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ABSTRACT

Significant advances have been made in the field of deep learning and neuroimaging for the
detection of neurological disorders and diseases. Non-invasive imaging modalities, such as
functional magnetic resonance imaging (f M RI) and magnetic resonance imaging (M RI),
make it easier to determine the composition and operations of the brain. Analytical
evaluation of neuroimaging data can be beneficial not only in boosting the efficacy of
diagnosing neuronal disorders but also in revealing the complexities of the brain when
using deep learning techniques. This thesis aims to provide a theoretical and experimental
foundation for the classification of brain disorders and brain activity of the datasets f M RI
and M RI, including deep learning models, deep learning visualization approaches, data
encoding fM RI, and feature extraction.

In the first work, we developed a method that examines changes in BOLD connectivity
over time. fMRI is based on the signal BOLD, which measures neural activity indirectly.
Before using functional connectivity metrics to evaluate the BOLD signal, it is necessary
to preprocess the fMRI data. A frequent periodic oscillation pulse generates various
stimuli, and the BOLD signal was produced by applying propagation loops. Functional
connectivity highlights key aspects of cognitive development. In this work, we introduce
a method that examines changes in the BOLD signal. However, our method places more

emphasis on spatiotemporal features, and coactivation events that occur consecutively

viii



could cause a BOLD signal. To characterize F'C, our results demonstrate the metrics for
evaluating functional connectivity F'C' using Pearson’s correlation.

In the second work, we concentrate on M RI image intensities and implement cluster-
ing, which also shows the gradient information of the M RI image, which includes both
contrast and intensity. The primary goal of edge detection is to differentiate tissues. The
signal intensities at the edges of WM, GM, and C'SF fluctuate significantly. The method
used to determine intensity and edge detection tasks has been discussed here along with
its effectiveness.

In this study, the rs — fMRI data and F'C of the 40 subjects are examined by the
BOLD signal in voxel size. The corresponding RSN are functionally applicable to these
BOLD signals. The data in rs — fMRI time series from 40 subjects containing 176
time stamps and the active regions 28 of RSN have been visualized. To classify a neural
disorder such as ADH D, we have proposed the Bidirectional LSTM (BLST M) model.
To train BLST M with high-dimensional fM Rldata, we proposed a data reshaping al-
gorithm. Subsequently, our modified BLST M was trained with the characteristic vector
(40 x 261 x 28) for each subject. Our findings show that the proposed model performs
better than other state-of-the-art models by achieving a classification accuracy of 87.50%.

In this work, We focus on the 2D-CNN method for the classification of brain ac-
tivity using task-based methods fM RI. This event-related fM RI demonstrates how a
particular task activates the neural response, which is based on the BOLD signal. In
fMRI voxels, Our proposed 2D-CNN model uses fMRI data to extract feature maps
and successfully classify neural activity, which is based on task-evoked data fM RI.

A saliency map is a helpful method for interpreting and illustrating the non-linearity of

the 2D — C'N N model. We extended our work to analyze the behavior of the 2D —CNN

X



model and visualize the saliency map of the M RI image, which is used to determine the
product of components to eliminate noise. Using gradient-based visualizations and apply-
ing visual input, multiple-mode convolutional networks function. The ReLU activation
function is guided backward to produce the saliency map.

This work aims to develop a CNN-based model with a pre-trained M obile N et model to
detect and classify multiple sclerosis using the MRI image dataset. We have used magnetic
resonance images to train the MobileNet-2D-CNN model for the identification of the
Multiple Sclerosis (M S) feature map that predicts M.S. We also created a class activation
map to interpret the predictions provided by the proposed model, which represents the

behavior of neurons in their early stages.
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CHAPTER 1

INTRODUCTION

Neuroimaging is a discipline that facilitates information gathering in terms of human brain
physiology, which involves evaluating functional and anatomical data using a variety of
non-invasive methods. Some of these methods consist of: Functional Magnetic resonance
imaging (f M RI),clectroencephalography (EEG), positron emission tomography (PET).
This could lead to more effective cooperation of medical treatments and early identifi-
cafion of brain diseases. The Advancements in the field of magnetic technology enabled
the acquisition of higher-quality brain images. Ogawa et al. [1] found the idea that is
currently extensively utilized for brain imaging, both physiologically and functionally. He
improved upon (M RI) technique by generating brain images based on the variation in
blood oxygenation levels which depends on blood flow towards neurons. The advancement
of these kinds of technologies has also become feasible with the improvements in mathe-
matical analysis through developing ever-more complicated neural networks that make it
possible to extract functional and structural features of neuroimage. Using deep learning
model for mental disorder and neurological diseases has growing significantly Greenspan
et al. [2]. The most recent developments in deep learning methodologies illustrate the use

of neurcimaging analysis for evaluations and detection of distinct region of the brain and



classify the certain disorders.

1.1 Motivation and Objective

Neuroimaging is an effective tool that is now being used to reveal important information
about healthy and impaired human brains. Magunetic resonance imaging of the brain M RT
and functional magnetic resonance imaging (f M RI) are non-invasive imaging modalities.
Damadian et al. [3] obtained the first MRI image in 1976.However, the procedure re-
ceived authorization for clinical use more than ten years later Fritsch et al. [4]. Among
the various medical imaging techniques, M RI is one of the most eflicient and suitable neu-
roimaging methods and is an effective tool for neuroimaging experiments that include the
assessinent of subjects with psychiatric disorders Castiglione et al. [3] Castiglione et al.
[6]. The automatic detection and classification of various brain disorders has become
a serious concern in modern healthcare. It may be difficult to diagnose certain men-
tal disorders with neuroimaging alone. The methods used for data analysis are mainly
based on the quantitative or statistical features extracted Pizzolante et al. [7]. In deep
learning, the Convolutional Neural Network (C'NN) aggregates spatial data, correlation
between attributes, extraction, and identification of features using some machine learn-
ing algorithms, in addition to its exceptional ability to classify neuroimages. Through
experimental studies, deep learning networks such as LiviaNet, I[IyperDenseNet, and the
convolutional nenral network (CNN) Akkus et al. [§] Ding et al. [9] are widely nsed for

the detection and classification of various neural syndromes.



1.1.1 Exploring Deep Learning Application in fMRI

The importance of exploring cognitive disorders in the area of neuroimaging, the advance-
ment of deep learning techniques used to analyze fMRI data to identify and classify cogni-
tive disorders, and challenges Jain and Huth [10]. A cognitive disorder that encompasses a
wide range of diseases, including ADH D, multiple sclerosis, and associated abnormalities
in the brain regions, using data from fA RI the C'NN model. was successfully classified
Horikawa and Kamitani [11] Meszlényi et al. [12]. Spatial-temporal fluctuations in the
brain region rs-fMRI are modeled using long-term memory based on the long-recurrent
neural network (RNN) and short-tern memory (LSTM) that have signiflicaul advances
in sequential modeling Lipton [13] Dvornek et al. [14]. The correctness of the classifica-
tion approach within this study is influenced by the extraction of typical time series. In a
more recent investigation, a 3D —C' NN was implemented to identify the implicit structure
to incorporate an even larger cohort to decode task conditions featuring four-dimensional
FMRI (4D-fMRI) time series data taken from the Human Connectome Project compared
to only one volume of fMRI, applied as input to the structure 3D —C'NN Wang et al. [15].
Classify those who have ADH D from healthy controls using a multi — LST M approach
in the ADHD — 200 data set Liu et al. [16]. In addition, there have been some recent
developments in developing a state-of-the-art model 370 — CN'N to study hrain networks
Wachinger et al. [17] Kawahara et al. [18]. The conditions under which we trained the

Deep Neural Network (DN N) will be discussed in a further section.

1.1.2 Deep learning Model for brain disorder classification

Calculating F'C' measures using neuroimaging data fM RI is a growing approach to the
classification and prediction of neurological disorders. The findings of recent research Du

3



et al. [19] over three decades have focused on the classification of neurological disorders
using F'C' measurement from fMRI data. According to these studies, ADH D, multiple
sclerosis (M S), Alzheimer’s disease (AD), mild cognitive disorder, schizophrenia, and
bipolar disorder were the neurological disorders explored most frequently. Taking into
account the kind of classifier, most studies used end-to-end deep learning techniques such
as CNN. Kawahara et al. [18] presented one of the fundamentals of research on the
applications of CNNs to fMRI data in 2017. The prediction of neurodevelopmental

results was carried out using a deep learning framework.

1.1.3 LSTM Models for the Classification of ADHD

Recurrently combined memory cells along with three multiplicative input, output, and
forget gates that keep the internal state C;<*> and h="> consistent make up the LSTM
layer Yu et al. [20]. The forget gate selects the relevant data from the preceding state.

The following equations represent the elements LST'M used in the calculation:

FE2 = o(Wilh<">, 5] + ¢y) (1.1)
i = oW [, 252 + 6,) (1.2)
C<” = tanh(W,[h<>, <] + ¢,) (1.3)
O = £, 00, <> 4 1, 00 < (L.4)
£ = (W[ 1<) 1 6,) (1.5)
B = e tanh O (1.6)

Where, £, i, O, O, h<*?, and = represent the forget gate, input gate,



estimated current cell state, cell state, hidden state, and input feature vector, respectively.
The parameters for the weights are W;, W,,, W,, and W,,. For every layer (I) at the moment

L and

(t), the bias vectors include ¢y, ¢, ¢., and ¢,, while the sigmoid function is ¢ = Tiew

7

o represent the Hadamard product. Two distinct models LST M were applied to classify

ADHD according to the following:

(I) Stacked LSTM: is a specific kind of recurrent neural network that includes an
arrangement of recurring memory cells, since all memory cells are connected to the
last cell. It takes in the mput and then keeps each block’s state unchanged. The
LSTM sequence is composed of a stack of multiple LSTM layers. We applied
three LST M layers, as shown in Figure. 1.1. In this setup LST M, every layer cell
receives input at different times. It combines the data from the stacking LSTM

and produces the result on various time stamps.

el s ol ol
N

—@— M —— 15— M b isiM

Accuracy

Loss

Dense Layer

Figure 1.1: The stacked LSTM schematic block diagram

(II) Bidirectional LSTM: Two LS7TMs are used in the BLST M network according
to Graves and Schmidhuber [21] both the LSTM work in forward and backward

directions and give the combined outcome in the following manner:



_>.

Forward LSTM : A; = (ﬁ('&Uijg +Wogt i");()
<_

Backward LSTM : A, = gﬁ('u-'mz/\’; twggs+ bq)

— =
Combined Output : Y, = @[wy (A, Ay) + byj|

Where, wy represents the weight of the recurrent neuron, by signifies bias, (A, A¢)
stands for forward and backward states, and activation at time t. In addition,

(b .be) refers to the bias conditions for the two LST M layers.

Ye

| \ Forward I

Ay ’ Ap

Ar
T Backward \

Figure 1.2: Bidirectional long short-term memory (BLST M) architecture

Figure 1.2 represents a schematic framework of BLST M, where each time period,
le. t—1,¢t and t+ 1, are specified the series of inputs are X, |, X;, X;.,, after
processing LST M layers generates the output parameters are Y;_,.Y;, Y., subse-
quently with the activation function ¢ showing the hidden states of both directions,

. —
that is, A, and A,.



1.2 Brain Imaging and Magnetic Resonance Imaging

In the past 20 years, M RI have been used to identify neurological diseases such as M.,
malignant tumors, or Alzheimer’s disease, and neurological disorders such as Attention
Deficit Hyperactivity Disorder (ADH D), as well as psychiatric disorders Vieira et al. [22]
Brant-Zawadzki et al. [23]. ADHD is a neurological disorder that is a prevalent neu-
rodevelopmental condition. A higher degree of emotional liability /negativity has been
associated with ADHD symptoms. The complicated structure of the human nervous
system, which contains neurons Olaf [24]. M RI is non-intrusive and is capable of provid-
ing useful information. Different magnetic resonance M RI modalities generate numerous
contrasted images. The two fundamental forms of MRI imaging, that is, 71 and T2-
weighted brain imaging. 7'1 weighted MRI images can be generated with shorter times of
echo time (T'F) and repetition time (7'RR). In the MRI image, which consists of brightness
and contrast that is determined primarily by the properties of 71 tissue. 72 weighted
imaging is produced using longer TE and TR durations. The intensities of the images
are frequently contralled by the properties T2 of the tissue Boaventura et al. [25] Glasser
et al. [26].

MRI imaging technology advances, specifically fM RI and Diffusion Magnetic Reso-
nance Imaging (dM RI), make it a possible noninvasive, in vivo observation of the human
brain netwark (sometimes called a connectome) and have a comparatively significant. sen-
sitivity and resolution Bandettini and Bullmore [27]. fMRI has progressively grown to
be a more significant tool to examine how the brain processes information neurologically.
fMRI is a useful technique for studying the human brain, as it is noninvasive. A sequence

of three-dimensional brain scans is used in fMRI experiments to observe the neural



activity of participants Wang and Guo [28]. Numerous studies on neuroimaging have
documented the occurrence of spontaneous activation of the brain while at rest Biswal
et al. [29] Arieli et al. [30] Leopold and Maier [31].

Additionally, it provides excellent integration of both temporal and spatial resolu-
tions. To describe the hemodynamic response, fAM RI uses temporal resolution. Since
the development of anatomical maps and atlases, the area of neuroimaging has advanced
significantly toward data-driven feature learning techniques. A few methods are, for ex-
ample, independent component analysis (IC'A), seed-based correlation analysis (SC'A),
canonical correlation analysis (('C'A), and some features that differentiate both controls
and subjects. Based on the connectivity that exists in the resting state functional mag-
netic resonance imaging data (rs — fMRI) using parcellation, which is determined by
the data and anatomic assumptions, however, it constantly becomes challenging to dis-
tinguish slight variations in cognitive states for certain insights fAM RI due to different
temporal lengths. Shen et al. [32] Perform an experiment on real fM RI data and analyze
the demarcation between rs — fM RI and task-based fM RI data; retrieve a pair of RO[
such as visual cortex and intraparietal sulcus.

The feature selection is performed using Deep Learning (DL) models by integrating
simple data with increasingly complex and functional composite representations. Deep-
learning models can boost their computational capability to find prediction functions that
have the best efficiency. Initial studies on neural imaging using Deep Learning models
were published in 2014 Plis et al. [33], and the amount of research carried out has grown

substantially since then.

e We make an effort to demonstrate the significant benefits of an efficient deep learning

framework for neuroimaging.



e The deep learning model in the context of fMRI data outperforms shallow machine

learning classifiers Yang et al. [34].

e Develop an effective and novel LSTM model for time series-based neuroimage anal-

ysis to identify neurological disorders by analyzing various brain signals,

o Application of Transfer learning algorithms to efficiently learn and interpret specific

regional brain activation.

e Neurological Diseases: Detection and Classification Using a Deep Learning Frame

work

1.2.1 Echo Planar Imaging

It is necessary to consider the significant variations in each individual’s brain while analyz-
ing fIMRI data. As a result, several researchers sought a variety of explanations concerning
the multisubject evaluations. The most popular technique is the spatial transformation of
the neuroimage into the standard coordinate space Friston et al. [35]. When applied to the
subject of human brain imaging examination, brain format images M NI are still prob-
ably the most widely nsed and are used by a number of fMRI analysis software. such as
statistical parametric mapping (SPM) https://www.fil.ion.ucl.ac.uk/spm/. Echo planar
imaging (EPI) is the technique most frequently used in clinical brain imaging Mansfield
[36]. It is a method for real-time MRI imaging, a single image using a video rate, for use
in medical and clinical investigations, such as detecting cerebral blood flow. The echo
technique E'PI is often used for most fMRI procedures. It can acquire data related to
a two-dimensional image in approximately sixty milliseconds at appropriate resolutions

of voxel size, as shown in ligure 1.3. It is necessary to identify the source of the energy



release. Magnetic field gradients can be applied across three orthogonal orientations. The
most common usage of FPI is as a sequence of 2D, and additionally, 3D — E'PI has been
created (echo volume (EV 1)) Mansfield et al. [37]. The pulse pattern EPI combines the

temparal (m) and spatial (n) configurations of the gradient with more image slices.

Figure 1.3: The MNI coordinates indicate the location where the slicing is performed,
slices from an EPT image

1.2.2 Structural Brain Mapping and Parcellation

Early research has shown a complex relationship between structural and functional con-
nection patterns Greicius et al. [38] Hagmann et al. [39] Vincent et al. [40]. Structural
connectivity (SC) represents the spatial connection across the entire brain. It is among
the most widely recognized and effective neuroscience studies that have included dis-
tingnishing features and representations of spatially different subregions of the cerebral
cortex Zilles et al. [41]. An essential characteristic of the clusters of neurons that make
up the neurons of the cerebral cortex that associate with each other based on similar
microstructural characteristics that generate coherent regions Toga et al. [42] Kndsche
and Tittgemeyer [43].

The most significant marker has grown into the anatomical microstructure. It is
used to determine the cortical environment of humans Amunts et al. [45] Geyer et al.
[46] Tootell and Nasr [47] Amunts and Zilles [48]. The remarkable cytoarchitectonics-
based parcellation of the cerebral cortex, the distinction of the cortical region, is based

10



(a) (b)

Figure 1.4: Segmentation of a brain into smaller part is a parcel: Sulcogyral parcellation
(a) left hemisphere and (b) right hemisphere is observed by Destrieux et al. [44]

on variations in cellular lamination patterns and, furthermore, due to more prevalent
macroscopic characteristics, including connection patterns Guillery [49]Amunts and Zilles
[48] Passingham et al. [50] Eickhoff et al. [51]. The dimension of the regions is one of the
most significant determinants in the examination of brain connections. In a parcellation
that authentically describes the cortical regions of the brain, each parcel must appear
homogeneous. It must have a consistent functional connection pattern throughout the
parcel Craddock et al. [52] Shen et al. [53]. According to Power JD and SE. [54] Yeo
et al. [55] a substantial network structure is necessary for a parcellation to adequately
demonstrate cortical regions. Using the multigraph clustering algorithm, a whole brain
parcellation was produced Shen et al. [56].

Parcels that appropriately represent cortical regions in the group average data must
be utilized to generate suflicient a priori ROIs for each subject. The basic principle of
neuroscience is the parcellation of the outer layer of the human brain, which is gray matter
(GM) and millions of densely packed axons white matter (TWM) into functional units Ar-
slan and Rueckert [57] Destrieux et al. [44], as demonstrated in Figure 1.4. In association

with high-resolution parcellation methods that separate the brain into voxels. We present
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Figure 1.5: The bootstrap analysis of stable clusters (BASC) (Bellec et al., 2010) technique
was used to create the brain parcellations, and a data-driven approach was used to choose
the scales.

a data-driven method for whole-brain parcellation. Structure-based parcellation, such as
cytoarchitecture and tractography, provides standardized atlases that have been widely
used for several experiments. Although brain anatomy and function are intrinsically
linked, it is envisaged that the anatomically defined brain atlas might be used to con-
struct functional connectivity networks of the brain. The aggregated voxels describe the
fundamental concept of connectivity-based parcellation with homogeneous connectivity
patterns within the clusters, which is depicted in Figure 1.5. Thus, particular clustering

processes often serve as the basis of brain parcellations, which we use in brain imaging.

1.2.3 Resting State fMRI (rs-fMRI)

Stimulus or task-based fMRI frameworks have been essential to our understanding of how
the brain works at any given moment. rs — fMR] is a technique to analyze intrinsic
brain networks while the brain functions at rest (when subjects are at rest). It represents
activations during the state of the task to measure the correlation between different areas

of the brain Biswal ct al. [29] Lin ct al. [58] Estcban ct al. [59]. Task-based fMRI
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sometimes cannot or does not pick the same patterns throughout the brain, while rs —
M RI is achieved. Neuronal activity evaluation is performed while a task demonstrates a
combination of spontaneous and task-evoked activity. The rs-fMRI technique continues to
advance, improving our understanding of the manner in which the brain develops with age
and with the brain develops with age and with disease Lin et al. [58] di Qin et al. [60]. The
primary goal of rs — f M RI is to measure spontaneous activity in oxygen-level-dependent

signals in blood (BOLD) Biswal et al. [29].

Figure 1.6: Spatial mapping of the specified RSNs.Spatial normalization of the data has
been performed in the standard MNI space. Coordinates their peak activations.

