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ABSTRACT 

Digital forensics is a critical research branch that focuses on identifying the original source and 

verifying the authenticity of digital data, particularly concerning visual information, which 

poses a major challenge for forensic experts in the present digital era. This field extensively 

employs image and video data to validate the accuracy of information during the picture 

gathering phase and to detect tampering throughout the digital image processing pipeline. 

However, image and video forensics stand as the most significant challenge in the current 

digital landscape due to the continuous modification of digital content using freely available 

software and editing tools. Ensuring the authenticity of images and videos involves employing 

various forensic methods from image acquisition to storage. Despite the complexity of this 

task, two major hurdles faced by researchers in digital forensics include identifying the source 

of acquired images and videos to establish their origins with specific devices, models, or 

brands, which holds particular importance when examining historical context. Additionally, 

detecting image forgery is essential to preserve the integrity of digital data for legal purposes, 

as forged images distort original content and disseminate false information. With the ready 

availability of software editing tools, the risk of modifying captured images with deceptive or 

defamatory content has increased, leading to the spread of fake information on social media 

platforms. 

In this thesis, we aim to enhance the accuracy of source identification for images and videos 

using a deep learning framework. Additionally, we focus on image forgery detection to prevent 

the misuse of falsified content. Our proposed approach involves utilizing the Twin CNN 

Architecture (TCA) for image source identification, where the initial DnCNN (Denoising 

Convolutional Neural Network) is used to remove noise from the original dataset, followed by 

the second CNN architecture to classify images based on extracted features from various 

convolutional layers. This approach improves the effectiveness of class prediction and 

efficiency in identifying original source. Furthermore, we introduce a CNN-based architecture 

for accurately classifying forgery in given images, detecting unseen forgeries through feature 

extraction from multiple convolutional layers, and employing an SVM classifier for precise 

labeling. Lastly, our deep learning-based CNN Multi-Modal Camera Model Identification 

improves video source identification accuracy through the use of CNNs. 

Keywords: Image Forensic; Forgery; CNN; Video Forensic; Image Denoising 
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CHAPTER 1 

INTRODUCTION 

___________________________________________________________________________ 

 

1.1 Preface 
 

In the current digital era, researchers face the challenging task of validating the authenticity 

and trustworthiness of images captured with widely accessible digital devices. With digital 

images being an integral part of everyday life, the ability to manipulate them using advanced 

digitization and image analysis tools raises ethical concerns [1]. Addressing this issue, two 

key aspects are emphasized: determining the imaging system responsible for capturing the 

image and detecting potential forgeries. In contemporary society, the value of images and 

videos as pivotal evidence in legal proceedings and daily conflicts cannot be overstated. The 

imperative to ascertain the device employed for image capture, particularly in instances of 

video surveillance or covert recordings, underscores its indispensable role as crucial evidence 

within the judicial system [2]. To address these obstacles, digital image and video forensics 

concentrate on discerning and scrutinizing fundamental aspects within images and videos. 

Key objectives include origin recognition without prior image analysis or registration, 

extracting hidden information, and detecting manipulations [3]. To trace the origins of 

collected images or videos, a comprehensive examination of the digital image processing 

pipeline is conducted, spanning from the initial acquisition phase to the storage phase 

depicted in Figure 1.1. 

To trace the initial origin of the image acquired is approachable in the following way:  

• Identifying the source camera model that captured the original image. 

• Was this image captured uniquely by a single device, or does it seem to be a 

composite of multiple images? 

Image forensics operates on the principle that a digital image carries inherent evidence from 

its creation to subsequent stages in its life cycle. Collecting and analyzing these digital 

footprints helps understand how digital content evolves. Identifying the image source 

involves two main methods: one follows the image processing pipeline's traces traditionally, 

while the other relies on feature extraction techniques to determine the image's original 

source. In conventional image forensics, source determination is carried out throughout the 
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image acquisition, compilation, and final editing phases based on intrinsic artifacts or 

footprints [3]. Now a day’s image source identification done based on data driven approach 

to extract features and match similarity index with original image. In recent years, Image 

source recognition done by different machine learning approaches to improve the accuracy 

over the conventional approaches. In which multiple features are extracted from image patch 

dataset and train the model to classify the given input image. Due to noise in image dataset 

apply different denoising filters to restore the original image then apply classifiers to detect 

original source and enhance the effectiveness of prediction. In recent scenario, deep 

learning-based model is used for image source identification give high accuracy over 

traditional approaches. In deep learning framework, first collect the dataset according to 

develop model and then train model on dataset and test the accuracy on given input image.  

 

Figure 1.1.  Image processing cycle in digital device 

 

Researchers must deal with a number of challenges while developing a video camera model 

detection system that they do not have to deal with for image manipulation-based systems. 

Do changing different frame types and used during video encoding, for instance, have an 

impact on the forensic traces used to identify camera models? If that's the case, how should 

this be considered while creating and implementing a video-based recognition system? On 

the basis of a single M x M picture patch, many image-based systems are capable of making 

decisions about the source model that are reliable. Can this be done with videos, or will the 

accuracy that can be achieved with just one patch be too low? Where in a movie should 

these patches be obtained from if forensic data from numerous patches is required? Digital 

videos are large, making their utilization computationally expensive [4]. 
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 The ease of falsifying digital images through readily accessible software tools on digital 

devices has led to an increase in manipulated content. Device-oriented forgery can be either 

innocuous or perilous, depending on its intent. Deliberate use to disseminate false 

information poses a significant threat to society. Often, image manipulation serves as a tool 

wielded by malicious individuals to tarnish the social or financial standing of public figures. 

Typically, device forgery involves benign alterations such as contrast adjustments or 

brightness modifications. Moreover, built-in filters in smart devices facilitate effortless 

modification of original images, allowing easy sharing. The repercussions of image forgery 

extend to influencing public sentiments and perpetuating false information within society 

[5]. Images find extensive use across various domains such as image forensics 

investigations, legal proceedings, surveillance systems, smart detection technologies, and 

medical imaging. Presently, researchers face the formidable challenge of detecting and 

notifying users about forgeries, providing authentic documentation. Traditional methods of 

image forgery, like copy-move and image manipulation techniques, pose significant threats 

to image integrity and the preservation of valuable information [6]. The proliferation of 

mobile applications has facilitated the rapid dissemination of misinformation on social 

media platforms, leading users to assume the accuracy of all available information 

associated with specific users. To detect user-intended forgery, examination involves 

scrutinizing the following aspects: 

• Has the provided image been altered or remains unaltered? 

• Has the provided image been edited to enhance features or modify specific elements? 

• Has the provided image been created by amalgamating two or more images using an 

intelligent system? 

In our endeavor, our primary objective is to precisely detect and identify these alterations, 

particularly focusing on image forgery, as illustrated in Figure 1.2. 

 

Figure 1.2.  Image Forgery Example 

Video Source camera identification, according to [7], [8], is a significant topic that 
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concentrates on several issues related to source class, such as model, brand, and sensor type. 

The procedure of determining the authenticity of information comes from the claimed 

source is known as source validation. Video forgery example is shown in given Figure 1.3. 

 

Figure 1.3. Video Forgery Example 

 

1.2 Problem Statement 
 

In conventional picture forensics, source determination is based on intrinsic artifacts or 

imprints that are traces during the image acquisition phase, compression, and final editing 

phases. Researchers concentrate on the features of the lens, sensors, and CFA (color filter 

Array) interpolation techniques throughout the image acquisition phase. The light rays that 

reach the sensor array pattern and are reflected by the lens during the picture acquisition 

phase are transformed into continuous signals. Each camera model has a distinct lens 

system, various types of sensors, and demosaicing methods for color filter arrays. The lens 

creates several types of artifacts and leaves distinctive traces to identify the camera model 

during the production process. Different digital gadget parts leave distinct traces in the 

photos that are taken. Investigators discover a link between hardware artifacts and acquired 

image artifacts based on these traces [9]. The artifacts found in modified images, such as 

object shape removal, contrast value alteration, sensor pattern noise, and application of 

connection with altered picture information and genuine image, are the focus of traditional 

image forgery detection techniques [10], [11]. The forgery detection cycle shown in Figure 

1.4.  
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Figure 1.4.  Image/Video Forgery General Cycle 

 

By using a data-driven approach, CNN has become adept at handling computer vision tasks 

in recent years. CNN is a data-driven methodology to extract traits from faked images and 

forecast how the original image will change based on intrinsic attributes. Because of greater 

pixel value correlation, the CNN-based technique was successful. The CNN model learns 

characteristics from a trained dataset, identifies significant forgery artifacts, and accurately 

classifies the forgery [12], [13] . As malware's influence has grown, it is now easier than 

ever for anyone to post, download, and distribute files online, including audio, image, and 

video content. This has led to an increase in the amount of video forgeries online. Adobe 

Photoshop and Video Editor are among the multimedia tools commonly utilized to modify 

media files. Furthermore, a common method of harmful video forgery involves 

manipulating a video sequence by adding or removing items within the frame [14]. 

Recent strides in image and video forensics owe their progress to the ongoing advancements 

in deep learning, computer vision, and signal processing techniques. Innovations like 

convolutional neural networks (CNNs) [15], recurrent neural networks (RNNs), and 

generative adversarial networks (GANs) have been explored by researchers, aiming for 

enhanced accuracy and efficiency in forgery detection. These technologies have reshaped 

the landscape, offering promising avenues for more precise and effective detection methods. 

CNNs have proven valuable in image forensics, extracting intricate features and patterns to 

identify manipulations or alterations. RNNs excel in analyzing temporal relationships in 

video data, enhancing deepfake and video forgery detection. Meanwhile, GANs [16], known 

for generating realistic fake content, are now applied adversarially in forensic contexts, 

challenging existing methods and refining overall accuracy. Beyond deep learning 

advancements, blockchain technology's integration offers a promising solution to ensure the 

integrity and traceability of digital media. By timestamping and storing forensic analyses on 
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a tamper-resistant blockchain, investigators maintain permanent records of manipulations or 

alterations, bolstering the trustworthiness of presented evidence [17]. These collective 

developments empower image and video forensics to address the growing challenges of 

detecting digital forgeries, preserving the integrity of digital content, and maintaining the 

trustworthiness of evidence in an ever-evolving digital landscape. 

 

1.3 Contributions 
 

This dissertation presents significant contributions to the field of image and video forensics 

by leveraging deep learning models. In this study, we made use of the recently created 

VISION dataset, which contains over 35,000 images and videos collected from 35 various 

portable devices made by 11 major manufacturers. It is noteworthy that many existing 

datasets intended for picture forensics do not contain photographs taken at various times and 

with diverse levels of quality. This gap is filled by the VISION dataset, which offers an 

extensive and varied collection of multimedia content recorded using a variety of cameras 

and recording settings. As it includes a wide range of real-world scenarios, this special 

dataset enables more thorough and realistic evaluation of image source identification 

techniques. Researchers can use it to assess how well deep learning-based methods handle 

varying image qualities and temporal factors. Conventional image forgery detection centers 

on altered image artifacts like object tampering, contrast changes, sensor pattern noise, and 

correlating forged and authentic image data. These are key areas scrutinized in detecting 

falsified images. By using a data-driven approach, CNN has become adept at handling 

computer vision tasks in recent years. CNN uses a data-driven methodology to extract 

characteristics from fake images and forecast how the genuine image will change based on 

intrinsic parameters. Because of greater pixel value correlation, the CNN-based technique 

was successful. The CNN model finds significant artifacts of a forged image, learns features 

from a trained dataset, and accurately classifies the forged image. The major findings 

mentioned above align with the following research objectives. 

i. The image source identification/detection from small cluster capturing devices has 

been studied but images obtained from large cluster of capturing devices with high 

dynamic range images has not been analyses yet. 

ii. mage forgery detection in shared information using a deep convolutional neural 

networks model. 
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iii. Technique to analyze the video capturing source and enhancement in accuracy of the 

video capturing device using deep learning model. 

 

1.4 Thesis Outline 
 

This thesis is structured into chapters to facilitate comprehension. Here's a concise overview 

of each chapter's content for clarity and coherence. 

CHAPTER 1:  Provides an introductory overview of key concepts related to digital 

forensics, image processing pipelines, image forgery, and image/video source identification. 

Furthermore, it delves into the application of deep learning models to enhance accuracy in 

identifying image forgeries and their original sources, particularly focusing on 

Convolutional Neural Networks (CNNs). Finally, the chapter outlines the problem statement 

and articulates the research objectives of the thesis.  

CHAPTER 2: Give insight a comprehensive review of the literature, offering insights into 

the various aspects of digital image forensics, image processing, and the use of different 

machine learning and deep learning models. It also lays the groundwork for the research 

conducted in this thesis by identifying research gaps and emphasizing the role of CNNs in 

image and video analysis. The knowledge gained from this review serves as a valuable 

foundation for the subsequent chapters, which will delve into the methodology, 

experimentation, and contributions of the research. 

CHAPTER 3: Presents a novel strategy for image source identification by introducing a 

Twin Convolutional Neural Network Architecture (TCA) designed to enhance the accuracy 

of source identification. Within the TCA framework, the initial CNN architecture, referred 

to as DnCNN, is utilized to remove the unknown level noise from the original dataset, 

creating 256x256 patches for the training and testing phases. Subsequently, the second CNN 

architecture is engaged to classify images by leveraging features extracted from multiple 

convolutional layers using a 3x3 filter, thereby enhancing the efficiency of predictions. 

CHAPTER 4: Proposes novel approach utilizes a CNN-based architecture to classify image 

forgeries, demonstrating a unique capability to identify even previously unencountered 

forgeries by extracting features from various convolution layers. The integration of an SVM 

classifier ensures high-precision labeling of forged images. This methodology not only 

enhances the accuracy of image forgery detection but also extends its applicability to 

emerging types of forgeries. 

CHAPTER 5: Proposes Two unique camera model recognition techniques were developed 
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using Convolutional Neural Networks (CNNs) for deployment within an enhanced multi-

modal framework. The developed multi-modal approaches amalgamate both audio and 

visual data to tackle the identification challenge of original device, demonstrating clear 

superiority over mono-modal methods, which solely rely on either visual or audio cues from 

the examined video sequence to perform the identification. 

CHAPTER 6:  It outlines the thesis's conclusion and forecasts its future scope, encapsulating 

the significant achievements and delineating potential avenues for further exploration and 

development. 
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CHAPTER 2 

PRELIMINARIES AND BACKGROUND 

____________________________________________ 

2.1 Introduction 
 

Digital image forensics has emerged as a pivotal discipline in recent times, primarily 

driven by the ubiquitous adoption of digital images and the accessibility of sophisticated 

image editing software. The fundamental objective of image forensics revolves around the 

precise identification, comprehensive analysis, and conclusive authentication of digital 

images to safeguard their integrity and establish their veracity. This comprehensive literature 

survey delves into the essential technical methodologies, advanced techniques, and 

formidable challenges encountered in the realm of image forensics. In the digital age, images 

and videos have taken over as the primary information bearers. Visual media are increasingly 

being used to transmit information, even rational knowledge, due to its expressive power and 

simplicity of acquisition, delivery, and preservation. As a result, pictures and videos are now 

often used as evidence in both court cases and disagreements in daily life [2]. The primary 

subject areas of image source model identification, digital image forgery detection, and video 

frame forensics analysis are covered in this introduction to the developing discipline of digital 

image forensics. In source camera identification, we aim to pinpoint the specific camera 

model—or the precise camera—that captured the captured picture. Establishing a picture's 

validity or revealing any possible manipulation with the image is the aim of forgery detection 

[18].      

 

2.2 Related Work 
 

  This study focuses on scrutinizing methodologies within image and video forensics, 

particularly exploring the innate characteristics within digital images throughout their life 

cycle. It delves into the transition from traditional image processing to the cognitive image 

processing paradigm, aiming to analyze these evolving approaches comprehensively. The 

investigation aims to uncover the distinct footprints left by these methodologies as they 

evolve and adapt to the shifting landscape of image processing techniques. 
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2.2.1 Digital Image Formation Pipeline 

An image is described mathematically as a function f[x, y], with x and y as spatial 

coordinates and f[x, y] as the intensity value at that position. In digital form, the image 

becomes an array of integers, a 2-dimensional array (f(x, y)) depicted in Figure 2.1. Here, x 

ranges from 0 to the image's height (h-1), and y ranges from 0 to the image's width (w-1). The 

intensity values within this digital image fall within the range of f(x, y) ∈ [0, L-1], where L 

represents the maximum intensity value. This representation as an array allows the discrete 

handling of the image's visual information, aiding in its processing and analysis, essential in 

various image-related tasks. The discrete nature of digital images enables computational 

methods to manipulate and interpret visual content efficiently, paving the way for extensive 

applications in image processing, computer vision, and other domains reliant on visual data 

analysis, where L-1 is equal to 255 for an 8-bit image, indicating the maximum intensity level 

[19]. 

 

Figure 2.1.  Image Pixel Array Representation 

 

Image processing involves the acquisition of real-world scenes, which are then stored in a 

compressed digital format on various devices. However, a major challenge in this process lies 

in preserving the integrity of the image throughout the post-processing cycles Figure 2.2. 

Ensuring the image's integrity becomes crucial, as multiple operations are applied to the 

image during post-processing, and any degradation or alteration can impact the accuracy and 

reliability of the visual information [20].In the context of digital image processing, the 

acquired information undergoes conversion by diverse digital image processing units to be 

represented in digital form. Silicon-based sensors play a crucial role in this process, where 
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they convert the incident light intensity into analog signals. The widely adopted CFA pattern 

in digital image capture devices is the Green-Red-Green-Blue (GRGB) Bayer pattern. This 

mosaic arranges pixels with varying intensities of red, green, and blue in a specific pattern 

[21]. Since each pixel in the Bayer pattern only captures one of the three primary colors, 

Digital Image Processing (DIP) utilizes various interpolation algorithms, known as 

demosaicing, to reconstruct a full-color image. Other than the prevalent Bayer pattern, 

alternative Color Filter Array (CFA) configurations like Cyan-Yellow-Green-Magenta 

(CYGM), and Cyan-Magenta-Yellow (CMY) can function as alternatives. In addition to 

demosaicing, Digital Image Processing (DIP) integrates supplementary methods to elevate 

image quality. These techniques encompass advanced white balancing of captured image, 

profound noise level reduction, implied different matrix manipulation, image intensity 

sharpening, aperture correction, and fine-tuning gamma correction. These processes 

collectively refine image attributes, ensuring higher quality and improved visual fidelity in 

the final output. These enhancements play a crucial role in addressing various image 

imperfections and enhancing overall image quality, contributing significantly to the realm of 

digital image processing and its diverse applications across industries. [22]. 

Overall, this intricate process of image transformation through sensor capture, CFA 

utilization, and advanced digital image processing techniques ensures the production of high-

quality and visually accurate digital images. 

 

Figure 2.2. Digital Image Processing Cycle    
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2.3  Image Processing Paradigm 

    In the 18th century, people started finding ways to turn real scenes into digital or similar 

signal formats through what became known as Traditional Image Processing. A major 

moment came in the early 1920s when Bartland achieved a groundbreaking feat. They 

transmitted the very first digital image through an undersea cable, sending it from London to 

New York. At the other end, the image was reconstructed, marking a huge leap forward for 

handling images with computers. This breakthrough opened the door for computational 

image processing methods. These included various techniques like Image Enhancement, 

Restoration, Color Modification, Contrast Adjustment, and more. They were all designed to 

make images look better and clearer. Fast forward to the 1940s, computers began to emerge, 

allowing for manipulation of algorithms and new ways to improve image quality. This was 

also when images started to be stored as arrays of bits, changing how we saved and handled 

visual data. The 1960s saw another leap with the progress of satellite imaging. Now, satellites 

could capture images of landscapes and even identify objects from space. By the 1970s, 

digital image processing found extensive applications in the medical field, significantly 

impacting medical imaging. During the 1980s, image processing found its way into many 

different fields like creating artistic effects, visualizing medical data, inspecting products in 

industries, and aiding law enforcement [2][3]. As the 20th century went on, image processing 

kept growing in areas like automotive technology, computer vision, and specialized 

industries, showing how flexible and useful it could be. In Figure 2.3, you can see the shift 

from the old-school way of handling images to a more advanced cognitive image processing 

system. This change represents how image processing techniques and methods have evolved 

and improved over time. This transition has played a pivotal role in unlocking new 

possibilities and applications in the field of image processing [23].   

