN TECHNOLOGY

! :
' Jaypee University of Information and Technology

! | Waknaghat, Solan — 173234, Himachal Pradesh

Resours

—

ACKNOWLEDGEMENTS

We would like to show our greatest appreciation to Dr. Yashwant Singh, our
esteemed project guide and teacher. Even saying thank you will not be enough for his
tremendous support and help. We feel motivated and encouraged every time we
attend his meeting. Without his encouragement and guidance this project would not
have materialized.

The guidance and support received from all the members who contributed and who
are contributing to this project was vital for the success of the project. We are grateful
for their constant support and help.

We would also like to thank our project coordinator Dr Nitin for all the facilities

provided to us for the working of this project and also the lab coordinators for the

Ao

S
Dated: | | [’5} !} Ankur Nadda and S%I(Cup{

environment provided to us.

i

TABLE OF CONTENT

i
13
5
E""
i'

S. No. Topic Fige 0.
1. Introduction 1
1.1 Introduction 1
152 Problem Statement 3
1.3 Objectives 2
1.4 Methodology 3
1.5 Organization of Report 4
1.5.1 Literature Survey 4
1851 Algorithms &Architecture 4
1.5.3 GPS Locator Application 4
1.5.4 Simulation and Results 4
2% Literature Survey 5
2.1 Fundamentals 5
25151 Terms 5
28152, Some Limitations 7
2.2 Classification of Data Fusion 8
2:2:1 Classification Based on Relationship 8
Among the Sources
2422 Classification Based on Level of 0
Abstraction
2:2:3 Classification Based on Input and Output 10
2:3 Methods, Techniques and Algorithms 11
2:3:1 Inference 11
2.3.2 Feature Maps 12
2234 Aggregation 13
234 Data Fusion Methods 14
2.4 Framework 15
24.1 JDL Process Model 16
24.2 Thomopolus Architecture 18
243 Multisensor Integration 19
244 Waterfall Model 21
2.5 Issues In Data Fusion Models 22
2.6 Identification 23
3, Algorithm and Architecture 26
3.1 Tree Aggregation Model 26
0.2 Kalman Filter 33
o | A Simple Case 28
3:2.2 Discrete Kalman Filter 31
3:2:3 Properties and Remarks 35
3.3 Bayesian Algorithm 35
3:3.1 Introduction 35
34 Elementary Rules 39
3.5 Marginalization Principle 40
3.6 - Probability Density 43

v

3.7

4.1
4.2
4.3
4.4

i
B
|

5.1

52
5.2.1

5.3

ELSTATI T

5.5

5.6

57
5.7.1
572

SR R TR

TR BRI S MR

Single Sensor Tracking

Android GPS Locator
Introduction

Starting the Project
Run DDMS

Retrieve Location

Simulation and Results
Introduction

Network Simulating Motivation
Requirement For Simulators
Network Model

Network Simulator NS-2
Implementation and Code
Event Scheduler

NS Simulation

Source Code

Terms

Conclusion & Future Scope

References

45

48
48
49
56
57

58
58
59
59
61
62
64
66
67
67
74

75

76

- LIST OF FIGURES

S. No. Title Page No.
1. Fusion Terms 7
2, Types of information fusion based 8
on the relationship among the sources
3 JDL Process Model 17
4 Thomopoulos’s Data Fusion architecture 20
5. Luo and Kay's architecture 20
6. “Waterfall Model 21
7 The Model 27
8. Two biasless estimators 29
9. Different Values in Scalar Case 30
10. The Model 34
11, Bayesian Technigues 37
12. The Start 49
13. AVD Manager 54
14. Run Configuration - 55
15. Run DDMS 56
16. Emulator Screen 56
17. Location Retrieval 57
18. NS-2 Simulator 63
2 19. Snapshot 1 65
: LIST OF TABLES
: S. No. Title Page No.
f 1. Characteristics of Data Fusion Levels 20
2. Data Fusion in terms of input/output provided 22

v
B L e L

FrrnrraaTy

Vi

]
4
4

S R =1

R 4 PR

b i

ABSTRACT

This project reviews the potential benefits that can be obtained by the
implementation of data fusion in a multi-sensor environment. A thorough review of
the commonly used data fusion frameworks is presented together with important
factors that need to be considered during the development of an effective data fusion
problem-solving strategy. A system-based approach is defined for the application of
data fusion systems within engineering. Kalman filtering techniques and algorithms
have been studied thoroughly along with Bayesian probabilistic techniques being used
for effective data predictions. We have studied various network simulators, and NS-2
has been selected as the best appropriate simulation environment for this project. The
scope of this project is not only limited to the simulation of small scale network but
can also be used for large size networks using Tree Aggregation Model and Kalman

filtering techniques.

vii

CHAPTER 1- INTRODUCTION

1.1 Introduction

A Wireless Sensor Network (WSN) is a special type of ad hoc network composed of a
Jarge number of nodes equipped with different sensor devices. This network is
supported by technological advances in low power wireless communications along
with silicon integration of various functionalities such as sensing, communication, and
processing. WSNs are emerging as an important computer class based on a new
computing platform and networking structure that will enable novel applications that
are related to different areas such as environmental monitoring, industrial and
manufacturing automation, health-care, and military. Commonly, wireless sensor
networks have strong constraints regarding power resources and computational
capacity.

A WSN may be designed with different objectives. It may be designed to
gather and process data from the environment in order to have a better understanding
of the behavior of the monitored entity. It may also be designed to monitor an
environment for the occurrence of a set of possible events, so that the proper action
may be taken whenever necessary. A fundamental issue in WSNs is the way the
collected data is processed. In this context, information fusion arises as a discipline
that is concerned with how data gathered by sensors can be processed to increase the
relevance of such a mass of data. In a nutshell, information fusion can be defined as
the combination of multiple sources to obtain improved information (cheaper, greater
quality, or greater relevance).

1. Information fusion is commonly used in detection and classification tasks in
different application domains, such as robotics and military applications.
Lately, these mechanisms have been used in new applications such as
intrusion detection and Denial of Service (DoS) detection Within the WSN
domain, simple aggregation techniques (e.g., maximum, minimum, and
average) have been used to reduce the overall data traffic to save energy.
Additionally, information fusion techniques have been applied to WSNs to
improve location estimates of sensor nodes, detect routing failures [Nakamura
et al. 2005b], and collect link statistics for routing protocols [Woo et al. 2003].

Given the importance of information fusion for WSNs, this work surveys the

state of-the-art related to information fusion and how it has been used in

WSNs and sensor based systems in general. This background is presented in

the following structure.

Data fusion arises as a discipline that is concerned with how data gathered by
sensors can be processed to increase the relevance of such a mass of data. Data fusion
is combination of data from multiple sensors, and related information provided by
associated databases, to achieve improved accuracy and more specific inferences than
could be achieved by the use of a single sensor alone. Data fusion has established
itself as an independent research area over the last decades, but a general formal
theoretical framework to describe data fusion systems is still missing. One reason for
this is the huge number of disparate research areas that utilize and illustrate some
form of data fusion in their context of theory. For example, the concept of data or
feature fusion, which forms together with classifier and decision fusion the three main
divisions of fusion levels, initiélly occurred in multi-sensor processing. By now
several other research fields found its application useful. Besides the more classical
data fusion approaches in statistics, control, robotics, computer vision, geosciences
and remote sensing, artificial intelligence, and digital image/signal processing, the
data retrieval community discovered some years ago its power in combining multiple
data sources.

Methods, techniques and algorithms used to fuse data can be classified based
on several criteria, such as the data abstraction level, purpose, parameters, type of data
and mathematical foundation. The classification presented is based on the method’s
purpose. According to this criterion, information fusion can be performed with
different objectives such as inference, estimation, classification, feature maps, abstract
sensors, aggregation and compression.

Simulation is an essential tool to study Wireless Sensor Networks due to the
unfeasibility of analysis and the difficulties of setting up real experiments. Ns or
Network Simulator is a discrete event simulator targeted at networking research. Ns

provides subsiantial support for simulation of TCP, routing, and multicast protocols

over wired and wireless (local and satellite) networks

1.2 Problem Statement

The task is to simulate wireless sensors on a simulator like Network
gimulator-2, from those simulated nodes collect some virtual data and which may be
redundant and simulate real time data collection and apply data fusion techniques and
algorithms for collection of optimal and correct data and use that data for future

predictions using probabilistic techniques.

1.3 Objectives

= Study of algorithms related to data fusion and information fusion.

= A data fusion node collects the results from multiple nodes. It fuses the
results with its own based decision criterion.

= [ntegrate uncertain information using multiple tree aggregation.

= Simulation of Network using Network Simulator 2.

= Use one of the techniques of Complementary Fusion and data fusion
models.

= Applying Probabilistic techniques and algorithms for future predictions
from old data.

= Make GPS locator android application

1.4 Methodology

The process wherein, sensors detect an event, and the data related to the event
is eventually fused at the sink via multiple levels of fusion en route,is called a " round”
of aggregation. In this project, we pi’opose a protocol that allows a node to determine
when to start and finish the fusion process during a round of aggregation in order to
ensure the desired trade-off between the achieved credibility and the incurred latency.
The rest of this project is organized as follows in sections. In section 1I, we describe
related work on data aggregation in sensor networks. In section III, we describe the
system model that we use in our simulation experiments. In section IV, we look at a

simple but unrealistic network to understand the impact of various parameters. We

Will describe the proposed protocol Is section V. Our simulation results will be

IR (R

presented in section VL All the sections will be implemented systemically during the

course of this project and the final results will be shown by the end of the term.

1.5 Organization of Report

Here we present the overview of contents and study of the report and its organisation

1.5.1 Literature Survey

In the literature survey, thorough study was done in relation to wireless sensors, its
applications in the real world, the fusion techniques and its advantages and some of
the detailed algorithms of implementation. The main topics being discussed are Data

fusion and related algorithms, the fusion models, the algorithms and simulation

techniques and predictions.

1.5.2 Algorithms and Architecture

In this part of the project report, we have given details about the architecture model
and algorithms. Kalman filtering is the major study of the project which is one of the
key techniques of Data Fusion and aggregation. Bayésian Inference and techniques if
another field of study being done in detail. The algorithm and the tree aggregation

model is the key aspect of the study.

1.5.3 The GPS Locator Application

In this part of the study, we have designed an application for android platform which
is a practical implementation of the wireless sensors networks and is used for finding
the location and position of sensor which we are interested in and its characteristics.

The application is useful in fault assessment and prediction.

1.5.4 Simulation and Results
Here-we-are simulating a network on a simulator known as Network Simulator 2 on

linux based environment. The simulation is the direct implementation of the Tree

Aggregation Model.

CHAPTER 2 LITERATURE SURVEY

2.1 Fundamentals
Several different terms (e.g. data fusion, sensor fusion, and information

fusion) have been used to describe aspects of the fusion subject (including theories,
processes, Systems, frameworks, tools, and methods). Consequently, there is a
terminology confusion. This section discusses common terms and factors that

motivate and encourage the practical use of information fusion in WSNs.

2.1.1 Terms

The terminology related to systems, architectures, applications, methods, and
theories about the fusion of data from multiple sources is not unified. Different terms
have been adopted, usually associated with specific aspects that characterize the
fusion. For example, Sensor/Multisensor Fusion is commonly used to specify that
sensors provide the data being fused. Despite the philosophical issues about the
difference between data and information, the terms Data Fusion and Information
Fusion are usually accepted as overall terms. Data fusion as “the combination of data
from multiple sensors, and related information provided by associated databases, to
achieve improved accuracy and more specific inferences than could be achieved by
the use of a single sensor alone.” Here, data fusion is performed with an objective:
accuracy improvement. However this definition is restricted to data provided by
sensors; it does not foresee the use of data from a single source Multi sensor
Integration is another term used in robotics/computer vision and industrial
automation .Multi sensor integration “is the synergistic use of information provided
by multiple sensory devices to assist in the accomplishment of a task by a system; and
multi sensor fusion deals with the combination of different sources of sensory
information into one representational format during any stage in the integration
process.”Multi sensor integration is a broader term than multi sensor fusion. It makes
explicit how the fused data is used by the whole system to interact with the
environment. Information Fusion stating that “in the context of its usage in the
society, it encompasses the theory, techniques and tools created and applied to exploit

the synergy in the information acquired from multiple sources (sensor, databases,

information gathered by humans, etc.) in such a way that the resulting decision or

g -

action is in some sense better (qualitatively or quantitatively, in terms of accuracy,

| robustness ,etc.) than would be possible if any of these sources were used individually

without such synergy exploitation.” Possibly, this is the broadest definition embracing

any type of source, knowledge, and resource used to fuse different pieces of
information.