There are extremely few amplitude variations within these rs — fM RI signals, es-
pecially at low rest frequencies between (.01 and 0.1Hz. In this study, we present an
analysis of rs — fMRI studies and give examples of possible medical applications found
in the literature. rs — fM RI is examined for synchronized activation that occurs when
no task or stimulus is present between spatially distinet brain regions to identify resting
state networks (RSN s). The default mode network (DM N) is potentially and most sig-

nificantly fundamental RSN. RSN essentially refers to this spatial correlation between

13



more than two areas of the brain. In this study, we used rs — fMRI data from two
different types of subjects, such as those suffering from attention deficit hyperactivity
disorder (ADH D) and healthy controls, to further the research. According to a trend,
ADHD predictions were becoming worse when training models with matrices that did not
include the default mode network Rosenberg et al. [61]. Previous studies have focused
on the correlation between the functional network according to the similarities that exist
between their BOLD time course and the use of correlation functions such as Pearson’s
correlation. In such instances, an array of selected voxels is used when examining the

data rs — fM RI.

1.3 Resting State Network (RSN)

Some regions in the brain demonstrate correlated activity hetween the motor cortex and
other portions of the brain area associated with brain activity, and this correlated activity
has been finally identified as contained in several brain systems Biswal et al. [29] Seitzman

et al. [62] Vieira et al. [63].

¢ Functional Network: That correlated activity, known as functional systems and
distinctive connectivity networks, is called a resting state network (RSN). Several
characteristics of RSN such as motor, sensory systems, cognitive control, frontopari-
etal, basal ganglia, memory, and default mode network (DM N} are extracted and
have been linked to the cause of the disorder of ADH D, according to various ap-
proaches Zhou et al. |64] Damoiseaux et al. |65| De La Fuente et al. |66]. According
to Pruim et al. [67] Choi et al. [68] dos Santos Sigueira et al. [G9] were specifically

developed to analyze the modifications RSN in ADHD. RSNs are distinguished
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Figure 1.7: Visualization of RSN, JC'A and RSN time-series (a) Visualization of the
extracted region of Functional networks in RSN (b) Independent components in various

types of spatial maps representing RSNs (¢) The time series that /C'A extracted from
specific RSN s.

by standard correlations using the BOLD stimulus in specific areas of the brain.
The topography of RSNs is almost identical to the responses extracted for various
cognitive, sensory, and motor functions, as represented in Figure. 1.7(a). RSN can
be accurately determined by the fluctuation observed in the BOLD signals of the
resting brain in subjects Seitzman et al. [62] Zhou et al. [64]. fluctuations occur at

very low frequencies (< 0.1 Hz).

¢ RSN Timeseries: Time series features must be explored for RSN, for several time
series signals that originate in various regions of the brain Figure 1.7(c). The in-

tensity (amplitude) associated with RSN was represented by the RSN time series.

15



To study various regions of the brain, the levels of time series signals coming from
various ROlIs of the brain were converted to ROI signals using dimension reduction
methods. The rs-fMRI depends on spontaneous low-frequency fluctuations that oc-
cur in the BOLD response. The spatial and instantaneous characteristics of the
BOLD responses have been associated with respect to the corresponding configu-
ration of WM and gray matter GM within a particular voxel Provencher et al.

70].

RSN-ICA: RSN are anatomically distinct but functionally connected regions that
demonstrate substantial correlations in BOLD signal activity. An efficient signal
analysis technique called independent component analysis (IC'A) has been used and
can be seen in Figure. 1.7(b) to determine and examine accurate functional connec-
tivity patterns (F'C') of signal fluctuations BOLD in rs — fM RI Beckmann et al.
71]. Attempts to provide the correlation that exists between spatial ROIL by us-
ing linear spatio-temporal correlation. The term "spatiotemporal interdependence”

refers to the functional connectivity of the region of the brain among various widely

distributed neurophysiological events Oliveri et al. [72].

1.4 The Event Specific fMRI

fMRI has been used by most studies in recent years to find out more about brain

cognitive autonomy along with connectivity of multiple brain regions Thibault et al. [73]

Yu et al. [T4]. The activity level of the cerebral cortex can be observed instantaneously

using fMRI by fluctuating the BOLD signal that is triggered by neuronal activity in

the cerebral cortex, additionally acquiring information and evaluating the B0 LD signals
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Cox et al. [75] Logothetis [76]. fMRI provides superior spatial resolution with less
interference. This means that the identification of neurological activity has become more

important using the data from fMRI.

1.4.1 BOLD Response

BOLD imaging is a technique used in fM RI studies to generate images Ogawa et al.
[1]. It is interpreted as a substitute indicator of the spontaneous hemodynamic response
to neural activity. An implicit measure of neural activity is provided by the impulse
response function or the hemodynamic response function (HRF') which is characterized
by the BOLD signal that appears in fMRI during rest Friston et al. [77]. It is typically
recognized as the nonlinear nature of neural activity. The activity of neural tissue allows
for an increase in voxel size and leads to the regulation of affected cerebral blood flow

(CBF) which results in the hemodynamic response.
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Figure 1.8: The Canonical Hemodynamic Response Funetion, which displays the fMRI

signal’s temporal evolution shortly after an initial activation activity. The expected re-
sponse of neurons during particular stimuli.

One of the most standard approaches is to model the HRF' determined by the balloon
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model Friston et al. [77] Buxton et al. [78] Buxton et al. [79]. During the evaluation
of the BOLD signal, there are three attributes that are frequently used to describe the
appearance of the BOLD signal: (4) Full Width at Half Maximum (FW HM). (ii) Peak
Height and (i) Time of Peak. Fluctuations in the firing rate are responsible for the
fluctuation of its maximum height, peak time, onset delays, and duration of neuronal
activity. To determine the more accurate neuronal events that may be used for the HRF
measure.

Consequently, as neural activity increases, this results in higher MRI intensity. The
convolution is used to depict the response BO LD during the stimuli S(-), as well as the

hemodynamic response function. H(.) therefore, the BOLD signal is represented as:

Y(t)=HwX(t)= / H(t — )X (v)dv (1.7)

The function IRF H(t) = 0 for t < 0 is considered to be of short duration. The
focus of this work was on the homogenization of the data-driven fMRI dataset W M and
the cerebrospinal fluid signals (CSF). The purpose of the research is to determine a

correlation between the F'C' measure, which is caleulated using the BOLD signals.

1.4.2 fMRI Voxel Analysis

The BOLD signal has been determined using a fM RI scanner. The BOLD signal cor-
responding to each voxel is exactly specified by the fMRI calculation Stanley et al. [80].
SMRI images are 3D brain regions measured over time and are generally multidimen-
sional. The data consist of a series of M RIs, each with a number of equally distributed

volume components, or voxels, that separate the brain into equal-sized cells. The voxel-
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specific image intensity demonstrates the spatial distribution with respect to the nuclear
spin density of a specific region. A standard fMRI data collection consists of a time series
of several thousand voxels. To identify the activation model during a particular task, a
general linear model (GLM) has been extensively used as a modelFriston et al. [77]. The
objective of f M RI statistical data analysis is to determine the appropriate level at every
voxel level. For rs — fMRI It includes two distinet categories of analytical approaches
(7) Functional Integration, which evaluates functional connectivity between different re-
gions of the brain; and (27) Functional Segregation, which estimates local activity in any
particular voxel time series. In a significant mumber of previous studies, at the regional
level, F'C' maps have been generated Salvador et al. [81] Achard et al. [82]Supekar et al.
[83] Supekar et al. [84]. The combination of fMRI time series with the respective voxels

is required for region-level connectivity.

1.4.3 Functional Connectivity

Functional Connectivity (F'C') is described by comparing similarities and distinctions in
various brain signals that occur in two regions. Numerous FC' analyses based on fMRI
signals demonstrate the number of pathological factors that influence the brain F'C' Hull
et al. [85] Hua et al. [86]. The signals are generated by two different anatomical regions {i}
and {j} of the human brain; this could appear to be correlated. This would signify that
these regions are functionally connected in the brain Damoiseaux et al. [65] Greicius et al.
[87] Shirer et al. [88] Salvador et al. [81]. While there are several methods to calculate
functional connectivity, for linear correlation, a typical Pearson correlation coefficient
approach (PC(C') 1s used to analyze F'C'. Functional connectivity was evaluated between

the two scts of temporal data between the regions by caleulating PC'C. The mean time
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course for every subject can be represented as {z;(t)} and the Pearson correlation is

defined as:

il s — > lri(t) — & [vit) — il
) Vo wi(t) — TP o i (E) — TP

in which #; is the average of ;. It has to be expressed that a significant correlation exists
between the two regions that cannot ensure a functional connection between the base
neurons. For example, there could be an appropriate correlation between brain activity

from two different regions. The partial correlation 1s represented as:
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Figure 1.9: Correlation matrix depicts the connectivity measure of various regions of the

ADHD 200 fM RI dataset used for the classification.

Where C'ov(X,;) describes the {#"} and {j""} a component of the inverse covariance
matrix obtained from matrix X. F'C' the resting state demonstrates replicable brain net-
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works, which are likely to be significant in our understanding of brain behavior-associated
factors in disorders such as ADHD Castellanos and Proal [89]. Various connectivity
states indicate different networks between correlated regions. Clustering has bheen used
by researchers Allen et al. [90] Du et al. [91]. For the analysis of functional connectivity,
the analysis of principal components (PCA) is applied for the reduction of dimensions
between distinct brain regions Leonardi et al. [92]. For the extraction and identification
of functional connectivity conditions, Fisher’s discrimination analysis technique and In-
dependent Component Analysis (IC'A) have been applied by Li et al. [93] Miller et al.

[94]. As a result, modifications to correlated regions give distinet measures of disorders.

1.5 Objectives

The fundamental ohjective of deep learning in MRI classification has heen categorized
into two distinet goals. Initially, there has been scientific significance, such as (#) When-
ever an algorithm using deep learning can accurately classify MRI data due to a specific
neurological disorder or mental disease, the analysis of this deep learning framework will
offer a higher-quality interpretation of nenrological disorders. (ii) Prospective applica-
tions in healtheare care are another reason for consideration.The purpose of the study

carried out for this thesis consists of the following:

e To interpret the connection between neural activities using BOLD signal-based

correlation and gradient comparison in an MRI image

e To design a deep learning model for the classification of brain disorders with as

much accuracy as is feasible using f M RI data
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e To detect, visualize, and classify the neural activity in response to a given task by

C'N'N model for the stimuli in the identified voxel

1.6 Dataset description

There are two fundamental types of neuroimaging technologies: (i) Functional brain imag-
ing and (i2) Structural brain imaging. Functional brain imaging are used to determine
metabolism, blood flow and activity of the brain. The results of these procedures are
frequently combined with structural imaging. Among the methods for functional brain
imaging include (f M RI), magnetoencephalography (M EG).The two most popular brain
imaging methods are fMRI and MRI, fMRI is performed on MRI. systems. The
prospective application of fMRI is to determine which brain regions are involved in
sensory funection, motor funetion and language. The purpose of MRI is to investigate
how the brain functions by examining the temporal fluctuations of each region’s activ-
ity. For this thesis, the publicly available fMRI data obtained from the OpenfMRI
database https://openfinri.org/dataset/ds000228/, accession number ds000228, provides
behavioral and fMRI data. There are 155 participants in the fMRI data, of which 71 are
male and 84 are female comprising 33 adults followed by 122 children. Collected 4D-fMRI
images represent large-scale, high-dimensional data sized at (50 x 59 x 50 x 168) includ-
ing 50 slices. We have also taken into account the different statistical factors that are
displayed in Table. 1.1. For classification of brain activity as well as behavioral activity,
each voxel size is 3 mm isotropic and TR = 2 second.The confounds consist of merely
six motion metrics, which include a mean framewise displacement (FD), a signal from

(WM), a (CSF), and six anatomical parameters shown in Table. 1.2. In this study, we
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Table 1.1: Summary of the age-related statistical measures employed in the research

éfﬁup éffim Mean  Std.Deve ﬁg- 25% 50% T5% fgg-
3yo 17 3.7H 0.17 3.51 3.60 3.78 3.93 3.98
4dyo 14 4.43 0.28 4.0 417 4.36 4.71 4.85
YO 34 5.50 0.28 5.01 5.31 546 5.73 5.99
Tyo 23 7.53 0.36 7 714 766 7.91 7.96
8-12yo 34 9.76 1.18 8.02 8.63 969 10.53 12.3
Adults 33 24.77 5.30 18 21 23 28 39

used the mean of the WM and CSF time-series signals to classify the neural activity.

1.7 Challenges and Contributions

The main challenge is applying deep learning methods to neuroimaging data that describe
brain disorders and fluctuations in brain activity that exist under various conditions for
experiments. It is challenging to detect brain activity in fM RI data. which provides an
arbitrary and noisy method of measuring. [t does not analyze cortical regions but instead
records the standard impacts of numerous spikes. To detect and classify neurodevelop-
mental disorders and neural activity, the deep neural network generated attention to make
the decision-making method more comprehensible and interpretable. The following are

the most significant issues affecting the performance of the network:

e Determining the correlation with high-dimensional brain activity is one of the most
important problems in neuroimaging, which challenges establishing the validity and

accuracy of DL model outcomes.

¢ When employing various Deep Neural Network (DN N) architectures, such as CNN

and RN N, to execute deep learning, the basic challenge has proven challenging

23



Table 1.2: The first 30 Participants confounds consist of five motion metrics

Age égsup Gender CSF WM g’i;?;l ?)t\?ars Dvars
351 3 M 850.07 93223 10829 1.3943 4298
3.98 3 F 1016.04 1118.12 1496.04 1.3006 334
3.78 3 F 872.34  922.67 1219.86 1.3868 48.61
3.84 3 M 1024.23 1152.33 1335.54 1.2398 22.11
3.63 3 M 791.72 81573 1148.06 1.1771 25.54
3.62 3 M 745.34 847.24 1129.01 1.4488 44.29
393 3 F 751.44 765.85 97147  1.3609 41.95
393 3 F 768.21  733.65 943.5 1.3019 33.96
3.98 3 I 798.59  829.09 1003.06 1.5954 63.28
3.53 3 M 701.67 789.12 971.63 1.5854 85.13
4.77 4 M 805.11  863.3 1242.84 1.4783 41.7
435 4 M 903.62 1018.56 1222.31 1.4259 28.61
4.76 4 F 775.03  833.83 1055.75 1.3481 36.71
4.05 4 M 857.92  863.61 1118.08 1.3112 31
4.08 4 F 773.94 75447 1016.96 1.3711 4498
599 5 M 562.13 537.17 697.71 1.5717 60.54
5.99 5 M 029.71  516.97 661.27 1.1368 4452
539 5 E 4A87.27  489.31 586.32 1.4625 52.57
8.55 5 F 572.84 542,66 637.11 1.3163 36.31
Bad B M 546.17 572.95 693.62 1.3321 43.26
5.6 & M H548.83  525.06 652.08 1.2649 382
5.31 5 F 548.11  519.57  656.23  1.4751 36.61
538 5 M 545.81 52246 64343 1.3992 31.53
5.46 5 F 550.82  525.16 669.06  1.5119 42.67
5.46 5 M 531.11 519.80 630.37 1.2884 30.77
599 5 M 560.7 532.07 647.88 1.2736 25.87
533 5 M 505.04  570.83 663.01 1.3358 42.07
502 5 F 526.09 475.02 620.96 1.2617 29.32
792 7 I 550.47  505.6 627.57 1.2735 29.74
792 7 F 533.04 48248  599.2 1.2776 37.55
796 T M 527.13  476.33 579.48 1.4243 29.64
148 T F 518.72 526.29 689.12 1.2579 24.92
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to classify fMRI data. Conducting feature selection with high-dimensional neu-

roimaging data is challenging considering the numerous types of DL architectures.

e Significant numbers of fMRI dataset samples are necessary for deep learning ar-
chitectures to be able to both outperform in a particular dataset and generalize to

different datasets.

e The presence of noise may make a system less efficient, both in terms of training
effectiveness and classification accuracy. The difficulty of learning in noisy environ-

ments has been emphasized in the architecture of deep neural networks.

e The challenge of using the RN N-based LST M model for the classification of neu-
rological disorders is its computational complexity. There are many parameters and
operations in the LST M model, and training and optimization are challenging, espe-
cially for high-dimensional data. The disappearance as well as the growing gradient
issues also affect LSTM, which prevents the acquisition of long-term dependence,

which creates instability and leads to divergence.

Most of our work has focused on addressing these problems and presenting an effective

method to overcome them. The following are the main findings of onr study.

e fMRI data and DN N model for better classification of neurological dis-
order: Processing 4D-fMRI data might be difficult because of its high dimen-
sion.Voxels demonstrate the characteristics and correlations between them in 4D
fMRI data. Here, each voxel’s dimension is taken into consideration as (r x y x 2 x t)
spatial resolution. It is necessary to reduce the dimension. For this specific purpose,
tensors are used to develop an algorithm to reshape the data rs — f M RI, helping to
achieve the vector of characteristics. Furthermore, these feature vectors are used as
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a pre-trained value for deep neural network (DN N) models that classify neurode-
velopmental disorders, that is, neural activity, and generate the saliency map for the
active region of the brain. Specifically, while using time series fMRI data within
time series feature extraction, such as models based on RNN and LSTM, to save
time and resources, this is necessary for training a DNN. Accurate regularization
and fine-tuning of the two different variants, such as stack LST'M and BLSTM
results in models that have become substantially more resilient to a considerable

amount of training data for the classification of ADHD.

Despite the increasing popularity of C'NNs in order to analyze the data fAMRI,
it is essential to interpret the activations of the features of the CNN model as
saliency maps, which can provide a better understanding of the model training
process. In order to achieve efficient visnalization, the CNN-based pre-trained model
is MobileNet, which is combined with 2D — C NN to identify complex features from
fMRI data. The most vital aspect of the MobileNet 2D — CN N model is the class
activation map (CAM) for Multiple Sclerosis in M RI images, which is obtained
through the weighted feature map governed by the softmax weight that classifies
the heat map corresponding to a specific class. The most important aspect of
the CNN model is the pixel-level interpretation of the M RI image. The feature
attribution method is useful to interpret the classification during the implementation
of the C' NN model, which emphasizes the significance of each feature of the M RI
image data that has an effect on the model evaluation. For better classification
and extraction of characteristic features of brain disorders and brain activity, we
propose an algorithm to reshape the mechanism of 40 — fMRI data and various

DNN models.
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- Algorithm for reshaping 4D — fM R1 time series data into a data array 2D.

- An improved BLSTM framework to perform classification of brain disorders
ADHD

- MobileNet: 2D — CNN model for identification of M S features map that
predicts the MS

- Analyzing and demonstrating the non-linearity of a C'N N model while applying

the gradient-based visualization for MRI images.

e Gradient analysis of an MRI image and determination of the functional
connectivity measure using the BOLD signal: During the diagnosis of speech
arrest, image-edge detection M RI is a difficult task. To overcome this situation,
we provide a set of computation methods that allow a more accurate visualization
of the edges of the M RI image. In this procedure, there are two distinct essential
components: the intensity of pixels and the region of interest (ROI), which require
the generation of an edge map. Some ROIs follow certain statistical analyzes using
the region, and in the case of fMRI resolution, the statistically significant nature
of the voxel is taken into account. The ROI approach uses the arbitrary gradient
histogram to obtain edge detection. For the approximation of the histogram, the
normal distribution of the intensity demonstrates a rapid Huctuation in intensities
that is associated with the probability of pixels. We implement the three methods

for the localization ol intensities:

- The scalar operator or the Laplacian operator.
- Sobel operator for edge detection

- Prewitt operator for the extraction of the edge of the M RI image
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1.8 Structure of the Thesis

There are six chapters in the thesis.

Chapter 1: This thesis’s work emphasizes the application of deep learning to classify
the whole brain fMRIs according to features. This chapter provides a brief introduc-
tion to fMRI and its application. Following a concise technical description of FPI,
rs— fMRI, and RSN. We discuss how these concepts could possibly be applied in order
to understand brain disorders and neural activity. We provide more details regarding
the statistical study of brain images. Regarding the introduction and objectives of the
research work, we demonstrate the deep learning models and how fM RI can be used to

more effectively understand neurological disorders and activity.

Chapter 2: We present the existing theoretical and experimental Deep Learning
framework used in brain image analysis. The preceding research categorization focuses
on the findings of fMRI and provides an in-depth analysis of how deep learning tech-
niques and models are currently used in fM R data from tasks and resting states fMR[

for classification, identification, and clustering of cognitive disorders.

Chapter 3: This chapter demonstrates an experimental approach to functional con-
nectivity analysis. We praopose an approach for obtaining features that chooses the most
significant voxels. Demonstration of different algorithms for connectome analysis, neu-
ral activity identification, and blood oxygen level-dependent signal analysis (BOLD). A
CNN and LSTM framework has been developed for the classification of brain disorders

such as ADHD aud Multiple Sclerosis, the generation and detection of Saliency Maps,
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and the classification of neural activity based on data from rs — fM RI.