2.3.1 Traditional Image Processing 

In the early 1700s, image capture began with the invention of the camera obscura, utilizing a 

pinhole to project inverted real object images. Advancements like the Optical Camera 

Obscura expanded this by duplicating images through mirrors [24]. Soon after, scientists 

experimented with metal plates coated in various chemicals to capture scenes. In the mid-

1700s, the Calotypes method emerged, utilizing white shells to refine image quality, yet 

motion picture capture remained a challenge [25]. Early image processing involved time-

consuming conversion of light intensity into analog form and storage in electronic devices.  
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Figure 2.3. Image Processing Taxonomy. 

Thin films were eventually employed to expedite capture and streamline commercial image 

production. A significant advancement occurred in 1961 when photo sensors were capable of 

converting light intensity into digital form [26]. This marked a pivotal shift in image 

processing paradigm to provide a comprehensive understanding of the evolution of traditional 

image processing. 

2.3.2 Computational Image Processing 

Computational image processing represents a significant advancement over traditional 

methods, leveraging diverse algorithms to construct images of interest. This approach ensures 

seamless integration between the acquisition phase and computational operators, resulting in 

enhanced picture quality with higher resolution. Computational processing finds extensive 

applications in various domains, such as medical imaging, Synthetic Aperture Radar (SAR), 

seismic imaging, and high dynamic range (HDR) images [27][28][29] 
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2.3.3 Object Identification-Based Image Processing 

The essence of identifying objects or targets holds a central position in the image processing 

3.0 framework, encompassing various processes of capturing images and videos through 

diverse devices like smartphones, satellites, and robotic image systems. This approach 

empowers researchers to implement real-time applications in computer vision, unlocking 

numerous possibilities across different fields. Object detection has seen substantial utilization 

in diverse applications, ranging from video surveillance, image captioning, and robot vision 

to enhancing digital camera positioning, satellite image analysis, drone scene examination, 

road accident detection, enemy spotting in military operations, autonomous driving, and 

computer-human interactions [55]. Its broad spectrum of applications signifies the pivotal 

role of object detection in advancing computer vision technologies and its significant 

contributions to solving real-world challenges and automation. This task involves analyzing 

input images to identify specific objects like vehicles, obstacles, aerial entities, animals, or 

buildings within suggested regions in both images and videos, is performed by the object 

detection process, which is a crucial technology linked with visual analysis and image 

processing. Object detection is frequently used to identify static objects, but in recent years, 

researchers have begun to focus on moving objects by utilizing advanced machine-learning 

techniques. Object identification is also crucial in biometric methods like iris and face 

recognition, fingerprint recognition, and locating moving objects in videos. Many industries, 

including manufacturing, human resources, healthcare, autonomous driving, and others, 

employ target detection. Figure 2.4 depicts a typical detection of an object scenario that 

follows: 

 

Figure 2.4. Object Detection Analysis 



15 

 

Traditional object identification methods involve the sequential extraction of pixel values 

from the source image, followed by correlation analysis to identify objects within the 

image[56]. However, this approach typically yields low accuracy, ranging from 40% to 50%. 

To significantly improve accuracy, advanced techniques such as machine learning and deep 

learning have been employed, resulting in substantial enhancements with accuracy levels 

reaching 80% to 99% [55][57], [58]. Figure 2.5 presents a taxonomy outlining various object 

detecting methods, providing a structured overview of the different approaches and their 

respective characteristics. 

 

Figure 2.5. Object Detection Techniques 

2.3.4 Industrial Automation Based Image Processing 

In the 20th century, the advancement of image processing has played a pivotal role in driving 

industries towards automation. Classical image processing techniques are employed to create 

accurate representations of genuine object pictures using various formation approaches. In 

Industry 4.0, intelligent systems are integrated with smart vision systems, enabling precise 

control over production quality, reduced labor requirements, and increased output efficiency. 

Industrial smart vision systems synergize computational processing with advanced object 

recognition methods to facilitate automated production inspection, quality control, error 

reduction, shorter production times, part identification, robotic control implementation, and 

real-time monitoring of assembly line output [59][60].  
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2.3.5 Cognitive Image Processing Paradigm 

In the realm of automotive computer vision systems, image processing assumes a vital role in 

tackling intricate human challenges. The modern digital landscape witnesses an 

overwhelming influx of image and video data transmitted across various devices and 

networks, inundating the online sphere with vast digital information. Yet, existing vision 

systems encounter difficulties in managing and processing this extensive data flow. 

Traditional image processing primarily aims to improve image resolution and furnish 

comprehensive information. However, in legal contexts, distinguishing authentic data from 

altered information poses challenges due to the application of computational image 

processing operators tailored to user specifications, potentially modifying original data. On 

the contrary, cognitive image processing introduces an innovative approach by directly 

extracting data and insights from readily accessible digital sources online, offering a 

promising avenue for more astute and precise data analysis [60]. Cognitive image processing 

has proven its worth across various IT domains, showcasing its effectiveness in tasks like text 

extraction, image comprehension, spatial analysis, and facial recognition. This technology 

leverages advanced algorithms and deep learning methodologies to intelligently process and 

interpret images, enabling accurate and efficient extraction of textual information, 

comprehensive picture comprehension, spatial analysis of complex scenes, and reliable facial 

recognition capabilities. Its applicability in these diverse fields highlights the potential for 

cognitive image processing to revolutionize various industries and contribute to the 

advancement of artificial intelligence and computer vision technologies. 

2.4 Digital Image Forensic 

Digital forensics encompasses diverse scientific methodologies and techniques utilized to 

trace the original source and guarantee the legitimacy of digital data. In the contemporary 

digital landscape, ensuring the credibility and trustworthiness of visual information presents 

substantial hurdles for forensic specialists [61]. These digital forensic methods find extensive 

use in analyzing image and video data, aiming to validate the authenticity and source of 

information, starting from the initial image capture phase through storage on the original 

device and across every step of the digital image processing workflow.[62]. The core 

objective of digital forensic investigations is to establish the trustworthiness and accuracy of 

digital evidence in a manner that is admissible in legal proceedings. This is particularly 

crucial in cases involving cybercrimes, data breaches, intellectual property theft, and other 
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digital offenses. Forensic experts employ robust methodologies and specialized tools to 

analyse digital images and videos, ensuring that the evidence can withstand legal scrutiny and 

maintain its evidentiary value. The first step in digital forensic analysis is often image 

acquisition, where investigators gather the digital media that is relevant to the investigation. 

This process involves preserving the integrity of the data, adhering to strict chain of custody 

procedures to ensure that the evidence remains unaltered throughout the investigation. The 

acquisition phase also involves recording metadata and identifying crucial information such 

as timestamps, camera settings, and other pertinent details that may aid in the analysis[63]. 

Once the images and videos are acquired, forensic experts delve into the various phases of the 

digital image processing pipeline. This includes examining the original images and their 

metadata to identify any potential tampering or alterations. Common techniques employed in 

this phase include noise inconsistency analysis, copy-move forgery detection, and detecting 

inconsistencies in compression artifacts. 

Moreover, digital forensic analysis delves into the examination of image processing 

operations applied to the images. These operations can include resizing, cropping, filtering, 

and various enhancement techniques. The goal is to determine if any of these operations have 

been utilized to manipulate the visual information in any way. Deep learning and machine 

learning models have become increasingly valuable tools in digital forensics. These models 

can be trained to identify patterns associated with image manipulation, recognize image 

sources, and detect specific artifacts indicative of tampering. Such techniques have 

significantly enhanced the ability to detect forgeries and establish the authenticity of visual 

evidence. Another crucial aspect of digital forensic analysis is steganography detection. 

Steganography involves hiding information within images or videos in a way that is 

imperceptible to the human eye. Forensic experts utilize sophisticated algorithms to detect 

and extract hidden data, ensuring that no incriminating information remains concealed. To 

further validate the integrity of the evidence, digital forensic experts also focus on error level 

analysis and analysing inconsistencies in lighting and shadows within the images. These 

methods can reveal potential manipulation attempts or digital compositing[64]. 

In conclusion, digital forensics plays a pivotal role in ensuring the accuracy, authenticity, and 

integrity of visual information in the current digital era. Through meticulous examination of 

image and video data, employing advanced techniques, and leveraging cutting-edge 

technologies like machine learning and deep learning, forensic experts can detect forgeries, 

establish the original source of the data, and provide crucial evidence in legal proceedings. 
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The continuous advancement of digital forensic methodologies will remain paramount in 

upholding the trustworthiness of visual information and safeguarding the integrity of digital 

evidence in the ever-evolving landscape of digital technologies. The forensic taxonomy 

obtained from the extensive survey is presented in Figure 2.6 below. 

 

Figure 2.6. Digital Image Forensic Taxonomy 
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2.4.1 Image Source Identification Techniques 

Image source identification involves the process of determining the origin of an image 

through rigorous analysis and techniques given in Figure 2.7. Two fundamental methods are 

commonly employed for this purpose. The first approach relies on the traditional image 

processing pipeline tracing. In this method, various stages of the image processing pipeline 

are analyzed, which includes operations such as compression, filtering, and resizing. By 

examining the distinct patterns left by these operations, it becomes possible to infer the 

source from which the image originated. However, this approach may face challenges when 

images have undergone multiple transformations or have been subjected to significant post-

processing. The second approach revolves around feature extraction-based techniques. In this 

method, distinctive features, such as statistical properties, noise patterns, and camera sensor 

fingerprints, are extracted from the image. These features serve as unique identifiers for 

different image sources. Advanced machine learning algorithms are often employed to 

classify images based on these extracted features, enabling accurate identification of the 

image source[65]. To improve the effectiveness of image source identification, researchers 

have developed a diverse range of approaches. These include methods that integrate multiple 

features, utilize deep learning models for more precise classification, and consider specific 

imaging devices or platforms. The field of image source identification remains an active area 

of research, with ongoing efforts to enhance its reliability and applicability in various real-

world scenarios, such as forensic investigations, copyright protection, and fake image 

detection. 

 

Figure 2.7. Image Source Identification Approaches 

The traditional image capture and processing approach involves several distinct steps that 

culminate in the storage of the image in a compressed format within the device's database. 

During the digital image life cycle, the image is initially captured by a digital device, and the 

incident light intensity from the object interacts with the color filter array (CFA). The CFA 

serves to convert the incident light intensities into specific color values for each channel 
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(Red, Green, Blue). Subsequently, various interpolation techniques are employed to convert 

the individual channel data into a single-colored image, where each color's intensity is 

represented within the range of 0 to 255. This transformation enables the image to be visually 

interpretable by human observers and facilitates further processing and storage. Figure 8 

visually depicts the sequential stages of the traditional image processing pipeline in Figure 

2.8 associated with a specific imaging device. These steps encompass image capture, color 

filtering, interpolation, and the final representation of the image in the device's database [66]. 

This traditional approach to image processing has served as a fundamental foundation for 

image source identification and understanding the characteristics of digital images generated 

by various devices. 

 

Figure 2.8. Digital Device Internal Processing 

2.4.1.1 Conventional Approach for Image Source Identification 

In traditional image forensics relies on the identification of source-specific footprints and 

intrinsic artifacts present in images during the acquisition, compression, and editing phases. 

During the image acquisition phase, researchers closely examine the characteristics of the 

lens, sensors, and CFA (color filter array) interpolation techniques. In the image acquisition 

phase, light rays are captured by the lens, and the sensor array pattern converts them into 

continuous signal form. Unique lens systems, sensor qualities, and color filter array 

demosaicing techniques are found in each camera model. During the manufacturing process, 

lenses produce various types of artifacts, leaving behind distinctive traces that enable camera 

model identification. Different digital device components imprint diverse footprints in 

captured images, and researchers establish correlations between these device artifacts and the 

artifacts present in the captured images. Notably, each camera model exhibits lens distortion 

artifacts, which prove valuable in camera model identification. Radial lens distortion is linked 

to optical systems and influenced by nonlinear geometrical parameters, such as the lens's 

focal length and shape. Chromatic aberrations, dependent on the lens dispersion index and 
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varying wavelengths following Snell’s Law, also contribute to the identification process. 

Vignetting, which causes intensity fall-off towards the corner of the image, likewise leaves 

discernible traces used for identification purposes. By thoroughly analyzing these footprints 

and artifacts, researchers in traditional image forensics can effectively trace the origin and 

history of digital images, aiding in various applications, including authentication, tamper 

detection, and source attribution [67]. 

In image source forensics, each camera model exhibits distinct internal footprints caused by 

sensor defects during the manufacturing process. These sensor defects introduce noise into 

images, which serve as essential clues for forensics analysis. To identify the camera model, 

researchers estimate the sensor pattern noise within the image by employing denoising filters. 

Subsequently, they correlate this noise pattern with the original image. 

A commonly utilized feature for image source forensics is Photo Response Non-Uniformity 

(PRNU) noise. By estimating the residual noise present in the image, researchers can 

effectively extract the PRNU noise [68]. This involves a systematic process that includes 

various steps, which are outlined below: 

• First, the image is preprocessed to remove any artifacts or irrelevant noise that could 

potentially interfere with the PRNU estimation given in Eq 2.1. 

• Next, a denoising filter is applied to the preprocessed image to suppress noise and 

enhance the detection of the underlying PRNU noise pattern. 

• The denoised image is then correlated with the original image to determine the 

specific PRNU noise unique to the camera model. 

• Statistical techniques and algorithms are often utilized to refine the estimation 

process, ensuring robust and accurate identification of the PRNU noise. 

                                                      𝑅 = 𝐼 − 𝐹(𝐼)                                                                 (2.1) 

Here R is the residual noise of the image, I is the original image and F() is the denoising filter 

applied on the original image and obtain a denoise image using low pass filter or various 

other denoising techniques. To identify the original source and determine a correlation 

between the noise pattern and the test image,[69] employed the sensor pattern noise 

estimation technique. Implement the technique and determine the highest likelihood estimate 

of PRNU noise in a certain picture in order to find the original source [70]. Because each 

picture contains varying noise in various places, [71] uses the local information of the image 

to locate the source and introduces a method to choose the best region of the image.[68] 
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determine the weighting factor for boosting the SPN to get the SPN magnitude that is 

inversely proportionate. Using pair-wise magnitude relations of the obtained picture with its 

residual noise, [72] suggested a unique method of source detection. To determine the original 

camera model, [73] made advantage of the dust-spot function. Suggested using the Minimum 

Mean Square Error (MMSE) approach for calculating PRNU using wavelets. To determine 

SPN elements and determine the image's original source, [74] recommended using principal 

component analysis. [75] provide a formula for computing inter-channel demosaicing 

artifacts. A suggested technique by [76] that uses an SPN predictor and content-adaptive 

interpolation calculates the value of the center pixel from its neighbors' pixels. To extract the 

SPN from various photos, [77] various filters were utilized. After examining all of the 

conventional methods, anticipate the accuracy comparisons shown in the accompanying chart 

Figure 2.9 and Figure 2.10. 

 

Figure 2.9. Conventional Approach Accuracy Chart (%) 
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Figure 2.10. Image Transformation-Based Accuracy Prediction 

[78] outlined a unique method for information extraction and employed binary similarity 

measures along with HOWS to identify the source model. In order to determine uniform 

gray-scale invariant in picture texture owing to device hardware and its interpretation 

technique causing artifacts, [79] created Local Binary Pattern (LBP). [80] suggested a WLBP 

operator that combined LBP with various excitations. Use CFA interpolation traces using a 

minimal mean square estimate to determine the internal footprints [81]. In order to improve 

robustness, [82] presented a unique method based on CFA interpolation with 1022.  

 

Figure 2.11. Comparative Analysis of Local Image Features 
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coefficients. Accuracy prediction based on picture pre-processing, image transformation, and 

local image feature stages after study of inherent artifacts of the image processing pipeline 

shown on Figure 2.11. Some classifiers are also used to forecast the original source and 

categorize the picture source based on feature extraction. The following provides an accuracy 

prediction study of several classifiers in Figure 2.12: 

 

Figure 2.12. Different Classifiers Accuracy Prediction 

2.4.1.2 Deep Learning Based Approach for Image Source Identification 

A variety of machine learning techniques have been used recently to increase image source 

detection accuracy compared to earlier methods. In which the model is trained to identify the 

provided input picture while features are taken from the image dataset. Apply several 

denoising filters to the picture dataset to recover the original image after which classifiers are 

used to find the original source and boost prediction accuracy. Comparisons of accuracy 

enhancement following the use of various filters are shown in the Figure 2.13. 

 

Figure 2.13. Data-driven Approaches Comparison 
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Deep learning models perform better on computer vision issues as a result of the quick 

growth of artificial intelligence. The identification of the camera model or brand is a difficult 

problem in picture forensic science. In order to increase the accuracy of the predictions, the 

deep learning technique uses a data-oriented paradigm as opposed to the inherent 

characteristics of the camera or picture. Large datasets are better served by these models, 

although prediction time is longer. It's essential to choose the features from the dataset before 

designing a specific deep learning model for a specified job. A basic convolution network 

with 3 convolution layers and 2 fully connected layers was used by [83] to establish the first 

deep learning model to identify picture sources, and accuracy was noted at 72.9%. [84] Use 

the Leaky Rectified Linear Unit (L-ReLU) and enhance the number of layers to attain 

improved accuracy. [85] presented a CNN architecture with linked layers and additional 

convolutional layers. In order to improve accuracy, batch normalization is also used.[86] 

Create a model based on Residual Neural Network (Res Net) to better accurately determine 

the source. It boosts the model's layer count to 26, which improves the potential of making 

predictions with an estimated 99% accuracy.[87] To locate small-size picture source cameras, 

use ResNet to examine saturated photographs, smooth images, and other images. [88] To 

increase accuracy and rate the degree of similarity between two input images from different 

sources, two neural networks were used [89]. A denoising convolution neural network 

(DnCNN) model was proposed to link the device footprint based on maximum likelihood 

estimate and the picture footprint relying on sensor pattern noise, pick the best attributes for 

model fitting, and improve accuracy forecasting compared to previously applied models. The 

camera source identification using convolution neural network (CSI-CNN) method picks the 

best patch from the picture, calculates SPN for all of the patches, and then adds residual 

blocks to the network structure to boost accuracy. Recursively extracting camera 

characteristics from several CNN layers is how [90] suggested camera attribute classifier 

works. In the Table-2.1, a number of deep learning models created using various datasets to 

identify the original source are compared. 

Accuracy increased above traditional and classifier-based methods after investigation of 

several deep learning model architectures as ResNet, XceptionNet, and DenseNet using 

various authentic datasets. Changes in convolutional layers, linked layers, and activation 

functions in various topologies cause variations in accuracy. The methodologies based on 

deep learning are data-driven and do not rely on the internal workings of the gadgets. The 
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accuracy forecast of all recently developed deep learning models is studied and shown in the 

Table 2.1. 

Table 2.1: Deep learning models for image source identification[91]. 