The term Data Aggregation has become popular in the wireless sensor
network community as a synonym for information fusion . Data aggregation
comprises the collection of raw data from pervasive data sources, the flexible,
programmable composition of the raw data into less voluminous refined data, and the
timely delivery of the refined data to data consumers.” By using ‘refined data’,
accuracy improvement is suggested. However, as van Renesse [2003] defines,
“aggregation is the ability to summarize,” which means that the amount of data is
reduced. For instance, by means of summarization functions, such as maximum and
average, the volume of data being manipulated is reduced. However, for applications
that require original and accurate measurements, such a summarization may represent
an accuracy loss . In fact, although many applications might be interested only in
summarized data, we cannot always assert whether or not the summarized data is
more accurate than the original data-set. For this reason, the use of data aggregation as
an overall term should be avoided because it also refers to one instance of information
fusion: summarization. Figure depicts the relationship among the concepts of
multisensor/sensor fusion, multisensor integration, data aggregation, data fusion, and
information fusion. Here, we understand that both terms, data fusion and information
fusion, can be used with the same meaning. Multisensor/sensor fusion is the subset
that operates with sensory sources. Data aggregation defines another subset of
information fusion that aims to reduce the data volume (typically, summarization),
which can manipulate any type of data/information, including sensory data. On the
other hand, multisensor integration is a slightly different term in the sense that it
applies information fusion to make inferences using sensory devices and associated
information (e.g., from database systems)to interact with the environment. Thus,
multisensor/sensor fusion is fully contained in the intersection of multisensor
integration and information/data fusion.

Here, we chose to use information fusion as the overall term so that sensor and
multisensor fusion can be considered as the subset of data fusion that handles data

acquired by sensory devices.

Multisensor Integration

Sensor
Fusion

Data
""" Aggregation

Information/Data Fusion

Fig 1: Fusion Terms

2.1.2 Some Limitations
Data fusion should be considered a critical step in designing a wireless sensor

network. The reason is that data fusion can be used to extend the network lifetime and
is commonly used to fulfil application objectives, such as target tracking, event
detection, and decision making. Hence, blundering data fusion may result in waste of
resources and misleading assessments. Therefore, we must be aware of possible
limitations of information fusion to avoid blundering situations. Because of resource
rationalization needs of WSNs, data processing is commonly implemented as in-
network algorithms . Hence, whenever possible, data fusion should be performed in a
distributed (in-network) fashion to extend the network lifetime. None the less, we
must be aware of the limitations of distributed implementations of data fusion. In the
early 1980s, some argued that, regarding the communication load, a centralized fusion
system may outperform a distributed one. The reason is that centralized fusion has a
global knowledge in the sense that all measured data is available, whereas distributed
fusion is incremental and localized since it fuses measurements provided by a set of

neighbour nodes and the result might be further fused by intermediate nodes until a

+
| Fippemar s vaan pr o hamer saresypiec 5oz

sink node is reached. Such a drawback of decentralized fusion might often be present
in WSNs wherein, due to resource limitations, distributed and localized algorithms are
preferable to centralized ones. In addition, the lossy nature of wireless communication
challenges information fusion because losses mean that input data may not be
completely available. Another issue regarding information fusion is that, intuitively,
one might believe that in fusion processes, the more data the better, since the

additional data should add knowledge (e.g., to support decisions or filter embedded

noise).

2.2 Classification of Data Fusion
Information fusion can be categorized based on several aspects. Relationships

among the input data may be used to segregate information fusion into classes (e.g.,
cooperative, redundant, and complementary data). Also, the abstraction level of the
manipulated data during the fusion process (measurement, signal, feature, decision)
can be used to distinguish among fusion processes. Another common classification
consists in making explicit the abstraction level of the input and output of a fusion

process. These common classifications of information fusion are explored in this

section,
FUSED
@ry INFORMATION
®
COMPLEMENTARY REDUNDANT COOPERATIVE INFORMATION
FUSION FUSION FUSION FUSION
SOURCES
a’ b b c ¢
A B i INFORMATION

Fig. 2. Types of information fusion based on the relationship among the sources

2.2.1 Classification Based on Relationship Among the Sources

i

e e 2 R

Complementary. When information provided by the sources represents different
portions of a broader scene, information fusion can be applied to obtain a piece of
information that is more complete (broader). In Figure 2, sources S1 and S2 provide
different pieces of information, a and b, respectively, that are fused to achieve a
broader information, denoted by (a+b), composed of non redundant pieces a and b
that refer to different parts of the environment (e.g., temperature of west and east
sides of the monitored area).

Redundant. If two or more independent sources provide the same piece of
information, these pieces can be fused to increase the associated confidence. Sources
$2 and 83in Figure 2 provide the same information, b, which is fused to obtain more
accurate information, (b).

Cooperative. Two independent sources are cooperative when the information
provided by them is fused into new information (usually more complex than the
original data)that, from the application perspective, better represents the reaiity.
Sources $4 and S5,in Figure 2, provide different information, ¢ and c_, that are fused
into (c), which better describes the scene compared to ¢ and ¢_ individually.
Complementary fusion searches for completeness by compounding new information
from different pieces. An example of complementary fusion consists in fusing data
from sensor nodes (e.g., a sample from the sensor field) into a feature map that
describes the whole sensor field, hence broader information.

Redundant fusion might be used to increase the reliability, accuracy, and confidence
of the information. In WSNs, redundant fusion can provide high quality information

and prevent sensor nodes from transmitting redundant information.

2.2.2 Classification Based on Levels of Abstraction

Luo et al. [2002] use four levels of abstraction to classify information fusion:
signal, pixel, feature, and symbol. Signal level fusion deals with single or
multidimensional signals from sensors. It can be used in real-time applications or as
an intermediate step for further fusions. Pixel level fusion operafes on images and can
be used to enhance image-processing tasks. Feature level fusion deals with features or
attributcs“extracted from signals or images, such as shape and speed. In symbol level
fusion, information is a symbol that represents a decision, and it is also referred to as

decision level. Typically, the feature and symbol fusions are used in object

9

"
E
it
=
B
3

recognition tasks. Such a classification presents some drawbacks and is not suitable
for all information fusion applications. First, both signals and images are considered
raw data usually provided by sensors, SO they might be included in the same class.
Second, raw data may not be only from sensors, since information fusion systems
might also fuse data provided by databases or human interaction. Third, it suggests
that a fusion process cannot deal with all levels simultaneously. In fact, information
fusion deals with three levels of data abstraction: measurement, feature, and decision.
Thus, according to the

abstraction level of the manipulated data, information fusion can be classified into
four categories:

Low-Level Fusion. Also referred to as signal (measurement) level fusion. Raw data
are provided as inputs, combined into new piece of data that is more accurate
(reduced noise) than the individual inputs.

Medium-Level Fusion. Attributes or features of an entity (e.g., shape, texture,
position)are fused to obtain a feature map that may be used for other tasks (e.g.,
segmentation or detection of an object). This type of fusion is also known as
feature/attribute level fusion. Examples of this type

of information fusion include estimation of fields or feature maps [Nowak et al. 2004;
Singh et al. 2006] and energy maps (see Section 4.3 for a feature map description).
High-Level Fusion. Also known as symbol or decision level fusion. It takes decisions
or symbolic representations as input and combines them to obtain a more confident
and/or a global decision. An example of high-level fusion is the Bayesian approach
for binary events.

Multilevel Fusion. When the fusion process encompasses data of different abstraction
levels—when both input and output of fusion can be of any level (e.g., a measurement

is fused with a feature to provide a decision)—multilevel fusion takes place.

2.2.3 Classification Based on Input and Output

Another well-known classification that considers the abstraction level is
provided by Dasarathy [1997], in which information fusion processes are categorized
based on the abstraction level of the input and output information. Dasarathy
identifies five categories:

Data In—-Data Out (DAI-DAQ). In this class, information fusion deals with raw data

10

el — —

p—

and the result is also raw data, possibly more accurate or reliable.
Data In—Feature Out (DAI-FEQ). Information fusion uses raw data from sources to
extract features or attributes that describe an entity. Here, “entity” means any object,
situation, or world abstraction.

Feature In-Feature Out (FEI-FEQ). FEI-FEQ fusion works on a set of features to

E
;
?_:

improve/refine a feature, or extract new ones.

Feature In-Decision Out (FEI-DEO). In this class, information fusion takes a set of
features of an entity generating a symbolic representation or a decision.

Decision In-Decision Out (DEI-DEO) Decisions can be fused in order to obtain new

decisions or give emphasis on previous ones.

2.3 Method, Techniques and Algorithms

2.3.1 Inference

Inference methods are often applied in decision fusion. In this case, a decision
is taken based on the knowledge of the perceived situation. Here, inference refers to
the transition from one likely true proposition to another, whose truth is believed to
result for the previous one. Classical inference methods are based on Bayesian ‘
inference.
Bayesian Inference. Information fusion based on Bayesian Inference offers a
formalism to combine evidence according to rules of probability theory. The
uncertainty is represented in terms of conditional probabilities describing the belief,
and it can assume values in the [0, 1] interval, where 0 is absolute disbelief and 1 is
absolute belief. Bayesian inference is based on the rather old Bayes’ rule [Bayes
1763], which states that:

Pr(Y1X)=Pr(X 1Y) Pr(Y)/Pr(X)

where the posterior probability Pr(Y | X) represents the belief of hypothesis ¥ given
the information X . This probability is obtained by multiplying Pr(Y), the prior
probability of the hypothesis Y, by Pr(X | Y), the probability of receiving X , given
that ¥ is true; Pr(X) can be treated as a normalizing constant. The main issue
regarding Bayesian Inference is that the probabilities Pr(X) and Pr(X | ¥) have to be
estimated or guessed beforehand since they are unknown.
Pan et al. [1998] propose the use of neural networks to estimate conditional

probabilities to feed a Bayesian Inference module for decision-making. Sam et al.

Il

.

b T RN NG

o s g e O

[2001]use Bayesian Inference to decide whether or not a system’s voltage is stable by
fusing three stability indicators of a small power system. Cou’e et al. [2002] use
Bayesian programming, a general approach based on an implementation of Bayesian
theory, to fuse data from different sensors (e.g., laser, radar, and video) to achieve
better accuracy and robustness of the information required for high-level driving
agsistance. Typical usage for Bayesian Inference includes robotic map building
Within the WSNs domain, Bayesian Inference has been used to solve the localization

problem. information from a mobile beacon and determine the most likely
geographical location(region) of each node, instead of finding a unique point for cach

node location.

2.3.2 Feature Maps

For some applications, such as guidance and resource management, it might
not be feasible to directly use raw sensory data. In such cases, features representing
aspects of the environment can be extracted and used by the application. Commonly,
diverse fusion methods of estimation and inference can be used to generate a feature
map. Here, we explore two special types of feature maps: occupancy grid and network
scans.
Occupancy Grid. Occupancy grids, also called occupancy maps or certainty grids,
define a multidimensional (2D or 3D) representation of the environment, describing
which areas are occupied by an object and/or which areas are free spaces. According
to Elfes [1989], an occupancy grid is “a multidimensional random field that
maintains stochastic estimates of the occupancy state of the cells”: the observed space
is divided into square or cubic cells and each cell contains a value indicating its
probability of being occupied. Usually, such probability is computed—based on
information provided by several sensors--using different methods, such as Bayesian
theory, Dempster-Shafer reasoning, and fuzzy set theory .Occupancy grids were
initially used to build an internal model of static environments
based on ultrasonic data , and since then several variations have been proposed.
Typical applications of occupancy grids include position estimation , robot perception
and navigation . There are also applications in computer graphics, such as simulation

of graphical creatures behaviour and collisions detection of volumetric objects.

12

Network Scans. Network Scans are defined as a sort of resource/activity map for
wireless sensor networks. Analogous to a weather map, the network scan depicts the
geographical distribution of resources or activity of a WSN. By considering a
resource of interest, instead of providing detailed information about each sensor node
in the network, these scans offer a summarized view of the resource distribution. The
network scan implemented by Zhao et al. [2002b] is called eScan and it retrieves
information about the residual energy in the network in a distributed in-network
fashion. The algorithm is quite simple. First, an aggregation tree is formed to
determine how the nodes will communicate. Second, each sensor computes its local
eScan and whenever the energy level drops significantly since the last report, the node
sends its eScan towards the sink. The eScans are aggregated whenever a node receives
two or more topologically

adjacent eScans that have the same or similar energy level. The aggregated eScan is a

e R Lo e SR NE R = i

polygon corresponding to a region, and the summarized residual energy of the nodes

within that region. Each energy level is assigned a gray level and the result is a 2D
image (map) where white regions have nodes with full charge and black regions have [
dead nodes. Although this algorithm makes unlikely assumptions for sensor networks,
such as a perfect MAC (Medium Access Control) layer with no loss or overhead due |
to contention or environment changes, the network scan poses an interesting fusion
method to present information about the network resources and activity. In the
particular case of eScan, it allows the identification of low energy regions, helping
designers decide where new sensors should be deployed. In addition, the network may

use eScans to reorganize itself, so nodes with low energy levels are spared.