Chapter 4: We propose an algorithm for BOLD signal analysis. We presented
Functional Connectivity F'C' which serves as the basis for the correlation representation
of high-dimensional f A RI data. We provide the gradient information of the M R 1 images,
which includes distributed voxel intensities and contrast.

Chapter 5: In this chapter, we demonstrate our findings from experiments, which
were presented and discussed. Compared to some previous studies, classifiers are based on
time series data fM R1. Describe the findings of rs — f M R1 preprocessing, including the
formulation of functional brain networks. We introduced the bidirectional LST M model
with a slight modification and the 2D — C'N N model that classifies neurological disorders
such as ADHD and Multiple Sclerosis (M S). We presented an algorithm to generate the
saliency map of fM RI images and classify neural activity using the deep learning-based

model.

Chapter 6: This chapter is summarized in the conclusion. Discussion of the more
comprehensive and caretul analysis of the findings recognizes the limitations of this study

and illustrates the potential relevant gaps in the rescarch and future directions.

1.9 Conclusion

In this chapter, we provide a discussion of the neuroimaging modality and the use of deep

learning for the analysis of neuroimaging data. The prediction provides one of the primary
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features of DL's. This technique has been applied to neuroimaging data with remarkable
success. On the basis of end-to-end learning, this is an important aspect that has recently
been established. The possibilities of deep learning in neurological disorders are very
intriguing when high-dimensional neuroimaging data is employed, such as fM RI. The
functional M RI has the ability to quantify brain activity, and these quantitative data,
which are derived from fMRI, are used to measure the BOLD signal with activation.
Task-based fMRI experiments have been essential for our present understanding of how
the brain functions. rs— fM RI is concerned with spontaneous low-frequency fluctuations
(< 0.1Hz) in the BOLD signal. The BOLD response function (fM RI time series) and
the RSN characteristics are extracted by CNN with distinet layers. Another kind of
DN Ns known as RN N, is possibly very useful for application in fMRI time-series data

to make useful predictions.
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CHAPTER 2

REVIEW OF LITERATURE

2.1 Introduction

The framework of this review could be properly categorized into two distinet sections. This
chapter covers existing research first, then maoves on to the methods that are associated
with the issue being addressed. More specifically, in this chapter, we give a brief review
of various well-known deep learning models and discuss deep learning models for fMRI
images, neural activity, and brain disorders, including ADHD and Multiple Sclerosis.
Subsequently, we discuss the limitations of deep learning models in neurcimage analysis.
The previously proposed algorithmic methods for brain disorder and brain activity in
images f M RI were explored and considerably reviewed. In addition, we go through the
deep learning models that are used to analyze the entire process to validate the findings

of brain disorders and neural activity in images fM R1.
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2.2 Deep Learning Techniques and Neuroimaging

The application of deep learning models is increasingly prevalent in order to identify
task-adaptive features in image applications. The standard image automation workflow
analysis has become more challenging as a result of a state-of-the-art deep learning frame-
work, most significantly convolutional neural networks (CNN) Vieira et al. [22]. Several
studies have successfully incorporated neuroimaging methods to quickly identify, evaluate
and treat brain disorders, such as mental illnesses, neurodevelopmental disorders, and

neurological disorders Dvornek et al. [95] Hinton et al. [96].

2.2.1 Deep Learning Models

Deep learning’s potential is to provide automation in the identification of hidden and more
complex data that has been abstracted and is based on high-dimensional neurological
imaging data. This might be an essential part of understanding complicated neurological
disorders Yan et al. [97] Zeng et al. [98] Dvornek et al. [99] Durstewitz et al. [100] Da-
vatzikos et al. [101]. Here, we discuss the main principle for basic deep learning models,
which are widely used in neuroimage analysis. These models comprise deep generative
models along with feedforward neural networks such as Deep Belief Network (DBN),
Generative Adversarial Networks (GAN), Convolutional Neural Networks (CNN) and

Recurrent Neural Networks (RN N).

(1) Deep Belief Network

An easy-to-use and effective layer-wise training approach is proposed by Hinton
et al. [96] to create a deep belief network that is stacked with several restricted

Boltzmann machines ({23 Ms). There are generally two stages of training DD N:
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(7) training with successive layers; and (#) fine tuning. Training with successive
layers includes unsupervised training across each RBM and backpropagation errors
are used to fine-tune the topics discussed in Hecht-Nielsen [102] and the parameters
after unsupervised training of DBN were defined in Dalto et al. [103]. A simplified
analysis of the RBM model was performed by [Hinton [104]. The RBM is dis-
tribnted among the first two layers, in which the observable units are (z) and (K)

hidden layers are (L), therefore, the joint distribution of DBN is represented as:

K-2
P=(z,hly...1x) = P(z|h) | [T P (ltns) | Pllir,lx)
k=1

The Where k" hidden layer has been trained with RBM using the data gathered

from observation. From the & — 1% layer, the characteristics were learned.

e Deep Belief Network on fMRI However, DBN is widely utilized in speech
processing as well as the detection of images. Only a certain number of stud-
ies have used it on complex neurcimaging data such as fMRI. Plis et al.
[105] presented many examples of how deep learning frameworks have been
used with fMRI data. Their findings demonstrated the effective impact of
exploratory analysis for the detection of latent connections and physiological
representations using DBN learning. Kuang and He [106] used the algorithm
DBN for the extraction and classification of features using fMRI data from

the ADHD-200 cohort to classify the ADH D brain disorder from the control.

(II) Generative Adversarial Networks

As a result of their ability to learn deeply encoded representations without highly
labeled training data, GAN has generated a lot of interest in computer vision.
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This network has found its direction in Goodfellow et al. [107] Grnarova et al.
1108]. Notably, there has been a growing focus on them because of their potential
to generate data and because they are extensively employed in several domains,
encompassing segmentation and classification. GANs are being extensively used
in a variety of image algorithms, as the performance rate of the GAN models is
better for image processing problems. Several research papers have also summarized
and categorized the most recent models related to GAN, which are discussed and
classified in terms of loss function and especially in model development Creswell et al.
[109], Guo et al. [110]. Their study focused on the refinement of model development,
summarized in terms of supervised and unsupervised algorithms Hong et al. [111].
The improvement in stability and quality are the results generated from the model
based on GAN, as proposed by Salimans et al. [112]. In the GAN extensive analysis
of 2D to 3D image transformation, the relevant data set must first perform real-time
data retrieval and develop a standard with significant features discussed in Wu et al.
[113]. The main goal of GAN is to train a generator, that is, a convolutional neural
network, together with a discriminator, which is a deconvolutional neural network.
These architectures are discussed in Hiasa et al. [114]. The goal of generation can
also be classified as data simulation and data angmentation for a limited data set
Zhang et al. [115]. Generally, the GAN model is built as a min-max game. In
this model, the generator network (&) tries to minimize the discriminator network
(D) by using the latent space vector (Z) while (D) performs improvements and
differentiates between actual and generated data. The two networks senerate an
attempt to optimize the most efficient way to achieve individual goals, since each

network has its own ohjective function, as shown in Figure. 2.1. The cost value of
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both networks is defined as

Lgan) = V(D.G) = Exwpypa(x) [ LogD(X)] + Ezp,(2) [50‘0(1 - D(G(Z )))}

Where [LogD(X )J is a loss function for the discriminator network and {L()g(l -
D(G(Z )))} denotes a loss function for the generator network and the two distinct

networks.
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Figure 2.1: Architecture for GAN, where D’s goal is to maximize its cost and G’s goal is

to minimize its cost.
Several variants of GAN such as Deep Convolutional GAN (DCGAN) proposed by
Radford et al. [116] to improve the training process of GAN and modify the original
model GAN. Wasserstein GAN (WGAN) was proposed by Arjovsky et al. [117] in
which they modify the stability of learning in the original GAN model and produce
significant learning curves. Vanilla GAN (VGAN) was created by Jiang et al. [118]
to perform by retrieving sample data, which depend on a certain data distribution,
despite particularly modeling the fundamental probability density function. The

vanishing gradient problem will nevertheless take place while undergoing the learn-
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ing phase, therefore, resulting in a loss function. With respect to this problem, Mao
et al. [119] proposed a model of generative adversarial networks of least squares
(LSGANs) that acquires the loss of least squares. A generator in the original GAN
model entirely produces a latent space. The conditional GAN rectifies this chal-
lenge, which is proposed by Mirza and Osindero [120] by providing an additional
parameter to the generator added to latent space and finally training the GAN
model to generate the resulting images. Map the actual data set to the latent data
by using mapping methods for the probability distribution of the actual data to the

latent data.

e Generative Adversarial Networks for Neuroimaging: This GAN method
has a lot of potential for neuroimaging applications. Several previous studies
of GAN s have mainly focused on the technical aspects of medical imaging. Yi
et al. [121] discussed and performed the review of the latest advancements in
the adversarial training mechanism in medical images; Sorin et al. [122] their
reviews focus on the reconstruction of various modalities of medical images
such as CT, MRI, PET/CT and PET/MRI using the model GAN. Qu
et al. [123] systematically provide reviews and summarize the application of
the original and various variants of the GAN models for the classification of
Alzheimer’s disease. Laino et al. [124] discuss descriptive reviews for the appli-
cation of the GANsegmentation, model for brain imaging, such as progressive

disease modeling, image segmentation, and brain decoding,.
(III) Convolutional Neural Networks (CNN)
Deep learning techniques such as C NN, which are capable of learning data repre
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sentations, could have been used effectively in many different kinds of fields LeCun
et al. [125]. The CNN was developed in order to store and use crucial data more
effectively between adjacent pixels and simply require a small amount of prepro-
cessing using images that are two-dimensional 2D or three-dimensional 3D as input
LeCun et al. [126]. Krizhevsky et al. [127] suggested the standard CNN design serves
a computer vision task that includes three different types of layers, ie, convolutional
layers, pooling layers, and dense layers or fully connected layers. To classify a prob-
lem with studies related to DL, various CNN-based classification frameworks have
been created, including MobileNet Howard et al. [128], ZFNet Zeiler and Fergus
(129], EfficientNet Tan [130], Inception Szegedy et al. [131]. ResNet He et al. [132],
GoogleLeNet Szegedy et al. [133], AlexNet Krizhevsky et al. [127] and VGGNetSi-
monyan and Zisserman [134]. A new state-of-the-art deep architecture model DL
that can derive significant details using medical data and predict the variation pro-
posed by Nguyen et al. [135].CNNs are used in the classification of brain disorders,
as described in Zhang et al. [136]. Firat et al. [137] proposed a CNN-based archi-
tecture known as the temporal CNN model that uses spatial clustering for neural
decoding. Dolz et al. [138] evaluated the HyperDense-Net framework from neonatal

neuroimaging data to illustrate the performance of the proposed model.

e Convolutional Neural Networks on fMRI Data: According to Bernal
et al. [142] (2019), convolutional neural networks (C'N'Ns) have been used in
multiple areas of neurcimaging. C'N N convolution approach may extract data
from pre-processed fM RI images and the distinctive features of neighboring
voxels to present all the complicated features used in disorder classification.
The strategy is based on C NN, and the method has been shown to be effective
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Table 2.1: Observation and characteristics between the different Pre-trained
C'NN models

Author Model and Layers  Parameter Major
Year Feature
LeNet-5 Simple to implement and
LeCun et al. [139) 1998 7 0.060 M effective in resolving
smaller image recognition
AlexNet LeNet-5 & AlexNet are
Krizhevsky et al. [127] 2012 8 60 M identical while AlexNet
is a deeper. Filter Size in
3%3 ;hxb & 11x11:
ZfNet Applied Deconvolution
Zeiler and Fergus [129] 2014 8 60 M while error backprop-
agation in the convolution
Layer.
VGGNet 3x3 kernels are used
Simonyan and Zisserman [134] 2014 16419 134 M in each convolution
layer.Stacked convol-
utional layer.
GoogLeNet Convolution & pooling
Szegedy et al. [133] 2015 22 &9 4 M layers operate simultan-
eously a lesser computat-
ionally intensive model
than AlexNet & VGG-16
ResNet Core of batch normalisat-
He et al. [132] 2016 50 & 101 256 M usage of ion of identity conn-
ection.Uses bottleneck
residual block.
Inception V3 Enhances a network
Szegedy et al. [131] 2016 42 & 10 22M efficiency.Batch Nor-
malisation allows for
faster training. Build-
ing blocks efficiently
going deeper.
Xeeption Depthwise convolu-
Chollet [140] 2017 50 & 71 8.6 M tion followed by a
Pointwise convolution
DenseNet It is including a transition
Huang et al. [141] 2017 201 8.06 M layer & dense blocks
MobileNet Lightweight Deep CNN
Howard et al. [128] 2017 28 4.2 M using depthwise

separable convolutions.

in detecting brain disorders in several research studies. Sato [143] presented

a technique based on C NN to segment brain tumors, this architecture C N N

consists of a sequential 5-layer network where five distinct categories are created
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from the images M RI using the CNN model. Labels for two classes, such as 0
and 1 when determining outgoing edges, are discussed in Agrawal and Thierauf
[144]. Li et al. [145] used the 3D — C'NN model to extract important features
from the whole brain to estimate the age of the brain. Sarraf and Tofighi
[146] Used a LeNet-5-CNN model have incorporated rs — fMRI data as well

for the AD classification by converting an array of 2D — fM RI images from

4D —rs— fMRI data.

cuw0 @ Acivaion [ WaxPodingz @l Dot @ Faten @  Dense

Figure 2.2: Architecture of Convolutional Neural Network

Zhao et al. [117] proposed a 3D convolutional kernel-based C NN model that can ef-
fectively classify the functional networks of the human brain using whole brain fMRI
data to reconstruct the brain, and this model has excellent classification capacity
while using the Human Connectome Project (HCP) fMRI image. Zou et al. [148]
proposed a multimodality C NN model that classifies neuroimage among healthy
subjects and ADHD applying fMRI images. 3D voxel-wise fMRI data classifi-
cation using models based on C NN, Mitchell et al. [149] converted a 3D — fMRI
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(V)

image into a 2D mean value fMRI image along the z axis for classification using
the 2D — C'NN model. Neuronal visualization can be seen by the fM R signal in
terms of the observed image. Therefore, an interpretation of an image. Agrawal et al.
[150] fMRI signals were initially encoded using C' NN characteristics taken from
fMRI images. Giiclii and van Gerven [151] has shown a correlation between C NN
characteristics of the composition layer of the model VGG —19 and f M RI activity.
The task of analyzing fMRI activity is to interpret the observed fM RI signals, and
it uses C'NN features to display the image that is being observed. Richards et al.
[152] Classified 40 task tMRI time series data using 30D — CNN. 3D voxel-wise
FMRI data classification using models based on C'NN An objective for classifying
data evoked by tasks fMRI using computational techniques is to create feasible
prediction models that can detect how the brain responds to various types of task

activation Wang et al. [153].

Recurrent Neural Network (RNN)

This is an abstraction of an internal memory-equipped feedforward neural network.
RNN has had the capacity to process, remember, and retain complicated signals
for a very long time due to this model. RN N is capable of handling data streams of
different lengths, which has been demonstrated in neuroimaging data, specifically
FMRI time series data Livezey and Glaser [171]. RNN is capable of handling
every previous input from the sequence. Moreover, from the subsequent sequence,
which will evaluate the temporal dynamic behavior, the most significant advantage
of switching from traditional neural network models to RN Ns is that, over a pe-

riod of time, their weights are distributed throughout the neurons in hidden layers.
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Table 2.2: Summary of CNN Models for detection and classification of various

brain disorder

Reference Deep Sample Datatype Neurological Featured
Model  Size Category Objective
Cherukuri et al. [154] CNN 15 T Neurological The volume of
Disorder CSF has to be
measured
Vu et al. [155] 3D-CNN 1440 NRT BOLD (Nassification
Response of Neuronal
Activation
Talo et al. [156] CNN 1074 MRI-T2WI  Neurological Classification of
Disorder Brain Disorders
Mao et al. [157] 4D-CNN  ADHD  rs-fMRI ADHD ADHD
-LSTM -200 Diagnosis
Wang et al. [158] CNN 624 MRI-T2WI  Alzheimer's AD vs MCI
Disease Classification
Eitel et al. [159] CNN 147 MRI-T2WI  Mnultiple Multiple
Sclerosis Sclerosis
diagnosis
Wang et al. [160] CNN 334 MRI Brain Diagnosis of
Tumor Liver
Tumor
Rauschecker et al. [161]  3DU-Net 517 MRI-T1 Brain Brain Tumor
Lesions Segmentation
Meng et al. [162] CNN 30 Retinal Cerebrovascular  Cerebral vessel
Vessel Segmentation
Ko et al. [163] CNN- 727392 CT Stroke Intracranial
LSTM Trauma Haemorrhage
detection
Phang et al. [164] CNN 84 FC Schizophrenia  Schizophrenia
diagnosis
Park et al. [165] FCNN 102 MRI-T2WI  Parkinson’s Segmentation
Disease for DBS
Dubreuil-Vall et al. [166] CNN 40 EEG ADHD Healthy Control
vs. ADHD
Guilherme et al. [167] 3D-CNN 23165 sMRI Alzheimer's AD vs
Disease MCI
Dyrba et al. [168] CNN 663 MRI-TIWI  Alzheimer’s AD
Disease MCI
Ozyurt et al. [169] CNN 500 MRI-TIWI  Brain Brain tumor
Tumor detection
Wang et al. [170] CNN 144 EEG ADHD ADHD and
-LSTM subtypes

fMRI time-series have been correlated over time; therefore, RN Ns are capable

of being used to decode neuronal activity Huang et al. [172].
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the data fMRI, neural activity as an effect of sensory stimulation could be aceu-
rately modeled through RN N Giiclii and Van Gerven [173]. The vanishing gradient
problem influences RN N while using the high-dimensional feature vector as input.
The problem of gradient vanishing is solved with long- and short-term memory
(LSTAM), since it is developed by releasing memories Hochreiter and Schmidhuber
[174] Hochreiter et al. [175]. Therefore, a particular kind of RNN is an LSTM
network. As stated above, LST M prevents vanishing gradients and allows identical
credit assignment. For the weight adjustment that is connected to the network,
a complete gradient training is used in the LST'M model given by Graves and
Schmidhuber [176]. LSTM's capacity for learning has an influence on several ar-
eas; eventually, it became a state-of-the-art model. Without any uncertainties for
the implementation, a neural network would not be as widely used in the absence of
an excellent theoretical foundation. Recently, a study carried out by Yi et al. [177]
presents a summary of the LST'M cell and its features and various architectures.
The basic LST'M unit consists of a cell with a forget gate, an input gate, and an out-
put gate. The LST M network did not originally have a forget gate.Andersen et al.
[178] uses the forget gate in the LST'M network state, which has to be reset. RN Ns
offer computing structures that can be used to predict spontaneous brain signals
over time becanse RN Ns are created by connecting pairs of basic neurons that are
recurrently coupled, which encode the temporal occurrences of the input data, such
as rs-fMRI signals and learning within processes. After that, these conditions are

decoded to provide predictions.

e Recurrent Neural Network for Spatiotemporal Data: There are plenty
of problem domains where the LST M network is used. As has already been
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Figure 2.3: Vanilla LSTM architecture., which is composed of the different gates, where
the input signal and output signal are denoted by X® and Y®, respectively, along with
the peehole connection and activation function, i.e. gate activation function (o), input
gate activation function (g). & output gate activation function ().

stated, LST M serves as one of the most sophisticated networks for processing
temporal sequences. Gers and Schmidhuber [179] proposed time series data for
Gers and Schmidhuber [179] are modeled using LSTM and then subsequently
integrated with the input of text data, which enhances the predictions. Even
when time series data is provided as input, the LSTM model may not always
be able to make accurate predictions based on the subsequent data in the series
since this information can be used to learn a classifier.Uddin [180] showed that
the LST"M model has the ability to recognize a task that has been performed
based on data provided by many wearable medical sensors.Hou et al. [181] pro-
posed a method to identify face features to obtain images and videos captured
under independent circumstances. The present strategy constitutes an inte-

grated framework that, with other LST' M, can completely use both temporal
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and spartial data to improve accuracy. To enhance the efficiency and accuracy
of LST'M models, more than one LST'M layer is often needed to be stacked
on top of each other. A modification of the LST M model is the stacked LSTM
which contains several hidden LST M layers in which several memory cells are

present on each layer and is discussed by Yu et al. [182].