Archit

ecture 

Input 

Size 

Convolution Part Fully Connected Part 

Layers Activation Pooling Layers Activation Dropout 

A1 48×48×3 3 ReLU Max 1 ReLU Y 

A2 32×32×3 2 L-

ReLU 

Max 2 L-

ReLU 

Y 

    A3 36×36×3 3 ReLU Avg 1 ReLU Y 

A4 64×64×3 13 ReLU Max 2 - Y 

A5 256×256×3 1 conv 
12 

Residual 

ReLU - - - - 

A6 64×64×3 4 - Max 1 ReLU - 

A7 64×64×3 10 - Max 1 ReLU - 

A8 256×256×2 4 TanH Max, 

Avg 

2 TanH - 

A9 256×256 3 ReLU Max 2 ReLU Y 

A10 256×256×3 3 ReLU Max 2 ReLU Y 

A11 64×64×3 6 ReLU Avg - - - 

A12 64×64×3 1 conv 
3 

Residual 

ReLU Avg - - - 

 

Table 2.2: Deep learning architectures analysis with accuracy prediction 

Architecture Input Size Classifiers Train: Test Dataset Model 

Accuracy (%) 

A1 48×48×3 Softmax 7:3 Dresden 72.9 

A2 32×32×3 SVM - MICHE-I 98.1 

          A3 36×36×3 Softmax 8:2 Dresden - 

A4 64×64×3 Softmax 3:2 Dresden 93 

A5 256×256×3 Softmax 7:3 Dresden 94.7 

A6 64×64×3 Softmax 8:2 Dresden 93 

A7 64×64×3 Softmax - Dresden 94.93 

A8 256×256×2 ET 4:1 Dresden 98.58 

A9 256×256 Softmax 8:2 Dresden 98.01 

A10 256×256×3 Softmax 8:2 Dresden 97.41 

A11 64×64×3 Softmax 4:1 Dresden 94.14 
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A12 64×64×3 Softmax 4:1 Dresden 97.03 

 

2.4.2 Image Forgery Detection Techniques 

With the proliferation of digital cameras and smart gadgets, image editing has become easily 

accessible to anyone. While some alterations, like adjusting brightness or converting to black 

and white, are innocuous, others can be malicious and damaging, especially when aimed at 

public figures and politicians. The main motivations behind image fabrication are often 

driven by sinister intentions, such as disseminating distorted information, promoting 

immorality and fake news, fraudulently obtaining money from unsuspecting audiences, 

tarnishing the reputation of well-known individuals, and exerting negative political influence 

on digital platform users. 

Consequently, ensuring trustworthy digital information exchange necessitates unequivocal 

identification of photographs and videos before their utilization [92]. By enforcing robust 

image forensics and verification techniques, digital media platforms can mitigate the spread 

of harmful content and safeguard against the negative consequences of manipulated images. 

Such measures play a vital role in combating the proliferation of misinformation and 

malicious practices within the digital landscape. As technology advances and image editing 

tools become increasingly sophisticated, it becomes imperative to continually enhance image 

forensics and verification mechanisms to maintain the integrity and credibility of digital 

media content [93]. Among these, the three most frequent modifications are:  

• Copy-move is the method entails copying a specific section of one picture into 

another. 

• Image splicing is the process of copying a section of one image and combining it with 

another. 

• Object removal is a process that involves the elimination of a specific region within 

an image, followed by the restoration of the surrounding area to fill in the gap. This 

restoration is achieved by painting or reconstructing the remaining portion, ensuring 

the cohesiveness and visual continuity of the image. 

   We strive to precisely detect these adjustments in our work. Figure 2.14 displays the fake    

picture. Forgery detection systems fall into two primary categories: active (non-blind) and 

passive (blind) approaches. Active methods require prior information about the image, 

integrated at stages like capture, acquisition, or post-processing. 
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Figure 2.14. Digital Image Forgery Example 

Techniques like digital watermarking and digital signatures exemplify active forgery 

detection, embedding identifiable information directly into the image to verify its 

authenticity. Passive methods, however, don't rely on prior data and instead analyze the 

image's inherent properties. These techniques scrutinize statistical anomalies or 

inconsistencies in the image, detecting potential forgeries without prior knowledge. The 

distinction between active and passive approaches lies in their reliance on prior information; 

while active methods embed specific data, passive methods infer authenticity based on 

intrinsic image traits. Both approaches serve as crucial tools in detecting image tampering, 

contributing to the robustness of forensic analysis in various domains. The choice between 

active and passive methods often depends on the available information and the desired level 

of intervention or analysis required in different forensic scenarios. In these methods, specific 

data is embedded into the image, enabling subsequent validation and authentication processes 

[94]. Figure 2.15 illustrates the principle of utilizing embedded data to verify the image's 

authenticity. 

 

Figure 2.15. Digital Forgery Classification 
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Active forgery detection has the advantage of higher accuracy and robustness since it 

operates with prior knowledge of the embedded information. However, its effectiveness relies 

heavily on maintaining the integrity and security of the embedded data. On the other hand, 

passive forgery detection systems, also known as blind techniques, do not require any prior 

knowledge about the image. Instead, they rely solely on analyzing the image's content and 

statistical characteristics to identify potential manipulations or forgeries. Passive methods are 

advantageous in scenarios where prior knowledge is unavailable or difficult to obtain, but 

they may exhibit reduced accuracy and sensitivity compared to active techniques [95]. To 

enhance forgery detection capabilities, researchers are continuously exploring hybrid 

approaches that combine the strengths of both active and passive methods. Such 

advancements aim to provide more comprehensive and reliable solutions for detecting 

various types of image forgeries and ensuring the integrity of digital media content in diverse 

applications, including forensic investigations, copyright protection, and digital content 

authentication. 

2.4.2.1 Non-Blind Image Forgery 

Methods like digital watermarking and digital signatures, as seen in Figure 2.16, are used for 

active forgery detection. Here's how they work: before an image is sent through an 

untrustworthy public channel, a specific authentication code is added into the image content. 

This code acts like a unique tag for the image. Later on, when the image is received, this code 

can be extracted and compared with the original one that was added before. This comparison 

helps verify if the image has been tampered with or forged in any way. However, the 

successful application of this technique requires specialized equipment or software capable of 

inserting the authentication code into the image before its distribution [92]. Numerous review 

articles have investigated active forgery detection and have established a hierarchical 

framework for its classification. 

 

Figure 2.16. Non-Blind Image Forgery Classification. 
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This hierarchy is structured based on the complexity and effectiveness of different 

approaches. At the forefront of the hierarchy are techniques that employ robust and 

imperceptible watermarking, making it difficult for adversaries to remove or alter the 

embedded information. Within this category, researchers have explored digital signature-

based approaches, where cryptographic methods are used to ensure the authenticity and 

integrity of the image data. In the next tier of the hierarchy, researchers have investigated 

steganography-based techniques. Steganography involves concealing information within the 

image data itself, making it less visible to potential forgers. This category includes 

approaches that leverage various image transformations or frequency domain techniques to 

embed the authentication code securely. Finally, the hierarchy also encompasses methods that 

rely on specialized hardware or specific image acquisition processes to insert the 

authentication code, ensuring tamper-resistant authentication. These techniques offer an 

additional layer of protection but may impose practical constraints on their widespread 

adoption due to hardware limitations or complex deployment requirements [95]. As active 

forgery detection continues to evolve, researchers are actively working on enhancing its 

robustness, efficiency, and compatibility with various image formats and transmission 

channels. The ultimate goal is to provide reliable and scalable solutions to counter the rising 

challenges posed by image forgeries, ensuring the integrity and authenticity of digital media 

in a wide range of applications, including copyright protection, image forensics, and secure 

digital content distribution [94]. 

2.4.2.2  Blind Forgery Techniques 

Passive or blind forgery detection techniques don't need the sender's signature or watermark 

to check if received images are genuine. In Figure 2.17, you can see how these methods 

work. They're built on the idea that even if digital forgeries aren't visible to us, they might 

still change the statistics or consistency of a natural scene in an image. This could create new 

differences or strange bits that can be used to spot if something's been tampered with. What's 

great about passive forgery detection is that it doesn't need any info about the original image 

beforehand [96]. In real life, current passive forgery detection methods use different ways to 

find signs of tampering and pinpoint the changed parts in an image. These methods analyze 

statistical features, noise patterns, or inconsistencies in the image to identify potential 

alterations. By detecting each sign of tampering separately, these techniques increase their 

robustness and accuracy in detecting various types of forgeries [92]–[96]. 
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Figure 2.17. Classification Passive Image Forgery 

Some common signs of tampering that passive forgery detection techniques may look for 

include:  

1) Inconsistencies in noise patterns or statistical properties, which can indicate regions 

that have been manipulated. 

2) Abnormalities in image compression artifacts, suggesting regions that have undergone 

editing or alteration. 

3) Inconsistent lighting or color inconsistencies that may indicate blending or 

manipulation of image components. 

Passive forgery detection is particularly valuable in scenarios where prior knowledge about 

the image is unavailable or when images have undergone sophisticated alterations that can 

bypass active forgery detection methods [97]. By exploiting subtle inconsistencies and 

artifacts introduced during the forging process, passive forgery detection approaches 

contribute significantly to the field of image forensics, enabling reliable identification of 

manipulated images and ensuring the integrity of digital content in various applications, such 

as law enforcement, digital media forensics, and content verification. Ongoing research in 

this area continues to advance the effectiveness and versatility of passive forgery detection 

techniques in combating the ever-evolving landscape of image manipulation and fraudulent 

activities. In the study of preventing picture fakes, various strategies are available. Some of 

the older methods rely on particular clues or traces that forged images often leave behind 
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[97]–[99]. In contrast, modern approaches leverage Convolutional Neural Networks (CNNs) 

and deep learning methods to address this challenge. Before delving into the deep learning-

based strategies, it is pertinent to discuss various conventional methodologies. Conventional 

forgery detection methods rely on analyzing characteristic artifacts that emerge during the 

image manipulation process. These artifacts may include inconsistencies in noise patterns, 

discrepancies in compression artifacts, or irregularities in lighting and color distribution. By 

identifying and analyzing such artifacts, conventional techniques attempt to detect and locate 

image forgeries. While these methods have been effective to some extent, they may struggle 

with complex or well-crafted forgeries that skillfully conceal the typical signs of tampering. 

In recent years, deep learning techniques, particularly CNNs, have revolutionized image 

forensics. These approaches are data-driven and can automatically learn intricate patterns and 

features that indicate image manipulations. Deep learning-based strategies often involve 

training CNN models on large datasets of authentic and manipulated images to learn to 

distinguish between genuine and forged content. One of the primary advantages of deep 

learning-based forgery detection is its ability to adapt and generalize across various types of 

forgeries. By learning from extensive data, these models can identify subtle and complex 

alterations that may go unnoticed by conventional methods. However, these deep learning 

approaches require substantial computational resources for training and can be data-hungry, 

necessitating access to diverse and well-labeled datasets for effective learning [100]. In 

conclusion, the battle against picture counterfeiting has seen significant advancements with 

the emergence of deep learning techniques. While older conventional methodologies continue 

to be relevant and useful in certain scenarios, deep learning-based strategies offer the 

potential for enhanced accuracy and versatility in detecting various types of image forgeries. 

The ongoing development and refinement of deep learning approaches hold promise for 

further improving image forensics and bolstering the security and reliability of digital media 

content. 

2.4.3 Video Source Identification Techniques 

In recent times, a proliferation of digital devices has seen the integration of high-quality video 

cameras, enabling the unhindered and cost-free capture of videos. The surge in digital video 

usage on various online platforms like YouTube, Facebook, Twitter, and WhatsApp has led 

to a significant trend. However, this widespread adoption has also brought forth a multitude 

of security challenges. If unattended, these challenges could have severe consequences, 

particularly in situations where video content plays a crucial role in critical decisions related 
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to illegal activities, including issues like movie piracy and child pornography. The growing 

reliance on digital videos across diverse multimedia platforms amplifies the urgency to 

address these challenges. Neglecting to tackle these security issues could not only 

compromise the integrity of online content but also have broader societal implications, 

underscoring the importance of robust security measures in managing digital video content on 

these platforms. To bolster the reliability of incorporating digital video into everyday life 

scenarios, the incorporation of copyright protection and video authentication mechanisms 

becomes imperative. While the realm of source camera identification rooted in digital images 

has commanded substantial research attention, the forensic scrutiny of videos has received 

comparatively less focus. This disparity in attention can be attributed to a spectrum of 

complexities encompassing compression, stabilization, scaling, cropping, and the inherent 

dissimilarities within frame types that manifest when storing videos on digital platforms. 

Resultantly, the availability of comprehensive and sizeable standard digital video databases, 

augmented by current repositories reflective of novel devices grounded in emergent 

technologies, remains wanting. The overarching objective of this paper resides in furnishing 

an all-encompassing survey of advancements witnessed over the preceding decade in the 

domain of source video identification. This exploration is undertaken through a critical 

examination of prevailing techniques, notably the likes of photo response nonuniformity 

(PRNU) and machine learning methodologies, which have contributed to the progress in this 

arena[116]. Gaining a nuanced comprehension of the fundamental mechanisms underlying 

the video production process within digital cameras is of paramount importance. This 

intricate process is elucidated schematically in Figure 2.18. Commencing with the initial 

stage, the optical lens dutifully captures the incident light from the scene. A pivotal stride in 

video generation involves the downsizing of the output originating from the full-frame 

sensor. This deliberate reduction in spatial dimensions serves to curtail the data volume 

necessitating subsequent processing. The facets of acquisition and color manipulation are 

tactically orchestrated: color-interpolated image data is subject to down sampling, while pixel 

readout data undergoes sub-sampling during the acquisition phase. A prevalent technique 

harnessed for rectifying blurring stemming from inadvertent camera movement is electronic 

image stabilization. This methodology is judiciously applied during postprocessing in 

contemporary cameras. Additionally, the postprocessing phase encompasses the prospect of 

image scaling and cropping, facilitating further diminution in dimensions. To optimize the 

efficiency of storage and transmission for the postprocessed images, a pivotal operation 

ensues wherein the sequential imagery is encoded into a standardized video format. 
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Figure 2.18. Video Acquisition Cycle 

Source camera identification is systematically evaluated with respect to video content, 

delineated into two distinct categories depicted in Figure 2.19: the utilization of Photo 

Response Nonuniformity (PRNU) analysis and the employment of advanced machine 

learning methodologies. 

 

Figure 2.19. Video Source Identification Techniques 

2.4.3.1 PRNU Based Approach 

The research carried out by [117] used a Photo Response Nonuniformity (PRNU) technique 

involving a minimum average correlation energy (MACE) filter [118]. This method was 

designed to reduce the effect of noise on Normalized Cross-Correlation (NCC). They 

extracted PRNU from reference videos and applied the MACE filter to it. Interestingly, this 

process didn't affect the test (query) videos. The investigation encompassed seven 

camcorders, revealing a potential accuracy enhancement of up to 10% through the application 
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of this filter. [119] adopted a classification-oriented paradigm for source camera 

identification using PRNU. They extracted PRNU-based features from estimated frames and 

deployed wavelet sub band decomposition. The feature space was classified using a Support 

Vector Machine (SVM). In a noteworthy departure, [120] introduced a pragmatic yet 

efficacious approach. PRNU extraction was confined exclusively to the green channel of each 

frame, chosen for its inherent noisiness within the RGB channels. Frames were then resized 

to 512x512 pixels, followed by wavelet denoising to derive residual signals. This strategy, 

evaluated across 256 videos from six devices, convincingly underscored the efficacy of 

resizing in enhancing source camera identification. [121] conducted a comprehensive case 

study evaluating existing methods for source camera identification, thereby serving as a 

valuable resource for nascent researchers in this domain. [122] introduced an innovative 

method centered on estimating PRNU from I-frame camera video rolls, known for their 

camera axis rotation. They improved the process using Wiener filter (WF) and zero-mean 

(ZM) operations in the Fourier domain, and they further enhanced it with rotation 

normalization. When tested on the VISION database [123], their approach showed significant 

advancements compared to existing methods. Meanwhile, [124] focused on refining PRNU 

through an enhancement and clustering strategy. They initially estimated PRNU from a 

macroblock within frames and then enhanced it based on the method outlined in [125]. This 

technique effectively boosted high-frequency elements, overpowering noise patterns. To 

improve the sensor noise fingerprint, they applied smaller weighting factors to strong signal 

components in the wavelet transform domain. This refined the effectiveness of PRNU-based 

identification. They concluded by using the unsupervised agglomerative clustering technique, 

previously described in [126], for the categorical classification of videos obtained from the 

VISION database, as detailed in [123]. 

In a recent investigation by [127], they meticulously examined the optimal frame type 

suitable for identifying the source camera. This assessment, undertaken within the context of 

compression and stabilization, unveiled noteworthy revelations. Specifically, it was 

demonstrated that I-frames manifest superior outcomes in instances of stabilization, with the 

foremost PRNU insights emanating from the initial I-frame. Among the realm of P-frames, 

the acme of dependable PRNU insights is concentrated within the P-frames constituting the 

inaugural Group of Pictures (GOP). This revelation is meticulously explored and 

substantiated utilizing the VISION database. The realm of PRNU-based camera identification 

within the context of video content is significantly challenged by the intricate process of 
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image stabilization, whether enacted during capture or post-processing. Essentially, the 

process of digital stabilization entails a tripartite workflow: motion estimation, smoothing, 

and the alignment of frames predicated on meticulous motion correction analysis. This 

endeavor involves the calculation of feature trajectories by tracking key points across 

successive frames and estimating motion, often accomplished through either parametric 

models or by harnessing the geometric interrelationships between frames, as highlighted in 

the works of [128], [129],[130]. The nature of camera motion stabilization, be it two-

dimensional (2D) or three-dimensional (3D), holds paramount significance. Contemporary 

methodologies tend to gravitate toward the utilization of 3D motion models to surmount the 

inherent constraints associated with 2D modeling. These advanced approaches, while 

acknowledging the complexities of reconstructing 3D with depth information, streamline the 

3D structure and heavily rely on the precision of feature tracking accuracy, as exemplified by 

the contributions of [131], [132]. The main goal in video stabilization is to precisely line up 

consecutive frames using geometric registration. This counters any perspective distortion by 

using Euclidean transformations, like scaling, rotation, and translation, alone or combined. 

These transformations are applied carefully, often using a varying warping method, to adapt 

to how the camera moves during recording. An interesting thing happens when these 

transformations are applied to each frame: they create a lot of variation in camera motion, 

making it tricky to match pixels between frames. This makes the usual method of aligning or 

averaging PRNU patterns at the frame level less effective in accurately estimating a reference 

PRNU pattern. The final step in stabilizing a video is figuring out and undoing these frame-

level transformations. This step is crucial for identifying where the video came from. The 

aggregate outcomes of these algorithms are visually depicted in Figure 2.20.  