2.3.3 Aggregation

Kulik et al. [2002] define data aggregation as a technique used to overcome
two problems: implosion and overlap. In the former, data sensed by one node is
duplicated in the network due to the data routing strategy (e.g., flooding). The overlap
problem happens when two different nodes disseminate the same data. This might
occur when the sensors are redundant—they sense the same property in the same
place. In both cases, redundancy, which occurs due to different reasons, might have
its negative impact(e.g., waste of energy and bandwidth) reduced by data aggregation

and information fusion. Aggregation techniques are the common summarization

13

T ————

e biﬁ}

functions used by query languages (e.g., SQL) to retrieve summarized data in
database systems. The use of data aggregation in WSN sand its impact on energy
consumption is the subject for further research. Other aggregation functions can be
identified in WSNs, which are suppression and packaging . The former function
simply suppresses redundant data by discarding duplicates. For example, if a node
senses the temperature 45°C and receives the same observation from a neighbour,
then only one packet containing a 45°C observation will be forwarded. The second
aggregation function groups several observations in one single packet. The objective
of this strategy is to avoid the overhead of the MAC protocol when sending several
packets. However, packaging may not be classified as a fusion technique because it
does not exploit the synergy among the data. Packaging is actually a solution to
optimize the usage of a communication protocol, which is independent of any fusion

method

2.3.4 Data Fusion Models

To ensure that systems are operating within defined conditions, measurements
are taken which, when analysed, enable decisions to be made based on condition.
These measurements can produce data that are either very similar, often from the
same sensor, or completely different from different techniques. Experienced engineers
and analysts have traditionally undertaken the analysis of this data. However, with the
increased computer power and development of new and novel detection systems, the
data produced needs to be handled in a robust and logical manner. As such computer
systems have been developed that are capable of extracting meaningful information
from the recorded data. The integration of data, recorded from a multiple sensor
system, together with knowledge, is known as data fusion.
There are numerous advantages in using multiple sensor systems including:

» Higher signal-to-noise ratio;
* Increased robustness and reliability in the evident of sensor failure;
® [nformation regarding independent features in the system can be obtained,;

= Extended parameter coverage, rendering a more complete picture of the

system;

B i T D T

s Increased dimensionality of the measurement;
= Improved resolution;
s Reduced uncertainty;

s [ncreased confidence;
The actual combination of sensors is dependent upon the requirements of the system.
However, a number of things need to be considered when defining the type of fusion
algorithm used and level at which fusion will occur. These include:

s How are the sensors distributed ?
= What are the format, type and accuracy of the collected data?
= What is the nature of the sensors used?

= What is the resolution of the sensors used?

What is the computational capability at the sensors?

Data can be combined either as it arrives into the system or at a defined level within
the fusion process. The reliability of the data used within the fusion system will
depend on the sensors available and the methodology employed for the fusion of the
data. The selection of sensors as well as the number of sensors needed to increase the
accuracy of the information transferred depends on the problem at hand. Different
types of sensors can be used depending on the application and the output format
sought. Table 1 gives a brief overview of sensors typically used in data fusion.
Sensors are usually classified according to their physical nature. They are often based
on the electromagnetic spectrum, sound waves, touch, odour, or the absolute position

of the system.

2.4 Framework for the implementation of data system

A number of data fusion frameworks have been developed both within the

research and commercial environments. These frameworks have been used in

i
!
i

(!
-
i

B4 PR i - aecE T e I

numerous pr

ojects to aid the development of fusion systems by establishing the most

appropriate algorithm for the defined problem.

2.4.1 JDL Process Model

One of the most widely used frameworks and the one being used in this
project is the JDL Data Fusion Framework. The Joint Directors of Laboratories (JDL)
data fusion sub-panel within the US Department of Defence originally defined this
system in the early years of data fusion. This framework was developed to aid the
developments in military applications.

s Level 1, object refinement, attempts to locate and identify objects. For this
purpose a global picture of the situation is reported by fusing the attributes of
an object from multiple sources. The steps included at this stage are: Data
alignment, prediction of
entity’s attributes (i.e. position, speed, type of damage, alert status, etc.),

association of data to entities, and refinement of entity’s identity.

= Level 2, situation assessment, attempts to construct a picture from
incomplete information provided by level 1, that is, to relate the reconstructed

entity with an observed event (e.g. aircraft flying over hostile territory).

= Level 3, threat assessment, interprets the results from level 2 in terms of the
possible opportunities for operation. It analyses the advantages and

disadvantages of taking one course of action over another.

A process refinement, sometimes referred as Level 4, loops around these three levels
to monitor performance, identify potential sources of information enhancement, and
optimise allocation of sensors. Other ancillary support systems include a data
management system for storage and retrieval of pre-processed data and human-

computer interaction. The lay out of this model process is depicted in Figure 3.

16

Fusion Domain

Level 0 W(Level 1 wr Level 2 W(Level 3 w

Source Object Situation Threat
@\ Pre- procPSS|ng Refinement Refinement Refinement / A\
/]__ 1 1 1 Human
Information Bus Computer
Sources \J" t Interaction
\ Database Management System \)

\
./ -
Level 4 i
Process

Refinement
.

Fig 3 JDL Process Model

b]

;2 The hierarchical distribution of the JDL model allows for the different levels to be

& broken down into sub-levels. In this manner, level 1 could be further divided into four

* processes: Data alignment, data association, object estimation, and object identity. 1
= At the data alignment stage, the data is processed to attain a common spatial !

and time frame; I

* The data association could be further divided as association performed among '

“ data units of the same variable and between data units of different variables. |

At this stage the degree of proximity among the variables is measured,;

* Object estimation, on the other hand, could be sub-divided in terms of the
processing approach taken (sequential or batch), parameter identification and
estimate equations available, best-fit function criteria, and the optimisation of
best-fit function approach sought. At this stage the data fusion centre estimates
the object’s position, velocity, or attributes;

" The object identity stage could be subdivided into feature extraction, identity

- declaration, and combination of identity declarations. At this stage a prediction

of the object’s identity or classification is declared.

At each of these lowest sub-levels, the mapping of different types of techniques could
- be easily allocated, and selected according to the case at hand. Fusion can be
performed on raw data in the fusion centre (centralised process) or on pre-processed

locally fused data (decentralised process). A hybrid data fusion system, consisting of

17

5
&
Y
&
b
Ei
i
|

§
:
4
:
i
1
i
i

e integration of both raw and pre-processed data, could also be considered. The

th

combination of the first three JDL levels into a blackboard data structure has been
proposéd py Paradis[16]. This framework is further integrated with a process
refinement via fusion agents, which act as fusion centres.

JDL process model is being used throughout this project but still some other models
are being mentioned as those too. were studied before coming to the conclusion of

implementation of JDL process model.

2.4.2 Thomopolus Architecture
Thomopoulos posed an architecture for data fusion consisting of three
modules, each integrating data at different levels or modules to integrate the data,
namely:
» Signal level fusion, where data correlation takes place through learning due to

the lack of a mathematical model describing the phenomenon being measured.

= Evidence level fusion, where data is combined at different levels of inference
based on a statistical model and the assessment required by the user (e.g.

decision making or hypothesis testing).

» Dynamics level fusion, where the fusion of data is done with the aid of an

existing mathematical model

Depending upon the application, these levels of fusion can be implemented in
a sequential manner or interchangeably. If continuous health monitoring of a
machine is the objective, the combination of data could be done at the signal
level, whilst higher order fusion (e.g. evidence fusion) would need to be
applied if a wide range of decisions ought to be made from the signals. Figure
2 gives a summary of the architecture. Thomopoulos stressed the point that
any data fusion system should consider three essential criteria to achieve the

desired performance, these are:

" Robustness with respect to any a-priori uncertainty.

® Mbn tonicity with respect to the fused information

« Mon tonicity with respect to the costs involved

[n addition, factors such as the delay in the transmission of data, channel errors, and
other communication aspects, as well as the spatial/temporal co-alignment of the data

should also be taken into account in the data fusion system.

Signal
Level
Evidence
Sensors ‘::> Level : : Database

Dynamics 1
Level . {

REA T G T B ST S R e

Fig 4 Thomopoulos’s Data Fusion architecture

2.4.3 Multi sensor Integration Fusion Model

Luo and Kay[17] introduced a generic data fusion structure based on multi-sensor
integration, In this system, data from various sources was combined within embedded
fusion centres in a hierarchical manner. They made a clear distinction between multi-
sensor-integration-and multi-sensor fusion. The former refers to the use of multiple
sensor information to assist in a particular task, whilst the latter refers to any stage in
the integration process where there is an actual combination of the data. Figure 5
shows a diagram of Luo and Kay’s framework to represent multi-sensor integration
and fusion simultaneously. From this diagram, the data collected at the sensor level is

transferred (o the fusion centres, where the fusion process takes place, in a

SRR e SO b e, | o et B i e B4 TN

19

hierarchical and sequential manner. The entire framework shown in Figure 5 is a
i

rcpresentation of multi-sensor integration. A description of the measured phenomenon

is obtained after the outputs of the n sensors are processed, with the aid of the

information system whenever appropriate. The fusion process is facilitated with the
incorporation of an information system, containing relevant databases and libraries.
As the information is combined at the
different fusion centres, the level of representation needed is increased from the raw
data or signal level to more abstract symbolic representations of the data at the symbol

level. Table 1 shows a comparison of the different fusion levels classified by the

representation of information.

Level of representation
<, High
Information System T)
. Xy v A
I T
i , Symbol
iz & Fusion
Xl,:i e i
_ g A Feature
¢ Fusion)
12 I
ek W .
. ¥ | -
Fusion : Pixel
I
|
> 1 %
X / Xo X3 NN .
! Signal
Si S, S; Sy
Low
d

Fig 5 : Luo and Kay's architecture

Characteristics

Signal level

Pixel level

Feature level

Symbol level

Representation Low Low Medivm High

level of

information

Type of SELS01'Y Nuln-dimensional Muliple images | Features extracted Decision logic from
information signal from signalsamages | signals image
Model of sensory | Random variable Random process | Non-invariant form | Symbol with degree
information with noise across the pixel | of features of uncertainty

Table 1: Characteristics of data fusion level

20

2.4.4 Waterfall Model

Another example of hierarchical architecture commonly used by the data fusion
community, called the waterfall model. A representation of this model is shown in
figure 6. It can be seen from this figure that the flow of data operates from the data
jevel to the decision making level. The sensor system is continuously updated with
feedback information arriving from the decision-making module. The feedback
clement advises the multi-sensor system on re-calibration, re-configuration and data
gathering aspects.

There are three levels of representation in the waterfall model, as shown in Figure 6:

= At level 1, the raw data is properly transformed to provide the required
information about the environment. To achieve this task, models of the
sensors and, whencvgr possible, of the measured phenomena are necessary.

These models could be based on experimental analysis or on physical laws;

- = Level 2 is composed of feature extraction and fusion of these features. These /!
i i
i < . . i
. processes are done to obtain a symbolic level of inference about the data.
Their aim is to minimise the data content whilst maximising information ‘
delivered. The output of this level is a list of estimates with probabilities (and W
1|
i beliefs) associated with them; 4
;; * Level 3 relates objects to events. Possible routes of action are assembled
'r according to the information that has been gathered, the libraries and
& . ; .
databases available, and the human interaction.
i
), ¥ '
] ; i ;
[Interrogation. l—ul Decision making I—’
:
% Description of state Situation assessment] i
: ‘ Level 3
; Features Pattern processing
_ Processed b e octiaction i [Contrels J
I‘ ngﬂal = ;b— [t © EXlTaciion i e ey
? . Level 2
£ S1znal
H Level 1

Fig 6: Waterfall Model

21

.
R L = e

2.5 Issues In Data Fusion Models
Before a robust data fusion strategy can be legitimately submitted, there is a
need to underline some of the difficulties arising with the application of data fusion,
as well as other features that could be incorporated into the proposed model process.
Some of the difficulties arising in multi-sensor data fusion could be summarised as
follows:
= Diversity of sensors used: nature, synchronisation, location, and sensor

outputs.

» Diversity of data representation: image, spatial, statistical, and textual.

» Registration: the information refers to the same entity. There is a need to
check the consistency of the sensor measurements. This can be improved by

objectively eliminating fallacious data sets.

S o S AR

» Calibration of the sensors when errors in the system operation occur.

* Limitations in the operability of the sensors.

Mode Example
Data in-data out Fusion of multi-spectral data
Feature in-feature out Fusion of image and non-image data
Decision in-decision out When sensors are not compatible
Data m-feature out Shape extraction
;t_ C Feature in-decision out Object recognition
Data in-decision out Pattern recognition
Table 2: Data Fusion in terms of input/output provided

Some important architectural issues needed for the implementation of a process model
0

for data fusion are:

Network configuration of sensors: parallel or serial multi-sensor suite, or a
combination of the two. A parallel sensor arrangement is best suited for either
identical or dissimilar sensors. Serial sensor configurations are very practical

when one sensor delivers complementary information to the next.

s Level of representation of the information: Although a three level system is
commonly used, description of the fusion process based on input/output

modes, as shown in Table 3, can aid in level selection, and adds flexibility to

the JDL model[21].

s Feedback within the data fusion network of fused information with the aid of a
sensor management suite. The suite would coordinate the data, handle

information flow, and store the data in a database.

= The fusion of data can be done on either raw data (centralised process) or on
pre-processed locally fused data (decentralised process). Hybrid data fusion,
consisting of fusion of both raw and pre-processed data, can also be
considered. The centralised architecture is computationally intensive, but it
carries the advantage of developing a global view of the object from the
original data. On the other hand a decentralised architecture is less demanding
on computational capabilities at the cost of adding complexity to the data

" fusion process, since each sensor has a processing unit.