LSTM on fMRI Time Series Data: Xu et al. [192] studied using functional near-
infrared spectroscopy (fNIRS) data to identity autism in subjects and observed that
applying a CNN + LSTM classification method helped to detect ASD. Yoo et al.
[194] studied fNTRS data to measure sound stimulation in the auditory cortex for
the classification of subjects without any feature selection using the LSTM model.
Sirpal et al. [190] implemented fNTRS data along with multichannel EEG data us-
ing the LST M model to identify seizures. Another clinical use was studied to obtain
JNIRS measurements using deep learning methods Fernandez Rojas et al. [195] us-
ing unprocessed fNITRS data using the LST'M model, through which high and low
degrees of pain are differentiated. During an activity that requires cognitive effort,
Asgher et al. [193] used a model LST M and observed identical extracted characteris-
tics considering the time domain signals for HbR together with HbOs; a classification
of cognitive strain was established. When requesting participants to complete an ac-
tivity, Zhao et al. [191] addressed this problem, which implemented a model LST M
to identify whether tasks had been completed. Zhang et al. [187] proposed an in-
tegrated model composed of LSTM, CNN and an auto-encoder (AE) to extract
useful characteristics from motor imagery electroencephalography (M1 — EEG) to
identify the letter that the participant wishes to speak. Most biometric identification
systems depend on inherent physiological features. Zhang et al. [188] presented an
LSTM model with an attention module to determine user ID using the FEG signals.
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Table 2.3: Summary of RNN and LSTM Models for detection and classification

of various brain disorder

Author Model Datatype Sample Featured
Year Size Application
Dvornek et al. [95] LSTM rs-fMRI 1112 Classification
2017 (ABIDE-1) of ASD & TD
Alhagry et al. [183] LSTM EEG 322 Emotion
+MLP,2017 (DEAP) Classification
Supratak et al. [184] CNN EEG 62 Facial
2017 Expression
Zhang et al. [185] RNN EEG 15 Sleep stages
+BLSTM, 2017 identification
Shah et al. [186] CNN+LSTM  EEG 19 Channels Seizure
2017 EEG signals Detection
Dvornek et al. [99] LSTM rs-fMRI 1112 Identification
2018 (ABIDE-1)  of ASD
Zhang et al. [187] Attention EEG 28000/sub  Brain
-based (sub=10)  Computer
RNN.2018 Interface
Zhang et al. [188] LSTM EEG 8 User-1D
+CNN using
+AE 2018 brainwave
Correa and Patras [189] CNN EEG 37 Personality
+RNN.2018 Trait
Sirpal et al. [190] LSTM fNIRS 40 Epileptic
+CNN EEG Seizure
2019 &Multimodal Detection
Zhao et al. [191] BLSTM fNTRS A7 Recognition
2019 cerebrovascular
accidents
Xu et al. [192] LSTM INTRS 47 Diagnosis of
2020 ASD
4 i
Asgher et al. [193] BLSTM fNIRS 192 Cognitive
& Mental
2020 Workload
Yoo et al. [194] LSTM fNIRS 18 Decode
& Hemodynamic
2021 Response
Fernandez Rojas et al. [195] BLSTM fNIRS 13 Pain
2021 Non-Verbal  Evaluation
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Alhagry et al. [183] used an LST'M model to extract features from emotion-related
signals FEG, and these features are advanced to M LP for classification. Supratak
et al. [184] developed a deep learning model by combining several views of LSTM
and CNN to provide an automated evaluation of the sleep stage, where CNN de-
scribed the time-invariant dependencies and bidirectional LS1'M was used for the
temporal characteristics while sleeping. Zhang et al. [185] demonstrated a spatial-
temporal RN N model, which uses a RNN layer with many directions to identify
distant elements of the context and another bidirectional RN N layer to gather re-
current features resulting from the preceding spatial RN N. Correa and Patras [189]
presented a cascaded deep learning model using RNN and CNN together to predict
personality detection. Shah et al. [186] explored CNN — LST'M’s combined efficacy
for seizure detection using the EEG channel. Dvornek et al. [95] proposed a LST M
madel for the classification of ASD and typical controls directly using the rs— fAM RI
data. Dvornek et al. [99] present various approaches to applying phenotypic data
with the rs — fMRI Autism Brain Imaging Data Exchange (ABIDF) to classify

the ASD from the LST'M framework.

2.2.2 Functional Magnetic Resonance Imaging (fMRI) Schemes

Noninvasive procedures can determine cerebral physiological responses during neuronal
activation. fMRI has been one of the significant methods by applying an MRI procedure
that measures neurological activity by identifying BOLD (blood oxygen level dependent).
A higher blood oxygen level will lead to a more significant fM RT signal, as discussed by
Geyer et al. [46]. The primary objective of fM RI data analysis is to explore the time
series information of every voxel to identify how much the BOLD signal has occurred

in respouse (o a specilic stimulus and, subsequently, to identily neural activity. Several
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neuroimaging methods have been used for the study of neurodegenerative disorders, as

discussed by Wolters et al. [196]. Baggio and Junqué [197] proposed one possibility: that

rs — fM RI with its consistency and reliability, is capable of evaluating regional BOLD

signal variations and highlighting the underlying functional anatomy of the brain.

fMRI BOLD Signal

The initial research on humans BOLID) fM RI was published in 1992 hy Destrieux et al.

[44]Bandettini et al. [198]Kwong et al. [199]. fMRI depends on the measurement 72 and

is more susceptible to neighborhood concentrations of deoxyhemoglobin paramagnetic, as

defined by Destrieux et al. [44].

(a)

(b)

In response to the functional stimuli, positive BOLD responses are observed, indi-
cating a drop in HbR resulting in an overoxygenation from the response area, as
observed by Attwell and [adecola [200]. To analyze the signals of fAMRI BOLD
proposed by Boynton et al. [201], the neurovascular coupling typically appears to be
deep whenever there is a rise in neuronal activity that significantly improves local
bload flow, regardless of the pathological condition of the brain region, as well as
the neurodevelopment studied by Logothetis [202]. Schélvinck et al. [203] empha-
sizes that the global significance of the fluctuations in BOLD signal recorded at
rs— fMRI is, in fact, closely related to a weak modulation of apparently prevalent

neural activities in the cerebral cortex.

The time-dependent. characteristics of the BOLD signal are influenced by hemody-
namic responses that include related fluctuations C BF and CBV. An illustration
i8 shown in Figure. 1.8. From HRF an instantancous stimulus is provided at time
t = 0 seconds.
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2.3 MRI Edge Identification

Magnetic resonance images have become a crucial component of medical diagnosis and
treatment. Numerous noises, imaging inaccuracies, and other factors can alfect MRI
images. M RI images have unclear edges; therefore, an extensive study is required on
MRI image edge identification. Qian [204] used the Sobel operator to determine the
magnitude and direction of the gradient. Karras and Mertzios [205] applied the Sobel
filter to the M RI image and obtained edge detection without Gaussian noise. Shankar
et al. [206] gives a detailed discussion about coherent optical processing systems (COPS)
that can solve many image processing problems. Cao [207] uses the Canny algorithm for
edge detection in medical imaging. Xu et al. [208] apply the Cauny edge detection on

brain images and compute the gradient using a Gaussian filter to detect the edges.

2.4 Resting state-fMRI for Brain Disorder

The primary objective of RS-fMRI is to investigate spontaneous low-frequency fluctua-
tions inside the BOLD signal. Meszlényi et al. [12] was the first to highlight the functional
importance of these factors.Fox and Raichle [209] analyzes spontaneous low-frequency fluc-
tuation within (0.01-0.1Hz). FC is the major metric produced by rs— f M RI, which is an
estimate from the statistical correlation between any number of voxels and the underlying

BOLD signal’s temporal dynamics.

(a) Different resting state networks were identified using rs-fMRI in healthy subjects and
patients Smith et al. [210]. Since then, rs — f M RI has been widely used by healthy
and diseased subjects, including those with mental and neurological disorders, to
examine spontaneous fluctuations present in various resting state networks Smith
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(b)

211].

A significant rs — fM RI experiment involving healthy subjects with ADHD in
adults discovered a default mode network (DMN) that had reduced functional
connectivity. Since then, a significant number of studies with rs — f M RI have been
published among those with ADH D Castellanos and Aoki [212]. Castellanos et al.
213] explore whether RSNs are common in adults with ADHD 20 previously
discovered independent components and calculate their spatial cross-correlation.
DM N activity among individuals with ADH D was examined in two M R1 studies
that implemented metrics F'C' Uddin et al. [214]. Taking into account the data
from rs — fMRI, the spatiotemporal dependence of neural behavioral patterns is
termed functional connectivity of structurally distinct brain regions, as this study

has proposed by Aertsen et al. [215].

Functional connectivity between cerebral regions is taken into account by rs —
fMRI. Several analysis methods used to examine connectivity rs — fMRI are
analyzed by applying independent component analysis (IC'A) and seed voxel tech-
niques Chen and Glover [216]. FC may be used for the purposes of imaging a
biomarker of neurodegenerative conditions for brain function in the MS area pro-
posed by Hohenfeld et al. [217]. Various studies show several F'C' patterns that
change during various stages of the disease, including low FC' within the progres-
sion of MS and the initial stage of MS Cocozza et al. [218] Basile et al. [219].
Roosendaal et al. [220]Demonstrate the F'C' in M S individnals with healthy spatial
memory. Cecchi et al. [221] intended to compare the assessments F'C with clinical

measurements but chose not to because the subject with the MS's FC' metric did
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not show any signs of disease.

2.4.1 RSN computation with rs-fMRI

The functions of the human brain are governed by a variety of complex networks, and
despite spatial separation, the regions of the brain are connected. RSNs indicate syn-
chronized low-frequency (< 0.1Hz) occurs, temporal fluctuations without explicit tasks
are studied by Damoiseaux et al. [65]. RSN extraction from high-dimensional rs — f M RI
data is a complex analytical problem that becomes feasible by appropriate technique; it
is commonly known as IC'A and is reviewed byArslan and Rueckert [57]. RSNs de-
rived from a spatial /C'A are conceptually involved with fundamental assumptions. Lee
and Frangou [222] proposed brain resting-state networks RSN can change in F'C, either
slightly or significantly. Most functional RSN studies are defined by correlation analysis
in association with the different areas of the brain and the temporal behavior of the brain,

determined by the degree to which voxels correlate with the signal.

2.4.2 Tensor ICA Approach in rs-fMRI data

A data-driven technique known as IC'A allows for understandable splits of data, as it
consists of a certain amount of linearly mixed sources achieved by analytical methods
based on models by Beckmann and Smith [223]. The fM RI data decompositions of the
IC'A comprise concatenation in time or space, and after that use a typical 2D — IC'A
decomposition strategy Lukic et al. [224].Harshman and Lundy [225] has proposed an

abstraction that is known as a trilincar model of parallel factor analysis (PARAFAC).



R
X = E a, @b, e,
r=1

Three vectors, which together make up an input, represent the tensor product X.

2.4.3 DMN in Neurological Disorder

Various procedures related to DM N unusual events in mental disorders are proposed by
SJ [226]. The FC of the DM N has received the majority of attention in empirical studies
within the constraints of the f M RI data and the BOLD signal. An indirect assessment
of neural activity that takes into account blood oxygen levels when comparing contrasts
in the brainFox and Raichle [209]. It may be difficult to distinguish ADHD symptoms
compared to childhood misbehavior and the impact on various biological or mental factors,
which is disenssed in Bradstreet et al. [227]. Posner et al. [228] proposed a relationship
in the pathophysiology of ADH D in which there could be a significant role for the DMN
cognitive control network. According to two studies Cao et al. [229], DM N dysfunction
could have an impact on normal attentional activity in ADHD. DMN was extensively
studied to evaluate the treatment results in ADHD. Liu et al. [230] proposed a new
method named MLP — CNV in which they used complex biological data to perform
genome sequencing; furthermore, they applied structural variational intensities in the

sequence region to perform the classification of disorder ADH D from the healthy control.

2.5 Voxel-based Classification

Measurement of a voxel, which constitutes a rectangular cuboid 3D with a size in mil-

limeters A specifie cognitive function can be used to map the region of the brain through



the BOLD signal of each voxel Worsley et al. [231]. Visualization was improved by voxel-
based approaches that evaluate the results of the 3D brain space. It was discovered that
there was a strong correlation between high connectivity and effectiveness. Functional
brain networks composed of voxels have been defined as scale-free networks, as reported
by Cecchi et al. [221] van den Heuvel et al. [232]. In several studies, a data-driven
method is used in the CONN toolbox to analyze data; typically, it is known as multi-
voxel pattern analysis (M1 PA) Muehlhan et al. [233] Whitfield-Gabrieli et al. [234]. The
search procedure for highly recurrent spatial patterns of activities is part of MV PA and
varies depending on the experimental parameters. Consequently, MV I’A is considered
a supervised classification problem in which the classifier draws the association between
the experimental test condition and fMRI activity Davatzikos et al. [235]. Aberg and
Wessberg [236] examined the efficiency with which evolutionary algorithms perform when
determining only a certain number of voxels that can most effectively distinguish between
different volumes fAM RI. Nakao et al. [237] apply vaxel-based morphological evaluation

in ADHD reported a decrease within the volume GM of the lenticular nucleus.

2.6 Application of Deep Learning for Brain Disease

Various studies have been conducted with essential findings that distinguish the disease
MS from the healthy control Akkus et al. [8]. These studies focus on the specific ap-
plication of machine learning, including deep learning-based frameworks, and consider
MRI scans to determine the severity of the disease. Beare et al. [238] have considered
a deep learning-based architecture C NN and used a large volume of brain voxel data

M RI for further analysis of M S lesion segmentation. Benedict et al. [239] have proposed



a C'NN-bhased MS classifier known as DeepScan to identify the M S lesion. Birenbaum
and Greenspan [240] have discussed various deep learning-based techniques that consider
the publicly available Brain M RI image segmentation dataset. Chhatbar and Kara [241]
discussed the framework known as Toolkit (ITK) and applied the watershed transform
method for the detection of region boundaries in M RI scans. Cho et al. [242] have fo-
cused on effective neural network training to classify M RI images with limited data and
to prevent overfitting the network. They have simplified the proposed maodel to optimize
the volume of the dataset by using image data augmentation, which improves accuracy.
Chollet [243] used precision reduction methods to reduce spatial resolution in different
features of the feature map generated by the Le Net —5 network.Ding et al. [9] Oliva et al.
[244]discussed the discrimination of the region in the input image, and the class activation

map is influenced by the deep learning model for classification.

2.7 Conclusion

In this chapter, we present some important approaches and some theories on the future of
deep learning. Numerous applications and in-depth studies on deep learning have already
been carried out and have performed magnificently when used in real-world applications.
The creator of GAN, Ian Goodfellow, demonstrated that by using opposing instances,
neural networks can be strategically misled. But there is even more to be discovered in the
field of deep learning and many possibilities for nse. such as nenroimaging. We disenssed
previous studies on fMRI data to identify numerous brain disorders and neural activity
using models CNN, RNN, and LSTM. In addition, visualization and classification

based on CNN and LSTM offer a clear understanding of the classification of neural



disorders. This might be an effective replacement for fM RI data analysis.



CHAPTER 3

NEUROIMAGE ANALYSIS AND DEEP

LEARNING MODEL FOR FMRI

3.1 Introduction

In this chapter, we discuss the methodologies of the (1) spatial neural gradient across the
edge of the brain using comparative methods, as well as the identification of edges and
ROl in fM RI visualizations. Concentrated on work that uses multimodal neuroimaging
data fAMRI together with the whole brain atlas to determine computer vision goals,
including data for acute stroke speech arrest M RI located within the left precentral
gyrus. We perform a clustering for fAMRI and a further analysis of FC' in the fMR]
images. (2) However, spontaneous brain activity showed that the event occurred at a low
frequency which is present during the BOLD signal (0.1Hz). We developed a method to
determine the correlation between the F'C’ measure and neuronal activities that examined
fluctuations of the BOLD signal, which is constant between participants and areas of
the brain. (3) Perform the classification for neural activity using fM RI data with the

proposed 2D — C'NN model. When working with high-dimensional data 4D — fMRI,



neuronal activity varies over time in F'C', the extracted features using the correlation
of various voxels. (4) Apply the feature selection method to reduce dimensionality, and
this frequency domain feature is decoded by a bidirectional LSTM (BLST M) network
to classify the results of ADHD and healthy control. (5) Apply a strategy to reduce
distortion in the significance of a feature estimation using a nonlinear model such as
CNN and feature attribution techniques. A guided backpropagation algorithm using the
ReLU activation function creates the saliency map of the fMR[ images that produce

and analyze gradient maps to help understand how a C' VN model behaves.

3.2 Proposed Methods

The variations within a voxel’s activily level are observed within its BOLD time series. To
determine a time series that accurately demonstrates region of interest (ROI).Generally,
ROI time series can be obtained as efficient visualizations of the voxels’ motions inside
the ROI.The RO was used for extracting the BOLD signal. To identify the regions that
are active during each task,Convolution was performed on a gamma-function, The BOLD
signal’s variations during periods of time are represented by the hemodynamic response

function (HRF') which accurately describes brain activity.

3.2.1 Visualization of Region of Interest

fMRI images provide an experimental platform through which to view an active, functional
human brain. A magnetic signal is present in the fMRI image; these signals originate
from hydrogen nuclei in water. The intensity of the hydrogen nuclei varies and depends on

the environment; as a result, it serves as the mean of diserimination in structural fMRI,



which contains both matter, that is, white matter (WM ) and gray matter (GM ), as well
as cerebral spinal fluid (CSF). Using fMRI time series data, which distinguishes be-
tween neurobiological and non-neurobiological signals, to analyze F'C'. Monoexponential

— /T2

reduction X(7) = xp e is commonly used to model the signal fM RI in a voxel.
where x denotes the intensity of the signal, 7 = 0 represents the activation of the radio

frequency and 7'2* represents the time constant.

(a) Activity Response using Discrete BOLD Signal

Based on the H RF, the BOLD activity responds to brain signals. The H IRF model
that represents the BOLD signal as x;(t) with the respective HRF is h;(t) and the

stimulus function s(t), therefore it is possible to define its relationship as follows:

a:(t) = (hy % 8)t +v(t) (3.1)

Where noise is denoted by w;(#), which takes place as the stimulus function s(t),
including h;(f) at n =1...M is being sampled, consequently, the BOLD signal’s

discrete convolution for ¢ pixel at n*" second is defined as:

N N

Ln g — Z Z S( N —k+4n) h(l‘,j) + 'U(n‘i‘j {32)

h=n j=1
The matrix of stimulation S € R™M*Y) and the temporal basis function 7. The

associated basis function «(.) is used by every pixel in the f M R[ image. Thus, the

HRF has been defined in the following matrix:



(b)

ay,i

as;
[hi] = [W1, 02 .. 97] X -

ag;

-]+

The obtained design matrix is [D] = [5‘} X [ur( )} equations Eq. 3.1 and Eq. 3.3

-

[RJ(NXT} displays the convolution model of

m

therefore, the design matrix is [D]

the stimulus function s(t).

Estimation of the correlation on BOLD-fMRI signals

XNy XN XT) ywhere the stimuli 3D of the

The 4D — fM RI image is represented as R
image fMRI are N, x N, x N_ in time T'. The dimensions of each slice N; x N,
are determined along the z-axis; There are N, number of slices, in which N shows
the total quantity of voxels within various cortical regions. The extraction of the
time-series BOLD signal through 4D — fMRI is applied to the BOLD signals to

determine the correlation; therefore, the stimuli could possibly be denoted by a

linear function. The convolutional model of the linear function is represented as

g(s,t) = > 8(t —i.A) x ul(s,t) x Hy(t) + gi(s, ) (3.4)

i
g(s,t) and g (s.t) are estimates of hemodynamic response and noise in a particular
region of the brain s at some point ¢. Y Jd(t —i.A) depicts the waveform that
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corresponds to the ¢ function between the interstimulus interval A. In terms of the
neural response specified for an event u?(s,t), it is mainly for single responses in
addition to H; (t), which stands for HRF. With this approach, the brain region
views itself as a node, along with each brain cortex that has been normalized, and
it receives the voxel time-course signal as it relates to a region of the brain as a
voxel time-series signal. First, for every subject, time series signal extraction is
performed, and then one makes use of these sensory data to produce correlation
matrices. However, the connection of the voxels achieves its desired goal. Neuronal
visualization of neuronal activation can be seen using its corresponding fMRI image
to the sensory image of the vector 3D U — R¥Y). Convolutional modeling HRF
(triggered by events) represented by H;(t) improves the maximum amplitude of
the signal BOLD. From the HRF time series H;(t), both cerebral and sensory
stimulation v;(f) and the hemodynamic modulating function (HDMF') a;(t) could

be summarized into two delays and dispersions to scale the signal.