 

Figure 2.20. Stabilization Process. 
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The overarching focal point of these algorithms resides in furnishing a transformation 

mechanism adept at surmounting alignment quandaries that arise in diverse scenarios. In 

methodologies that entail the extraction of reference patterns, the transformation is often 

informed by images captured by the same camera, encompassing both video frames and flat 

frames, with further integration of initial frames from videos achieved through averaging 

procedures. In the study conducted by [139],a resolution to the challenge of stabilization was 

sought through the implementation of a straightforward inverted transformation technique 

during the process of noise pattern extraction. In contrast, [140] undertook a distinct 

approach, wherein the identification of stabilization instances within each video was 

accomplished through a two-pronged strategy. Primarily, the PRNU of the initial and 

concluding frames was juxtaposed in order to discern the occurrence of stabilization at the 

outset. In the analysis performed by [141] the identification of the source camera was 

executed under the presumption that the reference PRNU pattern could have been established 

from images or an unstabilized video source. Addressing the variance in resolutions between 

videos and images, the alignment of PRNU patterns was undertaken for a subset of I-frames, 

typically ranging between 5 to 10 frames. This alignment procedure encompassed the 

determination of appropriate scaling, shifting, and cropping parameters for each individual 

frame, leading to the creation of an aligned PRNU pattern through frame combinations 

exhibiting congruence. [142] devised an innovative approach to PRNU pattern estimation that 

accommodates weakly stabilized video sources. This methodology engenders the generation 

of an alignment reference predicated upon a selection of frames. By employing pairwise 

matching between PRNU estimates from diverse frames, the detection of stabilization 

instances is facilitated. Subsequently, a reference PRNU pattern is derived through the 

aggregation of frames displaying a significant match, thus establishing a reference for 

alignment purposes. In cases where the reference PRNU pattern is already discerned at an 

alternative resolution, as exemplified in [141], the said reference pattern is harnessed for 

comparative analysis against other PRNU patterns. Particle swarm optimization (PSO) 

methods, as elucidated in [155], are adeptly employed to ascertain the transformation 

parameters in this context, effectively streamlining the comparative process. In scenarios of 

weakly stabilized videos, a notable observation was made wherein rotation parameters could 

be disregarded, thus expediently expediting the search process. For the estimation of the 

PRNU pattern, an initial foundation is established through weak stabilization applied to flat 



38 

 

and stationary content. Subsequently, verification of stabilized videos involves the extraction 

of five I-frames, which are subsequently juxtaposed against the established reference PRNU 

pattern. The comprehensive evaluation of outcomes utilizing the VISION database robustly 

validates the efficacy of this method. In an evolutionary progression of their prior work, [156] 

further elaborate on their original research, wherein they introduced a comprehensive 

approach to scrutinizing source camera attribution in videos. This advanced method delves 

into the nuanced spatial fluctuations inherent to stabilization transformations, postulating an 

augmented degree of freedom in the exploration of these transformations. Notably, the 

discernment of transformations is conducted at a subframe granularity, entailing the 

incorporation of an array of constraints geared towards validating their accuracy. This 

intricate validation process is underpinned by a judicious computational framework, affording 

the requisite flexibility in the pursuit of optimal transformation solutions. 

The post-decoding phase, following a filtering procedure within the decoder (i.e., the loop 

filter), involves the translation of the bitstream into individual video frames. Subsequently, 

each extracted frame undergoes a sequential processing stage aimed at the extraction of the 

PRNU pattern. Prior to commencing the analytical process, an assessment of the stabilization 

level inherent within the videos is performed, utilizing the criteria delineated by [141], [142]. 

This preliminary evaluation serves to eliminate videos characterized by either inadequate or 

weak stabilization. 

To accommodate the spatially variable characteristics of stabilization transformations, the 

PRNU patterns are subdivided into smaller blocks, a practice found to yield optimal 

outcomes when employing 500 X 500 blocks. The identification of PRNU transformation 

parameters is then orchestrated through a block-specific search mechanism, obviating the 

likelihood of false inversions. A weighting protocol considers the compression levels of 

transformed blocks before aggregating them. The final alignment evaluation entails a detailed 

comparison of the estimated PRNU pattern with the reference PRNU pattern. [144] takes a 

distinct approach, emphasizing the creation of a sturdy reference. This deviates from previous 

methods that aimed to remove stabilization effects from query frames. The focus shifts 

toward establishing a reliable reference, departing from earlier methods centered on 

eliminating stabilization effects from the frames under examination. Their approach involves 

several essential steps applied to flat I-frames, including cropping, shifting, and using inverse 

transformations. Additionally, they propose an improved framework to compare PRNUs from 

motion-stabilized videos. [142] A groundbreaking search technique is introduced to swiftly 
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determine scaling and rotation parameters in the frequency domain, expediting the discovery 

of inverse transformations. Leveraging the Fourier-Mellin transform outlined in [157], it 

estimates scale, rotation, and shift between images, providing straightforward solutions. 

Experiments conducted on the VISION database affirm its significantly enhanced efficiency 

compared to existing methods. When sensor resolution exceeds the desired resolution, a 

combined strategy of cropping and scaling is deployed to downsize images or frames. 

Cameras utilize bicubic or Lanczos scaling and their variants for downsizing still images. 

Additionally, pixel binning and line skipping techniques are concurrently employed to 

alleviate camera processing overheads, primarily in video capture scenarios. These 

approaches work synergistically to manage resolutions, ensuring efficient downsizing while 

minimizing computational burdens in diverse imaging contexts. This method's acceleration of 

inverse transformation discovery, coupled with the amalgamated strategies for resolution 

management, presents a promising paradigm in handling imaging processes, particularly in 

scenarios demanding swift transformations or resolution adjustments. Central pixel 

utilization, entailing the exclusion of peripheral pixels, constitutes a prevalent strategy in 

video capture, efficaciously reducing camera processing demands. Nonetheless, the exclusive 

reliance on cropping bears a substantial drawback when applied to still images, manifesting 

as a narrowed field of view as the cropping region expands. To counterbalance this limitation, 

cropping is frequently amalgamated with resizing operations. Building upon the foundations 

laid by [145], [158] embark on a comprehensive extension of their research, concentrating on 

distinct aspect ratios engendered by resizing and cropping techniques for both images and 

videos, thereby enriching the arsenal of methodologies for source camera identification. This 

augmentation further encompasses the introduction of a dedicated database tailored to the 

intricacies of resizing and cropping concerns, furnishing a versatile resource for empirical 

investigations in this domain. 

2.4.3.2 Machine Learning Based Video Source Detection 

Table 2.3 concisely encapsulates the array of machine learning methodologies presented in 

this study. Broadly categorized, the works of [138] [119] are also positioned within the realm 

of machine learning techniques.  [159] undertook an in-depth exploration, deploying machine 

learning strategies for source camera identification. Their approach involved the extraction of 

distinctive features from the bitstream, encompassing quantification factors and motion 

vectors. They harnessed these traits for subsequent classification via a Support Vector 

Machine (SVM) classifier. 
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Table:2.3 Machine learning Based Source Identification. 

References Machine learning 

based Methods 

Year Features 

[159] SVM Classification 2010 Feature extraction involves obtaining 

characteristics including bitstream data, 

quantization factors, and motion vectors. 

[160] SVM Classification 2012 A feature extraction technique grounded in 

Conditional Probability (CP). 

[119] SVM Classification 2016 Attributes derived from wavelet transform 

[88] CNN Framework 2019 Deriving discernible noise signals from a 

provided frame. 

[161] MISLnet CNN 

Framework 

2020 Introducing a restricted convolutional layer 

within grayscale mode. 

[162] MISLnet CNN 

Framework 

2020 Incorporating a constrained convolutional 

layer within the RGB mode. 

[163] MISLnet CNN 

Framework 

2012 The common network functions by receiving 

two deep feature vectors as input and 

transforming them into a 2D similarity 

vector. 

 

Methodically, they extracted motion vectors from each macroblock within P-frames and 

scrutinized multiple bitstream attributes. These attributes encompassed metrics such as the 

count of bits, P-frames, and B-frames within a Group of Pictures (GOP). They explored 

differences between adjacent P-frames and B-frames, delving into granular quantization 

factor details. This included scrutinizing the maximum consecutive macroblocks sharing 

identical quantization values within frames categorized as I, P, and B, organized in a specific 

sequence. Statistical measures such as mean and variance were employed to analyze the 

number of consecutive macroblocks sharing these quantization values across frames of 

varying types. Their approach involved a comprehensive assessment of multiple parameters 

within the video bitstream, extracting nuanced details related to frame types, quantization 

factors, and statistical attributes. This detailed analysis provided insights into the intricacies 

of video compression and encoding, aiding in feature extraction and subsequent classification 

using the SVM classifier. By examining these various attributes within the video stream, they 

aimed to identify patterns or anomalies contributing to improved classification accuracy in 

their forensic analysis of video content. Their exploration of quantization factor attributes 

involved looking at how much the quantization parameters differed among neighbouring 

macroblocks in different frame types, along with the corresponding average disparity. Motion 

vector attributes were equally scrutinized, wherein a defined search window facilitated the 
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estimation of maximum horizontal and vertical dimensions. This methodological synthesis 

substantiates a meticulous investigation into machine learning-driven source camera 

identification. [160] introduced an innovative paradigm of feature extraction centered on 

conditional probability (CP) for the explicit purpose of source camera identification. The 

efficacy of these features was also demonstrated in the domain of steganalysis applications, 

as exemplified in the work of [164]. The foundation of conditional probabilities lies in 

quantifying the likelihood of occurrence of event B, given the prior occurrence of event A. 

The extraction process encompassed the retrieval of JPEG Discrete Cosine Transform (DCT) 

coefficient arrays from individual frames, subsequently facilitating the derivation of CP 

features from these coefficients. The extraction of features was executed at the granularity of 

blocks, each comprising an 8x8 array of coefficients within a frame. Employing an SVM 

classifier, the extracted features were subjected to classification to discern the source camera. 

Worth noting, the method's validation was confined to a selection of videos emanating from 

four distinct devices. In [88], a Convolutional Neural Network (CNN) underpinned by sensor 

pattern noise (SPN) was introduced, aptly named SPN-CNN. The conceptual basis rested on 

CNN's inherent capability to extract signal signatures characterized by noise from an 

assemblage of images, as theorized by [89]. Consequently, the network was systematically 

trained to discern noise patterns. Rigorous testing on the VISION database, as curated 

by,[123] unequivocally showcased the method's superiority over the Wavelet denoiser. 

Remarkably, the study elucidated a marked enhancement in results when restricting the CNN 

inputs exclusively to I-frames. [161], [162] contributed to the panorama of deep learning 

methodologies through the introduction of the MISLnet CNN architecture. Rooted in an 

extension of the constrained convolutional layer initially introduced by [17], the architecture 

demonstrated its salience through an innovative majority voting strategy that aggregated 

decisions at the video level. This was achieved by feeding frames into the network. A distinct 

feature of this architecture is the incorporation of a foundational layer utilizing three kernels 

with a size of 5, meticulously designed to elicit inter-pixel relationships independent of the 

scene's content. Rigorous experimentation, conducted on the VISION database, reaffirmed 

the potent efficacy of this constrained convolutional layer in augmenting the performance of 

deep learning architectures, especially when compared to counterparts lacking such a feature. 

It's pertinent to note that the disparity between these methods lies in the dimensions of images 

and color modes employed, with [162] utilizing RGB mode and [161] employing grayscale 

mode. Image patches for the former are sized at 480, while the latter employs patches of 

dimension 256. [163] harnessed a CNN architecture akin to the prior works of [17], 
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Expanding its capabilities for extracting features, along with a specially designed similarity 

identification network to confirm the source camera, sets this approach apart. What makes it 

unique is how it uses a similarity network to connect pairs of various deep learning feature 

vectors to a enhanced 2D similarity network vector. Constructed on foundational principles 

detailed in [165]. For video-level decisions, they introduced a fusion method leveraging the 

mean of the inactivated output layer from the similarity network. Validating this on the 

SOCRatES dataset, curated by [166], showcased the method's efficacy and applicability in 

forensic video analysis. Experimental results unequivocally demonstrated the method's 

notable superiority over conventional approaches, exemplified by [167]. 

2.4.3.3 Deep Learning based Approach 

Deep learning, which falls under machine learning, focuses on using complex hierarchical 

architectures in artificial neural networks. These structures can learn in different ways: 

supervised, semi-supervised, or unsupervised. Most developed models are designed on 

Convolutional Neural Networks (CNNs), but they can also involve propositional formulas or 

hidden variables organized in layers. These layers, akin to nodes, resemble the architectural 

patterns seen in enhanced deep learning networks or deep Boltzmann framework machines, 

as elucidated by [168] of significance, the current landscape of deep learning primarily 

employs convolutional layers to capture and encapsulate the essence of scene content, 

shifting the emphasis away from the traditional role of detecting camera-specific attributes 

such as noise patterns. However, it is worth noting that deep learning methodologies, such as 

CNNs and Siamese networks, as expounded upon by [169], can be suitably harnessed to fulfil 

this particular objective. Recognizing the growing importance of identifying camera models 

is crucial in multimedia forensic investigations. The abundance of digital content—images, 

videos, audio sequences, and the like—is continuously increasing, a trend expected to 

continue with ongoing technological progress. This surge is largely due to the internet's rise 

and the globally use of social media network to share content, which have sped up the 

proliferation of forged data of digital content. As a result, tracing the origins of this content 

has become a challenging task [170]. 

In the realm of forensic investigations, the ability to trace the lineage of digital content 

assumes paramount importance. This capability is pivotal in unmasking the culprits behind a 

spectrum of crimes, including untracked rape case, remote areas drug trafficking, and acts of 

terrorism, by establishing the provenance of digital materials. The unfortunate proliferation of 

incidents like revenge porn further underscores the potential for private content to go viral on 
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the internet. Given these multifaceted scenarios, the imperative to retrieve the origin of 

multimedia content is a foundational tenet [171]. In light of these considerations, the focus of 

this study is to ascertain the smartphone unique model identification employed for capturing 

digital video. This objective is pursued through a composite approach involving the 

extraction and fusion of both visual and auditory information derived from the multimedia 

content. The domain of forensic literature has seen limited dedicated exploration towards 

identifying the provenance of video sources, prompting our focused investigation into video 

source attribution. In juxtaposition, the sphere of digital image analysis has garnered 

substantial attention within the domain of digital imaging. Evidential traces imprinted onto 

photographs at the instance of image capture proffer an avenue to discern the specific camera 

model employed for image acquisition [172]. This pursuit unfolds through two cardinal 

trajectories: model-based and data-driven methodologies. The former, namely the model-

based approach, delves into harnessing the distinctive traces emanating from the digital image 

capture process to decipher the camera type. These traces, intricately entwined with 

procedural nuances, serve as conduits to unveil the camera's identity through meticulous 

tracing. Numerous processing operations and imperfections inherent to the image acquisition 

pipeline, including residual dust particles and noise patterns [173], have been harnessed as 

conduits to communicate informative cues, thereby substantiating accurate camera model 

identification. 

In recent years, the advent of digital data and computational prowess has ushered forth data-

driven approaches that markedly outshine their model-based counterparts. The data-driven 

paradigm adeptly captures an array of model-related traces, diverging from the conventional 

focus on specific traces arising from image acquisition. This expanded scope results from the 

intricate interplay of system components that facilitate the capture of diverse model traces. 

One of the key data-driven methods revolves around learned features. These approaches 

involve feeding digital images into deep learning structures, allowing the models to pick up 

specific features related to the model and establishing connections between images and where 

they come from [174]. The CNN models have emerged as the preeminent solutions within 

this domain, gaining widespread prominence. To the extent of our current understanding, the 

realm of video sequence-based camera model identification remains relatively uncharted, 

with only a singular study found in existing literature. In this manuscript, we harness 

sophisticated deep-learning methodologies to forge efficacious avenues for unique camera 

model of device for attribution through video sequences. Our approach creates the 
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segmentation of video frames into discernible patches, from which pertinent features from 

patch dataset are extracted for better result. These features are subsequently amalgamated to 

yield a precise classification outcome for each video. Elucidating further, our study centres on 

harnessing advanced deep-learning paradigms to formulate potent methodologies for source 

camera identification within video frame sequences. In this endeavor, we propound an 

approach that entails the automated extraction of pertinent attributes from both visual and 

auditory components of videos. This is achieved through the adept utilization of CNNs, 

endowed with the capability to effectuate classification through the amalgamation of the 

extracted features. Our proposed approach centres on a mixed-modal framework we've 

termed "multi-modal." This name summarizes how our method works: it simultaneously 

gathers visual and auditory details from query videos to solve the identification challenge. 

Our methodology relies on both visual and audio content. To explain it more, in terms of 

visual content, we carefully isolate specific sections extract patches from the frames. In view 

of, the audio domain, we judiciously extract content from patches from the LMS of the 

separated audio-based track enshrined within the video frames, lending credence to our 

solution for the identification predicament. Pertinently, the proposed technique espoused by 

the authors aligns with the mono-modal paradigm, characterized by an exclusive reliance on 

the visual facet of a given video to fuel the classification endeavor. In our quest to fathom 

multi-modal camera model identification, we proffer two discrete methodologies, each 

hinged on the pivotal information thus garnered [175]. Both methodologies operate in the 

realm of Convolutional Neural Networks (CNNs), whereby a dyad of visual and audio 

patches is adeptly presented to the networks for informational ingestion. The inaugural 

approach entails a juxtaposition and amalgamation of individual scores furnished by a duo of 

CNNs. These CNNs, meticulously primed in consonance with a mono-modal tenet, cater to 

distinct data domains—wherein one CNN is rigorously calibrated to decipher solely visual 

data, while the other grapples solely with auditory data. In contrast, our second approach 

embarks upon the tutelage of a solitary multi-input CNN. This multifaceted CNN is astutely 

cultivated to concurrently process both visual and audio patches, thereby coalescing the 

potency of dual domains. In the pursuit of methodological robustness, we undertake a 

comprehensive analysis of each proposed approach, delving into the intricacies of three 

distinct network configurations and data pre-processing protocols. These configurations are 

meticulously tailored around established CNN architectures that reign supreme in the realm 

of cutting-edge video processing, ensuring an optimal amalgamation of efficacy and 

performance. 
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Our evaluative endeavors are underpinned by a meticulous examination of the Vision 

dataset—a comprehensive compendium comprising approximately 650 unaltered video 

sequences, accompanied by their corresponding renditions across various social media 

platforms. This corpus constitutes a rich tapestry of nearly 2000 videos, all impeccably 

captured by 35 contemporary smartphones [176]. The scope of our experimentation extends 

beyond the confines of the original pristine footage. By incorporating videos subjected to the 

transformative algorithms of WhatsApp and YouTube, we engage in a multifaceted 

exploration. This dual-pronged approach not only scrutinizes the ramifications of data 

recompression but also probes the uncharted waters of disparate training and testing datasets, 

a scenario often rife with challenges. In our pursuit of comprehensive assessment, we 

establish a baseline benchmark by unraveling the intricacies of mono-modal attribution 

quandaries. This strategic comparison serves as a beacon, allowing us to gauge the attained 

results against a yardstick of reference. It is undeniable that recent strides in the domain of 

multimedia forensics predominantly gravitate toward video sequences. The contemporary 

landscape is typified by an array of approaches that either dissect visual or audio constituents 

in isolation or opt for a symbiotic synergy of both modalities. This entrenched dichotomy 

serves as a cornerstone, propelling our dedicated exploration into the intricate intricacies of 

multimedia source identification. The utilization of both visual artifacts and audio content 

cues into the domain of multimedia forensics has emerged as a relatively nascent endeavor, 

albeit one that has yet to comprehensively address the intricate task of camera model 

identification within its purview. Our proposal entails a systematic examination of outcomes 

garnered from the isolated exploitation of either visual or audio patches, thus yielding a 

mono-modal avenue for the classification of query video sequences [177]. 

The bedrock of our investigation lies in a meticulous experimental campaign, orchestrated to 

unravel the comparative efficacy of mono-modal and multi-modal methodologies. The 

empirical insights garnered unequivocally affirm the supremacy of the latter, casting a 

shadow of inefficiency over the former. The demonstrated prowess of our pursued multi-

modal strategies aptly surpasses the conventional mono-modal paradigms, thereby offering a 

streamlined and more potent solution to the task at hand. Furthermore, an intriguing 

observation surfaces in relation to data compression's impact on classification endeavors. Our 

empirical analysis reveals a salient pattern wherein data subjected to more robust 

compression, such as videos transmitted via the WhatsApp application, pose a formidable 

challenge in the classification realm. In stark contrast, data subjected to milder compression, 
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exemplified by content uploaded onto YouTube, exhibits a comparably favorable ease of 

classification [178]. 