® Other issues are related to these difficulties arising in data fusion, and the
ability of the system to deal with them (i.e. sensor failures, corrupted data,

compatibility of sensors).

2.6 Identification

The identification process is aided, whenever appropriate, by the

application of data mining techniques. At this stage, inference about the

BT T T

TR P Y

T

L

system takes place, interrogating the various factors used in the data fusion

process.

What is the information gained by using data fusion? This would be the first
question one ought to ask before characterising a problem. It is important to
identify performance criteria to identify if the data fusion process is worth

doing.

Understand the physical-chemical phenomenon under study: collect
information available by fusing people’s knowledge about the problem and
propose a model and/or state equations describing the phenomenon. If a model

already exists, it should be used and understood.

Know all your data sources (e.g. sensors, databases, libraries). Especially,
identify how the data have been collected, measuring techniques used,
availability of processed data, and other issues regarding the fine tuning of the
data sources, such as calibration, effects of human interaction, and missing

data

Analyse the data in more depth before mathematical manipulation takes place.

Issues to consider include.
checking and adjusting for the synchronisation of separate data streams;

Identifying the true dimensionality, and trying ways to reduce it, without

reducing the information content;

Identifying whether the data is concentrated or sparse, and hence choosing

appropriate methods for pre-processing;
checking the repeatability of measurements, and likely error,

examining the built-in redundancy of the sensor system to ensure a robust data

collection process.

— A e AT T ¥

he dominant uncertainty in the system and whether this can be

Identify t
corrected or minimised. Uncertainty could take three forms:

stochastic noise which cannot be corrected per se, but which could be

compensated statistically;
systematic error which might be corrected by calibration or modelling;

unknowns, e.g. the transfer function between the real state and the measured

state in a non-invasive measurement, or simply a missing parameter.

Identify the level at which fusion must take place. Usually, data collected from
similar sensors can be combined at the lowest level of inference, while data
arriving from dissimilar sensors must be fused at higher levels. Fusion at a
feature level, or integration of knowledge for decision-making, always océurs

at a higher level.

25

CHAPTER 3: ALGORITHM AND
ARCHITECTURE

3.1 Tree Aggregation Model:

The ideas we propose in this project are independent of the fusion model used;

however, to simplify our analyses, we assume the data that a sensor generates only

represents whether or not an event occurs. A fused report would simply contain a

~ count of the number of reports that either confirm or dispute the occurrence of the

event. Following are the sequential steps being followed.

Typically, the sink or the parent node is distant from the area where the sensor nodes

reside.
The sensor data has to be ultimately relayed to the sink via multiple sensor node

relays or internal nodes. This facilitates the many to-one data transport. This is
_somewhat similar to multicast tree, the difference is that instead of data propagating
from the single source to the multicast group members, the data flows in the opposite
direction, i.e., from the members to the sink.
Data may be fused at various level points on the tree. The topology of this aggregation
tree determines the efficiency with which data may be fused, to a certain extent. Our
only requirement is that each sensor node is aware of its immediate neighbours;
specifically it should know its parent, i.e., the sensor node to which it sends data
(either fused or raw) and its children, sensors from whom it receives data.
Each non-leaf node or internal node is responsible for relaying (after possibly
performing fusion) data received from its children towards the sink node.
Aggregation tree is formed at the network initialization phase, and is dynamically re-
organized as sensors sleep, wake up or fail. We note that in the aggregation tree, we
refer to nodes as being at particular levels.
The leaves are at the lowest level (Level 0) whereas the sink is at the highest level.
- Furthermore, note that multiple trees may be formed for gathering information from
multiple (possibly geographically separate) sensor sets.

We assume a high density of sensor nodes and that multiple sensors detect each event.

The credibility of the final report at the sink is directly reflected by the total number

of reports that are fused.

Sy T

We restrict ourselves to the occurrence of a single event in this work. Multiple events
can be treated individually by using the same method. Note that by either including
query identifiers or by associating time-stamps and geographical position with events,

one could identify a particular event.

Levle 3—>= | A)= Sk

L] —= ;Bi PR
- 49
y,ﬁ' .i"
& 'sl
'l).
- -t:‘i - .“,‘_"
» 1 §]
Lova] o, i_ WD)
R | L
;

.v’. &

o
E 9 ,‘. " ¥ "%
Level —= E | IF |

Fig 7 : The model
3.2 The Kalman Filter

In his 1960 famous publication (“A new approach to linear filtering and
prediction problems”, Trans. ASME J. Basic Engineering., vol 82, March 1960, pp
34-45), Rudolf Kalman based the construction of the state estimation filter on
probability theory, and more specifically, on the properties of conditional Gaussian
random variables. The criterion he proposed to minimize is the state vector covariance
norm, yielding to the classical recursion : the new state estimate is deduced from the
previous estimation by addition of a correction term proportional to the prediction
error (or the innovation of the measured signal). If one tries to explain this remarkable
and elegant construction to students having not a sufficient background in probability
theory, there is an inherent difficulty (it is perhaps preferable to speak of a quite
paradoxal aspect): its understanding requires a good knowledge of conditional
gaussian random variables, while in the simple and efficient final formulation, the
corresponding intermediate steps are not visible. In this presentation, I give a first
construction based on probability theory in simple cases where Kalman approach is

qQuite easy to follow: assuming the linearity of the predictor and avoiding the

27

-
= 3

construction in the case of gaussian variables (this formulation based on linearity is

mentioned in Kalman’s paper, but not developed, probably because considered as

obvious by him).

The Kalman filter, also known as linear quadratic estimation (LQE), is an algorithm
that uses a series of measurements observed over time, containing noise (random
variations) and other inaccuracies, and produces estimates of unknown variables that
tend to be more precise than those based on a single measurement alone. (Source
Definition: Wikipedia)

Now Kalman filter is just optimal recursive data processing algorithm.

It processes all available measurements regardless of precision to estimate current
variables of interest.

For example to measure the velocity of any aircraflt we can use a radar system,
navigation system, pressure methods etc. whereas Kalman filter can be used to

combine all this data to have more precise information in hand.

3.2.1 A Simple Case: Estimation of scalar

In order to estimate a constant m, we do several measurements on it;

Let y be one of these measurements. yis a random variable with average m and
fluctuations or noise v.

y=m+vy

The zero mean noise v has variance 0\,2 ;

We will perform a recursive estimation of m: we suppose that we

have a first bias less estimation of m in the form of a random variable xo.

Xo=m+w

The zero mean noise v has variance o, .

We intend to compute a new estimate x1 with the following form :

X1=Xo+ k(y-xq)

The specific characte_ristics of this correction are

I. The new estimate is a linear function of the previous estimate and of the

measurement ;

28

: Th vious and the new estimators have no bias, or equivalently : if the measure y
2.The pre

i i stimate X¢ , this implies that it not necessary to
i dicted by the previous €s 0, p
is perfectly pre
correct this estimate
We note that the average of the new estimate is m: in replacing xo and y by their
e
values :
x1=m+w+k(m+v— m-w)
x1 —m+w+k(V-w)

E(x1)=m
We éompute the variance of the new estimator assuming that the noise v is

independent of Xo ; so the variance of x; is:

o,°=E(x; -m)’ =E[w+k(v-w)]*

mi

0003

0004

0003

0002

2001

0000

(] G 430 600 350

Fig 8 Two biasless estimators with variances cwzandavz; we look for a linear

combination of these estimators giving a new estimator with lowest variance.

Assuming the independence of the two noises v and w

(1 - ©)2E[w)? + K2E[v]?,

R (- 2 2 2 2
g1 = (1 — K)o’ + koo,
It is reasonable to look for the estimate x1 with lower variance and to compute the
esponding k. For-this purpose we write
Ry, ; 2y 2 . 19
01 = (1 =2k + 1?)0? + k202

(P2
2 2 ‘

e 2§ 1.2y..2 2
QIS0 — 2kol + k(02 + 02),

where we exhibit constant term and a quadratic function of k

29

2
R GO

.0_1
0’% = 0',3, 20 2,‘-7)]"'\/ Uw + (Tv + A (_(le + O-‘a;)'

Consequently,

.
)> U:L.'
V Oyt 0y

(23

o

4 2
a ac. : |
afzﬂ‘ﬁ,—*——ﬁ - .)‘f' —‘—;L“—O‘—Am
g o Vo2 4 o2

The minimum of c.z is obtained for

k L w

o) 2"
g2 + o3

The Value of this minimum is:

4

w

7) 2 a
0l =0 — .
2 | 2
O"UJ O.'L]

2 2
Oftos
1 l L
e 2 o2
0'1 Uw CT?_;

We note that when the variance oy’ of the previous estimate is very large, the new
= ~_estimate reduces to the new measure, and its variance is 5.2+ so, when initializing the
Kalman filter, it is reasonable to start from an uncertain initial state with large

Covariance if there is no prior knowledge on the initial variance of th estimator of m.

50

oo

Fig 9:
Evolution de o7 en fonction de o2, for different values of o7 in the scalar case,
3.2.2 Discrete Kalman Filter Algorithm

This section describes the filter in its original formulation (Kalman 1960) where the
measurements are measured and state estimated at discrete points in time. The
mathematical derivation will not be given here.

Dynamic systems (this is, systems which vary with time) are often represented in a
state-space model. :

State-space is a mathematical representation of a physical system as a set of inputs,
_ outputs and state variables related linearly.

The Kalman filter addresses the general problem of trying to estimate the state of a

discrete-time controlled process that is governed by the models shown in the next
slide

Discretﬂ ime Controlled Process Model

transition matrix control matrix

e, [x, =A-x, +B-u,, |

(process model) |
obsenvatonequaton [7 — H - x
(measurement model) k s k 1,\

exogenous control

; . input (known :

observation matrix ikl)

i

The Kalman Filter

The State evolution is given by:

X(t+1) = A(t)X(t) + b(t) +w(t),
whereX is the étate vector we intend to estimate, A(7) is the known square transition i
matrix of the process. The control b(7) is given and there is a zero mean process noise LI

w(f) with known covariance r "(1). This noise w(t) is independent of X(1).

The measured vector y(f) is given by the measurement equation : F
D= H ()X (t) + v(?). |

H(1) is the rectangular measurement matrix, v(f) is the zero mean measurement noise,
of known covariance r '(7). The noise v(¢) is independent of X(). The dimension of
w(t) is the dimension of x(¢) ; the dimension of v(¢) is the dimension of y(7).

The covariance of the state vector X(1) is:
P(t) = E[(X(t) - E[X(O)]) (XT(t) = E[XT(1)])]

- whereX is the transpose (possibly conjugate) of X.

The purpose of the Kalman filter is to deduce from y(f) the vector X(f) whose

covariance matrix has the lowest norm (its trace). The steps of the estimation are the

following:

_Prediction of the state X(r) -
Kiprye = A(D)X () + b(t);

Intermediate update of the state covariance matrix that takes into account the

evolution given by the process transition :

R/t — A(f)P(f)AT(ﬂ + r(t):

Computation of the optimal gain :
e |

; T 7 ; T, by v ,
= P1H D(H(t+ DPp HT(E4+ 1) +00(t + 1))
this optimal gain depends on the statistical characteristics of the measurement noise,
but it does not take the measures into account : it may be computed a priori.

Update of the state covariance matrix :

Pt+1) =Py
&P HT (¢ + D(H(E+ 1) Py H (+ 1) + 0¥ + 1) TH(t+ D) Py,

or, expressed as a function of K.,
R+ 1) = [K n B (8 4 I Faa e
Computation of the new estimate of the state :

X(t+ J-) == JX—i.+1/{, + I\-t-}-l[,‘?/(?‘ + J.) - H(?‘ -+ J.)_Y{_}.}_/t}.

Dimensions
Xr n x1 — State vector
u, [x1 — Input/control vector

Wi nx1 — Process noise vector

m x 1 — Observation vector
mx1 — Measurement noise vector
n x n — State transition matrix

nx ! — Input/control matrix

Hi m xn — Observation matrix
Qi nxn — Process noise covariance matrix
Rir m xm — Measurcment noise covariance matrix

Model and Algorithm
xp = Ak 1Xp-1+ Broaleo1 + Wi
Zr — Hyxp + vy

Start:

Initialization:

Xxg = o with error covariance Py

While new data exists, do

1. Model Forecast Step/Predictor:

x{ = Ap_1Xj_; + Bro1up_y
P{ = Ap 1 ProiAf 4+ Quy

Data Assimilation Step/Corrector:

x{ = x|+ Ki(z ~ Hix{)
Py = (- KyHy)P]

End while
End

Dynamies and Observation Model

Kalman Filter

Fig 10: The Model

34

3,2.3 Properties & Remarks

The filter produce the error covariance matrix Pk which is an important estimate for

the accuracy of the estimate.

The filter is optimal for Gaussian sequences only.

While the measurement noise covariance Rk is possible to be determined, the process
noise covariance matrix Qk has to be computed to adjust to different dynamics. We
are not able to directly observe the process we are estimating. Therefore a tuning on

Qk has to be performed for superior filter performances.