/ " wbdt (3.5)

o

A time series that displays neural activity, 32504 voxels, is seen in our research from
the f M RI images. Under the conditions of viewing movies, these voxels are actively
involved. The distinct features of the BOLD signal, which fluctuates throughout
all tasks in the active region, have been given by two gamma functions of HRF T (.)
along with the regression paramecters. The time-dependent H REF conducts properly

with the canonical H(f) which is presented as:



(c)

(d)

Gltoq—l ex }—H; + tanz—l e }—dz ¢
ey ) ()

HRF to Neural Activity

Consider the voxel p; ; at time t and its time series defined as p;; = piy, pi2 -+ - Pin;
estimate the number of scans n in the period between t . .. t,.(n = 168), ©; indicates

i and the neuronal response u2(s,1) € R¥™™ is

the stimulation level in the voxel
convolved [H;(t)].x1, the signal matrix for nenronal activity ui(s,t) has n x m.

Considering the convolution model of a signal, it has a partially symmetric Toeplitz

structure; therefore, the resulting matrix arrangement is used as:

wd(s,t) u2,(s,t) s
‘ (s, t)  ui(s,t) 250
[w2(s.)] = | '
ud(s,t) ul_y(81) -..ud_ji1(51)

Regressors are used to analyze time series, and one of the most popular linear
models uses linear regression. Linear regression or correlation is used to determine
the weights. We choose and apply a straight line y= 3y + 517 + €(t) to the seed

signal.

Correlation between voxel

Voxel time series and seed voxel are correlated and, nonetheless, a widely distributed

correlation coefficient is bivariate throughout the entire range of values; as a result,
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the Fisher z-transformation was applied to the correlation coefficient. It has an
impact on the absolute correlation coefficient. z-transformation is likely to change

the correlation.

Algorithm 1: Proposed algorithm for the BOLD signal

Input : Neuronal activities in the brain : ¥ — RY, BOLD signal:
uZ(s.t) € R, Activation level of voxel: Pi.;» Number of scan: n,
Observed hemodynamic response: m, zero mean voxel signal: d
Output: Time series of task activated voxel

1 =1

2 for j « 1 ton do

3 Vi e et

4 | QY pi;) = {du(s,t)T}* ; Q = constant
5 for i +— 1 to n do

6 e — i ]

i yi =[]

8 SE, - []

9 for t < 0 to m do

10 e;(t) ~ N(0,c)

11 vi(t) = Q:{s(t) + h(t)} + eilt)
12 end for

13 if d=0ando;=FE|d| then
14 {w (s, 1) }hup

15 Cov{Q,} = Eu;‘r(ﬁ, t).ui(s,t) >0
16 z = aTanh {Cov { Q. }

17 end if

18 k = arg min {v}

19 if v(i) = 0 then

20 d(i) = u(s,t)k + v(i)

21 {d(i),u;(s.t)}
22 end if
23 pij =ui(s,t)

24 end for
25 |end for

(e) Voxel-based Linear Regression Evaluation

It is carried out with 30D ROI node connectivity in which the seed signals are found

in the activity. Fluctuations within the seed signal were evaluated for each task
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condition related to the fMRI data. BOLD respouses across ROI from various
cortical regions were specifically extracted from the defined ROIs regions in which
TR = 1 Second where the size of each observed voxel is (4 x 4 x 4)mm3. Each

spatiotemporal 40D — f M RI image dimension is (50 x 59 x 50 x 168) is uniformly

scaled.

(f) Evaluation of the ROI

A signal-related value is associated with the voxel. In a group of voxels that become
functionally coherent during brain activity, the functional ROI usually relics on data
and exploration in order to find the voxels. then the responses from these voxels are
analyzed. Using a number of ROIs together with certain statistical analyses of the
region. The fARI resolution takes advantage of each voxel's statistical relevance.
Based on specific discriminatory standards to reduce the dimensions. Applving
Fisher's linear diseriminant. which sugeests a significant dimension, the criterion is

described as follows:

Hy — [

in which means and variance have been determined as follows:

1 1
= ﬁ Z T and Ha = E Z Xy [38)
nes, n&eso
s* = Z (yn. = PJI:-)ZQ Yn = U"TJ"'R [39)
nEsy
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In Eq. 3.7 which expresses the data using the vector w, for the input of a cer-
tain number of distinct points belonging to class s. fMRI data gets processed
using data-driven techniques that employ cerebral spinal fluid C'SF that has been
extracted with white matter signals WM. Gray matter GM covers the cerebral

surface.

3.2.2 Edge Detection and Similarity Measurement

The essential algorithmic feature that needs to be modified for each of these techniques
associated with the intensity of the image. Rorden et al. [245] recommended the second
derivative (Guussiun) for spatial scale of interest for medical images which describe the
efficiency and visual quality. To improve edge recognition within MRI images containing
brain tumors, an 8-directional template with sobel algorithm was used by AS and Gopalan
[246]. Yunhong et al. [247] apply the canuy operator for complete edge detection to
optimize the parameter of MRI image for training output of artificial neural network.
The ROI might be implicitly determined, and task-based fM RI certainly has some
limitations. It is possible to acquire ROI, and this is a standard method to find edges.
The ROTI method can enhance the statistical efficacy derived from any random gradient
histogram. Images change as a result of edge detection, which involves sudden changes in

intensity; it is a method for finding and recognizing intensities.

(I) Laplacian Edge Detection: Considering the edge detection technique, this ap-
proach is probably the most appreciated.In order, the significance of the pixel in-

tensity I(z,y) Laplacian of I is: Al = V2I = VVI where V = ;2 ... .2

iy iy,
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(1)

C_IQ_.

(3.10)

a3 o

The Laplace operator has been employed here and performs the edge detection with

OpenC'V . They were able to obtain the edges on M RI images.

Discreet Differentiation Operator: This operator performs edge extraction in
MBI images that contain brain disease, that is, acute cerebral infarction. The
components are linked for a spatial gradient 2D to the transverse region. since the
vertical orientations of the individual pixels that result in the image are encoded
on the x and y axes; therefore, the characteristic of the image is represented by a

function f(r,y) as

Y~ fa 1) - fla =19 (3.11)
&=t - f@y-D (312)

according to the above illustration, the descent of M RI image is described as (n x n)
2D vectors, specifically. V f(z.y) = g, + gy, particularly g(z, y)=+/(gs2 + g,2) fur-

thermore, the convolution kernel (3 x 3) represented as:

-1 0 1 -1 2 -1
T.=1-20 2(Ty=]0 0 0
-1 0 1 r g 1
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In order to obtain the edges of an acute cerebral M RI image, T}, and 7, are hori-

zontal and vertical operators, respectively.

(ITT) First-order Differential Operator: An operator to calculate the gradient be-
tween eight pixels of the images M RI, which divides each pixel evenly. As a result,

it produces the approximate gradient in rows and columns, which is determined as:

-1 0 1 =1 =1 =1
=1 @ 1 U |

The overall structure and brightness of the M RI image are altered by the gradient since
the gradient varies in each direction. The histogram of the Oriented Gradient (HOG)

method extracts the gradient perspective.

3.2.3 BOLD signal indicating neural activation

After preprocessing the response BOLD using the data fMRI, the voxels were used
for additional analysis. For the relevant region of the cerebral cortex, the corresponding
signal intensities BOLD are currently determined, which are based on the data fM R/
with TR = 1.0 and slice = 50. In each of the active voxels, the fM RI time course was
retrieved to provide the data for CNN. Task-related fMRI voxel time series has affected
the relationship of the signal with the baseline signal BOLD. The detection of cognitive
and neurological activity characteristies, which is based on fMRI data, uses seed-based
correlation. To achieve actions throughout the different regions of the brain, it also defines

the development of temporal action within the brain. The size of its correlation matrix
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(19,19) for every subject and the fact that it depicts the 19 parts of the brain among

which C'SF indicates stimuli and has been identified as physiological noise and makes use

of linear regression increases the specificity F'C".

()

(1)

Functional Connectivity for Neurodevelopmental fMRI: The intensities of
the voxel fMRI describe fluctuations in local concentration in neural stimulation;
these are the hemodynamic responses of the voxel. The intensities are extracted
from the voxel, which evolves over time. Sharp fluctuations occur in the signals.
The stimulus is presented every two scconds, with TR = 1 second. Consider an
expected response BOLD «;(t) resulting from neuronal activity; v;(¢) represents the
signal of BOLD activity within each outcome with a linear time-invariant (LT7T).
Therefore, brain activity and HRF h,(t) interact together, which is possibly defined
as: hi(t) = v;(t) & a;i(t) + e(t) where €(t) is deduced to exist in N(0,0?) and o°

represents noise.

Seed-Based Connectivity in Neurodevelopmental fIMRI: This approach pro-
duced a time series and a spatial map of fMRI images. The selected voxel sur-
rounded by specific ROI, as well as other voxels, has a correlation with its BOLD
signal in ROI. Using task-based fM RI, time series extraction is performed for all
voxels within a seed region. The correlation across time series is used to measure
connectivity with respect to the time series and the a priori seed of the remaining
voxels. The connection between voxels that are close to each other in space is made
using a time serics BOLD that is evaluated between voxels while the stimulus is
present. This generates a regional network, including the seed voxel, in which the

seed time series is extracted.
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(IIT) Seed Based Procedure for CNIN: The region inside the brain is described as a
node, and every region of the brain’s normalized time-series signal comes from each
voxel. Time series signals extracted from all activated voxels are used as input to
C'NN. The overlapped brain mask covers the entire volume, where the total number
of voxels is 32504, and the structure of the overall mean time series, including the
seed voxel time series, is 168 x 1. The precision achieved by 2D — C' NN is affected

by the choice of seed.

3.3 Transformation of 4D-fMRI

3D whole-brain volumes sequentially represented by 4D — fAl RI images are observed for
data completeness over various successive time poiuts. A 4D tensor containing 3D space
x time is generated from an fMRI dataset. Tensors contain correlation data.Observing
4D — fMRI images which analyze correlations that are spatiotemporal.

Processing of 4D — f M RT data is very challenging due to the enormous amount of data.
Voxels describe the characteristics, including their correlation in the 4D — fM RI data.
When fAM RI images are pre-processed, the ADHD fMRI data have been cleaned of a
number of confounding factors. In RSN masking on insignificant data is performed for
the purposes of assessments. 30— f M RI maps containing t statistics have been generated
as a test in which (p < 0.05) with the 85 voxel cluster, resulting in the dimension of the
voxel header (53 x 63 x 46) for 28 RSN in addition to a time interval of 1.0s. Each voxel
in the M NT space has been estimated to have (3 X 3 x 3) — mum?® spatial resolution. The
4D — fMRI image input to the LSTM models is represented as [xy, 22, 23,...,2,| and

demonstrates a series of 4D frames. where the corresponding index (/) can be used to
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express each 4D — fMRI image & transformed into 30D EPIL

Fe ER!”XW-

V‘ E R‘ﬂ-x??l

rs— f M RI feature vector that has been reshaped which can be expressed in the following

matrix:

I-'?-'ﬂ

3.3.1 Application of Tensor to Reshape rs-fMRI Data

The reshaping process for 4D — M RI image time series 4D data array (r x y x z x 1) is
transformed into a series of 21 data arrays. This specific reshaping procedure is illustrated

as follows.

e Step-1: The trilinear structure of the rs—f M RI data is denoted by (D x V x § x N)

D-DMN at time 7' points for V-voxels in S- slices.

e Step-2: Apply the algorithm PARAF AC' to determine the value of V, S and IV with

components a;,, by, and ¢, using the trilinear model according to:

Lk = (mabpncr + ambpcke + -+ + apbjck + <o+ + ainbircer) + e
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Where, x;;; represents the input within a 3D data array X, and e;;; indicates an

error.

Step-3: Signifies the tensor product X which provides linear independence for a

signal. The generalization of X could be described as follows:

R
X = Z a, R b, 2e,

r=1
In this instance, the total matrix of components is R, especially the signal matrix
which is referred to as the entire ranks, since the data array V' x S x N; a, contains
a vector having dimensions in V7; b, is the vector that has dimensions in S, and ¢,

containing a vector with dimensions N.

Step-4: Specifies three vectors a,, b., and ¢, representing spatial components that
use r dimensions. in which a, € RV, b, € R®, and ¢, € RV through the V x § x N
three-dimensional data array. Furthermore, the signal matrix X becomes a series
of 2D data that is composed of voxels V) for the clement o in the time period of

the slice {s(¢)} within {N}"_, RSN having linear independence.

Step-5: Assume that ay; =t x v is the matrix that evaluates the f M RI data matrix

obtained through (i) RSN.

Step-6: Concatenates each RSN data set and produces a matrix of fMRI data

array g = nt X v,

Step-7: The spatially independent component p generates the matrix p x v. Based

on 2D data matrix nt x v including an error matrix e; =t x v correlate with 7**
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RSN. Using g = nt x v the matrix used for mixing is A = [ayaz...a,]" in which

a; = t x v considers i™" RSN of (RSN28).

e Step-8: Estimates a tensor of the trilinear model a, ® b, ® ¢, and C = n x p where

th RSN as well as p involves an independent component p*. In this

n involves n
case p, acts as the vector of phenotype loading data, using the rs — f M RI trilinear

data that are represented by the use of the Kronecker product of matrices C' &2 A

or KRON(C, A) = [CA]"is the essential idea.

C8A=[CATCAT .. .CrAT]?

- [C‘I-AI . C1 An; ChA; ... OmA'n]T

e Step-9: Apply Khatri-Rao product: €' © A=C & A considering that every single

pairwise Kronecker product is a mix of the column of input matrices.

e Step-10: Vectorized, the primary diagonal of the matrix is given by C © A =
(C' % A)AT, where C © A= [C; ® A;...C, ® A,]using the diagonal matrix D also
the vector d with diagonals D = Diag(d) in addition to d = Diag(D) are commu-

tative.

The proposed procedure for reshaping the 4D — fMRI image is demonstrated in
Figure. 3.4in which the reshaped data matrix is considered a feature vector (V') with
a pre-trained data value for the LST M architecture, and the model classifies the data
rs— fMRI between healthy subjects and ADH D. Our work has been centered around a
binary classification methodology that aims to obtain the variable y; that only takes two

values, that is, 0 and 1. ; is used to estimate the precision of subjects with ADH D and
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healthy, and x; as input feature of the image fMRI. Therefore, pair (z;,y;) has been
taken into account as a training pair. It comprises each subject’'s RSN and re-shaped

FMRI image data array.
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Figure 3.1: Proposed 2D CNN framework for classification brain activity
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3.4 Proposed 2D-CNN Architecture

The 2D — CNN model for FC data, while 2D kernels are used, might produce the
characteristics of time series data. fMRI image data are applied in the CNN model,
and three convolution layers are also inclnded. It is distributed with batch normalization;
maximum-pooling is put first, then the fully connected layer. The seed-to-voxel connection
of a region of the brain serves as input data for the convolutional layer. The image
2D — fMRI must pass through a 3D array while fitting a data set; ideally, that would

be (height x width x channels). Displays the information of each layer in Table 3.1.

e Input Layer: In this input layer, it takes functional connectivity from the data
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2D as input. In this specific case. the original measurement for the input image

dimension fMRI is [67 x 77 x 3].

Convolution Layer:Using this layer as an instance Conuv(f, k, a), where there are
f filters determining how many filters are used for feature maps, and the size of
the kernel is indicated by k& = (3.3). There are three convolutional layers in this
model and each convolutional layer uses batch normalization. 32 output channels
are present in the first convolutional layer. The next layer has 64 output channels,
and 128 output channels are present in the third layer. The resultant non-linear
activation function uses a non-linear function ReLU with a learning parameter of

il

Batch Normalization: It allows a higher rate of learning. At first, this layer is
used that normalizes the data and influences the performance of ReLU's by reduc-
ing the mean of the batch 1 then the division is performed through the standard

deviation o effectively minimizing the loss of data between hidden layers.

Max Pooling Layer: In this layer the input volume provided was pooled in this
particular layer with dimension [65 x 75 x 32| and the filter dimension = (33)
implemented with stride = 1 producing the output dimension [32 x 37 x 32| after
downsampling. This 20 — C'N N approach also has a learnable hyperparameter and
contains three 2 convolutional layers. The three convolutional layers extract the
characteristic with the initial dimension of the fA/RI image as [67 x 77 x 3], after

which a ReLU activation function is applied.

Flatten Layer: This layer transforms the entire aggregated feature map matrix 3D
into a vector 1D using the subsequent Max pool layer, which includes the convolution
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Table 3.1: 2D-CNN Architecture for the Classification of Neural Activity

Operation Kernel Data Weights | Weights
Size Dimension | (N) (%)

Input Layer (3%3) [67x77x3] . 2

Conv2D Layer (3x3) [65x75%x32] | 896 0.10%

ReLU (3%3) [65% THx32]

Batch Normalization (3x3) [65x75x32] | 128 0.00%

Max Pooling Layer  (3x3) [32%x37x32] |0

Conv2D Layer (3x3) [30x35x64] | 18496 1.20%
ReLU (3x3) [30x 35x64]
Batch Normalization (3x%3) [30x35x64] | 256 0.00%

Max Pooling Layer  (3x3) [15x17x64] |0

Conv2D Layer (3x3) [13x15x128] | 73856 4.60%
ReLU (3x3) [13x15x128]
Batch Normalization (3x3) [13x15x128] | 512 0.00%

Max Pooling Layer  (3x3) [6xTx128] 0

Flatten Layer - 2376

Dense Layer . 256 1376512 | 85.9%
ReLLU - 256

Dropout c 256 0 0.00%
Dense Layer - 512 131584 8.20%
ReLlU - 012

Dropout - 512 0 0.00%
Dense Layer - 2 1026 0.10%
Softmax - 2
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sequence. It is followed by fitting the input to a dense layer in order to classify.

e Fully Connected Layer: 1D vector linking to fully connected layers from a
flat layer in which all inputs and all outputs are connected through the learn-
able weight parameter accompanied by the activation function ReLU. For the
pre-trained model, there are an additional three dense layers. The first dense layer
has 256 neurons, while the next dense layer has 512 neurons, including the activation

function RelU.

e Classification Scheme: The method to classify the fMRI response is imple-
mented in the final segment of the C'NN model; this part of C NN classifies neural
activity and there is no neural activation. This model includes a fully connected
layer with the goal of having 512 neurons accompanied by the activation function
ReLU. There are two neurons in the output layer and a Softmax activation func-
tion, which gives the output praobabhilities for both classes in binary classification

with respect to the image fMRI.

3.5 Saliency Map for MRI Visualization

At this point, we continue with our visualization work, in which we apply a regulariza-
tion technique to bias the images, which are identified by optimization as complex-valued
moving M K1 images that are easier to interpret visually. The use of M RI allows the indi-
rect measurement of various region-specific lesions and the formation of three-dimensional

representations in the human brain.
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Figure 3.2: Schematic 2D-CNN framework for the saliency map generation of T1-weighted
Healthy and AD MRI image, which states the modified contrast image slices.
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3.5.1 Using the Saliency Map to Interpret MRI image

An input image 3D — M RI of size {I = x; € R"*"W*¢ — R'}. Based on d-dimensional
vector information with 227 pixels for each of the height (H) width (W) and number
of feature channels C' = 3, it subsequently combines spatial data from each input image
MRI to x; € R The input image MRI is denoted by x; of the class C; € [0,1]
class, the corresponding probability p; of the MRI image z; identified as the class ¢; may
have been determined using the softmax function for each component /il ... 1, € £ and
characteristic of the characteristic fi f5... f, € F in 3D lookup tables £ in addition to the
characteristic cue F in terms of the smoothing measure at temperature ¢ is determined

as follows:

o i/t)

ey I
S el il el

pi= (3.13)
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The monotone function that is Log then determines an argmax from the logarithm
of likelihood (LL), and, subsequently, it has to match a (LL) argmax. To maximize the

probability of p;, one of our objectives is to choose ¢;.

LL=logpf[1 —p{'™] (3.14)
i=1

the measurement for the £, using normalized input M RI image vector x; € R?

@2 = Z(|;?:.;_|2)% (3.15)

within factor 1 + £ in which £ is a minimal positive value. Subsequent to forward

propagation, the prototype value I, is modified together with a momentum 7;.
gu ¢ T?Z'n- | ;r'i'(l 7?) (316)

The softmax classifier evaluates probability distributions to establish objective func-
tions that will be used to train the proposed network. When an efficient softmax and
cross-entropy loss are applied together, this is frequently applied for training the deep
learning framework when implementing multinomial logistic regression. These loss func-
tions in the context of x; are all updated in a specific manner, /,, as a result of incorporating
the softmax function. With respect to z;, the partial derivative is represented as:

o | PR —p)0, fori=j
B (3.17)

dx

—mLi , 1
i otherwise.
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Following these features, (fifz... f,) is provided in the expression prediction frame-
work to train the MRI image by reducing this loss function. It produces a probability

vector p; € R as its output results in the use of the softmax function.