This holistic analysis synthesizes a compelling narrative, underscored by empirical evidence, 

highlighting the nascent convergence of audio-visual cues in the realm of multimedia 

forensics. Moreover, it showcases the ascendancy of our multi-modal methodologies in 

unravelling intricate camera model identification puzzles, all while shedding light on the 

nuanced interplay between data compression and classification challenges. Despite these 

challenges, our investigation has revealed a notable trend: even within this intricate context, 

multi-modal strategies continue to exhibit superior performance compared to their mono-

modal counterparts. This observation underscores the resilience and adaptability of multi-

modal approaches in addressing the complexities inherent in the task. In pursuit of feature 

extraction and subsequent categorization within a sequential image dataset, the video 

classification algorithm leverages advanced feature extractors, notably convolutional neural 

networks (CNNs). These CNN-based feature extractors parallel their image classification 

counterparts, facilitating the process of categorizing videos based on extracted descriptors. 

Harnessing the power of deep learning-driven video categorization, a realm encompassing 

activities and events within visual data sources like video streams is attainable. The 

intricacies of such activities are scrutinized, categorized, and tracked, enabling 

comprehensive analysis within the visual domain. The implications of deep learning-powered 

video classification transcend mere surveillance, extending into various domains including 

anomaly detection, gesture recognition, and the discernment of human activities. These 

multifaceted applications highlight the versatility of video classification as a potent tool in the 

realm of information processing and understanding. 

In essence, our exploration delves into the crux of multi-modal supremacy within intricate 

contexts, while the utilization of CNN-based feature extractors for video classification 

underscores the intersection between image and video analysis. This convergence bears 

testimony to the profound impact of deep learning in extracting meaningful insights from 

dynamic visual data sources, fostering a plethora of practical applications beyond the scope 

of traditional video understanding paradigms. 

Initiating the process of video classification entails a systematic sequence of steps, each 

contributing to the comprehensive categorization of video content. 
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• The initial phase involves the creation and curation of training materials, constituting 

a pivotal foundation for subsequent classifier development and refinement. 

• A judicious selection of a suitable classifier constitutes a pivotal decision in the video 

classification process, the choice of which should align with the specific objectives 

and characteristics of the dataset. 

• The classifier's proficiency and effectiveness must be honed through a continuous 

process of education and assessment, wherein its performance is meticulously 

evaluated and optimized. 

• Harnessing the potential of the chosen classifier, the subsequent step involves the 

adept processing of video data, wherein the classifier's learned knowledge is applied 

to categorize and label diverse video content. 

• Training the classifier extensively on specialized video datasets like the Kinetics-400 

Human Action Dataset significantly amplifies its efficacy in activity recognition. 

These curated datasets serve as pivotal resources specifically designed to facilitate and 

enhance activity recognition pursuits. 

An enhanced classifier can be effectively trained the data by harnessing the vast and high-

fidelity reservoir of activity recognition video data present in expansive datasets like the 

Kinetics-400 Human Action Dataset. This meticulously compiled collection encompasses a 

plethora of meticulously tagged video clips, each contributing to the enhancement of the 

classifier's knowledge base [179]. The initial stage of the process entails provisioning the 

video classifier with annotated footage or video clips, thus initiating the intricate 

classification process. 

Within this framework, a robust and intricate deep learning-based video classifier is 

constructed, comprising convolutional neural networks meticulously engineered for video 

analysis. This classifier exhibits the capability to prognosticate and classify videos content 

based on the inherent characteristics of the video inputs, thereby demonstrating the prowess 

of deep learning methodologies in the realm of video classification [180]. A crucial 

component of the procedure involves the rigorous evaluation of the classifier's performance, a 

step indispensable in ensuring its efficacy and fine-tuning. Furthermore, the versatility of the 

classifier extends to real-time applications, as it can be adeptly employed to categorize 

activities depicted in live webcam video streams or collections of dynamically streamed 

video clips. The profound capabilities of the classifier extend to encompass various training 

paradigms, encompassing techniques and utilized the developed the Slow path and Fast 



48 

 

improved paths (Slow Fast), ResNet with (2+1) D convolutions, and enhanced  two-stream 

approach to Inflated-3D approaches, as illustrated in Figure 2.21, all facilitated by the 

expansive resources provided by the Computer Vision Toolbox. Manufacturers of DSLR 

cameras, including industry giants like Canon, Nikon, and others, routinely employ intricate 

calibration algorithms as a prelude to capturing scene imagery, a procedure that significantly 

contributes to the elevated cost of professional-grade DSLR cameras. In light of this, there is 

a compelling impetus to engineer novel calibration techniques that are not only 

computationally efficient but also cost-effective, aiming to render them on par with 

established methodologies employed on a global scale. The overarching objective is to 

democratize the calibration process, thereby rendering it accessible and economically viable 

for a wider demographic. The calibration protocols undertaken by leading DSLR camera 

manufacturers involve intricate procedures aimed at achieving optimal performance and 

accuracy in image capture. The deployment of such sophisticated algorithms imparts a 

substantial financial burden, consequently elevating the price point of premium DSLR 

cameras. To address this challenge, it is imperative to embark on the development of 

alternative calibration techniques that circumvent excessive computational demands while 

concurrently maintaining an uncompromised standard of quality. The successful 

implementation of such techniques would, in turn, lead to a notable reduction in cost, 

rendering professional-grade image-gathering equipment more affordable and accessible to a 

broader spectrum of users. 

 

Figure 2.21. 3D Methods for Video Classification Classifier Training 

Efforts in this direction are propelled by the aim of democratizing advanced imaging 

technologies, aligning with the principles of cost-effectiveness and widespread accessibility. 

By engineering calibration techniques that are both computationally streamlined and 

financially viable, it becomes feasible to equip a larger populace with the means to engage in 
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high-quality image acquisition, thus fostering a more inclusive and participatory imaging 

landscape on a global scale [181]. The process of identifying the specific camera model 

employed to capture the photographic and video frames showcased within this article hinges 

upon the meticulous scrutiny of numerous distinctive traces embedded within the images and 

video frames during the image acquisition process. This endeavor encompasses an 

exploration of the idiosyncrasies inherent to the acquisition of digital photographs, thereby 

fostering a comprehensive understanding for readers seeking to delve into this domain. 

Subsequently, a comprehensive exposition on the Mel scale and its implications for audio 

content in video sequences will be presented, thereby facilitating a nuanced comprehension of 

the subsequent analytical framework. The exposition elucidates the merits of the Log-Mel 

Spectrogram (LMS) as an invaluable tool for scrutinizing temporal variations in audio tracks, 

as well as their evolving spectral attributes [182]. Over the preceding decades, the endeavor 

to discern image camera models has engendered an array of methodological avenues, each 

honing distinctive methodology. Central to these methodologies is the pursuit of discerning 

noise pattern characteristics germane to individual camera models from the furnished images 

and videos. These noise patterns, often dubbed traces, are conjectured to stem from 

manufacturing anomalies that manifest uniquely within each camera model [183]. In seeking 

to fulfill this aim, diverse approaches have emerged, each striving to ascertain the distinctive 

noise patterns harbored by varying camera models. This proactive endeavor hinges upon a 

multifaceted analysis of images or videos, culminating in the extraction of discernible traces, 

thereby constituting a foundational framework for camera model attribution. The core tenet 

driving these methodologies is the premise that the distinctiveness of these noise patterns is 

intimately tied to the intricate manufacturing nuances intrinsic to each camera model, thus 

propounding a novel facet for model differentiation within the realm of multimedia forensic 

investigations[184]–[186]. 

Within the realm of multimedia forensics, an extensive focus has been directed toward the 

intricate endeavor of blind source device identification. This pursuit entails meticulous 

analysis of discernible traces, encompassing phenomena such as sensor dust and defective 

pixels, thereby culminating in the formulation of multifaceted strategies aimed at discerning 

the originating capturing device. A pivotal turning point in this trajectory was instigated by 

Lukas et al., who introduced the pioneering concept of harnessing Photo-Response Non-

Uniformity (PRNU) noise as an unequivocal marker for defining the distinctive geometry of a 

camera sensor, thus engendering a notable paradigm shift [187]. An inherent characteristic of 
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PRNU noise lies in its multiplicative nature, a trait that imbues it with a remarkable resilience 

against removal even when subjected to sophisticated high-end processing equipment. This 

intrinsic multiplicative essence renders PRNU noise exceptionally tenacious, resisting 

effective elimination. Notably, this persistence persists unrelentingly even after subjecting the 

image to JPEG compression at an average quality level. In the context of exploring the 

applicability of PRNU-based camera forensics for image recovery from standard Scene 

Matching Points (SMPs), investigations have unveiled a salient caveat. It has come to light 

those alterations, whether instigated by users or the SMPs themselves, have the potential to 

vitiate the efficacy of PRNU-based source identification. Such alterations could erode the 

fidelity of the PRNU-based inference, thus impeding its reliability as a robust source 

identification mechanism. This nuanced insight accentuates the need for a comprehensive 

understanding of the interplay between PRNU-based identification and potential image 

modifications within the broader domain of multimedia forensic analysis. Emerging 

advancements in camera software integration encompass novel digital identification 

technologies aimed at mitigating the destabilizing ramifications stemming from unsteady 

hands during video capture. This innovative paradigm involves a programmatic evaluation of 

user-induced movements, discerning their impact on the pixel allocation within the 

camcorder's image sensor. Within this dynamic framework, the manipulation of specific 

pixels within the image sensor is orchestrated to counteract the destabilizing influences 

associated with unsteady hands. For Android-based devices, a degree of user agency is 

accorded, enabling the activation or deactivation of image stabilization features. In contrast, 

iOS-based devices do not provide users with the capacity to modulate this setting, indicative 

of a distinguishing feature between these two ecosystems. 

In the pursuit of attributing video sources through the prism of active digital identification 

hinging upon the PRNU fingerprint, an intricate challenge surfaces in the form of alignment 

disruption during the identification process. This perturbation-induced misalignment renders 

the task of source identification elusive, thereby incapacitating the discernment of video 

sources characterized by active digital identification mechanisms. The underlying implication 

is that the inherent dynamics of active digital identification methods cast a shadow of 

uncertainty upon the viability of PRNU-based source attribution within this context [188]. It 

is essential to recognize and address these intricate interactions to refine the accuracy and 

reliability of source identification in the realm of digitally enhanced video capture. 

Notwithstanding the strides made by HSI in formulating a reference-side solution, 
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specifically pertaining to the estimation of fingerprints from static photographs, the 

underlying challenge remains unresolved. Within the domain of forensic video analysis, a 

myriad of evolving techniques hold promise for unearthing evidentiary insights. Yet, prior to 

their application, a multitude of unanswered inquiries necessitate comprehensive exploration 

to validate their efficacy within this context. Moreover, the realm of forensic video analysis 

unveils heightened complexities compared to its image analysis counterpart, posing 

formidable obstacles in comprehending the intrinsic data of videos. This intricacy is rooted in 

the intricate compression structures that videos adopt, presenting a stark contrast to the 

relatively straightforward formats employed by images. While an image frame encapsulates a 

sequence of discrete images that collectively unfold over time, imbuing the visual narrative 

with motion and temporal evolution, a video entails a reservoir of information ingeniously 

encoded and decoded through mathematical methodologies, colloquially known as codecs. 

These encoded frames, pivotal components of the multimedia tapestry, are encapsulated 

within a multimedia file format, interwoven with complementary tracks housing audio, 

metadata, and subtitles. Converging as multimedia files, this amalgamation mirrors the 

complexity inherent in the video medium, requiring an intricate orchestration of encoding and 

decoding mechanisms to facilitate seamless interpretation and playback. The nuanced 

intricacies of multimedia files, brimming with encapsulated visual and auditory dimensions, 

underscore the multifaceted challenge that forensic video analysis endeavors to surmount 

[189]. By delving into the depths of video compression paradigms and the intricate interplay 

of multimedia elements, the quest for refining and advancing forensic video analysis 

confronts multifarious dimensions demanding systematic exploration and resolution. 
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CHAPTER 3 

IMAGE SOURCE IDENTIFICATION USING TWIN 

CNN ARCHITECTURE 

________________________________________________________________________ 

 

3.1 Proposed Framework 

This section introduces a Twin CNN Architecture for image source identification. A novel 

model is devised to preprocess the dataset and accurately classify images with appropriate 

device class labels, as outlined shown in Figure 3.1. Within this proposed framework, the 

input consists of an image dataset, and the output involves classifying the source device along 

with class-level information. The effectiveness of prediction is quantified through high-

accuracy measurements. The procedure is detailed as follows: The initial step involves 

generating patches of size 256×256 from the original dataset, considering the varying 

resolutions of device models for captured images. 

 

 

Figure 3.1. Proposed Framework using Twin CNN Architecture for Image Source Identification 
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3.2 Conversion of Data Sets into Patches 

This conversion of images into patches is executed using MATLAB to ensure quality 

preservation. The optimal patch is selected from the images to proceed with the analysis 

depicted in Figure 3.2. 

 

Figure 3.2. Conversion Image into Patches 

Upon establishment of a meticulous dataset with distinct device IDs, the subsequent phase 

involves employing the 'MATLAB' software to generate patches of dimensions 256×256 

from the initial dataset. It is noteworthy that these patches inherently harbor noise attributed 

to material imperfections. To mitigate this noise, the DnCNN model is harnessed for 

denoising the image dataset. 

 

3.3 Denoising of Patches 

The selection of DnCNN Architecture for denoising is substantiated by its competence in 

handling Gaussian noise instances with indeterminate noise labels within random images. 

DnCNN architecture leverages residual learning techniques and integrates batch 

normalization to optimize denoising outcomes for the image dataset. Employing a 3×3 kernel, 

the patch is subjected to convolutional processing, while the omission of a pooling layer 

maintains the patch's dimensions post denoising. The DnCNN model is configured with 

dimensions of 35×35 and is structured with an expanded depth ranging from 17 to 20 layers, 

categorized into three distinctive layers. The initial layer employs convolutional operations 

combined with the ReLU activation function, where a 3×3×3 filter yields the generation of 64 

feature maps. This strategic arrangement facilitates the initial feature extraction process. 

Within the second layer, the convolutional filter is invoked, accompanied by batch 

normalization, which synergistically heightens the learning rate to optimize prediction 

accuracy. The incorporation of the ReLU activation function within this layer further 
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augments learning efficiency. In the ensuing third layer, a single convolution filter, structured 

with dimensions of 3×3×64, is employed to effectuate the reconstruction of the native picture 

dimension within the DnCNN framework. The holistic architectural progression of DnCNN 

is concisely outlined as follows shown in Figure 3.3. 

 

Figure 3.3. DnCNN Architecture for Denoising the Image 

Following dataset pre-processing, we introduce a CNN architecture comprising four distinct 

layers, aimed at source identification by virtue of feature extraction via convolution kernels. 

The classification CNN architecture takes a 256×256 resolution image as input. To effectuate 

feature extraction from the input image, we deploy a convolution filter characterized by 

dimensions of 3×3×3. It is imperative to note that the trailing dimension varies depending on 

the image type. For grayscale images, '1' is utilized, whereas color images entail a '3' due to 

their trichromatic nature. Subsequent to convolutional filtering, we employ a max pooling 

layer, serving to extract maximal values post-convolution while concurrently reducing the 

feature dimensions to 64×64. The leaky rectified linear unit (ReLU) activation function is 

harnessed to generate an output, which subsequently serves as the input for the successive 

layer within the CNN Architecture. This approach enables robust feature extraction and 

encapsulates the inherent multi-channel nature of color images while ensuring dimensionality 

reduction via pooling, thereby facilitating subsequent processing and classification. 

  

3.4 CNN Architecture Operations 

The architecture's design encompasses tailored strategies for varying image characteristics, 

thereby enhancing adaptability and accuracy in the source identification process. In our 

approach, we incorporate padding and a stride value of 2 within the convolutional layers. To 

enhance accuracy, we iteratively execute this convolutional process for a total of four layers, 

culminating in the presentation of the resulting output to the SoftMax layer. This latter layer 
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serves to produce probabilistic values ranging from '0' to '1' for each device category, 

effectively discerning distinctive feature characteristics. In the context of source 

identification, the procedure entails inputting a random image from the test set into the 

model, which subsequently predicts the original source of said image. 

The convolutional network's functionality can be mathematically encapsulated through the 

following equation: 

𝑃𝑖,𝑗 = 𝑓 (∑ ⬚

𝑥

𝑥=0

∑ ⬚

𝑦

𝑦=0

𝑊𝑥,𝑦 ∙ 𝐼𝑖+𝑥,𝑗+𝑦 + 𝑊𝑏)                         (3.1) 

In this context, f represents the activation function employed within the convolutional 

framework. The notation Pi,j pertains to the estimated pixel value at the specific coordinate 

(i,j) within a given image. Wx,y signifies the shared weight value utilized in the convolutional 

layer, while Wb denotes the bias element integrated within the filter structure to achieve 

balance. Notably, these parameters are iteratively learned from the available data and are 

optimized throughout the training process to attain their most effective values. The max 

pooling layer serves to extract features by identifying the maximum value following the 

convolutional operation depicted in Figure 3.4, subsequently diminishing the dimensionality 

of the input image. 

 

 

Figure 3.4. Kernels Operation in Convolution Layer 
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The designated kernel is applied to the input image (I), engaging convolutional operations to 

transform the original pixel values, and subsequently discerning the maximum value among 

them. The conversion process adheres to the ensuing function: 

𝑓(𝐼) = 𝑚𝑎𝑥(0, 𝐼) = {𝐼, 𝐼 ≥ 0 0, 𝐼 ≤ 0                                             (3.2) 

 

The max pooling layer functions to filter out low-intensity feature values within the image, 

thereby enhancing both the quality and predictive accuracy. Within this network, a 2×2 filter 

is implemented within the max pooling layer, coupled with a stride of '2' and padding. The 

conversion process is visually represented in the accompanying figure: 

 

Figure 3.5. Max Pooling Layer Conversion Operation 

Upon extracting features from the patches, a precaution against overfitting is taken by 

employing a parameter of 0.5 between the fully connected layers. The process of feature 

extraction is carried out across all convolutional layers, after which a softmax classifier is 

applied. This classifier predicts values ranging from 0 to 1 through the utilization of the 

subsequent expression: 

𝜓𝑛(𝐼) =
𝑒𝑥𝑝(𝐶𝑛(𝐼))

∑ ⬚𝑚
𝑛=1 (𝐶𝑛(𝐼))

                                                       (3.3) 

Here “I” is the input image patch, “n” denotes the number of clusters based on a number of 

devices 𝑛є(1, 𝑚). Where 𝐶𝑛(𝐼) = 𝑙𝑛(𝑃(𝐼/𝐶𝑛)𝑃(𝐶𝑛)), 𝑃(𝐼/𝐶𝑛) denotes the conditional 

probability, and “𝜓”  is the final output of softmax function which belongs to 0≤ 𝜓≤1. The 

flow of architecture is shown in the below Figure 3.6. 
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Figure 3.6 . CNN Classification using Softmax Function. 

Table 3.1: Proposed CNN Architecture for device classification. 

