JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT

TEST -3 EXAMINATION- 2024 B.Tech-VIII Semester (CSE/IT/ECE/CE)

COURSE CODE (CREDITS):21B1WMA831 (3)

MAX. MARKS: 35

COURSE NAME: Soft Computing & Optimization Algorithms

COURSE INSTRUCTORS: Dr. B. K. Pathak

MAX. TIME: 2 Hours

Note: (a) All questions are compulsory.

- (b) Marks are indicated against each question in square brackets.
- (c) The candidate is allowed to make Suitable numeric assumptions wherever required for solving problems
 - 1. Let $X = \{1, 2, 3, 4, 5\}$ and fuzzy set $A = \{(1, 0.7), (2, 0.3), (3, 0.5), (4, 0.9), (5, 0.6)\}$, Find the α cut set for $\alpha = 0.3$, 0.5 and 0.9. Also find the level set of A.

[CO-2][6 Marks]

2. The fuzzy set A representing the "satisfaction level" of customers in a restaurant, whose membership function $\mu_A(x)$ is given as: [CO-2] [6 Marks]

$$\mu_{A}(x) = \begin{cases} \frac{(x-20)}{20} & ; & 20 < x < 40 \\ 1 & ; & 40 \le x \le 60 \\ \frac{(80-x)}{20} & ; & 60 < x < 80 \\ 0 & ; & otherwise \end{cases}$$

where x is the customer satisfaction score on a scale from 0 to 100,

- (a) Find the membership value of {10, 30, 50, 70, 90}.
- (b) Plot the membership function of fuzzy set A.
- (c) Also, find the cardinality of fuzzy set A.
- 3. Let's create a fuzzy logic system for an examination grading system using a Gaussian membership function to define grades based on scores. In this system, fuzzy sets for grades are define as: "Excellent", "Good", and "Fair". [CO-3] [6 Marks]
 - (a) Define a Gaussian membership function with the parameters for "Excellent" Grade with a mean $(\mu) = 90$, and standard deviation (σ) : 5.

- (b) Define a Gaussian membership function with the parameters for "Good" Grade with a mean $(\mu) = 75$, and a standard deviation (σ) : 5.
- (c) Define a Gaussian membership function with the parameters for "Fair" Grade with a mean $(\mu) = 60$, and a standard deviation (σ) : 5.
- (d) Find the membership values for scores {45, 65, 85, 95} for each grade.
- 4. Suppose a genetic algorithm uses chromosomes of the form x = abcdefgh with a fixed length of eight genes. Each gene can be any digit between 0 and 9. Let the fitness of individual x be calculated as: f(x) = (a + b) (c + d) + (e + f) (g + h) and let the initial population consist of four individuals with the following chromosomes: [CO-4] [6]

$$x_1 = 65413532$$

 $x_2 = 87126601$
 $x_3 = 23921285$
 $x_4 = 41852094$

- (a) Evaluate the fitness of each individual, showing all your workings, and arrange them in order with the fittest first and the least fit last.
- (b) Perform the crossover between two individuals (x₂& x₃) using one-point crossover at the middle point and calculate their fitness.
- 5. A roulette wheel for genetic algorithm has the following values assigned to different sections: [CO-4] [7]
 - i. Section A_1 : 25% probability of being selected
 - ii. Section A_2 : 15% probability of being selected
 - iii. Section A_3 : 20% probability of being selected
 - iv. Section A_4 : 40% probability of being selected

If we need to select 10 parents for reproduction using this roulette wheel.

- (a) What is the probability of selecting section A_1 exactly once in 10 spins of the roulette wheel?
- (b) What is the probability of selecting section A_2 at least twice in 10 spins of the roulette wheel?
- (c) What is the expected number of times section A_3 will be selected in 10 spins of the roulette wheel?
- (d) If we spin the roulette wheel 10 times, how many parents will be selected from Section A_4 ?
- 6. Write the four important characteristics of soft computing.

[CO-1] [4]