3.5.2 Generation of Saliency Maps Using the Region

Architecture for the region-based saliency technique (X RAI) in addition to the Integrated
Guided Gradient (GIG]. The basic premise of Integrated Gradient (/G) occurs when

some non-linear differentiable function is defined by y:

RC : C; — [0,1] (3.18)

z — Ci(x) (3.19)

The attribution vector are represented as v = (0q, vs..., v,) s used (o masked the data

provided by the M RI image x for the purpose of displaying the ROI for the specified
predicted score. These data are obtained from ROI for an M RI image slice:

dev

ST
IntGrad(z — x;) = / M
Jo Oz

In the above equation, the difference between the input M RI image and the output

M R image is denoted by x — z; for every pixel.

3.6 Proposed BLSTM model for ADHD classification

Taking into account the above, a LST M layer is part of the BLST'M classification frame-

work that takes into account the 2D size of 261 x 20 the input vector. Consequently,

7



BLSTM encompasses the advantages of long-term memory-based bidirectional process-
ing. Within the proposed model, there are three bidirectional LST'M layers and a ReLU
activation function among all the hidden layers. Each layer possesses an LSTM hidden
layer in the forward and backward directions, as well as a dropout layer with a dense
layer, as shown in Figure. 3.3. The reshaped data are fed into our proposed BLSTM
model, which further processes the stream of data corresponding to both directions, that
is, forward and backward LST M layers. The processed data rs — f M RI are combined
in a dense layer and then used by the layer Softmax to classify the healthy and ADHD
subjects and produce the normalized probabilities for each class. Generally, the Softmazx
classifier enables and deals with the labels y; € {0,1} where i € {1... N} and N classes.
For the training data set labeled m fMRI {(x1.11) .. . (€, Ym) } in two-class classification
n € {N = 2}. The hypothesis h,(x) is applied to normalize the probabilities distribution

P(y = %) for the test set of fMRI {x} it is determined as:

1 .
ha(2) = —F (3.20)
=1 ezp(aTx)
T ()T g
P(?J'i = ﬂ-f.'?-i;ﬂf) = GQP(O zi) (3.21)

ZLL cap(a) ;)

The dense layer applies the Binary Softmax Classification vields the necessary results.

3.6.1 Experimental Setup

For experiments, a step-by-step approach has been defined and uses LSTM models to
classify brain diseases. The proposed model BLSTM is based on functional and time-

dependent. data fMRI in which the time stamp predicts the time series rs — fME].
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Figure 3.3: Proposed model of a BLSTM layered perspective for rs-fMRI

Moreaver. to classify brain diseases, the spatial as well as temporal fM BRI data array is
used in the development of the LSTM framework for classification. Spatial parameters
determine the feature weight by using Eq 1.1 and Eq 1.2 for evaluating the pattern of
connectivity of every brain area. The following steps are used to discuss the different

portions of Figure. 3.4:

e Step-1: The input feature vector of several rs — fAM RT images is acquired from the
4D — fMRI image and processed as (3D +t) data. It is considered as 3D — fMRI

data with the timestamp t.

e Step-2: Masking has been performed on 30D — fM RI images that allows fMRI
data to be revealed in a long 1D data array. Applied the reshaping procedure which
18 defined in subsection: 3.3.1 on the rs — fMRI images. One feature vector of
each voxel time series rs — f M RI image data is arranged in the matrix for further

processing and analysis.

e Step-3:1In this instance, the resultant matrix appears to be (S x W), where S scans
are being performed in (¢) seconds and (W) the total voxels in every scan. Discovered
ADHD time series data A; (t) at voxel (i) at a given moment (¢). Therefore, the
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Figure 3.4: Model and accuracy. 40 Nifti datasets of rs-fMR1 data using stacked LSTM
and the proposed model to learn the initial state of RSN28 then changes into its con-
stituent volume 3D with statistical map. Convert 3D voxels to a data set using Numpy
and reshape the data set of all patients with ADHD and subjects without ADHD. The
LSTM and the proposed model package the input to measure the precision and loss of 32
training data and 8 test data on 50 epochs.

fMRI images can be stated as follows:

A= [Q‘.l, Agy AFyoev vy (l-t]ll (322)

e Step-4: The resultant output using stacked LST M recurring memory cells and the

proposed updated model BLSTM according to the following steps:

(i) BLSTM model’s cell component structure of the BLSTM model works as
the subsequent LST'M layer, and the entire cell internally uses two activation
functions such as sigmoid and tanh. Furthermore, the three hidden layers in
the model BLST M maintain the input weights 30%, 34.2% and 24.3% respec-
tively, having a dropout of 0. 5%, furthermore a recurrent dropout of 0.20%

for each weight LSTM and finally a dense layer using a Softmaxr activation
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function which predicts the ADHD classification as shown in Figure. 3.4.

(ii) Secondly. the Softmax activation function of the stacked LST M processes the
output. The functional network serves as the first LSTM layer that takes the
input feature. The hidden state layer receives input from the first hidden layer.
Finally, the second hidden layer passes the output to the third hidden layer

and delivers significant accuracy.

3.6.2 Training strategy for BLSTM model

The BLSTM model is used (o gel access and ellectively learn the rs-IMRI time series

through forward and backward LSTM for each small duration.

ForwardLSTM : A = BLSTMy(BLST My(BLSTM, (z)))

BackwardLSTM : A = BLSTMy(BLST My(BLST M, (2)))

But in both directions, either forward or backward, BLSTM encodes ouly half of
the sequences over various intervals. Therefore, the modified BLSTM model captures
the previous and subsequent feature sequences obtained from the rs — fM R images,
as demonstrated in Figure. 3.4 for each time step. Six identical LST'M cells (three in
both directions) are arranged in a stack to represent the three layers of representation.
To test and train the modified BLSTM model. The BLST M model is a combination
of a 3 hidden layer along with a 10 dropout layer, with a probability of 0.5 to avoid
possible overfitting along with a fully connected layer. ADAM optimizer is used to train
the BLST'M network in order to optimize the ”cross-entropy” loss function. The learning

rate has been set to Ir to (.1 and then began to decrease with each update. For every
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training epoch, the weights are regularly updated. In each iteration, we have used one
epoch, which affects the convergence time and the loss of validation of the data after 50
epochs have passed, which serves as the basis for the stopping criterion to establish the

learning of the proposed model.

3.7 Deep Learning Model for MS Classification

In this section, we have described the proposed model for the detection and classification
of M S lesions, as shown in Figure. 3.5. The proposed model consists of three modules:
image pre-processing, MobileNet, and 2D-CNN. The detailed functioning of these modules
is discussed in the following subsections. The architecture of the baseline convolutional
neural network Mobile Nel is used [or the initial stage ol data sel (raining, The Mobile Nel
contains a stack of layers that consists of four blocks named the (7) Convolutional Layer.
(2¢) Batch Normalization (izi) Depthwise convolutional layer, followed by (iv) Global
Average Pooling (GAP) layer. Using Mobile Net to classify natural images is not similar
to the numerical data array, so more convolutional blocks are required for proper tuning

of the brain image dataset M RI.

3.7.1 MRI Prc-proccssing

Here, we apply various preprocessing steps, such as cropping, resizing, and augmentation,
to the MRI images before feeding them into the Mobile Net — 2D — C'N Nmodel. These

preprocessing steps are discussed below.

(I) Cropping and Resizing: Due to the computational task and the limitation of

fitting a complete MRI image into the model, we reduce the size of the brain image
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from (256 x 256 x 3) to (131 x 176 x 3). We have worked with the data-driven
strategy and have performed cropping on the M RI images to remove unwanted

regions.

e Edge detection: To compute the gradient magnitude of the brain image, we
have applied the Sobel edge detection method to obtain the minimum and
maximum gradients inside and at the edges of the various MRI images as
shown in Figure. 3.5.

o Thresholding: Once the edge is detected, we perform the thresholding that
divides the pixels in the grayscale image and converts the scans MRI into

binary images Oliva et al. [244].

e Filtering: Further, filtering uses the Sobel filter and removes the noise of low

frequencies from the M RI images.

o Segmentation and Contour: Here, we apply a watershed algorithm to the fil-
tered image to extract the segmented regions by finding watershed linesBeare
et al. [238]. Choosing the largest contour of the watershed transformed the

image and applied a grayscale to convert it into binary images.

(II) Image Augmentation: The image enhancement strategy that the network will
use for more training data also reduces the overfitting of the proposed model. Iinage
aungmentation comes from transformation, color space, random cropping, orienta-
tion, mixing images, kernel filters, etc. The classification accuracy of the Deep
Learning model performs much better in the augmented test data set Shorten and
Khoshgoftaar [248]. We have performed data augmentation on M RI images, using

the ImageDataGenerator API from Keras inside the Tensorflow 2.5 before we feed
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into the Mobile Net network. The enhancement of images includes factors such as
rotation, shifting, shearing, horizontal flip, vertical flip, and brightness that gener-
ate the new training data set as shown in Figure 3.5. The augmentation operation
is performed by random rotation by 45" and then applies to shifting, shearing with
the rotated images, and applying horizontal and vertical flipping of the transformed
image. Finally, resize the M RI images, which correspond to the input size of the

baseline model, that is, (224 x 224) pixels.

3.7.2 BaseLine MobileNet with 2D-CNN

The Mobile Net network we implemented with acquired sample values and output char-
acteristics from the baseline model fed into the 2D — C NN network, which is shown in
Figure. 3.5 The baseline model is based on a depth-wise separable filter and performs a
single convolution for each input chamnel. For the target network, by adding one con-
volution layer followed by one maximum sharing layer and two fully connected layers of
size 256 and 2, the dropout is 0.5% and we have used the root mean square propagation
optimizer RAM Sprop to train the model with a learning rate of 0.0001. Here, RM Sprop
performs the simulated annealing while adjusting the learning rate and optimizer, which

are defined according to the following equation:
Elg*]: = 0.9E[g*)—1 + 0.1g7 (3.23)

B il — 0 (3.24)

: g
VElgi e

Where E[g?], is the running average at time ¢ depend upon momentum 5 = 0.9 and

the default value of the learning rate 1= 0.001 on the previous average F[¢?], ;, the
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Figure 3.5: Proposed MobileNet-2D-CNN framework for the classification of Multiple
Sclerosis

gradient of the objective function is denoted by ¢, for the update parameter # at every
time step £.A combination of these 2D — C NN layers is applied along the Mobile Net
network.The features generated from the Mobile Net are further fed to a shallow custom
CNN architecture, as shown in Figure. 3.5. The output shape obtained from M RI image
from Mobile N et will be input to 20— CNN. The proposed model is trained in 20 epochs,

as we used a training and testing scheme of 80 — 20.

3.7.3 Class Activation Map (CAM)

For a specific class, the class activation map with global average pooling is applied to the
proposed model. These weighted activation maps are generated by the hidden layers of the
M RI images.The network visualization pattern is activated by each unit of the network.
C NN learns while being trained to recognize the object. The obtained features are fed into

the dense layer, which is regulated by the Softmax activation function and provides the
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Table 3.2: Proposed Architecture of using baseline MobileNet network and 2D-CNN.

OPERATION DATA DIM WEIGHTS(N)
Input Layer 224 % 224 x 3 —
MobileNet _1.00_224 TxTx1024 3228864
Conv2D hx Bx32 294944
Batch Normalization Hx5Hx32 128
Max Pooling 2D 13 1332 =
Global Avg Pooling 2D 32 -
Dense — 8448
ReLU 256 —
Dropout 256 —
Dense — 257
Sigmoid 1 —

result of the calculated probabilities for further classification. We illustrated the activation
of the convolutional layer. Let us consider the activation k from the convolution layer
at the location (i, j) then the activation function for the M RI image will be denoted as
fili, 7). Here, the global average pooling (GAP) at activation k is represented by G as

shown in Equation 3.25.

Ge=>_ fili,)) (3.25)
t]

The activation function Softmaz oo = 3, w Gy, is used to calculate the probabilities
i ik k k p

of the class label C; I,

- exp(oc,) .
= Z(g exp(og,) iy

gg =Y wg' ¥ fild) (3.27)
ki k

The class activation map (C'’AM) is obtained through the weighted feature map gov-
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erned by the softmax weight o¢, that classifies the heat map corresponding to a specific

class.

Visunalization of Class Activation

In the input network, the input MRI image fi (¢, j) with height h, width w, and depth d
passes through the Mobile Net—2D — C NN model. Here, the input image M RI with the
tensor (h x w) maps each dimension of the pixels with its color value class C;. Further-
more, the classifier considers the input image M RI and maps it with the class saliency
map H € R"™" and applies the activation function G, to each pixel of the input image
fw(i,4). Furthermore, the weighted neurons are calculated as the gradient of the acti-
vation function Softmazr oq, to the activation of the feature map obtained f for the

convolutional layer, which is defined according to the following:

doe, .
C C‘X-
Wl =2G (3.28)
Ok | putis)
Taking the partial derivative of Gy, w.r.t. fi(i.j) Le.
i JGy,
= O 3.29
N fwl(d, ) L
H =relu Zwi’ frli, ) (3.30)
k

This formulation of the computation allows us to generate the visualization of the

saliency map of multiple sclerosis M R images.
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3.8 Conclusion

To summarize, the methods demonstrate the activity of BOLD, which responds to the
brain signal based on HRF. We briefly introduce the canonical HRF model, which is
made up of two gamma functions combined linearly. HRF gives details of the activation
time period. The nature of BOLD fM RI correlations is identified as clusters of regions
in the term of RSN with mutual correlation. Compared to statistical analysis based
on ROI, the main advantage of using the voxelwise method is its ability to provide a
spatially unbiased evaluation of brain images. A voxel has a value corresponding to the
signal. Applying various types of ROIls together with a specific statistical analysis of
the region. The statistical importance of each voxel can be increased by the fMRI
resolution. C'SF. WM. and GM are used in data-driven strategies to interpret the fMRI
data. ROl may be calculated implicitly, and this is an essential technique to identify
edges on images M RI. An ROI method is applied to determine the intensities of the
signal. The fluctuation has been defined by the fMRI voxel intensities in the spatial
concentration of the nenronal stimulation. Seed-Based Connectivity uses a task-based
JMRI for BOLD time series extraction, and it measures throughout all voxels as long
as the stimulus is active. Apply masking to the irrelevant data in RSN for evaluation
criteria and reshape the rs — fM RI feature vector. 2D — fMRI image data require a
3D array to properly fit a data set. The correlation hetween a brain region’s seed and
voxels serves as the input data for the convolutional layer in the 2D — C' NN model. The
2D — C'NN model is used to classify the response or neural activity of fMRI according
to the False-Belief scheme between the age group of 3 to 80 vears while watching a silent

wovie. Study of M RI image visualization of a hidden layer of the C'"NN model that used
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a regularization technique to bias the image. Two approaches, such as X RAI and GIG,
are applied to generate the saliency map of the image M RI. Finally, we develop a model

BLSTM to classify healthy control subjects and subjects affected by ADHD.
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CHAPTER 4

FUNCTIONAL CORRELATION IN FMRI

4.1 Introduction

Correlated Region and Functional Network: We evaluated the BOLD signal as
a marker for processing spatial or temporal factors through spontaneons and specific
forms of tasks. BOLD signal may be triggered by concurrent coactivation signals. The
parameters we identified to measure F'C' and use Pearson’s correlation provide insight
into F'C. Applying BOLD signals with an estimated maximum probability, the voxel-
wise linear method yields the correlated components of the regressors. fMRI results are
generated directly from the BOLD signal; from the fMRI data, the GM, WM and
CSF signals are extracted. In the context of functional networks, White matter (W M)
also known as axon which perform the structural connectivity and connect several brain
regions. In the brain, the majority of the cells that make up neurons are found in the
grey matter (GM).GM has substantial effects on mental processes, memory, emotions.
A watery fluid known as cerebrospinal fluid (C'SF) flows constantly across the surface of

the cerebral cortex and spinal cord as well as inside the ventricles.
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4.2 Correlated Region and Functional Network

The values of T'1 vary among various types of brain tissue. C'SF has significantly more
relaxation time than WM, as seen in Figure 4.1a, which shows it due to a certain amount
of time needed to relax WM, GS and CSF. Figure 4.1 b shows the calculated correlation
mean of the Functional Connectivity Network. The values obtained are CSF = 642.63,
WM = 678.78,GS = 869.95, SDVars = 1.36, DVars = 39.23 and FD = 0.27. T1 differs
according to the types of tissue that can be used to illustrate the boundaries between C'SF
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Figure 4.1: (a) BOLD time series depicts the signal that is from CSF, white matter,
Global signal DVARS, and framewise displacement. (b) Correlation matrix of the Voxel
region in time series with the mean network structure. (¢) Normalized time-series shape
of the voxel.

Figure 4.1b shows the connections between CSF, WM, GS, SDVars, DVars, and
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FD in the different regions of the brain. In our experiment fMRI, a series of fMRI
images was obtained based on the oxygenation pattern within the brain over time. There-
fore, the sequence of brain images obtained is shown here. The single voxel representing
a spatial position and intensity is correlated to this; essentially, we obtain each voxel con-
taining the subsequent images shown in Figure 4.1c the temporal sequence of the intensity
value for that specific spatial region over time. Changes in the fAMRI signal have been
caused by instantaneous brain activity (HRF). The BOLD signal might decrease as a
result of early increases in deoxyhemoglobin. The time course of every voxel, or essentially
32504, is a part of WM, GS, and C'SF'. In particular, the voxels are part of C'SF.

The resulting voxel activation parameter is shown in Figure 4.2 a, which determines the
amplitude, distribution, and latency of activation response signals BOLD related to brain
activity. The extracted brain network in Figure 4.2d and the corresponding correlation
mean matrix in Figure 4.1b show the spanning on every region of the brain that was
recovered. At this particular time, the fMRI image and the proposed algorithm were
implemented, which automatically discovered the proper locations to map connectome
networks. We were able to determine the correlation between the various regions of
the brain, and the correlated results are [0.02, —0.57, —0.06], which we have shown in
Figure 4.2¢ using the correlation matrix. The voxel time series generally appears to be
stationary in the analysis of fM RI, and the voxel-by-voxel F'C' of the signal BOLD, as
demonstrated in Figure 4.2e, was determined using temporal correlation. A correlation
coeflicient was obtained. We discovered the Pearson correlation coefficient {r = 0.69} and
linear regression is demonstrated in Figure 4.2b {r = 0.0094} across seed signals as well
as seed data. Minimum differences between total measured seed data and seed signal

are {p < 0.00005} and {R? = 0.45}, and the precision of the predicted signal and the
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Figure 4.2: Functional Correlation and fMRI time series from different ROI. (a) For every
voxel in the seed region, Toeplitz convolution based on the BOLD signal is performed
at the task activation level. (b) Seed region regression: (¢) Coefficients of correlation
illustrate how the mean affects the fMRI time series. (d) Connection and correlation
of the fMRI regions (e) Strongly correlated neuroactivity is observed in the functional
network

precision with respect to the predicted signal are {s = 0.0014}. Regularization of a time
series that appears in the mask that is generated by Global Signal (GS) with minimal
pre-processing F'D) and evaluation of DVARS is based on variation over voxels, especially

time courses, to produce an exclusive head motion specification within every time frame.



FD and derivative root-mean-square DV ARS motion measurements are obtained from
three translational and 3 rotational parameters determined by R = [XY Z yaw | Observed
in Figure 4.2a. The caleulated value of (FD) is considered to represent the sum of the
absolute derivatives of the independent term using three rotational parameters as well, and
the stipulated parameters are multiplied by a consistent radius value of 50 to convert them
to a certain extent. To evaluate the effectiveness of linear regression for eight networks,
both the linear estimate and the voxel time series are taken into account. The minimum
and maximum correlation information that we were able to estimate was [—0.731, 1.927],

respectively.