Input Output  Operator Dimension Activation Function 

Image 256×256 Conv, 3×3, Stride=2 Leaky ReLU 

Layer 1 128×128 Conv, 3×3, Stride=2 Leaky ReLU 

Layer 2 64×64 Conv, 3×3, Stride=2 Leaky ReLU 

Layer 3 32×32 Conv, 3×3, Stride=2 Leaky ReLU 

Layer 4 16×16 Conv, 3×3, Stride=2 Leaky ReLU 

 

3.5 Result Analysis 

The datasets employed in this study originate from the 'VISION' dataset developed by the 

Communications Signal Processing Laboratory (https://lesc.dinfo.unifi.it/VISION/dataset/). 

This dataset has been meticulously curated to cater to the digital forensic community's 

requirements, encompassing high dynamic range images and videos. The compilation 

comprises media content captured by 35 contemporary devices from 11 distinct brands, 

namely Samsung, Sony, Wiko, Xiaomi, Microsoft, LG Electronics, Lenovo, Huawei, Asus, 

https://lesc.dinfo.unifi.it/VISION/dataset/
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Apple, and OnePlus. Within this dataset, there are a total of 11,732 native images, among 

which 7,565 are shared images distributed via platforms like WhatsApp and Facebook, 

encompassing both low and high quality variants. The images are categorized into various 

classes depicted in Figure 3.7 within the dataset. 

 

 

Figure 3.7 . Vision Dataset Organization 

In this research endeavor, we have conscientiously opted to focus on a solitary device image 

emanating from a specific brand. This strategic decision aims to expedite and enhance the 

precision of our image source identification process. To achieve this, we have meticulously 

culled 'FLAT' and 'NATIVE' images at random from the comprehensive dataset, thereby 

crafting a distinct dataset exclusively comprised of these flat or native images, encompassing 

all 11 different brands. This methodological approach ensures that we have a streamlined and 

consistent set of images for rigorous analysis. The selected images correspond to a diverse 

range of brands, each bringing its unique characteristics to the fore. This meticulous curation 

and subsequent analysis of individual device images provide us with a rich and 

comprehensive dataset that is essential for our investigation into image source identification. 

For elucidation, the specific details pertaining to the chosen device images, along with their 

respective brands, are furnished in the Table 3.2. Within our devised framework, the initial 

input to our model comprises patches of dimensions 256×256, a well-suited scale for robust 

feature extraction. Following the comprehensive assembly of the dataset, a pivotal pre-

processing step ensues: the entire dataset is systematically transformed into corresponding 

patches. An indispensable augmentation to our methodology lies in the application of 

denoising procedures across the entire dataset, effectuated through the sophisticated DnCNN 
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architecture. This denoising process culminates in the attainment of patches characterized by 

uniform dimensions, thereby facilitating subsequent classification. 

Table 3.2: Device characteristics with image type. 

Device Brand Resolution Image Category Images 

D1 Samsung 2560×1920 Flat, Native 30 

D2 Apple 3264×2448 Flat, Native 30 

D3 Huawei 3968×2976 Flat, Native 30 

D4 LG 3264×2448 Flat, Native 30 

D5 Lenovo 4784×2704 Flat, Native 30 

D6 Sony 5248×3936 Flat, Native 30 

D7 Mocrosoft 3264×1840 Flat, Native 30 

D8 Wiko 3264×2448 Flat, Native 30 

D9 Asus 3264×1836 Flat, Native 30 

D10 Xiaomi 4608×2592 Flat, Native 30 

D11 OnePlus 4640×3480 Flat, Native 30 

 

Our proposed approach hinges upon the utilization of a meticulously curated high-resolution 

image dataset, a strategic maneuverer that underpins the discerning identification of image 

source. Pertinent to the experimental phase, the model is rigorously trained utilizing the 

designated dataset. For the subsequent testing regimen, a subset of 10 images per distinct 

device serves as the basis for evaluation. It is noteworthy that the training and testing 

accuracies, although commendably hovering around the 90% mark, are somewhat 

constrained due to the relatively limited number of available images, an inherent constraint 

that calls for strategic consideration in the overall assessment. To quantitatively evaluate the 

efficacy of our classification framework, we rely on a confusion matrix, a quintessential tool 

for gauging the accuracy of our classification endeavours.  

The evaluation parameters are computed using the provided equations: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
TP

TP + FP
                            (3.4) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
TP

TP + FN
                                   (3.5) 

𝐹1 =
2 × Precision × Recall

Precision + Recall
                (3.6) 
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𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
TP + TN

𝑇𝑃 + 𝐹𝑁 + 𝑇𝑁 + 𝐹𝑃
      (3.7) 

The specifics of this confusion matrix are succinctly provided in Figure 3.8, thereby affording 

a comprehensive overview of the classification performance across distinct categories. 

 

Figure 3.8. Accuracy Confusion Matrix for Fewer Data input Patches 

 

Upon augmentation of the image dataset by increasing the count of images per individual 

device, an intensive training regimen spanning 400 epochs was undertaken. This strategic 

augmentation, along with the extended training interval, facilitated a noteworthy 

enhancement in both training and validation accuracy, culminating in an impressive 

achievement of 93.6%. 

For a comprehensive understanding of the dynamic evolution of accuracy and loss throughout 

the training process, we present the accuracy and loss curve in the subsequent visualization in 
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Figure 3.9, providing a concise depiction of the progressive convergence of our model's 

performance metrics. 

 

Figure 3.9. Train and Testing Loss and Accuracy Comparison 

Upon completion of the model's rigorous training and subsequent meticulous testing, we 

present the achieved classification accuracy, meticulously organized into a confusion matrix 

with increasing the number of images to 30 per device, as follows shown in Figure 3.10 

 

Figure 3.10. Actual and Predicted Class Accuracy Comparison 
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During the training model on dataset the training accuracy achieve 96.7% and validation 

accuracy is approximate 93.6%. 

Choosing the architecture topology and fine-tuning hyperparameters are not straightforward 

tasks; they necessitate in-depth analysis and a comprehensive understanding of both 

theoretical principles and practical considerations. This complexity arises from the fact that 

the configuration of a CNN model depends on various factors, including the nature of the 

data under consideration. For example, the data may differ in terms of size, image 

complexity, or the specific task at hand. In this section, we discuss the various factors that 

inform the selection of the CNN architecture we propose. 

The Figure 3.11 provided displays a comparison of accuracy with other techniques. 

 

Figure 3.11. Comparison of other Techniques 

In the final experiment, we evaluate the impact of altering the hyper parameters of the 

regularization algorithm. When we introduced the dropout technique to mitigate overfitting, a 

new hyperparameter was introduced: the probability 'p' that dictates the retention rate for each 

node in a layer. During training, dropout functions by either alive a node with a probability 'p' 

or deactivating it (setting its value to zero) otherwise. In this proposed model, conducted an 

experiment in which we tested various values for this hyperparameter 'p' depicted in Figure 

3.12. 
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Figure 3.12. The dropout hyperparameter analysis, we examine various node retention probabilities, 

specifically, 0.35%, 0.45%, 0.5%, and 0.55%, respectively 

This study introduced a novel deep convolutional neural network architecture, characterized 

by four convolutional layers, one fully connected layer, and a SoftMax classifier, aimed at 

discerning the original camera source of images. Through a systematic exploration of various 

learning configurations, an optimal balance between testing and learning performance was 

achieved. The key advantages of the proposed approach for camera source identification are: 

1. Mitigation of the challenge posed by limited forensic image samples through image 

patch cropping, yielding ample training data. This is achieved by enabling the input 

layer to process image patches of dimensions 256x256x3. 

2. Empirical validation substantiates the claim of enhanced efficacy, reinforcing the 

viability of the proposed method. 

To gain deeper insights and further refine the technique, future research endeavours will 

extend the application of the proposed strategy to a more extensive dataset, thereby the 

proposed method aims to be applicable and effective in real-world situations beyond 

controlled experiments, with the goal of combating fake news, deepfake videos, and the 

malicious use of forged images to defame individuals in today's social media landscape. The 

outcomes of the proposed method could serve as valuable evidence in forensic investigations 

of images and videos from specific devices. 

 



64 
 

3.6 Conclusions 

In conclusion, this study introduces a groundbreaking deep convolutional neural network as a 

robust solution for identifying the source of images. The model's commendable testing and 

learning performance are the result of a combination of architectural innovation, input 

preprocessing, and learning paradigms working synergistically. As the field of image 

forensics evolves, the approach revealed in this study marks a significant step forward in 

improving accuracy and efficiency in the crucial task of identifying the primary camera of 

images. 

Looking ahead, we anticipate a sustained trajectory of research and refinement that will 

ultimately contribute to the progress of image forensics and its practical applications. This 

future-oriented perspective underscores our commitment to advancing the field and 

addressing the challenges of image source identification. 

Some potential limitations and challenges associated with the proposed Twin CNN 

architecture for image source identification include computational complexity, scalability 

issues, and performance evaluation under varying conditions. The computational complexity 

of the architecture may pose challenges in terms of processing time and resource 

requirements, particularly for large-scale datasets or real-time applications. Scalability issues 

may arise when scaling the architecture to handle increasingly large datasets or when 

deploying it in different environments. Additionally, accurately evaluating the performance 

of the architecture under diverse conditions, such as varying lighting conditions or image 

qualities, may be challenging and require comprehensive testing and validation procedures. 
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CHAPTER 4 

IMAGE FORGERY DETECTION USING CNN 

ARCHITECTURE WITH SVM CLASSIFIER 

___________________________________________________________________________ 

 

4.1 Introduction and Motivation: 
 

CNNs are designed with a structure that mirrors the intricate workings of the human visual 

system, with interconnected nonlinear neurons. This design has already exhibited remarkable 

potential across a spectrum of computer vision applications, prominently in tasks like object 

recognition and image detection. However, the versatility of CNNs extends beyond 

traditional visual tasks and into realms such as image forensics, presenting intriguing 

prospects for detecting image manipulations. In contemporary digital landscapes, image 

forgery has become alarmingly accessible due to the proliferation of sophisticated editing 

tools. Consequently, the ability to identify manipulated images is of paramount importance, 

as the consequences can be far-reaching. CNNs, equipped with their ability to discern 

intricate patterns and deviations, emerge as potential tools for tackling this challenge. The 

process of image forgery often involves transplanting components from one image onto 

another. This manipulation gives rise to a host of artifacts that might evade casual human 

observation. However, CNNs possess the computational prowess to perceive these subtle 

deformities, even when imperceptible to the naked eye. By analysing the finer details and 

discrepancies in pixel-level distributions, CNNs can act as vigilant detectors of tampered 

imagery. The convolutional layers of CNNs play a pivotal role in this discernment process. 

Through a hierarchical analysis of features, these layers break down the image into smaller, 

more manageable components. This dissection enables the network to identify irregularities 

that might indicate image manipulation. Furthermore, the non-linear activation functions 

integrated within the architecture empower CNNs to model complex relationships, making 

them adept at identifying patterns that might signify tampering. To harness the potential of 

CNNs for image forensics, it is imperative to develop tailored training methodologies. This 

involves exposing the network to a diverse array of manipulated and authentic images, 

enabling it to learn the intricacies of image tampering. The training process involves fine-
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tuning the network's parameters to enhance its discriminatory capabilities. Techniques such 

as transfer learning approach, which enhanced pre-trained models on large HDR image 

datasets, can expedite this process by providing a solid foundation for image analysis. In 

practice, CNNs' proficiency in image forensics could manifest in various applications. These 

networks could serve as integral components of digital platforms that scrutinize media 

content for authenticity. By systematically analysing images and flagging potential 

anomalies, CNNs can offer an additional layer of security and trust in an increasingly visual 

digital landscape. The convergence of CNNs and image forensics holds significant promise. 

By capitalizing on the networks' inherent ability to decipher intricate patterns and detect 

deviations, the field of image manipulation detection stands to benefit greatly. CNNs, through 

their non-linear interconnected architecture and hierarchical analysis, offer a compelling 

avenue for bolstering the integrity of digital imagery and upholding the authenticity of visual 

content. The utilization of such images introduces a distinct enhancement in the manipulated 

content, primarily attributed to the dissimilarities in compression algorithms between the 

manipulated region's source and the background images.  

 

4.2 Proposed CNN Architecture with SVM Classifier 
 
Leveraging this insight, we proceed to train a CNN model to improve accuracy with a focus 

on picture authenticity. The practical implementation of this novel approach is depicted 

through the procedural depiction in Figure 4.1. Our approach involves harnessing the 

divergent compression artifacts present within the manipulated area and the background. The 

CNN model is meticulously trained on a diverse dataset encompassing both manipulated and 

genuine images. The network learns to distinguish the nuanced patterns arising from 

compression-induced inconsistencies. The proposed method showcases the culmination of 

this theoretical framework, culminating in a practical and applicable solution. Figure 4.1 

visually encapsulates the sequential stages of our method. Initiated by the input image, the 

process encompasses intricate feature extraction, enabled by the CNN's hierarchical layers. 

Subsequently, the model's learned discriminative capabilities come into play, facilitating the 

classification of the image's authenticity. This comprehensive workflow epitomizes the 

operationalization of our pioneering approach, underscored by the fusion of compression 

artifact analysis and CNN-based image evaluation. In this context, a novel technique has been 

devised for the automated detection of counterfeit images, leveraging CNNs. 
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Figure 4.1: Proposed Classification Model 

 

Our approach involves the automatic construction of hierarchical representations through 

convolutional operations, applied to input-coloured images or patches. Specifically, the CNN 

architecture proves to be highly advantageous for addressing challenges within copy-move 

detection and image splicing scenarios, wherein tampered regions are manipulated or 

duplicated. A distinctive feature of our proposed technique lies in the initialization of the first 

layer's weights within the CNN architecture. These weights are strategically set to correspond 

with fundamental high-pass filters, as utilized in the creation of residual maps within a spatial 

rich model (SRM). The incorporation of SRM-based filters functions as an innovative 

regularization strategy, yielding multiple advantages. This incorporation of SRM-based 

initialization serves a dual purpose. Firstly, it effectively mitigates the influence of the 

underlying image contents during the detection process. Traditional detection mechanisms 

often struggle with capturing subtle inconsistencies arising from tampering due to the 

dominance of content-related features. By integrating SRM-derived filters, our CNN-based 

approach acquires an enhanced capability to discern these intricate artifacts, thereby 

reinforcing its sensitivity to tampering cues. 

Secondly, the utilization of SRM-driven initialization aligns with the requirement to address 

diverse tampering procedures. The complex nature of image manipulation techniques 

necessitates an adaptable approach that can accommodate a spectrum of potential alterations. 

By utilizing filters rooted in the SRM framework, our CNN model gains a robustness that 
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extends across a wide array of tampering scenarios, enhancing its versatility and applicability. 

The hierarchical construction of representations through CNN layers acts as a pivotal element 

in our approach. These layers progressively extract abstract features, allowing the network to 

progressively learn and represent increasingly complex patterns inherent in the images. 

Through these hierarchical transformations, the CNN adapts to the intricacies of both 

authentic and manipulated visual content, thereby enabling accurate differentiation between 

the two. In essence, our technique embodies a synergistic fusion of CNNs and the 

foundational principles of a spatial rich model. By initiating the CNN architecture with SRM-

derived filters, we harness the advantages of regularization and robustness, culminating in a 

discernment mechanism that excels in detecting counterfeit images. The hierarchical 

extraction of features within the CNN further augments its proficiency, ensuring a 

comprehensive grasp of the underlying visual elements. Collectively, these components 

coalesce to establish an innovative approach that exhibits notable potential within the realm 

of counterfeit image detection. Upon extracting dense features from test images utilizing a 

pre-trained CNN as a descriptor, the culmination of our approach involves the generation of 

final features for support vector machine (SVM) classification through a feature fusion 

process. This step amalgamates the intricate visual characteristics captured by the CNN, 

paving the way for robust classification. To rigorously evaluate the efficacy of our method, a 

comprehensive assessment was conducted. A publicly accessible dataset renowned for its 

utilization in picture forgery identification was employed for comparative analysis. This 

enabled a meticulous appraisal of our approach's accuracy in contrast to a previously 

employed image forgery detection system, fostering a data-driven validation of our 

technique's proficiency. The cornerstone of our approach lies in the strategic architecture of 

the CNN employed for feature extraction. This architecture, depicted in Figure 4.2, is 

purposefully designed to encapsulate the unique requirements of our forgery detection 

framework. The CNN's hierarchical layers enable the progressive extraction of intricate 

visual elements, allowing the network to comprehend both subtle and prominent cues 

indicative of image tampering. By utilizing a pre-trained CNN as a descriptor, our approach 

taps into the wealth of knowledge encoded within the network's learned weights. This enables 

an efficient and effective portrayal of images in a feature-rich manner, forming the basis for 

subsequent SVM classification. The fusion of features accentuates the discriminative 

capabilities, ensuring a comprehensive representation that is well-suited for accurate 

classification. Our methodology culminates in the creation of robust final features for SVM 

classification through a feature fusion process, leveraging dense features extracted from test 
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images using a pre-trained CNN. The extensive evaluation against a benchmark dataset 

reinforces the effectiveness of our approach in image forgery identification. This validation is 

substantiated by the tailored CNN architecture designed to encapsulate the intricacies of the 

forgery detection task. The holistic framework, as depicted in Figure 4.2, illustrates the 

orchestrated integration of these elements, ultimately contributing to a potent image forgery 

detection methodology. 

 

Figure 4.2. CNN Architecture for Classification of Forged Images 

 

4.3 CNN Layers Operations Involved in Proposed Framework 

A CNN model is developed with key components: it starts with convolution layers, followed 

by fully connected layers, and ends with a SoftMax classifier. Each convolution layer is 

composed of three main components: convolution operations, non-linear activation functions, 

and pooling operations. Notably, feature maps serve as the input to these convolutional 

layers, facilitating the extraction of hierarchically structured features. 

The intricate orchestration of these components is encapsulated within the CNN Architecture 

execution sequence, as detailed below: 

• Convolution Operation: In this initial phase, convolutional filters are applied to the 

input feature maps. This process involves sliding these filters across the input, 

detecting localized patterns and generating feature maps that emphasize distinct visual 

cues. 

• Non-Linear Activation: After the convolution step, non-linear activation functions 

like ReLU are applied to the resulting feature maps. This brings in non-linearity, 

allowing the network to understand intricate relationships within the data. 

• Pooling Operation: After applying the non-linear activation, the network performs 

pooling operations. Pooling helps shrink the feature maps, reducing their size while 
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keeping vital information. Max pooling and average pooling are popular methods 

used for this purpose. 

• Fully Connected Layers: Following several convolutional and pooling layers, the 

network incorporates fully connected layers. These layers create broad connections 

throughout the neural network, aiding in a comprehensive understanding of features 

gathered from earlier steps. 

• SoftMax Classifier: The final phase involves the SoftMax classifier, responsible for 

assigning probabilities to classes. It computes the likelihood of each class being the 

correct classification for a given input, aiding in the ultimate categorization. 

This intricate sequence reflects the CNN's capacity to progressively extract intricate features 

through successive convolutional and pooling layers. The utilization of non-linear activation 

functions enriches its ability to capture nuanced relationships, while pooling operations and 

fully connected layers contribute to global feature integration. The SoftMax classifier 

provides a probabilistic framework for making categorical predictions based on the network's 

learned representations. In essence, the CNN Architecture execution sequence underscores 

the interplay of convolution, non-linearity, and pooling in a hierarchical manner, culminating 

in a powerful framework for feature extraction, abstraction, and classification. 