3,3 Bayesian Algorithm

3.3.1 Introduction

In probability theory and statistics bayes' theorem is a result that is of
importance in the mathematical manipulation of conditional probabilities. In
particular, with the bayesian interpretation of probability the theorem expresses how a
subjective degree of belief should rationally change to account for evidence: this is
bayesian inference which is fundamental to bayesian statistics .However, Bayes'
theorem has applications in a wide range of calculations involving probabilities.
Suppose someone told you they had a nice conversation with someone on the train.
Not knowing anything else about this conversation, the probability that they were
speaking to a woman is 50%. Now suppose they also told you that this person had
long hair. It is now more likely they were speaking to a woman, since women are
more likely to have long hair than men. Bayes' theorem can be used to calculate the
probability that the person is a woman.
To see how this is done, let W represent the event that the conversation was held with
4 woman, and L denote the event that the conversation was held with a long-haired
person. It can be assumed that women constitute half the population for this example.
50, not knowing anything else, the probability that W occurs is P(W) = 0.5.
Suppose it is also known that 75% of women have long hair, which we denote as
P(LIW) = 075 (read: the probability of event L given event W is 0.75). Likewise,
Suppose it is known that 25% of men have long hair, or P(LIM) = 0.25, where M is the

35

il

=~

-+ event of W, i.e., the ¢
complementﬂly ’ vent thay the conversation was held with a man
(assumiﬂg that every human is either g Man or g y,q)

man),

Qur goal is 0 calculate the probability thy the conversation was held with a woman
as held with an,

given the fact that the person had long hair, r]) ,
formula for Bayes' theorem, we have: O In our notation, P(WIL). Using the
3 P(L|W)P(W) B TR L ?
(W) P(W) 3 P(L|M)P(M)

where we have used the law of tot

al PIObab' 1 ed
1 | < e i

. . | i § hty he numeric answer can b Obtain

by SubS[ltUtlng the ¥ I int hiS {DIIII lla

o 075050 This yields
PIVID) = 575050+ 0.25 0355 = 0.5,

i.e., the probability that the conversatigp,
Was held wi - i
BB e tone hair, is 75%. with a woman, given that the
Another way to do this calculation ig »g fol
lows, Tnit;
- ally,

conversation is held with a woman as (g , o it is equally likely that the
. The prior

: odds on a woman versus a
man are 1:1. The respective chances thyy

4 man gpq

a : i 9
and 25%. It is three times more likely that 5 & Vit havelliaiif HEC-FR 4
Oman

3 il h ai
long hair. We say that the likelihood ratio or | as long hair than that a man has
I bayesfac

tor is 3:1. ' i
odds form, also known as Bayes' rule tells OF 18 1. Bayes' eotoim in
H h S

PO i 31 ¢ the b that the posterior odds that the person
] prior odds, |, times the likelihood ratio, 3:1). In a

formula:
P(W|L) _ P(W) P(LW)
P(M|L) — P(M) P(L|M)

Mathematically, Bayes' theorem giveg the relationgh
and B, P(A) and P(B), and the conditiong) prob 1
P(AIB) and P(BIA). In its most commgp form, it
P(A|p) = P P(A).

P(B)
The me

aning of this statement dependg on the i
Crpretation of prob

p between the probabilities of A

abilities of A given B and B given A,
is:

ability

i B e - S DS P .

" 3.3.2 Bayesian interpretation

In the bayesian interpretation probability measures a degree of belicf. Bayes'
theorem then links the degree of belief in a proposition before and after accounting for
evidence. For example, suppose somebody proposes that a biased coin is twice as
Iikely to land heads than tails. Degree of belief in this might initially be 50%. The
coin is then flipped a number of times to collect evidence. Belief may rise to 70% if
the evidence supports the proposition. _ _

For proposition A and evidence B, P(A), the prior, is the initial degree of belief in
A. P(AIB), the posterior, is the degree of belief having accounted for B. the quotient
P(BIA)P(B) represents the support B provides for A.
3.3.3 Frequents interpretation

In the frequents interpretation probability measures proportion of outcomes. For
example, suppose an experiment is performed many times. P(A) is the proportion of
outcomes with property A, and P(B) that with property B. P(BIA) is the proportion of
outcomes with property Bout of outcomes with property A, and P(AIB) the proportion
of those with A out of those with B.

The role of Bayes' theorem is best visualized with tree diagrams, as shown to the
right. The two diagrams partition the same outcomes by A and B in opposite
orders, to obtain the inverse probabilities. Bayes' theorem serves as the link between

these different partitionings.

37

o sl i —ay—r— >

i b b e s e AU et i i e s R e R i 3 e

i iblitin wtn e+ IlakbRi i 156 b

am PLa o B

__Pigpan
e
veat . POAD TRLBlaY
‘.‘_f O e PlA o B
P e PLA S B
FZ'!,AJV”“” PR T
e

PLEY TPOEAD

pnow ledpe of one T PON o ED
dlagram Is suffi clent

tio deduce the other

Use Bayes' Theors=m ko comwerk bebw een diagram s

Plx|B) PIB) = Planrn B) = PIBR|lax) Pl

Knove ledge of amy .l
3 Independent walues)
Is suffl clent ko deduce . P(B 1 A
all 24w alues _PagED L
e
s PR TPs EY _
w..---'P"ﬂJ T PIB o A
-

e I N = B
F ai“i Pl =

PCEY PO ED

T POCE 1 A

FIG 11:Bayesian Techniques

Events
For events A and B, provided that P(B) # 0,
: P(B|A) P(A)
H(A|B) = - ¢
(4]B) P(B)

In many applications, for instance in Bayesian inference, the event B is fixed in the

discussion, and we wish to consider the impact of its having been observed on our

belief in various possible events A. In such a situation the denominator of the last
expression, the probability of the given evidence B, is fixed; what we want to vary is
A. Bayes theorem then shows that the posterior probabilities are propotional to the

Numerator:

P(A|B) x P(A)- P(B|A)

38

I
i
I

(proportionality over A forgiven B).

For events
Bayes' theorem may be derived from the definition of conditional probability:

P(ANB
s~ P40,y 0,

P(AN B)

A=—pa

P(B LiE P(A) A0,

— P(ANB)=P(A A) P(A),

B) P(B) = P(B

_ P(B|A) P(A)
) =~ BB

In Bayesian probability theory, probabilities are defined for propositions which follow

—s P(A|B | if P(B) # 0.

the laws of Boolean algebra and can be either true or false, i.e., propositions which
satisfy the laws of ordinary logic. We shall denote the propositions by capital letters.
Three basic operations are defined in Boolean algebra: conjunction, disjunction and
negation. We shall denote A and B" by AB, A or B" by A+B and "“not A" by ~A

Natural language involves propositions whose truth value is ambiguous, ~"sky is blue"
for example. The definitions of words sky and blue are more or less ambiguous and
therefore it is possible to think that the truth value of ““sky is blue” is neither
completely true nor completely false but something in between. Fuzzy logic tries to
capture the ambiguity of propositions in natural language, but we shall consider only

unambiguously defined propositions.
- 3.4 Elementary rules of Bayesian probability theory

Sum rule:

P(A|B) + P(~A|B) =1

Product rule:
P(ABIC)=P(A1C)P(B | AC)
Here P(A | B) denotes the probability of A on the condition that B is true. These rules

correspond to the negation and conjunction operations of Boolean algebra. The

==

i s S it Wb s bkiiinks: criah ity Witk eacinni SO

LR

F

disjunction does not need a separate rule because it can be derived from negation and
conjunction:

A+B = ~(~A-B)

In fact, only one operation would suffice since other operations can be derived from
either NAND or NOR operation alone. The NAND operation, for instance, yields the
following rule, starting from which every other rule of Bayesian probability theory
can be derived:

P(~A + ~B|C) + P(A|CYP(BJAC) =1

Here P(A | B) denotes the probability of A on the condition that B is true. These rules
correspond to the negation and conjunction operations of Boolean algebra. The
disjunction does not need a separate rule because it can be derived from negation and
conjunction: | |

A+ B =RA~H)

In fact, only one operation would suffice since other operations can be derived from
either NAND or NOR operation alone. The NAND operation, for instance, yields the
following rule, starting from which every other rule of Bayesian probability theory

can be derived:

P(~A + ~B|C) + P(AJC)P(B|AC) =1

These rules fix the scale on which the degrees of belief are measured. Cox showed
that under very general requirements of consistency and compatibility with

common sense, the rules of calculus with beliefs have to be homomorphic with the

_ sum and product rule. This means that one can measure the degrees of beliefs on any

scale, but it is possible to transform the degrees of beliefs on the canonical scale of
probabilities such that the rules for negation and conjunction take the form of the sum

and product rule.

3.5 Marginalization principle

While Bayes' rule specifies how the learning system should update its beliefs

as new data arrives, the marginalization principle provides for the derivation of

“probabilities of new propositions given existing probabilities. This is useful for

40

ion and inferencel. Suppose the situation is the same as in the example with
ction

o' rule. but now the Jearning system tries to compute the probability of making
yes' rule,

oi;servaﬁon B before it has actually made the observation, that is, the learning system
tries to predict the new observation. Suppose Al and A2 are exhaustive and mutually
;;clusive propositions, in other words, exactly one of Ai is true while the rest are
false. As before, assume that Ai are possible explanations for B and the prior
assumptions and experience C are such that both P(B | AiC) and P(Ai | C) are

determined. The marginalization principle then states the following:

P@BIC) = Y P(AlC)P(B|AC) .

The probability of B thus depends on the prior probabilities P(Ai | C) of the different
explanations and the p_robability P(B | AiC)which each explanation gives to B. _
Notice also that P(B | C) appears in Bayes' rule, but the marginalization principle
shows that it can be computed from P(Ai | C) and P(B | AiC) alone. Therefore P(Ai |
C) and P(B | AiC) suffice for computing the posterior probability P(Ai | BC):
P(A|CYP(B|A;C) J
> P(A4;1C)P(B]A;C)

Beliefs alone are not sufficient for making decisions. Preferences are also needed.

P(4|BC) =

Decision theory points out how the beliefs and preferences should be combined when
making decisions. We shall denote by U(A) the utility of proposition A. By definition,
A is preferred over B if U(A) > U(B).

Decision theory can be summarized in a single rule:

U(4)= PIBAAB)+ PL-BA A,

We shall call it the rule of expected utility. In case of mutually exclusive and

exhaustive propositions , it generalizes into

U(4) =) P(Bi|A)U(AB)).

The significance of the rule becomes apparent if one considers A to be an action and

E Bi to be the possible consequences. Basically the rule indicates that the utility of A

|

‘ :

§ 41
}

5 ds on the stilities of the possible consequences of A, weighted by the
depends

p’robabilities of the consequences.

The sum and product rules of probability theory fix the scale by which degrees of
es

beliefs

are measured to be the canonical scale of probabilities. The rule of expected |

tility does the same for utilities, up to linear scaling and an additive constant. This is
u

becaus

o the beliefs have clear limits in absolute belief and disbelief while there are no

Tt

absolutely worst or best possible states of the world, or if there are, the difference of

their utility is probably infinitely greater than the difference between any other states

of the world.
We can now summarize what Bayesian probability theory and decision theory say

about learning, reasoning and action by giving a simple example. Suppose there are

2R

prior assumptions and experience I and possible explanations expressed as states of

e

the world Si. An observation D is made and an action Aj is chosen based on the belief

about what is the consequence D' of the action. We assume D' is one of several

possible observations D'k made after the action is chosen.

The prior assumptions and experience I are assumed to be such that it is possible to

determine the prior probability P(Si | I) of each state of the world; the probability P(D
| Sil) of observation D given the state of the world Si; the probabilities P(D'k | SiAjD

I) of different consequences of actions given the state of the world and prior

experience; and the utility of the consequences U(AjD'kD I). The action Aj is

assumed to have no effect on the state Si of the world and thus P(Si | AjD I) = P(Si | D
I). :L‘|I
First the states of the world have prior probabilities P(Si | I). After making the r

observation D, the probabilities change according to Bayes' rule: |

P(S;|DI) =

P(S5;|[1)P(D|S;I) :;;
S P(Sy[HP(D]SyI)’ ;

The belief in those states of the world which were able to predict the observation
-~ better than average increases, and vice versa. il
The next stage is to infer which consequences different actions have. According to the |

Marginalisation principle, bl

P(Di|4;D1) = 3" P(Si|A; DI)P(D}|SiA; DI).
s i

Notice that Aj was assumed to have no effect on Si and thus P(Si 1 AjD D) is equal to

1 the posterior probability P(Si | DI) which was computed in the first stage.
% The third stage of the example is choosing an action which has the greatest utility.
1

The utilities can be computed by the rule of expected utility:

U(A;DI) = Y P(D4|A; DIYU(A; DL DI).
k

The utilities of actions are based on the utilities of consequences and the probabilities
of consequences in light of the experience, which were computed in the previous
stage.