4.3 Edge Detection on MRI

Shocking fluctuations in the intensity of the MRI image specifically correspond to the
image. The Laplacian, Sobel, and Prewit operators are most frequently used to detect
edges, as discussed in Section 3.2.2. The Laplacian edge of the MRI image was obtained in
Figure 4.4a. An ROI approach is used to calculate the intensities of the signals, which are
produced in Figure 4.4d. The beginning point of brain clustering oceurs when gray and
white matter coexist and Laplacian is applied to gray matter. The concentration of the
histogram can be observed in the middle of the scale along an edge pixel. The histogram
observation shows the intensity of an MRI image toward the center of the horizontal axis;
it is the highest value that is allowed. Figure 4.4h displays the magnitude of the Sobel
gradient. Calculating the Sobel gradient for the distribution, the resultant of |g,| + |g,| is
predicted to be 255. The spatial distribution of the entire axial image is demonstrated by

the signal strength along the r-axis and the number of pixels on the y-axis that correlate
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with the signal, which is shown in Figure 4.4e and Figure 4.4f.

()

Figure 4.3: Brain Cluster Multiple scales (number of networks) are available and include
7,12, 20, 36, 64, 122, 197, and 325

4.3.1 MRI gradient’s similarity measure

The MRI image changes from location (i,j) to a different position; subsequently, the
gradient of the image varies the brightness and pattern of the image due to the differences
in the gradient in each direction. The HOG method extracts the gradient orientation.
Prewitt and Sobel masks are composed of two kernels, (3 x 3). The rate at which the
intensity of the image changes is demonstrated in Figure 4.4 b. In Prewitt, the gradient
MRI signal is nearly constant; however, as shown in Figure 4.4d, it is related to the Sobel
gradient, which shows an abrupt change in intensity at the highest point and represents
the edge threshold in the MRI image of the subject. The object within the image benefits
significantly from this skewed gradient. Due to the smaller size of the kernel matrix when
using the Laplacian gradient, the intensities vary most quickly, with a slight fluctuation

in intensity Iz, y), which produces a brain signal. Figure 4.4 shows fluctuations in brain
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intensities and a significant increase in intensity in each case. We illustrate the gradient
information that possesses an effective contrast MRI image. In this study. we examined
that Figure 4.4a is made sharper due to the Laplace gradient, in which the intensity func-
tion rapidly changes and the edge pixel is rapidly modified, demonstrating the presence of
noise in the signal. Figure 4.4b shows the similarity between each pixel. The right portion
of the MRI image is nearly white with minor noise. Figure 4.4c shows nearly identical

white edges; however, the central region within the smooth gradient image presents some

noise.
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Figure 4.4: Gradient Image for MRI.(a) Laplace gradient MRI image. (b) Sobel gradient
MRI image. (c) Prewit gradient MRI image. (d)Histogram for the pixel distribution for
Laplace gradient MRI. (e) Histogram of the pixel distribution for Sobel gradient MRI. (f)
Histogram for the pixel distribution for Prewit gradient MRI.
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4.4 Conclusion

In this chapter, we have discussed and examined several MRI edge analysis methods, and
techniques that have been formulated for studying how brain networks work utilizing the
essential, task-related fluctuations in BOLD EMRI signals. We developed a computational
method that works well and demonstrates a new way to analvze functional networks with
a common spatial structure deduced from BOLD signals. By evaluating the F'C' score and
voxel deviation across the fM RI time series. The spatial patterns of WM connectivity
are identified by activation based on times series WM. When measuring human brain
activity using fMRI after completing a particular task, it is highly helpful in identifying a
region. A general clustering was produced for each of the distinet clustering replications
combined in a pool, thus producing clusters of groups. The identification and analysis
of voxel clusters are provided by the ROI. Edge selection, which depends on the edge

identification operators of Laplacian, Sobel, and Prewitt.
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CHAPTER 5

CLASSIFICATION OF BRAIN ACTIVITY

AND DISORDER

5.1 Introduction

It has been discussed in extensive detail whether specific and spontaneous types of neural
activity occur from identical cognitive processes or more accurately represent various
processes. In addition, the use of the Convolutional Neural Network (CNN) framework
along with the LST M network helps to develop deep learning predictive models from the
available data set, such as images M RI and fM RI. We tested our proposed deep learning

models on a publicly available dataset M RI/fMRI to obtain the following results:

1. Seed Based FC and neural activity classification: Task-based fMFRI shows
that the BOLD signal activates neurons to a particular task. Spontaneous variations
in signal strength at low frequencies (< 0.1 Hertz) occur when the BOLD signal is
used for a cognitive task, Our proposed 2D —C N N model extracts the fMRI feature
maps to classity brain activity. The performance of the proposed model 2D — CNN
for the classification of neural activity is shown in Figure 5.3, these results were

938



obtained using an fMRI task-evoked data set.

. Saliency Map generation of MRI images: Due to the highly complex behavior

or nonlinearity of 2D — C'N N, there are several challenges. The saliency map serves
as an effective strategy for the evaluation and visualization of the non-linear behavior

of the 2D — C NN model.

. LSTM and CNN based model for ADHD/MS classification: The rs-[MRI

BOLD signals can be used to diagnose neurological disorders and it is suitable for
visualization of RSN. For the classification of disorders such as ADHD, we have
proposed a modified BLSTM model to classify brain disorders. In the case of brain
disease, that is, multiple sclerosis, we implemented a MobileNet network at baseline
along with 2D-CNN to generate the class activation map for MRI images, which
can be visualized in Figure 5.13, the result of the lesion detection and classification

of MS disgease are demonstrated in Figure 5.14.

5.2 Seed-Based Functional Connectivity

Section 3.2.3 deals with the seed-based technique, which produces a spatial map of tem-
poral sequences that cause the fMRI dataset to regress. Extracted time series fMRI, in-
cluding every voxel in the seed area. The size of the seed voxel has a covariate effect. The
correlation may be observed in the functional network as displayed in Figure 5.1a between
the seed voxel and the voxel, where the dimension of the BOLD time series is 32504168
and the input size of the dimension of a seed to the voxel is 325041. CNN accuracy
for nenral activity classification is influenced by the specific kind of seed-based analysis.

As a result, we determine that the minimum and maximum correlated parameters are
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-0.624 and 0.958, respectively, which is shown in Figure 5.1b of the cognitive covariate
that influences functional connectivity from seed to voxel. BOLD fluctuations and brain
activity can be observed in the input dimension, which is equivalent to 67 x 77 x 34 in
the proposed model 2D — CNN. The accuracy obtained from 2D — C' NN is affected by

the choice of seed-based analysis.

(a) (b)

Figure 5.1: Seed-voxel connectivity (a) Seed-to-voxel coordination (b) Seed-to-voxel Func-
tional Connectivity

5.2.1 Neural Activity Accuracy of 20 — C /NN model

A random rearrangement was performed on 134 training samples, which included 4D —
fMRI time series data. The entire fMRI image is made up of two classes, which also
form the responses fMIRRI. Turthermore, there are 34 fMRI validation datasets that
account. for 20% of the total fMRI images. The 2D — (NN framework is npdated
over 200 epochs, then enabled StochasticGradient Descent using a single training update
learning rate of (Ir = 0.000001). Each fM RI image had a mean, which was subtracted
from it. The 2D — CNN uses kernel size (3 x 3), three convolution layers, and a single
Softmar function was added to each kernel. A batch size of 16 was used for layer
training and hyperparameter values were adjusted. The impact of loss has been measured
using a categorical cross-entropy, and the ADAM optimizer has been used to improve

convergence. Based on the response to the voxel, the prediction precision of the proposed
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Table 5.1: Accuracy and Loss for training and Validation Data

Model Kernel Activation Training Training Validation Validation
Accuracy Loss Accuracy Loss

2D-CNN 3x%3 ReLU 84.32 41.85 85.29 36.19

2D — CNN framework has been determined. Voxel responses are used to calculate the
prediction accuracy of the proposed framework 20 — C'NN presented in Table 5.1. In
Figure 5.2a, the higher levels of accuracy are displayed for the validation data produced

by the 2D — NN framework.

5.2.2 Evaluation of Model Performance

The results of the evaluation of the proposed 210 — C'NN model are presented, which
considers the precision, precision, and F1 score of the 168 samples collected from subjects
155. 'T'he typical procedure for assessing a learned C'N N model is to maximize the accu-
racy score. Metrics such as precision, I'l score, recall, sensitivity, specificity, and precision
are part of the empirical analysis. When addressing the binary classification problem for
class labels such as TP, TN, FP, FN and considering Neural Activity, No Neural Activity
be the predicted true positive and false negative class labels, To calculate these measures,
use the following expression:

rp g

Sensitivity = mpypw, Precision = s55p

TPLF] TPipp: Cpecificity = ppiry

- s TP = 4
F1— Score = mpiripprrmy ACCUracy = GRIFP+TNTFN)

Statistical analysis is performed to assess the classification performance of the CNN
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Figure 5.2: Model Performance (a) Training and Validation Accuracy (b) Training and
Validation Loss.

model and then visualize the correlation among the predicted and observed results with
the help of a confusion matrix. The performance of the propased 2D —CN N model using
the four distinet categories of a confusion matrix is shown in Figure 5.3a, and the esti-
mated classification probability is shown in Figure 5.3b. Using the Matthews correlation
coefficient (MC'C') that exists between the predicted and observed brain activity of the
confusion matrix, we found the classification information as demonstrated in Table 5.2.
MCC lies in the |—1,+1]| interval. Prevalence (P) influences MCC, specificity, as well
as Sensitivity & Bias (B), which are determined by the data set and the classifier. The
prevalence () is the percentage that represents every predicted positive neuronal activity
within the test data set. Furthermore, bias measures how well the classifier predicts for

the test data set and is described as follows.

MG = (FPRTN)—(FPxFN] . P = IP+FN p _ TP+FP

\ﬂ'J"PH'P}(I“P:—FN}(;f'N+:«'P){'1‘f\r+1<w)' - N N

Figure 5.4a shows the predicted class of brain activity for the original fMRI. The

predicted binary class correlates with Figure 5.4b, which includes validated and training
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Figure 5.3: Classification performance (a) Confusion Matrix for fMRI response using 2D-
CNN model (b) Predicted classification value for Training and Validation fMRI data.

fMRI data.
Table 5.2: Classification Report of Proposed 2D-CNN Maodel

Classifier Accu Sens Spec Prec F1-Score Prev Bias MCC

2D-CNN 853 895 80 85 87.2 559 588 70.1

In the Table 5.2 where Accu: Accuracy, Sens: Sensitivity, Spec: Specificity, Prec: Preci-
sion, Prev: Prevalence

Train : Neural Activity [0. 1.] Test : Neural Activity [1. 0.]
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Figure 5.4: Active state of brain fMRI (a) Convolution Layer activated fMRI (b) Neural
activity activation of fMRI response
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5.2.3 Classification of Voxel Response fMRI immages

Tensorflow and Keras were used to develop 2D — C'N Nmodel and is trained using a
Nuvidia Ge force G1'X 1080 GPU. To classity the voxel response, the optimizer ADAM
must discriminate between activation and nonactivation of the voxel. The entire brain
voxels (size = 50x59x50 and to extract time series) specify the extraction mask to fill
the dimension of the brain with a brain mask to obtain data from the cerebral region
were used as input for the model C NN. Here, we classified the image fM RI using the
characteristic extracted from the response fA RI. With our proposed model 2D —CNN,

we achieved an accuracy of 85.3% in the classification of brain activily activation.

5.3 Saliency Map for MRI images

We applied an end-to-end deep nenral network to generate a saliency map for the Alzheimer’s
Disease (AD) affected image M RI. ImageNet was used to train the C N N-based VGG —
16 network, in which we initially reduced the mean of each pixel in the images before
feeding the training images to the VGG — 16 network in Image Net. Pre-trained network
VGG — 16 as base frameworks for classification of AD in MRI images. In the case of
the extraction of attributes, a differential threshold-based sensory characteristic was used.
The differential threshold is the lowest possible variation that the human visual system
is able to distinguish between two identical homogeneous physical stimuli, as shown in
'lable 5.3. T'he input layer of a VGG — 16 network receives and forwards the input M R/
image to a number of hidden layers, and these layers modify the input of the M RI image
data. The weight is a learnable internal parameter for the whole network, and it is modi-

fied to provide the appropriate output and the required result. A change in input weight
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will have varying effects on the output. A minimum weight value will not affect the input,
whereas a maximum weight value will mostly influence the result. Figure 5.5 illustrates
how the performance curves for the minimum and maximum weight vary significantly

depending on the size of the image M RI.
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Figure 5.5: Weight parameters for the dimension of CNN layers

5.3.1 Attribution for MRI images

The fundamental idea of our proposed interpretation strategy, as discussed in Section
3.4.1, is that visual analysis is essential for decision-making in MRI evaluation. Consider
the saliency map to obtain computing metrics. The absolute number of total attributions
throughout the color channel is shown in Figure 5.6(a), (b), (¢), and (d). This involves
creating a random mask for healthy and AD affected MRI images that were originally
completely blurry. The fully blurred MRI image has the same score as the original image
MRI or a higher score. Table 1 shows an overview of the experimental findings. Table
4.3 shows an overview of the experimental findings that calculate the AUC value for
each experiment. We use integrated gradients to highlight which pixels appear to be the
most essential for the appropriate prediction generated by the VGG — 16 network. The
most significant pixels are represented by white pixels. We can observe in Figure 5.6(a)

& (b) where z, | a(z ;). The healthy M RI image that was interpolated between the
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input and baseline healthy images, the gradients in the M RI image that was interpolated,

adding several gradients of similar types across a.

Figure 5.6: Fully blurred Healthy and Alzheimer’s MRI images have the same or higher
score as compared to the original MRI image (a) Healthy Integrated Gradient (b) Healthy,
Smooth Gradient (¢) Alzheimer’s Integrated Gradient (d) Alzheimer’s Smooth Gradient

5.3.2 Integrated Gradient on MRI Image

An improved VGG — 16 was used as the classifier. In Figure 5.7, the integrated calculated
gradients are shown, which are generated from the baseline model. With the least amount
of noise, the saliency precisely determines the areas that have been affected by AD. Visual
incoherence is significantly greater in integrated gradients and behaves much like saliency
maps that are produced at random. A non-smooth binary map is generated using the
fixation data for every M RI image and contrasted with a binary map that represents the

alorementioned values in Table 5.3 with a steadily increasing (hreshold [or every saliency
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Table 5.3: fMRI Image Saliency Map Prediction

Healthy MRI Alzheimer’s MRI
Threshold x T — r; Pi K r—ar; pi
(0.000 0.000 0 0.0003 0.001 0 0.0005
0.005 0.003 0 0.0009 0.001 0 0.0006
0.010 0.003 0 0.0019 0.001 0 0.0019
0.020 0.001 0 0.0054  0.000 0 0.0351
0.030 0.013 0 0.0066  0.001 0 0.0127
0.040 0.008 0 0.0128  0.002 0 0.0642
0.050 0.007 0 0.0132 0.003 0 0.5848
(0.009 0.070 0 0.0045 0.032 0 0.3794
0.013 0.100 0 0.0488 0.001 0 0.7168
0.086 0.130 0 0.0390 0.191 1 0.3440
0.123 0.210 0 0.0412 0.201 1 0.5546
0.118 0.340 0 0.3541  0.725 1 0.3972
0.213 0.500 0 0.4685 0.563 1 0.1785
0.553 0.750 1 0.4373  0.474 1 0.3678
(0.396 1.000 1 0.3960 0.376 1 0.3763
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Figure 5.7: Integrated Gradient of Healthy and Alzheimer MRI Image and attribution
maps in ImageNet Data Set
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Figure 5.8: Comparative AUC score of the integrated and smooth gradient for the Healthy
and Alzheimer MRI image (a) Healthy MRI image (b) Alzheimer’s MRI image

map. Total attributions in the color channel are displayed in Figure 5.7a, and Figure 5.7b.
It produces an arbitrary mask for the first fully blurred image obtained from healthy and
AD MRI scans. According to Table 5.3 which determines the AUC' score demonstrated
in Table 5.4, the completely blurred image receives a score similar 1o the original image
or a higher score,

Table 5.4: AUC score determined from Table 5.3.

Subjects Integrated Gradients Smooth Gradients
Healthy 0.135 0.153
Alzheimer’s Disease 0.174 0.195
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5.3.3 Gradient MRI Images on ImageNet

For the I'mage Net dataset, a refined VGG — 16 architecture was used to show the efficacy
of the structure and depth of the network. Figure 5.7 illustrates that a resulting image
generated from an active hidden layer of the baseline model, a saliency map applied to an
image fMRI, using a computed integrated gradient and a smooth gradient, accurately
detects the regions that have been affected with the minimal amount of noise. A smooth
gradient creates smooth saliency maps. Integrated gradients appear similar to arbitrarily

produced saliency maps and have significantly higher degrees of visual incoherence.

54 LSTM based model for ADHD classification

The proposed BLSTM methodology and model, as described in Section 3.4.3, use rs —
M RI images for a wide variety of evaluations, such as image pre-processing; furthermore,
dimension reduction is applicable to feature vectors in which the fM 2] temporal signal
from every voxel is connected to another voxel. Our study further reveals the fME[
voxel activation feature, which represents the neural response to a stimulus. We have
shown particularly low-frequency variations in Figure 5.9, which is < 0.1Hz considering
the spontaneous signal of BOLD fMRI during rest and in the absence of any task. The
efficacy of the proposed BLSTM model is assessed using various RSN feature vectors
of the rs — fM RI time series data for healthy subjects and ADHD. In contrast, the
proposed enhanced performance of the BLST'M model and that of the stacked LS1'M
were obtained with the help of training and testing of the rs — fMRI feature vector.
An automated deep learning Python package has been used to process the rs — fMR]

feature vector to train the LST'M model. The details of the experiments and the results
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are given in the following subsections.

5.4.1 RSN Feature Visualization

In order to show RSN, we have taken into account the data set that contains participants
with and without ADH D in this section. The input image rs — fAM BRI uses the yvellow
area in Figure 5.9a, which was found using the statistical map approach for the image
FMRI. An axial slice is produced by considering the entire data set. The visualization
generates a map 28 — RSN, as stated in Table 5.5 that defines every active location that
influences the classification. The brain voxel has a dimension of (61 x 73 x 61)mm?, it

has 271633 voxels.

Table 5.5: T-maps of 28 RSN Components

Resting State Network Indices Connected Node
Basal Ganglia 21 |
Auditory 17 1
Sensorimator 7,23, 24, 38, 56,29 6
Visual 46, 64, 67, 4%, 39, 59 6
Default mode 50, 53, 25, 68 4
Attentional 34, 60, 52, 72, 71,55 6
Frontal 42, 20, 47, 49 4

each of which is (3 x 3 x 3)mm?® in size. Additionally, the behavioral data of the 40
participant fMRI time series are collected and organized with a matrix size of [40 x 65]
that contains 176 time stamps, indicating a significant flnctnation.

The stimulated voxel sequence is optimized during each time stamp after obtaining
the time stamp range, and Figure 5.9¢ displays the temporal pattern of the voxel. Addi-
tionally, Figure 5.9b illustrates at volume 75 . the kernel density curve estimation process
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Table 5.6: rs-fMRI parameters

fMRI Parameter Value

4D array from resting state fMRI (61, 73, 61, 176)
Sequence of 3D resting state fMRI volume (61, 73, 61)
Number of Voxel 271633
Re-shape the array with voxel and time (271633, 176)

Max. value for the array of all 4D resting states 21922 8526

starts and finishes in volume 261 . This curve shows the probability density measurements,

at both volume 75 and 261 , correspoudingly 0.003 and 0.004.

(I) Voxel fMRI Response: BOLD fMRI The signal is contained in the time series, it
is a mixed signal and depends on the three limitations such as (z) Blood Flow (i)
Blood Volume and (i7i) Blood Oxygenation. The BOLD responses are included
in the aforementioned resting state data set and applied to preprocessing for each
voxel. The voxel-specific response period was calculated and reconstructed from
the seven brain regions shown in Table 5.5. As we pre-processed the values of the
rs — fMRI time series, we evaluated the amplitude and size of the BOLD signal.
The signal variations over the volume that are specific to each of the seven RSNV,
Figure 5.10 display the time of activation and nonactivation in close vicinity. The
voxel signals are extracted from the volume using the rs — fAM R time series, and
the signal itself determines it. For 40, the study is carried out on these reshaped
RSN28 data. There are 20 participants with ADHD and 20 controls, and each
subject has a unique feature vector (40 x 261 x 28), According to Figure 5.9b, they

were fitted with a model LST M.
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Figure 5.9: Visual Results of RSN and Signal Visualization (a) The yellow region
shows 28 RSN (b) Histogram and kernel density estimation curve of all subjects’
fMRI data from ADHD and controls with 261 images (c¢) volume 40 rs-fMRI dataset
(3D spatial + 1D Time) and signal cbservation from the voxel array.