After extracting extensive features from dataset images using a pre-trained CNN, we generate 

N sets, each containing 400 features. These sets are amalgamated into a unified representation 

per image to facilitate subsequent support vector machine (SVM) classification. The SVM's 

role is crucial in detecting potential image alterations. It operates by leveraging these 

combined feature vectors as input, enabling the system to discern and classify alterations 

within the images based on the consolidated representations. This methodological approach, 

utilizing pre-extracted features and SVM classification, forms a fundamental stage in 

identifying and categorizing potential modifications or anomalies present within the images 

sourced from the dataset. The SVM leverages these high-dimensional feature vectors to learn 

patterns and relationships indicative of image tampering, subsequently providing predictions 

on, determining if any modifications have been made to an image. The integration of these 

steps underscores the holistic approach in which the pre-trained CNN, feature extraction, and 

SVM classification collectively contribute to the task of image authenticity assessment. By 

strategically merging the N feature representations and harnessing the discriminative power 

of the SVM, our methodology encapsulates both local and global visual cues, thus enhancing 

its accuracy in detecting image manipulation. 
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4.4 Dataset Discussion and Result Analysis 

The CASIA v2.0 dataset encompasses a fusion of three distinct categories of image 

collections, each contributing to the dataset's comprehensive composition: 

• Authentic Images: This subset encompasses unaltered images, devoid of any editing 

interventions. Constituting a significant portion, this category comprises 7,491 

images, each in its original state, serving as a benchmark for authentic imagery. 

• Tampered Images: Within this category, images have undergone diverse forms of 

manipulation, resulting in a total of 5,123 photographs. Primarily characterized by 

operations like copying, pasting, and combining, these images illustrate various 

manifestations of tampering and represent a critical aspect of the dataset. 

• Masks: The technique of pixel masking is employed to accentuate regions of 

alteration. Specifically, the pixel values of tampered images are strategically set to 0, 

delineating the altered region. Concurrently, all non-altered background pixels are 

also assigned a value of 0. This meticulous masking procedure enables the precise 

extraction of altered regions while emphasizing their contrast with the unchanged 

background. 

The amalgamation of these three distinct image categories within the CASIA v2.0 dataset 

culminates in a robust and comprehensive resource for image forensics and tampering 

detection research. The juxtaposition of authentic images, manipulated counterparts, and the 

innovative masking approach collectively equips researchers and practitioners with a diverse 

range of data, fostering a deeper understanding of image manipulation and enhancing the 

efficacy of tampering detection algorithms. The subsequent table outlines the description of 

attributes present within the dataset: 

 

Table4.1: Image dataset detail. 

Authentic Images Tampered Images Masks 

7,491 5,123 5,123 

 

The devised methodology encompasses the development of a pivotal function, aptly named 

"Patch Extractor," tailored to the precise extraction of patches from images. This function is 

invoked by furnishing it with a set of essential arguments, elucidating the intricate parameters 

and specifications governing the patch extraction process. Upon invoking the Patch Extractor 
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function, a series of critical arguments are supplied to orchestrate the extraction procedure. 

These encompass the dataset's path, serving as the source repository of images, and the 

designated path of the output, which designates the location where the extracted patches will 

be deposited. Additionally, the function accommodates the specification of a stride value, 

dictating the spatial shift between consecutive patches shown in Figure 4.3. Moreover, a 

parameter controlling rotation is integrated, enabling the generation of rotated patches, 

thereby augmenting the diversity of the extracted dataset. A fundamental component of the 

Patch Extractor function is the determination of the desired number of patches to be extracted 

from each image. This parameter facilitates the fine-tuning of the granularity of patch 

extraction, catering to specific research objectives and experimental requirements. By 

encapsulating these diverse arguments and parameters, the Patch Extractor function 

demonstrates a versatile and adaptive framework for efficient patch extraction. This 

foundational function not only streamlines the extraction process but also offers a 

customizable avenue to tailor the extraction process in alignment with distinct research needs, 

ultimately enhancing the precision and versatility of patch-based analysis. 

 

Figure 4.3. Extraction of Patches from Genuine and Altered Images 

Our algorithm effectively identified instances of image tampering, achieving a notable 

training accuracy of approximately 96%. Notably, the accuracy curve showcases a discernible 

pattern of improvement throughout the training process. Commencing at an initial level of 

around 50% accuracy during the early epochs, the algorithm's performance progressively 

advances. The trajectory of accuracy demonstrates a consistent upward trend, exhibiting a 

steady and incremental rise. This upward momentum continues until a point of stability is 

reached at approximately 86-87%, a level consistently maintained during the final epochs. 

This plateau in accuracy implies the algorithm's proficiency in reliably discerning tampered 

images, as indicated by its sustained performance over multiple iterations. Simultaneously, 

the loss function, a pivotal metric in optimization, exhibits an inverse pattern. Initiated with 
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the first epoch, the loss value gradually decreases over subsequent epochs. This gradual 

reduction underscores the algorithm's ability to align its predictions with actual outcomes, 

optimizing its parameter settings to minimize discrepancies. The loss function gradually 

converges, culminating in a stable pattern during the concluding epochs. This convergence 

further corroborates the algorithm's convergence towards an optimal state, signifying an 

effective adaptation to the underlying data distribution. Our algorithm showcases 

commendable performance in detecting image tampering, yielding an impressive training 

accuracy of approximately 96% depicted in Figure 4.4. The accuracy's consistent ascent and 

subsequent stabilization, along with the gradual decline in loss, collectively underscore the 

algorithm's robustness and efficacy in addressing the complex task of image tampering 

detection. 

 

Figure 4.4. Training Loss and Accuracy of the CNN Model 

For the comprehensive assessment of the model's performance, the test dataset serves as the 

foundation for the construction of a confusion matrix. In this evaluative endeavor, the support 

vector machine (SVM) demonstrated its adeptness in discerning between altered and original 

images. Specifically, among the pool of 1,008 tampered images, the SVM proficiently 

distinguished them from 1,426 unaltered counterparts, yielding a commendable accuracy. 

While the SVM's classification prowess is evident, a marginal subset of misclassifications 

occurred. Specifically, a total of 72 altered images were erroneously categorized, falsely 

resembling original images. Furthermore, a limited count of 17 genuine images encountered 

misclassification, being inaccurately associated with the tampered category. The resulting 

confusion matrix encapsulates this interplay of correct and misclassifications, offering a 

quantitative depiction of the SVM's performance across the dataset. This analytical 
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framework furnishes an insight into the model's precision, recall, and overall discriminative 

capabilities, thus providing a comprehensive profile of its efficacy in image tampering 

identification. The SVM's evaluation via the confusion matrix showcases its prowess in 

accurately discerning between altered and original images, exemplified by the substantial 

accuracy achieved. The slight occurrence of misclassifications, though limited, offers an 

avenue for potential refinements, thereby contributing to the continuous enhancement of the 

algorithm's detection accuracy. 

Table 4.2: Outcome of Classification Prediction. 

Image Category Actual Image Predicted Misclassified 

Native 1443 1426 17 

Forged 1152 1008 72 

 

The application of SVM classification yielded a commendable accuracy of 96.8% within our 

model. To gauge the efficacy of various recommended strategies for detecting image 

forgeries, a comprehensive comparative analysis was undertaken is shown in Figure 4.5. 

 

 

Figure 4.5. Comparative Accuracy Analysis 

Despite the notable progress achieved in image forgery detection, the field remains ripe for 

further advancements to enhance its efficacy in the future. Notably, neural networks have 

demonstrated remarkable capabilities even in the face of challenges, exhibiting a high degree 

of performance and showing promise in their potential to discern altered images. The 

augmentation of the CNN layer holds the prospect of refining the model's detection prowess. 

Multiple adjustments can be explored to fine-tune its architecture, thereby potentially 

elevating the detection rate and fostering even more precise results. However, a critical 
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consideration arises from the dataset composition, particularly in the context of real-world 

manipulation scenarios. The CASIA dataset, while comprehensive, may lag behind in 

accurately reflecting the diverse array of alterations encountered in practical situations. To 

address this limitation, a more expansive and representative dataset encompassing a wider 

spectrum of tampering techniques is imperative. Upon delving into the details of the 

confusion matrix, intriguing observations emerge. Instances of misclassification highlight the 

complex nuances inherent in image analysis. Certain images were incorrectly categorized, 

often sharing common characteristics such as blurring, fog, sun flare, or reflection. These 

intricacies underscore the intricacies of tampering detection, where the visual interplay of 

authentic and manipulated elements can lead to subtle misinterpretations. Of particular note is 

the instance where genuine images, albeit featuring blurred areas, were mistakenly labelled as 

manipulated. This scenario emphasizes the sensitivity of the detection process to nuanced 

visual traits, where certain genuine images might inadvertently exhibit features characteristic 

of tampering. 

 

4.5 Conclusions 

In conclusion, the domain of image forgery detection continues to hold untapped potential for 

future advancements. Neural networks, such as CNNs, exhibit prowess in spite of challenges, 

hinting at their evolving capacity to identify tampered images. The refinement of model 

architectures and the integration of diverse datasets are key pathways towards augmenting 

accuracy. The intricacies revealed in the confusion matrix emphasize the intricacies of image 

analysis, warranting a nuanced approach to ensure precision in discerning authentic and 

manipulated content. 
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CHAPTER 5 

MULTI-MODAL CAMERA MODEL IDENTIFICATION 

IN VIDEOS USING DEEP LEARNING-BASED CNNS 

___________________________________________________________________________

 

5.1 Video Forensic Process 

 

In comparison to the well-established use of traditional photography-based evidence in legal 

cases, the areas of source forensic query video analysis and processing multimedia evidence 

are relatively new and continually developing fields. The latter segment, referred to as 

"enhanced forensic video analysis” [190], is the focal point of our endeavors. It entails the 

meticulous scrutiny of videos and associated data through advanced analytical tools, aiming 

to uncover intricate details and insights. Our work is specifically oriented towards the domain 

of enhanced forensic video analysis. This involves the orchestration of a comprehensive 

architectural framework, as illustrated in Figure 5.1. This architecture encompasses three 

pivotal components, each contributing to the holistic process: 

• Crime scene analysis: This foundational phase involves a meticulous assessment of 

the crime scene, establishing a context for subsequent analysis. Factors such as 

lighting, camera angles, and environmental conditions are scrutinized to inform the 

subsequent data collection and analytical phases. 

• Data collection, video enhancement and analysis: Central to the process is the 

systematic collection of relevant data, which forms the basis for subsequent analysis. 

Advanced video enhancement techniques are employed to optimize the visual quality 

of the content. The resultant data is then subjected to rigorous analysis, aiming to 

unveil hidden details, patterns, and anomalies. 

• Presentation and findings enlargement: The culmination of the analysis phase 

involves the synthesis of findings into a coherent and compelling narrative. 

Employing effective presentation techniques, the enhanced insights are showcased to 

stakeholders, enhancing their understanding and contributing to informed decision-

making. 
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Figure 5.1. Advanced Framework for Forensic Video Analysis 

The essence of our work lies in harnessing cutting-edge video analysis tools to decipher 

complex forensic evidence. Through the intricate interplay of crime scene analysis, data 

collection, video enhancement, analysis, and presentation, our enhanced forensic video 

analysis architecture embodies a comprehensive approach to elucidate intricate details that 

might otherwise elude conventional scrutiny. This systematic approach aligns with the 

evolving landscape of forensic video analysis, contributing to the advancement of this nascent 

yet crucial domain. 

 

5.2 Approach for the Analysis of Query Videos for Source 

Identification Forensic 

The preceding framework underscores the clear delineation of two fundamental categories 

within forensic video analysis. These categories are notably characterized by a systematic 

classification based on the scrutiny of video content and its inherent type. 
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5.2.1 An Investigation into Types of Forensic Video and 

Analytical Approaches 

A conspicuous aim of forensic video analysis is the discernment of unauthorized reproduction 

or tampering within video files. Furthermore, an imperative task is to ascertain potential 

alterations inflicted upon the video content. Additionally, the study is positioned to unveil 

concealed information through the identification of the video source and a meticulous 

examination of video steganography for the detection of covert data. Notably, the 

identification of the video source serves as a pivotal evidentiary foundation, as evidenced by 

research [161]. This identification process holds significance in determining whether the 

video source emanates from a camera or a tokenized device, as depicted in Figure 5.2. 

Forensic audio analysis, forensic video analysis, image analysis, and computer forensics have 

all been formally established as distinct fields of inquiry by the American society of crime 

laboratory directors laboratory accreditation board (ASCLD/LAB). Notably, a surge in the 

formation of digital and multimedia divisions is witnessed across a spectrum of private, 

public, and state/local law enforcement entities. These specialized units often encompass 

various or all of the aforementioned disciplines. Notably, certain scenarios witness the same 

examiner undertaking examinations for multiple agencies, showcasing the interdisciplinary 

nature of their role. Specialization frequently ensues for examiners within larger federal and 

state agencies, as well as across various fields, culminating from extensive training and 

evolving into subject matter expertise over years. The realm of video evidence enhancement 

offers a range of techniques, as exemplified by studies. Of paramount importance is the initial 

submission of high-quality video recordings, a crucial prerequisite for yielding optimal 

outcomes through the enhancement process. It is imperative to refrain from submitting 

digitally compressed or analog copies that have undergone additional compression. Such files 

are rendered unsuitable for enhancement due to the cumulative effect of compression, which 

diminishes their capacity to undergo further improvement. 

 

5.2.2 Enhancement of Videos Techniques 

To accomplish this objective, a diverse spectrum of methodologies has been employed in the 

past decade to enhance video quality. These approaches have found applications in video 

monitoring systems, intelligent highway systems, safety-monitoring systems, and various 

other contexts. For instance, introduced an innovative technique that incorporates color 



79 

 

 

information into low-quality video footage to facilitate luggage identification. A distinctive 

strategy involves the construction of human-like temporal templates to discern an object's 

motion direction. By accurately aligning these templates with pertinent parameters, the 

object's trajectory can be effectively ascertained. Numerous researchers advocate for the 

establishment of luggage detection systems. Chuang et al., for instance, conducted a study 

aimed at identifying missing colors via a ratio histogram. This endeavor exemplifies the 

breadth of techniques employed to improve video quality and underscores the multifaceted 

nature of video enhancement in diverse application domains. The variable under 

consideration corresponds to the ratio derived from color histograms [174]. To identify absent 

colors, the integration of a tracking model becomes imperative. In the context of low-quality 

videos, the foremost objective of forensics is to extract maximal information from them, 

thereby bolstering the investigative process. This section endeavors to outline strategies 

aimed at augmenting video quality to amplify information extraction capabilities. 

Specifically, when dealing with low-quality videos or images, employing histogram 

equalization (HE)-based methodologies exhibits heightened potential for detecting 

supplementary information in contrast to conventional techniques. A pertinent illustration 

involves the utilization of a webcam to discern objects, employing the recommended 

technique as depicted in Figure 5.2. This exemplifies the efficacy of the proposed approach in 

enhancing information retrieval from low-quality visual data. 

 

Figure 5.2. Advanced Forensic Video Analysis Techniques 
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Our research focal point centers on the intricate task of camera model identification within 

video sequences, predicated on the intrinsic content of these visual data streams. The 

principal thrust of our investigation resides in the discernment of the originating camera 

model from digital video sequences, as delineated by the work of [191]. The impetus for this 

inquiry stems from the extensive exploration of digital image analysis within the forensic 

domain, resulting in remarkable achievements. Within the scope of this study, our attention is 

honed on video sequences hailing from a diverse array of smartphone models. Our innovative 

approach converges informational and auditory components within these videos, fostering a 

comprehensive analytical framework, an approach articulated by [192]. The research 

trajectory commences with an exploration of the classic mono-modal paradigm. This facet 

delves into the endeavor of source camera model identification rooted exclusively in either 

visual or auditory attributes. The ensuing sections of this discourse expound upon this mono-

modal issue in detail. Subsequently, the research landscape transcends into the realm of the 

multi-modal quandary, a core tenet of our investigation. This intricate facet amalgamates both 

visual and auditory cues, culminating in an evolved problem wherein the confluence of these 

modalities contributes to the determination of the sound source's origin. our research 

endeavors to unravel the complexities of camera model identification within video sequences. 

 

5.3  Camera Model Identification Approaches 

We navigate through the monolithic mono-modal pursuit before delving into the nuanced 

intricacies of the multi-modal inquiry, encompassing both visual and auditory dimensions. 

This comprehensive exploration promises to unveil novel insights and methodologies in the 

realm of advanced forensic video analysis. 

5.3.1 Mono-Modal Camera Model Identification  

Consequently, the underlying quandary materializes in the form of discerning the device 

model employed for capturing specific media within a singular modality. For instance, 

consider the scenario where an image is captured; in such instances, it becomes indispensable 

to ascertain the precise camera model responsible for the image's acquisition. This attribution 

serves a pivotal purpose: it enables the retracing of the image's lineage to its point of origin. 

Furthermore, this attribution extends to audio recordings, necessitating the inclusion of the 

recorder's model alongside the recorded audio, as expounded by [193]. Within the mono-

modal attribution paradigm, the crux lies in associating a video, the focus of our inquiry, with 
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the device category responsible for its capture. This attribution rests solely upon the visual or 

auditory cues intrinsic to the video's content. In essence, the essence of the attribution process 

hinges on the distinct characteristics exhibited by the visual and auditory components within 

the video. In practical terms, this implies that the model of the camera or recorder wielded for 

capturing the media leaves an indelible imprint on the ensuing visual or auditory data. The 

mono-modal framework operates within the confines of each modality, discerning the device 

model with a singular focus—be it the camera that captured a compelling image or the 

recorder that preserved a captivating audio snippet. As we delve into the intricacies of this 

mono-modal model attribution, we unravel the interplay between media, modality, and device 

model. This exploration ventures beyond the surface and delves into the nuanced dynamics 

that underlie the mono-modal attribution process, enhancing our comprehension of the 

intricate tapestry that defines the origins of visual and auditory data within the realm of video 

analysis. Our study navigates the intricacies of device model attribution within a solitary 

modality, unveiling the essence of tracing media origins through the identification of 

capturing devices. The mono-modal attribution, dissected within the context of video 

analysis, underscores the significance of visual and auditory cues as the linchpin for unveiling 

the device model that shapes the recorded content. This framework is integral to unravelling 

the intricate tapestry of multimedia attribution and embodies a pivotal stepping stone within 

advanced forensic analysis. 

5.3.2 Multi-Modal Camera Model Identification 

In the context of a video, identifying the camera model through multiple modes becomes a 

complex challenge: accurately determining the device used to record the video. This task 

involves gathering both visual and auditory data from the video. In the following example, 

we'll explore a closed-set identification process where the main goal is to figure out the exact 

camera model that recorded the video sequence. This determination is grounded in a 

predetermined roster of known devices previously employed for recording purposes, as 

elucidated by [194]. In this analytical pursuit, a foundational assumption is established: the 

video under scrutiny emanates from a device within a designated family, one acquainted with 

the investigator. This familiarity guides the investigator's inclination to associate the video 

with a device belonging to this familiar device family. The assumption presupposes that the 

recorded video aligns with the characteristic traits and idiosyncrasies intrinsic to the devices 

encompassed within the designated family. However, an inherent susceptibility prevails 

within this attribution process. The investigator could potentially err in ascribing the video to 
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a specific device within the familiar family, inadvertently assigning it to a device that it did 

not originate from. This misattribution can materialize if the video has been captured by a 

device external to the pre-established familial pool. To mitigate this potential 

misclassification, a comprehensive evaluation of both visual and aural attributes within the 

video sequence becomes paramount. The intricate interplay between these modalities 

contributes to a more accurate device model identification, reducing the likelihood of 

erroneous attributions. By scrutinizing the amalgamation of visual and aural cues, the 

investigator gains a holistic perspective, discerning nuances that aid in the precise 

identification of the originating camera model. The multi-modal camera model identification 

endeavor is encapsulated within the intricate domain of video sequence analysis. This 

challenge hinges upon the discernment of recording device models, enlisting both visual and 

aural cues as pivotal discriminators. The closed-set identification process, characterized by a 

roster of familiar device models, underscores the investigatory nature of the pursuit. 

