JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT TEST -3 EXAMINATION- 2024

B.Tech-VI Semester (ECE)

B. Tech-VI Semester (ECE)	
COURSE CODE(CREDITS): 18B11EC612 (4)	MAX. MARKS: 35
COURSE NAME: VLSI TECHNOLOGY	
COURSE INSTRUCTORS: Dr. Shruti Jain	MAX. TIME: 2 Hours
Note: (a) All questions are compulsory. (b)Marks are indicated against each question in square brackets. (c) The candidate is allowed to make Suitable numeric assumptions solving problems	wherever required for
<u> </u>	

SHORT QUESTIONS $(10 \times 1 = 10)$ [CO 1, 2, 3]

1.	
i.	Low noise margin is expressed as
ii.	For nMOS saturated enhancement load inverter biased at $V_{\rm DD} = 5$ V. The transistor
	parameters are $V_{\text{TOD}} = V_{\text{TOL}} = 0.8 \text{V}$, $k_n = 35 \mu\text{A}/\text{V}^2$, $v_0 = 0.1 \text{V}$ and $v_i = 4.2 \text{V}$. For
	calculation of high input voltage, load is in region.
iii.	For calculation of midpoint voltage, both transistors of inverters are in
iv.	The MOSFET stands for
v.	The switching threshold voltage V_{TH} for an ideal inverter is equal to
vi.	Specify the colors for <i>n</i> -diffusion, metal 1 layer, polysilicon and demarcation line in
	stick diagram.
vii.	In general, p-MOS in series implement agate. How many n-MOS
	transistors are in logic diagram of NAND 3 gate?
viii.	Calculate Logic Swing of a digital logic circuit having the following information: $V_{\rm IL} = 0.6 \text{V}$,
	$V_{\rm IH} = 1.5 \text{V}$, $V_{\rm OL} = 0.2 \text{V}$ and $V_{\rm OH} = 1.8 \text{V}$.
ix.	In nMOS depletion load inverter configuration depletion mode device is called as
x .	The enhancement mode n-MOS load inverter requires 2 different supply voltages to
	keep load transistor in region

LONG QUESTIONS

2.

- i. Sita is designing CMOS inverter with the following parameters: $V_{\rm Tn}=0.5{\rm V}$, $V_{\rm Tp}=-0.5{\rm V}$, $k_{\rm n}=80\mu{\rm A/V}^2$, $k_{\rm p}=40\mu{\rm A/V}^2$ and $V_{\rm DD}=3.5{\rm V}$, $({\rm W/L})_{\rm n}=({\rm W/L})_{\rm p}=2$. Help her in finding input voltage ($v_{\rm i}$) when output voltage ($v_{\rm 0}$) is 3V.
- ii. Ananya is designing a NAND 3 gate using CMOS technology with the following parameters: $V_{Tn} = 0.5 \text{V}$, $V_{Tp} = -0.5 \text{V}$, $k_n = 80 \mu \text{A/V}^2$, $k_p = 40 \mu \text{A/V}^2$ and $V_{DD} = 3.5 \text{V}$, $(W/L)_n = (W/L)_p = 2$. Help her in finding the midpoint voltage for the designed circuit. [CO4] [5+5]

3.

- i. Explain the different steps of fabrication for enhancement n-type MOSFET
- ii. Draw the stick diagram of the logic expression $f(A, B, C) = \overline{A + B(C + D)}$ using CMOS logic. Find the equivalent circuit for nMOS transistor only, assuming that $(W/L)_n = (W/L)_p = 10$. [CO5 [4 + 6]
- 4. What are pass transistors? Derive *pull up to pull down* ratio if one of the inverter is fed to another inverter through a series of two pass transistors. Assume $V_{\rm th} = 0.2 V_{\rm DD}$, $V_{\rm thdep} = -0.6 V_{\rm DD}$ and $V_{\rm thp} = 0.3 V_{\rm DD}$. [CO6][5]