So far we have explicitly denoted that the probabilities are conditional to the prior

assumptions and experience 1. In most cases the context will make it clear which are

i
{
4
i
4
:
-
1
]
q
i
i

i
=2

the prior assumptions and usually 1 is left out. This means that probability statements
like P(Si) should be understood to mean P(Si | I) where Idenotes the assumptions

appropriate for the context.

- 7

A

ra

3.6 Probability density for real valued variables

In symbolic representations, the propositions are discrete and similar to simple

statements of natural language. When trying to learn models of the environment, the

[N
LY

problem with discrete propositions is that an unimaginable number of them is needed
for covering all the possible states of the world. The alternative is to build models
which have real valued variables. This allows one to manipulate a vast number of
elementary propositions by manipulating real valued functions, probability densities.
Following the usual Bayesian convention, probability density is denoted by a lower
case p and the ordinary probability by a capital P throughout this thesis. We also use

A‘ the convenient short hand notation where p(x | y) means the distribution of the belief
in the value of x given y. Alternative notation would be fXIY(x | y), which makes
explicit the fact that p(x I y) is not the same function as, for instance, p{u | v). In cases
where the ordinary probability needs to be distinguished from probability density, it is
called probability mass in analogy to physical mass and density.

| Bayes' rule looks exactly the same for probability densities as it does for probability |
mass. If a and b are real valued variables, Bayes' rule takes the following form:

_ plalC)p(blaC)
Palbl) ===00)

-
:

observations. For the real valuad latent variable models considered in this thesis, the
MAP estimators cannot be used as such. The models include products of unknown
quantities, weights and factors in this case, which means that by increasing the value
of one variable, the value of another variable can be decreased. This scaling does not
change the modetl but the density of the first variable decreases and the second value
increases. For each observation, a new set of values is estimated for factors which
means that typically the number of unknown values for factors is far greater than the
number of unknown values for weights. If the MAP estimates were used for factor
analysis models, the result would be that the weights of the model would grow and the
values of the factors shrink. The resulting low density of the weights would be
overwhelmed by the high density of the factors. In other words, MAP estimation
would find the values of the weights which give the highest density for the factors, but
would not say much about the posterior probability mass of the model because the
high density would be obtained at the cost of narrow posterior peaks of the factors.

In any case, the use of a point estimate will cause a phenomenon called over fitting,
Most people are familiar with the concept at least in the context of fitting polynomials
to observations. Using only the best model means being excessively confident that the
best fit is the comrect one. In the case of probability densities, for instance, all
probability mass is in models which have a poorer fit than the best model. This means
that the optimal prediction based on the full posterior density will necessarily be less

confident about the fit than a prediction based on only the ““best" model.

3.7 Single sensor tracking

As a first example of data fusion, we apply Bayes’ rule to tracking. Single sensor
tracking,also known as filtering, involves a combining of successive measurements of
the state of a system, and as such it can be thought of as a fusing of data from a single
sensor over time as opposed to sensor set, which we leave for. the next section.
Suppose then that a sensor is tracking a target, and makes observations of the target at
various intervals. Define the following terms:

xk = target state at “time” k (iteration number k);

yk = observation made of target at time k;

45

AN N

SR

E Ay

A g

Yk = set of all observations made of targetup to time k = {yl ,y2,...,yk }.

The fundamental problem to be solved is to find the new estimate of the target state
(xk IYk) given the old estimate (xk—1 IYk—1). That is, we require the probability that
the target is some- thing specific given the latest measurement and all previous
measurements, given that we know the corresponding probability one time step back.
To apply Bayes’ rule for the set Yk , we separate the latest measurement yk from the
rest of the set Yk—1 (since Yk—1 has already been used in the previous iteration) to
write (xk 1Yk) as (xk lyk , Yk—1). We shall swap the two terms xk ,yk using a minor
generalization of Bayes’ rule. This generalization is easily shown by equating the
probabilities for the three events (A, B, C) and (B, A, C) expressed using conditionals
as in : _

(A, B, C) = (AIB, C) (BIC) (C);

(B, A, C) =(BIA, C)V(AIC) [y

so that Bayes’ rule becomes

(AIB, C) = (BIA, C) (AIC) /(BIC)

Before proceeding, we note that since only the latest time k and the next latest k — 1 \
appear f
in the following expressions, we can simplify them by replacing k with 1 and k — 1 Mtﬂ?ﬁ
with 0. v o
So we write

“likelihood” “predicted density”

“conditional density”

(x1LIY1)=(x11yl,Y0)=(yl Ix1,Y0)(x11YO) (ylIYO)

normalization There are three terms in this equation, and we consider each in turn.
There are three terms in this equation, and we consider each in turn.The likelihood
deals with the probability of a measurement yl . We will assume the noise is “white”,
meaning uncorrelated in time,l so that the latest measurement does not depend on
previous measurements. In that case the likelihood (and hence normalization) can be
simplified: likelihood = (y1 Ix1, YO) = (yl Ix1). Fusing data from several sensors
Centralizing the fusion combines all of the raw data from the sensors in one main
processor. In principle this is the best way to fuse data in the sense that nothing has
been lost in preprocessing; but in practice centralized fusion leads to a huge amount of
data traversing the network, which is not necessarily practical or desirable.
Preprocessing the data at each sensor reduces the amount of data flow needed, while

46

S ———————

in practice the best setup might well be a hybrid of these two types. Bayes’ rule serves
to give a compact calculation for the fusion of data from several sensors.

Extend the notation from the previous section, with time as a subscript, by adding a
superscript to denote sensor number: Single sensor output at indicated time step = Y
sensor number time step all data up to and including time step =X sensor number time

step.

47

CHAPTER 4 ANDROID GPS LOCATOR

4.1 Introduction

Android is linux-based operating system. Android consists of a kernel based
on linux kernel, with middleware, libraries and API's written in C and application
software running on an application framework which includes Java-compatible
libraries based on Apache Harmony. Android uses the dalvil virtual machine with just
in time compilation to run Dalvik 'dex-code' (Dalvik Executable), which is usually
translated from java bytecode. The main hardware platform for Android is the ARM
architecture. There is support for x86 from the android-x86 project, and Google TV
uses a special x86 version of Android.
In general, the user’s pinpointing on the map is feasible in one of the following ways:
Using the GPS device that comes with the mobile
Using the 1D of the Cell that the user is currently served by these days a big number
of phones do have GPS devices onboard, we used the first way.

The Android SDK’s emulator can emulate changes in the sensor location and provide

dummy data for its coordinates.

| ZliH S SR

4.2 Starting the project

[{®) New Android Project : l__iw |

New Android Project

Creates a new Android Project resource.

Project name: AndroidlbsGeocadingProject

Contents

@ Create new project in workspace
) Create project from existing source
[V] Use default location

C:/programs/eclipse/workspace/AndroidLbsGeccodingProject Browse
! Create project from existing sample

Samples: ApiDernos

| Build Target

Target Name Vendor Platform AP Level
] [V] Android15 Android Open Source Project 15 3

[[] Google APIs Google Inc. 15 3

i ["] Android 1.6 Android Open Source Project 16 4

| [} Android 21-updatel Android Open Source Project 2.1-updatel 7

Standard Android platform 1.5
Properties

|| Application name: LbsGeocodingApp

Il Package name: com.javacodegeeks.android.lbs

|

[V Create Activity: | LbsGeocodingActivity|
Min SDK Version: 3

@ [<maok][New> [pmsh J[concel

Fig 12: The Start
Xml file
To start with, we used only add a button which will trigger the retrieval of the current
location’s coordinates from a location provider. Thus, the “main.xml” file for the

application’s interface will be as simple as this:

49

&

importandroid.widget. Toast;

public class LbsGeocodingActivity extends Activity {
priVatestaticfinallongMINIMUM_DISTANCE_CHANGE_FOR_UPDATES =1,

private static final long MINIMUM_TIME_BETWEEN_UPDATES = 1000;
protectedLocationManagerlocationManager;

protected Button retrievel.ocationBution:

@Override

public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.main);

retrieveLocationButton = (Button) ﬁndViewById(R.id.retrieveﬁlocation_button);

locationManager = (LocationManager)

getS ystemService(Context.LOCATION_SERVICE);

locationManager.requestLocationUpdates(

LocationManager.GPS_PROVIDER,

MINIMUM_TIME_BETWEEN_UPDATES, M)
MIN IMUM_DISTANCE_CHANGE_FOR_UPDATES,
newMyLocationListener()

)
retrieveLocationButton.setOnClickListener{new OnClickListener() {
@Override
public void onClick(View v) { /

showCurrentLocation();
showCurrentLocation();
b
}
protectedvoidshowCurrentLocation() {
Location location = '
IocationManager.getLastKnownLocation(LocationManagcr.GPS_PROVIDER); !
if (location != nuit) { |
String message = String.format(
"Current Location \n Longitude: %1$s \n Latitude: %2%s",
location.getLongitude(), location.getlatitude()
I8
51

Toast.makeText(LbsGeocodingActivity.this, message,
Toast. LENGTH_LONG).show();

}

}

private class MyLocationListener implements LocationListener {
public void onLocationChanged(Location location)

String message = String.format(

"New Location \n Longitude: %1$s \n Latitude: %2$s",
location.getlongitude(), location.getLatitude()

);

Toast.makeText(LbsGeocodingActivity.this,message,

Toast. LENGTH_LONG).show();

}
public void onStatusChanged(String s, inti, Bundle b) {

Toast.makeText(LbsGeocodingActivity.this,

"Provider disabled by the user. GPS turned off", ikl
Toast. LENGTH_LONG).show(); | [J
i

) ’f/

public void onProviderEnabled(String s) {

Toast.makeText(LbsGeocodingActivity.this,
"Provider enabled by the user. GPS turned on",
Toast. LENGTH_LONG).show();

}
}
}

For the LocationListner interface, we implemented the MyLocationListener inner
class. The methods in that class just use Toats to provide info about the GPS status or
any location changes. The only interface element is a Button which gets hooked up
with aOmClickListner and when it is clicked, the showCurrentLocation method is
invoked. Then, the getLstKnownLocation of the LocationManager instance is
executed returning the last known Location. From a Location object we can get
information regarding the user’s altitude, latitude, longitude, speed etc. In order to be

able to run the above code, the necessary permissions have to be granted.

AndroidManifest.xml file

<Txml version="1.0" encoding="utf-8"7>

<manifestxmlns:android="http://schemas.android.convapk/resfandroid”

package="com.javacodegeeks.android.lbs"
android:versionCode="1"

android:versionName="1.0">

<application android:icon="@drawable/icon" android:label="@string/app_name">

<activity android:name=".LbsGeocodingActivity"
android:label="@string/app_name">
<intent-filter>
<action android:name="android.intent.action. MAIN™ />
<categoryandroid:name="android.intent.category. LAUNCHER" />
<fintent-filter>

<factivity>

</application>

<uses-permission android:name="android.permission. ACCESS_FINE_LOCATION"

1>

<uses-permission

android:name="android.permission. ACCESS_MOCK_LOCATION" />
<uses-permission

android:name="android.permission. ACCESS_COARSE_LOCATION" />
<uses-sdkandroid:minSdkVersion="3" />

</manifest>
use the AVD manager in order to create a new Android device and make
GPS support is included in the features:

Using AVD manager

e s

.
i

BN

sure that

53

[2 &
@ Create new AVD

Next, use Run—> Run Configurations

Name: Android-SDKL.5
Torget: [Android 15 - APl Level 3 -]
SD Card:
@ Size: 128| [MiB ,]
") File: B
Skin:
@ Built-in: | Default (HVGA) v]
) Resolution: X
Hardware:
Property Value New...
GPS support yes R
Force create
i
[Create AVD] [Cancel
Fig 13: AVD Manager

i

e S

ST

54

&
E‘} Run Configurations

Android Application

IR
type filter text

[&] Android Application
01 New_configuration

J& Android JUnit Test

B Apache Tomeat
@ Eclipse Application
kd Eclipse Data Tools

H Genesic Server

4 Generic Server(External Launch)
Ju GWT JUnit Test

f HTTP Preview

El J2EE Preview

4] Java Applet

[T Java Application

Ju WUnit

JU Wnit Plug-in Test

B 0SGi Framework

Jiy Task Context Test

@ Web Application

N3 XSL

Filter matched 19 of 51 items

@

Create, manage, and run configurations

Name: AndroidlbsGeocodingProject_configuration

("] Android . [Target| (7] Common
|
| Project:
| AndreidLbsGeocodingProject
[Launch Action:

Launch Default Activity

@ Launch: [comjavacodegeeks ondroid bsLbsGeocodingActivity

Do Nothing

P

[2epy J[Revet]

Fig 14: Run Configuration

We have to feed the emulator with some dummy data.go to DDMS view of Eclipse

and then look for the “Emulation Control” tab. among , then we will find the

“Location Controls” section, which can send mock location data to the emulator.