(IT) Signal variation: It is possible to determine neural activity using the signal BOLD.
Each voxel's time series value corresponds to the BOLD signal. We observe the
significant variations in the BOLD signal, which is illustrated in Figure 5.9a statis-
tical map. We have also examined the fM RI time series in order to find a signal
at certain points in time. In functional connectivity, F'C'. according to Tahle 5.5,
several brain regions are functionally related. A process has been used to identify

each of the seven unique regions in order to calculate the temporal correlation of
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Figure 5.10: Signal variation in the FC network and the BOLD response (a) RSN-28

Activation Signal and (b) BOLD signal. which is an indicator of neural activity in the

resting state in the 28 RSNs.
variations in the ADH D participant’s magnetic resonance signals while in a rest
state. We observe that spontaneous variations in blood flow are reflected by the
low frequency. When determining the voxel in each region of the brain, signals from
additional voxels are thus calculated simultaneously. Additionally, as Figure 5.9b
lustrates, we have discovered that inside the continuous voxel time series BOLD
fMRI the signal fluctuates in frequency (< 0.1 Hz) while it is at rest, which causes
the intensity of the signal to change with volume. As demonstrated by the curve in
Figure 5.9 b, it is highly probable that a pair of voxels or adjacent voxels in the brain
perform a similar function. The highest and lowest spectral levels for amplitude
exhibit a substantial correlation within the voxel time series spectrum. Figure 5.10
a shows the rs-fMRI signal in each of the 28 RSN voxels, whereas Figure 5.9¢
displays the brain's throughput, thus the obtained signal spectrum indicates the
coherent brain activity that appears in RSN. The degree to which each of the
voxels is functionally connected to one another is shown by the time series as well

as by each other voxel.
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5.4.2 ADHD Accuracy
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Figure 5.11: Stacked LSTM vs. Proposed modified bidirectional LSTM plot (a) Stacked
LSTM accuracy and (b) Stacked LSTM loss. (¢) Proposed modified Bidirectional LSTM
Accuracy. (d) Proposed modified Bidirectional LSTM Loss.

The proposed cnhanced BLSTM model considers the feature vector sequence of
rs — fMRI time series data as input. The aforementioned feature vectors are trained
using the proposed BLST M model, which includes 50 epochs and 50 iterations. Differ-
ent hyperparameters concerning the training data set instantly adjust the model; these
parameters are learned from the training data set. With every network pass, the weights
are modified; consequently, despite the overfit and underfit, the ensuing curve finds an
appropriate fit. The restructured data array comprised of rs — f M RI images is used to

implement both LST M models, such as stacked and modified BLST M) to obtain more
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Table 5.7: Stacked LSTM Model

Operation Data Dimension Weights (N) Weights (%)
Input (261,28) - -
LSTM , Tanh (261,80) 34RK0 26.60
LSTM,Tanh (261,70) 42880 32.30
LSTM,Tanh (261,60) 31440 24.00
LSTM,Tanh (50) 22200 17.00
Dropout (50) 0 00.00
Dense = 102 00.10
Softmax 2 - -

Total params: 130,902
Trainable params: 130,902

Non-trainable params: 0

Table 5.8: Proposed modified BLSTM Model

Operation Data Dimension Weights (N) Weights (%)
Input (261,20) - -
LSTM.Tanh (261,80) 32320 11.50
Bidirectional (261,140) 84560 30.00
Bidirectional (261,120) 06480 34.20
Bidirectional (100) 68400 24.30
Dropout (L00) 0 00.00
Dense - 202 00.10
Softmax 2 - -

Total params: 281,962
Trainable params: 281,962

Non-trainable params:

training. Furthermore, we used the regularization procedure when the training dropout
rate was 0.5 and an arbitrary choice of neurons from a network was neglected. The
findings of both approaches concerning accuracy and data loss are shown correspond-
ingly in Figure 5.11 a,b.c, and d. According to the findings, as more epochs are added,

it can be observed that the accuracy of ADHD subjects increases and decreases with
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loss. Based on our findings, we were able to achieve binary precision 75.00% and loss
57.01%, respectively, with stacking LST'M. The accuracy and loss scores are 87.50% and
48.25%, respectively, for the proposed modified BLST M. The total quantity of trainable

parameters is shown in Table 5.7 and Table 5.8.

5.4.3 Model Performance Measure

In order to evaluate the efficacy of the proposed modified B LST M network, the " Bagging”
or "Bootstrap Aggregating” method has been implemented. The approach creates more
training datasets and reduces the variation in the learning algorithms. This approach has
been used for the prediction of network accuracy and sample training. Additionally, we
resampled the input vector, which has a significant sample size, and applied parametric
analysis for distinct levels of variability. The null hypothesis distribution implies the
absence of a relationship. An arbitrary substitution sampling is applied for training and
testing in order to estimate the accuracy of the model. The hypothesis test is conducted
using the bootstrapping approach to evaluate the precision of the proposed model, which
is shown in Figure 5.12a and Figure 5.12b.

The proposed BLSTM has obtained an AUC = 0.88 for the classification ADH D, as
shown in Figure 5.12d. In contrast, the stacked LSTM has obtained AUC = 0.62 depicted
in Figure 5.12¢c, which has less value when comparing the results of AUC with BLST M.
As a result, the stacked model LST M behaves less on average compared to the proposed
modified model BLSTM. We took the (p — value < 0.05) into account while estimating

the AUC'. Decision eriteria are inferred from the demonstrated ROC' curves.
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Figure 5.12: Performance of LSTM models and ROC curve measure (a) Stacked LSTM
(b) Modified BLSTM.(c)AUC : Stacked LSTM, (d) AUC : Bidirectional LSTM

Evaluation Metrics

The performance metrics of both models are determined on the basis of resting state

FMRI data from Allen’s atlas. When classifying ADH D subjects with healthy controls

in the basic classification task, the accuracy is determined by the type of classifier that has

been used for measurement. All data rs — fM RI are classified into two classes according

to the proposed approach. which also classifies subjects directly into four categories such

as true positive (1'P), true negative (T'N), false positive (F'P) and false negative (F'N).

The following measurements can be used to calculate the different performance evaluation
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metrics:

Sensitivity = % (5.1)
Precision = TP::—LFP (5.2)
F1l — Score = TP+ %(;?3_4_ FN) (5.3)
Aceuracy = Ll ¥ (5.4)

(TP + FP) + (TN + FN)

The comparison of the stacked LSTM model and the proposed enhanced BLSTM is

presented in Table 5.9 and AUC is shown in Figure 5.12 ¢ and Figure 5.12 d.

5.5 Comparative Analysis with the other State-of-

the-art Methods

Furthermore, we had compared the proposed modified BLST M with the other end-to-
end techniques. such as 4D — CNN — LSTM, LSTM, MLP +CNV, and 3D — CNN.
Table 5.10 displays the comprehensive comparison. To enhance classification performance
using the rs — fMRI data, these models have taken into account several preprocessing
techniques. However, significant classification performance is achieved by the proposed
modified BLSTM structure compared to another end-to-end model. Compared to existing
models, the modified proposed BLST M achieved a significantly better accuracy of 87.50%
and AUC of 0.88 in the classification of ADHD.

Dvornek et al. [99] obtained the accuracy, however,they classified ASD using the be-
havioral features and rs — fMRI obtained from the ABIDE dataset. When classifying

118



Table 5.9: Performance metrics of the proposed modified BLSTM and Stacked LSTM
models

Performance Metrics

Model Accu (%) Sens Prec F1-Score AUC p-value
Modified BLSTM 87.50 0.7647 0.8125 (0.7878 0.88 3.66E-13
Stacked LSTM 75.00 0.6250 0.6666 0.6667 0.62 9.18E-08

Table 5.10: Comparison of the proposed modified BLSTM model with the other State-
of-Art methods.

Existing Model Accuracy AUC Sensitivity t-test
(%) () (%)

Methods (p — value)
Dvornek et al. [99] LSTM 70.01 - - p< 0.1
Dvornek et al. [14] LSTM 68.50 - = p < 0.05
Liu et al. [230] MLP+CNV  78.00 = - =
Mao et al. [157]  4D-CNN- 71.30 80 73.2 -

LSTM
Vu et al. [155] 3D-CNN 78.50 — — p < 0.041
Proposed Modified 87.50 88 76.47 p<0.05
Method BLSTM

European American children with ADHD in this study, Liu et al. [230] used 262 healthy
control children and 89 instances of the ADH D disorder. Mao et al. [157] utilize ADHD-
200 dataset for the identification of the disorder in the children. Vu et al. [155] evaluated
the feature maps that are produced neural activity using a distinct open-access dataset

obtained from the Human Connectome Project.

5.6 MobileNet-2D-CNN for MS classification

The proposed model detects and evaluates the classification of multiple sclerosis, which

is present in the images M RI. Our model produced an accuracy of 98.15%. Since the
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data set used in this study is gray images, therefore, the value of pixels from the M RI
images is between 0 and 255. We have visualized the hidden layer gradient images, M S
classification, and performance of the proposed model. The visualization of the MRI
images shows how perfectly the proposed model extracts the characteristics for the M.S

classification.

5.6.1 Grad-CAM Visualization

The proposed Mobile Net-2D — C'N N architecture is trained to produce heat maps from
input. M BT images. These heat maps detect the location of the MS lesion on the M ERT
image as shown in Figure 5.13. The heat maps generated from the convolutional layer
use a single input channel due to grayscale images M RI. Here, the convolutional layer
considers the weighted average output. In each channel, the feature map uses the weight in
the Fully Connected layer. Softmax layer performs the computation for class prediction
of heat maps.

The output of a gradient of the Softmaxr layer with respect to each channel forms a
feature map of the specific layer that shows a gradient of the respective output channel.
We have obtained feature maps generated from each activated layer as per Table. These
gradient feature maps of M R1I images are fed into the Global Average Pooling layer GAI)
that considers the size of the M RI image tensor as (5 x 5 x 32) and performs the average
across the (5 x 5) convolution. The average value of each of the input channels generates
one output channel, i.e. a one-dimensional tensor with 32 images. These weighted feature

maps 20 are generated by the G AP layer, which is used as a heat map of an MRI image.
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Figure 5.13: Visualization of Multiple Sclerosis affected Vs. Healthy MRI image size
(224x224) on the Proposed model (a)Class activation map of Multiple Sclerosis (b) Class
activation map for Healthy Brain MRL

Table 5.11: Generated Feature Map from activation channels.

Activation Layer No. of Feature Map
Mobilenet_1.00_224 32
Conv2d 128
Batch_Normalization_1 256
Max_Pooling2d _1 512
GlobalAveragePooling2D 512

5.6.2 Classification of MS Lesion

The proposed maodel predicts the class label, as shown in Figure 5.14. The classification
process is applied to a preprocessed data set that consists of 475 A R[] images, including
healthy controls affected by M S. The combined data set M RI is divided into training

% of the training data set has been used

and testing purposes with a ratio 80 : 20, and 5
for validation purposes in the propased model. The 21 — (' NN segment of the proposed

model classifies MS lesions. Figure 5.14 shows the detection of MS lesions from the MRI
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image training and testing dataset.
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Figure 5.14: Classified MS affected brain MRI
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Figure 5.15: AUC for MS-affected brain MRI

5.6.3 Model Evaluation

In binary classification, the calculated probability determines the expected classes based
on the eontinuous variable. Probability is classified as positive if the computed probabilities
> threshold value otherwise it is negative. The classification performance of the proposed
model is measured using the arca under the curve (AUC) to determine how effectively
the proposed model performs in classification. The receiver operating characteristic curve
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(ROC) computes the area under the ROC curve. ROC curve is created between the
true positive rate and the false positive rate, where the AUC is in the range between 0.5
and 1.0. It can be interpreted as the probability that an MS affected subject with a
higher test value will be selected at random, rather than a random selection of healthy
individuals. The total efficacy of the classification model is measured by the value AUC.
The suggested MobileNet-2D-CNN classifier is shown in Figure. 5.15 with an AUC of 1.00.
It shows how effectively the proposed model performs when applied to MRI image data,
which are perfectly classified. An orange curve that extends over the threshold diagonal

line and from the bottom left to the top right depicts a class of multiple sclerosis.
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CHAPTER 6

DISCUSSION AND CONCLUSION

6.1 Summary

The primary objective of the current study was to analyze the implementation of deep
learning techniques in the characteristics of fMRI with the objective of classifying brain
activity and disorder in two distinct contexts, such as task-based fMRI and rs-fMRI. In
both, the challenge included various stages, namely edge detection, neural activity, MRI
saliency map generation, and classification of brain disorders.

Preprocessing fMRI data remains an important challenge; thus, here we carefully examine
the brain activity signal using fMRI data. The brain needs oxygen to be maintained both
structurally and functionally. When measuring human brain activity with fMRI after
performing a particular task to identify a region, it is quite helpful. Neural activity under
different conditions using the BOLD approach and signals to analyze the measurement
Through data-driven experiments and multiscale brain parcellation, the present work is
based on the Functional Connectome Project. Each fMRI data set had adjustments for
the variation in acquisition time between slices, and the components of rigid-body motion

were determined for each time frame. ROI provides signal estimation, activation, and
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cluster decision making for voxels. The ROI selection method may have implications for
data interpretation. As mentioned in Section 1.5 edge detection techniques for MRI anal-
ysis and elassification are useful for determining the edge; they focus on the edge detection
operators of Laplacian, Sobel, and Prewitt. The experimental achievement demonstrates

the proposed technique.

In this work, we developed & useful computational method that signifies a unique ap-
proach to the study of useful networks in fM RI, which generates the spatial arrangement
from BOLD signals that are present in all individuals after seeing an animated movie of
FMRI. Using the fM RI time series, calculate the voxel variance and the connectivity
measure of function. To provide data on the functional significance of the white matter
constituents that have been found, it is necessary to measure the possible contribution of
enormous white matter networks while performing challenging tasks. The spatial struc-
ture of white matter connections is identified via time-series-based white matter activa-
tion. The general results of the current study show how the functional connection has

changed.

Our demonstration indicates that the global signal fluctnations are derived from the
white matter along with the CSF time series since each voxel has a different stimulus,
and this is the case with all voxels. Variations in blood flow and BOLD signals are closely
linked. The fluctuation of the BOLD signal in neural activity is used to assess functional
connectivity; despite this, there is a correlation between brain activity and the hemody-
namic response. fMRI-based spontaneous activity demounstrates the procedure by which

the brain processes stimuli. Taking into account the enormous amount of voxel responses
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and signals from 3D — fMRI images According to the voxel signal extracted from the
fMRI data, the activation patterns in the original fMRI image were analyzed using a
proposed 2D —C NN model & focusing on the state-of-the-art method for neural activity
in MRI classification with a validation of 85. 3%. The feature maps were obtained after

applving this 2D-CNN model, which displays all 128 two-dimensional fMRI images.

Although the method we proposed is suitable for saliency maps, we discovered that it
continuously covers saliency techniques when it becomes necessary to distinguish between
a smaller number of classes. In the case of fMRI images, it might be useful to distinguish
between an fMRI image that is healthy and one that has Alzheimer’s. We are working
with ImageNet weight in the proposed method for more than two classes. In this work,
we implemented the integrated gradient corresponding to a VGG-16 model; it explains
the Smooth Gradient approach, as well as the distinetion that exists between the stimulus

and baseline, which removes saliency map noise.

In order to assess a brain disorder, functional connectivity analysis is one of the pre-
scribed approaches that specifies the spatiotemporal relationship between neurophysio-
logical activities that are physically distant. In this study, we observed (rs — fMRI) as
an essential resource for analyzing brain images and assessing ADHD. Every active RSN
voxel has been used in the proposed modified BLSTM architecture, which chooses the
distinetive features that describe the time-series fMRI images belonging to the relevant
voxel. The model is subsequently trained using these data to classify ADHD. The classi-
fier’s performance metrics indicate that the proposed BLSTM model achieves a successful

accuracy of 87.50% in classification as well, and the F1 score maintains the equilibrium
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between sensitivity and precision. Lastly, Table 4.9 presents a comparison between the
proposed approach and other current state-of-the-art techniques. According to the ac-

quired comparison statistics, the proposed approach works better than the other strategy.

6.2 Limitations

It is important to recognize some limitations for future work. Because fMRI research
18 expensive to conduct and the methodology of research is challenging, gathering IMRI
image samples is another challenging issue. In the edge detection of MRI, an irregular
region can be identified using the Laplace, Sobel, and Prewitt detection methods inside
the specific region of the brain. When using the Laplacian method, due to the smaller
kernel maltrix, some noise is presenl in the intensities. The edge detection technique is
insufficient to manage noise. The BOLD signal indicates the spatiotempaoral structure
of the functional network of fMRI.We argue that fMRI is used for the development of
frameworks that explain how the brain functions, which are based on knowledge of the
connections and structure of the brain. Currently, BOLD fMRI is the most effective
technology available. Still, an essential question has to be addressed: What does the
term "neural activity” certainly mean? The volume of the voxel directly affects how the
BOLD signal changes. The voxel volume is visibly affected by spatfial resolution and is
usually adjusted by varying the gradient intensity of the spatial encoding. A voxel in
fMRI nsnally contains hundreds of thonsands of nenrons, and a blood-flow response is
caused by some portion of the aforementioned neurons activating. Typically, variations in
voxel volume have a minimal impact on noise. However, there is a direct corrclation be-

tween the volume of the voxel and the intensity of the signal. Random signal fluctuations
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that affect {MRI time-course datasets are the result of several physiological processes not
exactly connected to the functional region. The BOLD response, which is correlated with
the number of active neurons, has not been well understood. Deep learning techniques
such as CNN and RNN are becoming more and more common in neuroimaging. As men-
tioned in Tables 2.2 and 2.3 in previous studies, brain disorders and identification were
performed and the diagnosis was performed based on the application of fMRI images to
various CNN architectures. If CNN fails to learn, it may not be possible to gain any
useful features at all. To develop a more accurate decoding architecture, reconstructing
related sensory information using fMRI data employing deep learning remains susceptible
to various challenges. Even though our proposed 2D CNN model has demonstrated ex-
ceptional performance in classifying neural activity, there are several problems that still
require consideration, emphasizing the complexities and challenges of determining the re-
sults because of calculations that are particularly non-linear, particularly in terms of data
overfitting. To solve the binary classification and detect whether or not a subject had
Alzheimer’s disease, we demonstrated the application of VGG16 models and techniques
for identifying saliency regions in MRI images. The major challenge of the study was to
find a solution for the interpretability issue with pre-trained network results when it came
to fMRI images. In another experiment, we used rs-tMRI for the classification of ADHD
and used an LSTM-based model. Interpretation of the RSN is much better possible, and
it is crucial to resolve the problems and challenges that occur during preprocessing in the

RSN-activated multiple for classification.
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6.3 Future Direction

The primary objective of future research will be to overcome these limitations. An ad-
ditional possibility for expansion would be to investigate functional connectivity; this
explains the correlation pattern of the tMRI time series. In further studies, it would be
stimulating and feasible to investigate RSN in other contexts using attention networks.
Functional connection within the brain network has emerged as one of the main objectives
of neuroimaging studies. It is possible to improve the standards and varieties of fMRI
image reconstruction; hence, it is essential to enhance the feature extraction capabilities
of deep learning models for fMRI data. The state-of-the-art maodel is now functioning. As
the quantity of high-dimensional data in the IMRI datasets keeps growing, manually im-
plementing aspects is not the way of the future: however, it is important to comprehend
other data-driven functionalities. Taking into account the substantial variation within
FC, future research will use constant upgrading across participants and time frames, in-
cluding convolutional layers. In the future, the identification of ADHD,we anticipate that
a more comprehensive ADHD biosignal database will soon be available to the researcher.
Brain areas that are more active when people are at rest than when they are participat-
ing in activities with an external focus. When directed tasks such as watching a movie
are in progress, the default mode network is also operational. The cognitive processes
that are emplaved during recalling memaories may henefit from defanlt network.In the
future, the deep learning model can be used for the observed irregular network structure
features classification in individuals suffering from neurodevelopmental disorders such as
ADHD. In order to more accurately analyze the cognitive features of ADHD patients,

we intend to create increasingly intricate and sophisticated cognitive models. This will
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facilitate a deeper comprehension of the impacts of exercise programs on varicus indi-
viduals.Potentially predictable fluctuations in temporal fluctuation in functional network
connectivity that could describe abnormal neurological activity could be the subject of
future research. The state-of-the-art method for the classification of neural activity will
be determined by future researchers with the help of Table 1.2. When using deep learning
models to obtain neural activity detection and classification in a particular brain region,
computational analysis requirements play a major role. While the findings of this research
indicate a pattern of neural activity in saliency map in fMRI,future research should yield

much greater accuracy.
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