55

4.3 Run DDMS

C3> HBrO*Qr GOL BJd B 2o s r Gl = pw cv
B Devices 52 K | | '| @ | B T T O)[% Threads| @ Heap | © Alocation Tracker 7! File Explorer | G} Emulator Control 53
Nsme
emulator-5554 Online Androidl ...
system_process 577 8600 !
com.android.phone 622 8601 '!t g :
android.process.acore 625 8602 B SESLOn Lontrols
com.android.mms 649 8603 Manual | GPX |KML |
com.android.slarmclock 669 8610 & Decimal
endroid process.media 682 8613 R sacianil
|
com javacodegeeks.andn 715 8615 9
com.android.inputmetho 723 8616 Longitude -122.084095
|| Latitude ~ 37.422006
Send
|
.
Fig 15 Run DDMS !

When the data are sent to the emulator’s GPS device, our listener will be triggered

and the current location will be printed in the screen

4.4 Emulator screen

Fig 16 Emulator Screen

56

4.4 Retrieve Location

Used to retrieve last location

Retrieve Location

G M @ 9:19 AM

Current Location

Longitude: -122,084095 |

Latitude: 37.422006 ﬂ:
v

Fig 17: Location Retrieval

57

CHAPTER 5: SIMULATION AND RESULTS

3.1 Introduction

Simulation is essential to study WSN, being the common way to test new
applications and protocols in the field. This fact has brought a recent boom of
simulation tools available to model WSN. However, obtaining reliable conclusions
from research based on simulation is not a trivial task. There are two key aspects that
should be evaluated before conducting experiments: (1) The correctness of the model
and (2) the suitability of a particular tool to implement the model. A tool that helps to
build a model is needed, and the user faces the task of selecting the appropriate one.
Simulation software commonly provides a framework to model and reproduce the
behaviour of real systems. However, actual implementation and “secondary goals” of
each tool differ considerably, that is, some may be designed to achieve good
performance and others to provide a simple and friendly graphical interface or

emulation capabilities.

Sensor networks have been developed and deployed in various civilian
applications. Research fields in this area include increasing the potential of hardware
components in terms of smaller size and less energy consumption, operating system,
protocol and application. Traditionally, each work has to be tested and evaluated to
ensure achievement of the predefined objectives. There are several ways to determine
resufts such as small-scale experiment in a lab, wide-area testbed and custom
simulation. Unlike traditional networks, sensor networks are application-specific and
may compose thousands of resource-constrained sensors. Therefore, conducting a
simulation seems to be the most efficient way to obtain a preliminary result. Several

simulators are described in this section.

58

5.2 Network Simulating Motivation

Networking plays a major role in teday’s communication worldwide. Several
underlying technologies become involved and are continually evolving. The Internet
is one of the obvious phenomena reflecting the profound networking technology that
has changed the way of how people communicate.

The number of the Internet users is exponentially increasing and the trends in
application use are becoming hard to predict. Newly developed application software
and protocols may be widely-used even in couple months. Further, heterogeneity in
topology, link properties, and protocols [22] are obstacles to fully understanding how
the Internet works.

The Virtual InterNetwork Testbed (VINT) project was initiated and performed by
USC/ISI, XeroxPARC, LBNL and UCB. The objectives of this project are to develop
methods and tools to study protocol operations in both high level including interaction
and scaling, and low levels such as congestion control, reliable multicast, multicast
routing and dynamic topologies. Finally, an increase in the quality of analysis and rate
of progress in protocol development can be achieved by providing a common

simulation infrastructure.

5.2.1 Requirements for Simulators

Simulating wireless sensor networks requires more specific properties to
reflect the real operational environment. This section provides both general and
specific requirements to effectively simulate wireless sensor networks. Non-
functional and functional requirements are the genéral requirements which each
simulator should address. Specific requirements are such characteristics needed to test
and evaluate the new generic, lightweight and reliable transport protocol for wireless

sensor networks.

59

Non-functional Requirements

The non-functional requirements are:

* Open Source — Publicly available simulators allow various users to freely develop
their own contributed modules. This supports rapid enhancement, but bug reports
and contributing report forms are required to keep the developing information

updated.

» Platform Independence — A simulator should support all sensor platforms. An ability
to simulate different platforms would support a wide range of sensors developed

by various communities.

¢ Visualisation Module — A friendly visualised and/or animated environment
displaying results should be provided. For example, node mobility, data packet
and energy level should be displayed at different timeline. This could promote

better understanding and interpretation of the result.

Functional Requirements

Several functional requirements are provided:

* Hardware Simulation Coverage — A network simulator should be capable of
simulating all the hardware of a sensor such as CPU, transceiver and sensing unit.
This could reflect performance of each component and also interaction amongst

them.

* Battery and Power Models — Resource constraint is still a major drawback of sensor
networks. All of the energy comes from a tiny battery and each operation needs
different energy levels. With both models, a picture of energy consumption and
energy depletion can be seen and forecasted.

Propagation Modeling — All reviewed simulators support only radio frequency (RF)
modeling. This may be because this medium is currently the most widely used by
deployed sensor networks. However, other models such as optical communication

(laser) and infrared should be also determined to support various requirements.

60

—

* Protocols Modeling — A large number of protocols at different network layers have

been developed. It is impossible to include all protocols but it should include all
such common Internet protocols such as TCP and UDP. Current routing protocols
for ad hoc mobile wireless networks such as Destination Sequenced Distance
Vector (DSDV), Ad-hoc On Demand Vector (AODV), Dynamic Scurce Routing
(DSR) and Temporally Ordered Routing Algorithm (TORA) should also be
included. However, providing a convenient API for defining new protocol in a

simulator would be another effective approach.

» Physical Environment Modeling —~ Sensors will be scattered in/on various placing

areas such as soil, water, cement surface or human body. Different physical areas
have different signal propagation characteristics. Radio signal changes when

travelling through different physical media.

» Emulation — There are two approaches to address such deficiencies of simulation

through real-world interaction including network and environment emulations
[28]. In the network emulation approach, simulated entities are facilitated to
communicate with the real-world entities such as protocol implementation.
Another approach, the environment emulation, an implementation of the real-
world entities is built in order to be directly executed within the simulator. This
requirement will then promote better understanding of the network behavior.

More accurate results will also be obtained.

5.3 Network Model

The following components are considered:

1) Nodes: Each node is a physical device monitoring a set of physical variables.
Nodes communicate with each other via a common radio channel. Internally, a
protocol stack controls communications. Unlike classical network models, sensor
modes include a second group of components: The physical node tier, which is

connected to the environment. Nodes are usually positioned in a two or three

61

dimensional world. An additional “topology” component, may control node
coordinates, Depending on the application and deployment scenario, a WSN can
contain from a few to several thousands of nodes.

2) Environment: The main difference between classical and WSN model is the
additional “environment” component. This component models the gencration and
propagation of events that are sensed by the nodes, and trigger sensor actions, i.e.
communication among nodes in the nefwork. The events of interest are generally a
physical magnitude as sound or seismic waves or temperature.

3) Radio channel: It characterizes the propagation of radio signals among the nodes in
the network. Very detailed models use a “terrain” component, connected to the
environment and radio channel components. The terrain component is taken into
consideration to compute the propagation as part of the radio channel, and also
influences the physical magnitude.

4) Sink nodes: These are special nodes that, if present, receive data from the net, and
process it. They may interrogate sensors about an event of interest. The use of sinks
depends on the application and the tests performed by the simulator.

5) Agents: A generator of events of interest for the nodes. The agent may cause a
variation in a physical magnitude, which propagates through the environment and
stimulates the sensor. This component is useful when its behaviour can be
implemented independently from the environment, e.g., a mobile vehicle, Otherwise,

the environment itself can generate events.

5.4 The Network Simulator — ns-2

Amongst the existing network simulators, ns-2 is an open-source, discrete-event
simulator and is one of the most widely used tools in the networking research
community. It was developed within the VINT project in 1995 which attempted to
provide an efficient simulation tool to facilitate new protocol design. Current ns-2
users come from several universities and research communities. It also provides much
useful information on its website such as downloading and installation guides,
examples, tutorials and on-line manuals, development help, and mailing lists.

The ns-2 includes several common protocols for the Internet such as TCP and UDP.

Moreover, network emulation is included in ns-2 to simulate real-world interaction.

62

5.5 Implementation and Code

The NS-2 simulation environment offers great flexibility in investigating the
characteristics of sensor networks because it already contains flexible models for
energy-constrained wireless ad hoc networks. In the NS-2 environment, a sensor
network can be built with many of the same sets of protocols and characteristics as
those available in the real world. The mobile networking environment in NS-2
includes support for each of the paradigms and protocols shown in Fig. 2. The
wireless model also includes support for node movements and energy constraints. By
leveraging the existing mobile networking infrastructure, we added the capability to
simulate sensor networks.

OTcL- NS is basicélly an OTcl interpreter with network simulation object libraries.
It is very useful to know how to program in OTcl to use NS. In Tcl, the keyword proc
is used to define a procedure, followed by an procedure name and arguments in curly
brackets. The keyword set is used to assign a value to a variable. [expr ...] is to make
the interpreter calculate the value of expression within the bracket after the keyword.
One thing to note is that to get the value assigned to a variable, $ is used with the
variable name. The keyword puts prints out the following string within double

quotation marks. Below is an example of simple OT¢l script along with the output.

NAM- Nam is a Tcl/Tk based animation tool for viewing network simulation traces
and real world packet traces. It supports topology layout, packet level animation, and
various data inspection tools.

The network animator ““nam" began in 1990 as a simple tool for animating packet
trace data. This trace data is typically derived as output from a network simulator like

ns or from real network measurements, e.g., using tcpdump

64

T

File VYiews 2Analysis lan nass
“ <] > 133 2 0.424000 | Step: 2.0ms
. s 2 FETE T T o
=
2

+m

| | ' fueriis] ' \ 1 | 1

Fig 19: Snapshot 1
Writing a procedure called "test”
proc test { } {
set a43 f
set b 27
set ¢ [expr $a + $b]
set d [expr [expr $a - $b] * $c]
for {set k 0} {$k < 10} {incrk} {
if {$k <5} {
puts "k < 5, pow = [expr pow($d, $k)]"
} else {
puts "k >= 5, mod = [expr $d % $k]"

11

Calling the "test" procedure created above
Test

OUTPUT :

k<35, pow=1.0

k<5, pow=1120.0

k < 5, pow = 1254400.0

k < 5, pow = 1404928000.0

k < 5, pow = 1573519360000.0

65

k>=5, mod=0
k>=5, mod =4
k>=5 mod=0
k>=5 mod=0
k>=5, mod=4

5.6 Event Scheduler

NS has two different types of event schedulers implemented. These are real-time and
non-real-time schedulers. For a non-real-time scheduler, three implementations (List,
Heap and Calendar) are available, even though they are all logically perform the
same. This is because of backward compatibility: some early implementation of
network components added by a user (not the original ones included in a package)
may use a specific type of scheduler not through public functions but hacking around
the internals. The Calendar non-real-time scheduler is set as the default. The real-time
scheduler is for emulation, which allow the simulator to interact with a real network.
Currently, emulation is under development‘ although an experimental version is

available. The following is an example of selecting a specific event scheduler:

set ns [new Simulator]

$ns use-scheduler Heap

Another use of an event scheduler is to schedule simulation events, such as when to
start an FTP application, when to finish a simulation, or for simulation scenario
generation prior to a simulation run. An event scheduler object itself has simulation
scheduling member functions such as at rinie “siring” that issue a special event called
AtEvent at a specified simulation fime. An "AtEvent” is actually a child class of
"Event", which has an additional variable to hold the given -iring. However, it 18
treated the same as a normal (packet related) event within the event scheduler. When
a simulation is started, and as the scheduled time for an AtEvent in the event queue
comes, the AtEvent is passed to an "AtEvent handler” that is created once and handles

all AtEvents, and the OTcl command specified by the si7ing field of the AtEvent is

66

4

executed, The following is a simulation event scheduling line added version of the

above example.

set ns [new Simulator]
$ns use-scheduler Heap

$ns at 300.5 "complete_sim"

proc complete_sim {} {

Followings are a partial list and brief description of Simulator object member

functions that interface with scheduler member functions:

Simulator instproc now # return scheduler's notion of current time
Simulator instproc at args # schedule execution of code at specified time
Simulator instproc at-now args # schedule execution of code at now

Simulator instproc after n args # schedule execution of code after n secs

Simulator instproc run args # start scheduler
Simulator instproc halt # stop {pause) scheduler
5.7 NS Simulation:

This section shows a simple NS simulation script and explains what it does.

5.7.1 Source Code

#Create a simulator object

set ns [new Simulator]

#Define different colors for data flows (for NAM)

67

$ns color 1 Blue

$ns color 2 Red

#Open the NAM trace file
set nf [open out.nam w]

$ns namtrace-all $nf

#Define a 'finish’ procedure

proc finish {} {
globat ns nf
$ns flush-trace
#Close the NAM trace file
close $nf
#Execute NAM on the trace file
exec nam out.nam &

exit 0

#Create four nodes
set nQ) [$ns node]
set nl [$ns node]
set n2 [$ns node]

set n3 {$ns node]

#Create links between the nodes

$ns duplex-link $n0 $n2 2Mb 10ms DropTail
$ns duplex-link $n1 $n2 2Mb 10ms DropTail
$ns duplex-link $n2 $n3 1.7Mb 20ms DropTail

#Set Queue Size of link (n2-n3) to 10
$ns queue-limit $n2 $n3 10

#Give node position (for NAM)
68

| '

$ns duplex-link-op $n0 $n2 orient right-down
$ns duplex-link-op $nl $n2 orient right-up
$ns duplex-link-op $n2 $n3 orient right

#Monitor the queue for link (n2-n3). (for NAM)
$ns duplex-link-op $n2 $n3 queuePos 0.5

#Setup a TCP connection

set tcp [new Agent/TCP]

$tep set class_ 2

$ns attach-agent $n0 $tcp

set sink [new Agent/TCPSink]
$ns attach-agént $n3 $sink
$ns connect $tcp $sink

$tep set fid_ 1

#Setup a FTP over TCP connection J
set ftp [new Application/FTP]
$ftp attach-agent $tep

$ftp set type_ FTP

#Setup a UDP connection

set udp [new Agent/UDP]
$ns attach-agent $nl $udp

set null [new Agent/Null]

$ns attach-agent $n3 $null
$ns connect $Sudp $null

$udp set fid_ 2

#Setup a CBR over UDP connection
set cbr [new Application/Traffic/CBR]
$cbr attach-agent $udp
$cbr set type_ CBR
$cbr set packet size_ 1000
69

$chbr set rate_ Imb

$cbr set random_ false

#Schedule events for the CBR and FTP agents
$ns at 0.1 "$cbr start”
$ns at 1.0 "$ftp start”
$ns at 4.0 "$ftp stop"
$ns at 4.5 "$cbr stop”

#Detach tcp and sink agents (not really necessary)

$ns at 4.5 "$ns detach-agent $n0 $tep ; $ns detach-agent $n3 $sink”

#Call the finish procedure after 5 seconds of simulation time

$ns at 5.0 *finish"

#Print CBR packet size and interval
puts "CBR packet size = [$cbr set packet_size_]" .

puts "CBR interval = [$cbr set interval_]"

#Run the simulation

$ns run

This network consists of 4 nodes (n0, n1, n2, n3} as shown in the output. The duplex
links between n0 and n2, and n1 and n2 have 2 Mbps of bandwidth and 10 ms of
delay. The duplex link between n2 and n3 has 1.7 Mbps of bandwidth and 20 ms of
delay. Each node uses a DropTail queue, of which the maximum size is 10. A "tcp"
agent is attached to n0, and a connection is established to a tcp "sink" agent
attached to n3. As default, the maximum size of a packet that a "tcp" agent can
generate is 1KByte. A tcp "sink" agent generates and sends ACK packets to the
sender {tcp agent) and frees the received packets. A "udp" agent that is attached to
nlis connected to a "null" agent attached to n3. A "null" agent just frees the packets

received. A "ftp" and a "cbr" traffic generator are attached to "tcp” and "udp" agents

70

R~

respectively, and the "cbr" is configured to generate 1 KByte packets at the rate of 1
Mbps. The "cbr" is set to start at 0.1 sec and stop at 4.5 sec, and "ftp" is set to start

at 1.0 sec and stop at 4.0 sec.

The following is the explanation of the script above. In general, an NS script starts

with making a Simutator object instance.

» set ns [new Simulator}: generates an NS simulator object instance, and assigns
it to variable ns (italics is used for variables and values in this section). What

this line does is the following:

o Initialize the packet format (ignore this for now)
o Create a scheduler (default is calendar scheduler)

o Select the default address format (ignore this for now) -

The "Simulator” object has member functions that do the following:

o Create compound objects such as nodes and links (described later) I
o Connect network component objects created (ex. attach-agent)
o Set network component parameters (mostly for compound objects)
o Create connections between agents (ex. make connection between a
"tep” and "sink")
o Specify NAM display options

Most of member functions are for simulation setup (referred to as plumbing functions
in the Overview section) and Scheduling, however some of them are for the NAM
display. The “Simulator" object member function implementations are located in the

"ns-2/tcl/lib/ns-lib.tcl" file.

» $ns color fid color: is to set color of the packets for a flow specified by the
flow id (fid). This member function of "Simulator” object is for the NAM

display, and has no effect on the actual simulation.

71

$ns namtrace-all file-descriptor: This member function tells the simulator to
record simulation traces in NAM input format. It also gives the file name that
the trace will be written to later by the command $us flush-trace. Similarly, the
member function trace-all is for recording the simulation trace in a general
format. |
proc finish {}: is called after this simulation is over by the command $xns at 5.0
"finish". In this function, post-simulation processes are specified.

set n0 {$ns node]: The member function node creates a node. A node in NS is
compound object made of address and port classifiers (described in a later
section). Users can create a node by separately creating an address and a port
classifier objects and connecting them together. However, this member
function of Simulator object makes the job easier. To see how a node is
created, look at the files: "ns-2/tcl/libs/ns-lib.tcl” and "ns-2/tcl/libs/ns-
node.tcl”.

$ns duplex-link nodel node2 bandwidth delay queue-type: creates two
simplex links of specified bandwidth and delay, and connects the two
specified nodes. In NS, the output queue of a node is implemented as a part of
a link, therefore users should specify the queue-type when creating links. In
the above simulation script, DropTail queue is used. If the reader wants to use
a RED queue, simply replace the word DropTail with RED. The NS
implementation of a link is shown in a later section. Like a node, a link is a
compound object, and users can create its sub-objects and connect them and
the nodes. Link source codes can be found in "ns-2/tcl/libs/ns-lib.tcl” and "ns-
2/tcl/libs/ns-link.tcl" files. One thing to note is that you can insert error
moduies in a link component to sirmulate a lossy link (actually users can make
and insert any network objects). Refer to the NS documentation to find out
how to do this.

$ns queue-limit node! node2 number: This line sets the queue limit of the two
simplex links that connect nodel and node2 to the number specified. At this
point, the authors do not know how many of these kinds of member functions
of Simulator objects are available and what they are, Please take a look at "ns-
2/tcl/libs/ns-lib.tcl™ and "ns-2/tcl/libs/ns-link.tcl", or NS documentation for

more information.

72

o $ns duplex-link-op nodel nodeZ ... The next couple of lines are used for the
NAM display. To see the effects of these lines, users can comment these lines

out and try the simulation.

Now that the basic network setup is done, the next thing to do is to setup traffic agents
such as TCP and UDP, traffic sources such as FTP and CBR, and attach them to

nodes and agents respectively.

+ set tcp [new Agent/TCP]: This line shows how to create a TCP agent. But in
general, users can create any agent or tratfic sources in this way. Agents and
traffic sources are in fact basic objects (not compound objects), mostly
implemented in C++ and linked to OTcl. Therefore, there are no specific
Simulator object member functions that create these object instances. To
create agents or traffic sources, a user should know the class names these
objects (Agent/TCP, Agnet/TCPSink, Application/FTP and so on). This
information can be found in the NS documentation or partly in this
documentation. But one shortcut is to look at the "ns-2/tcl/libs/ns-default.tcl”
file. This file contains the default configurable parameter value settings for
available network objects. Therefore, it works as a good indicator of what kind
of network objects is available in NS and what are the configurable
parameters.

« $ns attach-agent node agent: The attach-agent member function attaches an
agent object created to a node object. Actually, what this function does is call
the attach member function of specified node, which attaches the given agent
to itself. Therefore, a user can do the same thing by, for example, $n0 attach
$tcp. Similarly, each agent object has a member function attach-agent that
attaches a traffic source object to itself.

« $ns connect agentl agent2: After two agents that will communicate with each
other are created, the next thing is to establish a logical network connection
between them. This line establishes a network connection by setting the

destination address to each others' network and port address pair,

Assuming that all the network configuration is done, the next thing to do is write a
simulation scenario (i.e. simulation scheduling). The Simulator object has many
scheduling member functions. However, the one that is mostly used is the following:

73

o 3ns at time "string”. This member function of a Simulator object makes the
scheduler (scheduler_ is the variable that points the scheduler object created
by [new Scheduler] command at the beginning of the script) to schedule the
execution of the specified string at given simulation time. For example, $ns at
0.1 "$chr start” will make the scheduler cali a start member function of the
CBR traffic source object, which starts the CBR to transmit data. In NS,
usually a traffic source does not transmit actual data, but it notifies the
underlying agent that it has some amount of data to transmit, and the agent,
just knowing how much of the data to transfer, creates packets and sends

them.

After all network configurations, scheduling and post-simulation procedure
specifications are done, the only thing left is to run the simulation. This is done by $ns

run.

5.7.2 Terms

Node: A node is a compound object composed of a node entry object and classifiers.
There are two types of nodes in NS. A unicast node has an address classtfier that does
unicast routing and a port classifier. A multicast node, in addition, has a classifier that
classify multicast packets from unicast packets and a multicast classifier that performs
multicast routing.

Link: A link is another major compound object in NS. When a user creates a link
using a duplex-link member function of a Simulator object, two simplex links in both
directions are created.

Agents: Agents are the objects that actively drive the simulation. Agents can be
thought of as the processes and/or transport entities that run on nodes that may be end
hosts or routers. Traffic sources and sinks, dynamic routing modules and the various
protocol modules are all examples of agents. Agents arc created by instantiating
objects in the subclass of class Agent, i.e., Agent/type where type specifies the nature
of the agent. For example, a TCP agent is created using the command: set tep [new

Agent/TCP]

74

CONCLUSION & FUTURE SCOPE

Sensor Networks hold a lot of promise in applications where gathering sensing
information in remote locations is required. It is an evolving field, which offers scope
for a lot of research. Their energy-constrained nature necessitates us to look at more
energy efficient design and operation. Our main focus till now has been on data fusion
and sensor network implementation on Network Simulator-2. There is often a need to
combine diverse data sets into a unified (fused) data set which includes all of the data
points and time steps from the input data sets. The fused data set is different from a
simple combined superset in that the points in the fused data set contain attributes and
metadata which might not have been included for these points in the original data set.
Developing a fusion application is challenging in general, for the fusior:n operation
tyﬁical!y requires time-correlation and synchronization of daté streams coming from
several distributed sources. Since such applications are inherently distributed, they
are typically implemented via distributed threads that perform fusion hierarchically.
With the help of data fusion process we can enhance the robustness and accuracy of
information which is obtained by entire network, certain redundancy exists in the
data collected from sensor nodes thus data fusion processing is needed to reduce

the redundant information.

75

REFERENCES

Eduatdo F Nakamura, Antonio A.F. Lourerio and Alejandro C. Frery,
“Information Fusion for Wireless Sensor Networks: Methods, Models, and
Classifications” , ACM Computing Surveys, Vol. 39, No. 3, Article 9, Publication
date: August 2007.

ALF. Akyildiz, W. Su, Y. Sankarasubramaniam, E. Cayirci, “Wireless sensor
networks: a survey”, Computer Networks 38 (2002) 393-422

Kiran Maraiya, Kamal Kant, Nitin Gupta, “Study of Data fusion in Wireless
Sensor Network”, Proc. of the International Conference on Advanced Computing
and Communication Technologies (ACCT 2011).

Ruixin Niu, Michael Moore, Dale Klamer “Decision Fusion in a Wireless Sensor
Network with a Large Number of Sensors”, Niu, Ruixin; Moore, Michael; and
Klamer, Dale, "Decision Fusion in a Wireless Sensor Network with a Large
Number of Sensors* (2004). Electrical Engineering and Computer Science. Paper
82.

José M. Bernardo ,"Bayesian Statistics”, Probability and Statistics (R. Viertl,
ed) of the Encyclopedia of Life Support Systems (EOLSS). Oxford, UK:
UNESCO, 2003.

Jaime Esteban, Andrew Starr, Robert Willetts, Paul Hannah, Peter Bryanston-
Cross “ A Review of Data Fusion Models and Architectures: Towards
Engineering Guidelines”

R. Olfati-Saber , Distributed Kalman Filtering for Sensor Networks

Joel Le Roux, An introduction to Kalman Filtering :Probabilistic and
Deterministic Approaches, University of Nice leroux @essi.fr, 20 nov 2003

John Spletzer, "The Discrete Kalman Filter". Lecture notes CSC398/498. Lehigh
university. Bethlehem, PA, USA. March 2005.

R. Olfati-Saber, J. A. Fax, and R. M. Murray. Consensus and cooperation in
networked multi-agent systems. Proceedings of the IEEE, 95, Jan. 2007.

Guoliang Xing!; Rui Tan2; Benyuan Liu3; Jianping Wang2; Xiachua Jia2; Chih-
Wei Yi4, “Data Fusion Improves the Coverage of Wireless SensorNetworks”,

MobiCom’09, September 20-25, 2009, Beijing, China.

76

R. G. Ingalls, “Introduction to simulation: Introduction to simulation,” in
WSC’02: Proceedings of the 34th conference on Winter simulation. Winter

Simulation Conference, 2002, pp. 7-16.

Yashwant Singh, Ankur Nadda and Sahil Gupta, “ Data Fusion in Wireless Sensor
Networks: A Perspective”, International Journal on Information and
Communication technologies (IJICT), serial Publication Delhi, Volume 6 No.1-2,

pp.54-77, march 2013, ISSN: 0973-5836.

77