However, the propensity for misattribution necessitates a comprehensive and nuanced 

evaluation, ensuring the alignment of the video's inherent traits with the designated familial 

attributes for accurate device model assignment. 

 

5.4 Proposed Methodology 

This research introduces a robust approach to the identification of closed-set multi-modal 

camera models within video sequences, warranting further exploration and investigation. The 

schematic representation of this pioneering approach is depicted in Figure 5.3, encapsulating 

the essence of the proposed methodology. Central to our method is the utilization of both 

visual and aural attributes intrinsic to the video content to ascertain the specific smartphone 

model employed for recording. Through the integration of these dual modalities, the inherent 

disparities among diverse camera models utilized within the source video cameras can be 

effectively discerned, thereby enabling precise model identification, as elucidated by [195]. 

The proposed strategy can be succinctly outlined through two pivotal stages: 

• Preprocessing and Content Extraction: This phase encompasses the extraction of 

salient visual and auditory information embedded within the scrutinized videos. Prior 

to the input into the CNNs, the data undergoes meticulous manipulation and 

enhancement, an operation referred to as preprocessing and content extraction. This 

preparatory stage is instrumental in facilitating effective data representation within the 

CNNs, enhancing their analytical efficacy. 
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• CNN Processing Block: The crux of the method resides within this block, which is 

divided into two integral components: the Extraction Block and the Classification 

Block, each contributing distinct functions. The Extraction Block processes the raw 

data, effectively parsing it into discriminative features that encapsulate the essential 

attributes of the visual and auditory content. Subsequently, the Classification Block, 

constituted by a CNN, undertakes the intricate task of model classification based on 

the feature-rich input. This involves the CNN's capacity to identify and differentiate 

the unique characteristics that demarcate various camera models, thereby elucidating 

the specific smartphone model utilized for recording. 

 

 

Figure 5.3. Flowchart Illustrating the Proposed Methodology 

The synergy between these steps culminates in a comprehensive and sophisticated approach 

to multi-modal camera model identification within video sequences. By harnessing the power 

of visual and auditory cues, coupled with the analytical prowess of CNNs, the methodology 

transcends the boundaries of conventional unimodal techniques. This innovative method 

equips researchers and practitioners with a robust tool for the precise determination of camera 

models, thereby augmenting the realm of advanced forensic video analysis. As future 

investigations delve deeper into this method, its potential for refinement and enhancement 

remains an exciting avenue for exploration. 

5.4.1 Content Extraction and Pre-Processing 

Our methodology starts with extracting and preparing visual and audio content, focusing on 

thorough data standardization. This first phase involves a three-part process (shown in Figure 

5.4) that's highly detailed in extracting and preparing the visual content found in the 

examined video. These phases encompass: 



84 

 

 

• Temporal Frame Selection: The extraction of color frames from the video stream (Nv) 

is executed strategically, selecting frames that are uniformly distributed over an 

extended temporal interval [196]. This approach ensures temporal diversity and 

robustness in frame representation. The video frames are categorized into two 

dimensions, Hv and Wv, which correspond to their height and width, dictated by the 

resolution of the video under examination. 

• Random Patch Extraction: In this phase, a random sampling process is employed to 

extract NPv color patches, each characterized by dimensions HPV and WPV. These 

patches serve as the data input for the CNNs. Subsequently, the extracted patches 

undergo normalization to facilitate optimal training conditions within the CNNs. This 

normalization step aims to achieve a zero mean and unit variance across the data, 

contributing to enhanced convergence and performance during the subsequent 

analysis. 

• Audio Content Extraction and Pre-processing: Beyond visual content, this phase 

encompasses the extraction and pre-processing of audio data embedded within the 

video. Techniques such as spectrogram analysis may be applied to convert audio 

signals into a visual representation, facilitating subsequent analysis within the multi-

modal framework. 

 

 

 

Figure 5.4. color frames from Nv, extracted as HV and WV sizes. As a result of this analysis, randomly 

extraction of NPv visual patches of size HPvWPv from these frames 
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The intricate orchestration of these phases within the extraction and pre-processing stage lays 

the foundation for comprehensive data representation, poised for insightful analysis. This 

preparatory groundwork is instrumental in fostering the accuracy and efficacy of the ensuing 

CNN-based analysis. The extraction and pre-processing phase of our methodology constitute 

a pivotal preliminary step in the multi-modal camera model identification process. By 

harmoniously integrating the temporal frame selection, random patch extraction, and audio 

content pre-processing, the method primes the data for ingestion into the Convolutional 

Neural Networks. This synergistic approach ensures data uniformity, diversity, and optimal 

normalization, culminating in a robust data representation that forms the bedrock for 

subsequent advanced analyses within the proposed framework. 

The extraction and preparation of audio content from the scrutinized movie encompass a 

structured process outlined in three distinct phases, as delineated in Figure 5.5: 

• Audio Content Extraction: The initial phase entails extracting audio content from 

the linking matrix set (LMS L) associated with the video sequence. The significance 

of the LMS L as a robust tool for audio data is underscored by its extensive 

application in various audio and speech classification studies. Through exploratory 

experimentation, several audio attributes were derived from the short-time fourier 

transform (STFT) signal's magnitude and phase. Notably, the LMS (predicated on the 

STFT signal's magnitude) emerged as the optimal choice, rendering superior results. It 

is noteworthy that LMS outperformed phase-based methods [197], yielding an 

accuracy rate exceeding 80%. The LMS L, visualized as a matrix of dimensions Ha 

Wa, is characterized by rows representing temporal nuances (varying in alignment 

with video length) and columns delineating frequency content in Mel units. 

• Random Patch Extraction: Subsequent to the audio content extraction, NPa patches, 

each of dimensions HPaWPa, are randomly extracted from the LMS L. This step 

enhances the diversity and comprehensiveness of the audio data that will be subject to 

further analysis. 

• Patch Normalization: The third phase of this process revolves around patch 

normalization, akin to the normalization applied to the visual patches. This 

normalization is instrumental in ensuring that the extracted audio patches exhibit a 

zero mean and unitary variance. This enhancement facilitates consistent and 

optimized data representation, fostering precision and efficacy during subsequent 

analytical operations. 
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Figure 5.5. Computation of LMS after the audio content, which has the size Ha Wa, has been selected. Random 

extraction of  NPa audio patches with sizes HPaWPa from the NPa audio patches 

In summation, the comprehensive treatment of audio content extraction and preparation 

within the proposed methodology encompasses a tri-fold process. Commencing with the 

extraction of audio content from the LMS L, and proceeding to the extraction of randomized 

audio patches, culminating in patch normalization, this systematic approach ensures the 

meticulous handling and optimization of audio data. These preparatory steps collectively lay 

the groundwork for subsequent analysis within the multi-modal camera model identification 

framework. 

5.4.2 CNN Processing 

Upon retrieval of the pre-processed data, it is subsequently channeled into one or multiple 

CNNs within the CNN processing stage. Here, the objective is to elicit distinctive features 

corresponding to diverse source camera models and effectuate their subsequent classification. 

A tangible manifestation of this approach lies in addressing the mono-modal camera 

identification problem by feeding either the retrieved visual or auditory data into a CNN, as 

illustrated by [198]. 

While any CNN architecture capable of data classification can, in principle, be harnessed 

during this stage, our rationale behind the chosen architecture is expounded upon in 

subsequent sections. The final layer of the classification network consists of a fully connected 

layer containing nodes equal to the total number of camera models (M). Each node represents 

a distinct camera model incorporated into the network. In application, the result is an M-

element vector called "y". Within this vector, the element "ym" encapsulates the probability 

or likelihood that the model affiliated with the respective node accurately captured and 

processed the input data. This vector consequently facilitates the extraction of valuable 
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insights from the classification process, thereby furnishing a means to identify the anticipated 

model "m" that engendered the input data. 

 

5.4.3 Early Fusion Methodology 

Similar to the first method, the second technique, known as "Early Fusion," involves merging 

two separate CNNs to create a single CNN with multiple inputs. This fusion is achieved by 

combining the final fully-connected layers of both networks and then adding three more 

fully-connected layers to generate the final predictive outcome. This process imparts the 

camera type classification with dimensionality cues, as delineated in Figure 5.6. Leveraging 

paired visual and audio patches, each instance of Early Fusion prognosticates the projected 

camera model predicated upon its respective estimation. The ultimate determination is 

rendered through the final fully connected layer, culminating in the computation of "yEF," 

which represents the score emanating from this terminal layer [199]. During the training 

phase, our methodology employs pairs of visual and audio patches as a cohesive mechanism 

to train the complete network. It is imperative to underscore that this differs from the Late 

Fusion approach, wherein there exists no discrete training procedure for the visual and audio 

branches. In a parallel vein, both the training and testing stages mirror those employed in the 

monomodal technique. However, a notable departure lies in the allocation of visual and audio 

patch pairs throughout the entire network, unlike before, where single patches were primarily 

used (mostly focusing on visual or audio content), the process shown in Figure 5.6 explains 

the workflow of the Early Fusion technique, summarized in a flowchart. Understanding the 

dimensions of input and output features related to the fully-connected layers is essential for 

designing this methodology. This architectural understanding helps structure the Early Fusion 

scheme systematically [200]. It's important to note that the output feature from the final 

network layer matches the size of M, representing the number of assessed camera models. 

This pivotal characteristic enhances the predictive capabilities of the network by 

encapsulating the potential camera models within the final output layer. As the training phase 

unfolds, the integrated utilization of visual and audio patch pairs instils a holistic perspective, 

fostering a comprehensive understanding of the multi-modal intricacies inherent in the data. 

The absence of disjoint training sequences, as witnessed in Late Fusion, underscores the 

seamless synergy between the visual and audio domains. In this cohesive framework, the 

amalgamation of information from both modalities imbues the network with a heightened 

capacity for discernment and prediction. 
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Figure 5.6. Pipeline of the Early Fusion Methodology 

In the context of testing, the congruity with the monomodal technique remains palpable, 

thereby ensuring a cohesive and coherent evaluation process. While parallel to its monomodal 

counterpart, the Early Fusion methodology draws its potency from the integrated presentation 

of visual and audio patch pairs, ultimately augmenting its predictive prowess and enabling 

nuanced camera model identification. 

5.4.4 CNN Architectures 

Our approach centers on employing two distinct CNNs, namely EfficientNetB0 and VGGish, 

pivotal in addressing the specified issue. EfficientNetB0 occupies a pivotal position within 
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the avant-garde EfficientNet family of CNN models. Renowned for its exemplary 

performance in multimedia forensics tasks, it stands out as a highly promising candidate 

within this lineage. Our strategic selection of the EfficientNetB0 stems from its foundational 

nature, rendering it an ideal choice to serve as our cornerstone model. Its inherent simplicity 

allows for an extensive range of experimentation across various evaluation configurations. 

Notably, the expedited training phases facilitated by EfficientNetB0 offer an invaluable 

advantage, fostering iterative experimentation across diverse parameter settings. Crucially, 

preliminary investigations affirm the model's stability, corroborated by minimal deviations 

when scrutinizing parameters, thus underpinning its efficacy in comparison to 

computationally more intricate counterparts [126]. Furthermore, our methodology 

incorporates the VGGish CNN, an exemplar derived from the esteemed VGG network 

lineage, renowned for its efficacy in image classification. This strategic inclusion attests to 

the inherent adaptability of CNN architectures, adeptly extending image-centric principles to 

the realm of audio classification. By leveraging the strengths of VGGish, our framework 

augments its multi-modal capabilities, collectively harnessing visual and auditory cues for 

enhanced camera model identification. The dual utilization of EfficientNetB0 and VGGish 

engenders a potent synergy, orchestrating a comprehensive analysis that transcends single-

modal paradigms. This tandem approach harnesses the prowess of each CNN to decipher the 

intricate nuances embedded within distinct video sequences, accentuating the proficiency of 

camera model identification. Through the orchestrated orchestration of EfficientNetB0 and 

VGGish, we orchestrate a nuanced understanding of the inherent attributes within diverse 

video streams, effectively bridging the domains of visual and auditory data. This integrated 

methodology fortifies our capacity to discern and distinguish camera models, propelling the 

boundaries of multi-modal analysis and deepening our comprehension of camera model 

identification. The realm of audio classification is enriched by the utilization of several 

CNNs, with the VGGish CNN standing as an eminent exemplar. This network draws 

inspiration from the well-established VGG networks renowned for their prowess in image 

classification. To address our specific challenge, we adopt a dual-CNN strategy, 

incorporating two distinct CNNs: EfficientNetB0 and VGGish. EfficientNetB0 holds a 

significant position within the newly introduced Efficient Net family of CNN models. As a 

member of this family, it is hailed for its outstanding performance within multimedia 

forensics tasks. Of noteworthy distinction, EfficientNetB0 emerges as a frontrunner among its 

counterparts, demonstrating remarkable capabilities in the realm of camera model 

identification. Situated within the cutting-edge Efficient Net model family, EfficientNetB0 
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showcases exceptional promise, particularly within the context of multimedia forensics, 

substantiated by its performance in diverse scenarios (Pandeya & Lee, 2021). Our 

comprehensive approach embraces both EfficientNetB0 and VGGish, synergizing their 

strengths to tackle the intricacies of camera model identification. By intertwining the 

capacities of these two CNNs, we forge a robust foundation for multi-modal analysis, 

advancing our understanding of camera model discernment through a confluence of visual 

and auditory cues. Our selection of the Efficient Net model stems from its fundamental 

nature, rendering it an ideal candidate for our research objectives. Its foundational simplicity 

grants us ample leeway to explore a spectrum of evaluation configurations, enabling a 

thorough investigation of our objectives. A notable advantage lies in the expeditiousness of 

its training phase, affording us a considerable temporal allowance for comprehensive 

experimentation. This temporal abundance facilitates the meticulous tuning of our model's 

performance, contributing to a heightened understanding of its capabilities. Notably, our 

preliminary experiments have already unveiled a pivotal insight: the absence of any 

substantial discernible divergence when employing varying parameters. Specifically, when 

evaluating EfficientNetB0's performance vis-à-vis computationally more intricate models 

characterized by an augmented parameter count, no significant discrepancies have emerged. 

This assertion, substantiated by empirical evidence, reinforces the efficiency and potency of 

our chosen Efficient Net model, debunking concerns of parameter-heavy models that entail 

greater computational demands [201]. Within the realm of audio classification, a diverse 

array of CNNs is harnessed for discerning auditory features. Among these, the VGGish CNN 

stands out, drawing its architectural inspiration from the renowned VGG network, initially 

tailored for image classification. Notably, the design of VGGish capitalizes on the proven 

efficacy of CNNs in audio classification tasks. 

Upon traversing the dataset, the subsequent procedural imperative involves partitioning it into 

distinct training and validation sets. The training set serves as the foundation upon which the 

model's learning is cultivated, while the validation set serves as the crucible for assessing the 

trained model's performance. An effective strategy encompasses the extraction of frames 

from each video constituting both the training and validation sets. These frames, culled from 

the videos, lay the groundwork for subsequent analysis. The trajectory proceeds with 

preprocessing the extracted frames, culminating in their transformation into refined data 

representations. Subsequently, the training set of pre-processed frames is marshalled to train a 

specialized model, calibrated to glean nuanced insights from the audiovisual content. This 

strategic training phase imparts a model with the requisite cognitive machinery for discerning 
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intricate patterns and characteristics inherent within the audiovisual input. An intrinsic facet 

of this process resides in the pivotal role of the validation set. During the evaluation phase, 

the model's predictive capacity is scrutinized, with the frames extracted from the validation 

set serving as the input for these assessments. The model's efficacy and aptitude are gauged 

through the lens of these validation set frames, encapsulating its prowess in interpreting and 

classifying the audiovisual content. Upon achieving satisfactory performance benchmarks on 

the validation set, the trained model is poised to undertake the task of categorizing additional 

videos, thereby extending its utility. This pivotal step leverages the model's acquired 

cognitive capacity to discern and classify intricate audiovisual nuances within new video 

inputs. Figure 5.7 offers a visual representation of the processing flow within the spatial 

stream. The upper segment of the figure intricately delineates this trajectory. The 

classification CNN is meticulously designed to categorize visual content, resembling the 

structure of typical deep CNNs used for image classification. Each frame extracted from a 

video serves as input to this network. The architectural enhancements involve a sequence of 

convolutional layers, pooling layers, and fully connected (FC) layers. In this construct, 

frames undergo a sequential process. Initially, they pass through convolutional layers, 

instrumental in extracting complex features and patterns from the visual data. Subsequently, 

pooling layers down sample the information, retaining crucial features while reducing spatial 

dimensions. The network then integrates fully connected (FC) layers, facilitating 

comprehensive connections across the processed visual information. These FC layers allow 

for a holistic comprehension of features extracted from earlier stages, aiding in higher-level 

decision-making. This architecture aims to systematically process individual frames, 

extracting nuanced visual information through convolutional layers, distilling essential 

features via pooling layers, and finally, comprehensively understanding these features 

through fully connected layers. The network's design enables it to grasp intricate details and 

patterns within each frame, contributing to a comprehensive assessment of visual content in 

the classification process. These components collectively synergize to facilitate the intricate 

analysis and interpretation of the visual data ingrained within each frame. The convolutional 

layers meticulously detect salient features, the pooling layers condense and abstract these 

features, and the fully connected layers amalgamate these insights to make informed 

classification determinations. In essence, the framework orchestrates an intricate cascade of 

computational operations, which, guided by the model's training and prior learned insights, 

culminate in the accurate categorization of visual content encompassed within each video  

 



92 

 

 

 

Figure 5.7. Processing Pipeline for the Extraction of Two-Stream Features from CNNs 

 

frame. This procedural framework ultimately empowers the model to systematically 

categorize videos, affording a mechanism to extrapolate its acquired knowledge and 

proficiency to novel audiovisual inputs. 

5.5 Result Analysis 

Within this section, our focus initially lies on introducing the dataset and outlining the 

experimental framework that will underpin our investigations. This encompasses network 

training parameters and configurations essential for network training. Subsequently, we detail 

the chosen evaluation metrics and provide an insightful commentary on the achieved results. 

Dataset: In this research, we utilize captured video frame patches obtained from the Vision 

dataset, a newly introduced collection of images and videos specifically designed for 

investigations in multimedia forensics. This dataset contains roughly 650 original videos 

from different time variant in HDR captured by 35 latest smartphones, DSLR, and their 

respective social media variants. The collection comprises approximately 2050 video with 

different length, each clearly identifying the device used to capture it. For our 

experimentation, we deliberately selected non-flat videos, depicting genuine scenarios with 

various objects, from both the unprocessed source (i.e., videos captured directly via 

smartphone camera without post-processing) and those subjected to compression through 

WhatsApp and YouTube platforms. In our pursuit of the desired analytical granularity, we 

aggregated videos from diverse devices belonging to the same model, facilitating 

comprehensive model-level analysis. Notably, videos sourced from devices D04, D12, and 

D17 are considered for evaluation, with the exclusion of D21 and D22 due to frame or audio 
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track extraction difficulties, as per the Vision dataset nomenclature. Furthermore, original 

videos not available in compressed form on WhatsApp or YouTube are omitted from our 

analysis. Diverging from prevalent video analysis services, our approach extends beyond the 

realm of high-resolution videos, encompassing a spectrum ranging from resolutions equal to 

or exceeding 720p down to 640x480. Our dataset comprises 1110 videos, each approximately 

one minute in duration, sourced from 25 distinct cameras. In order to assess how well our 

method classifies videos, we use the given details about the original camera model as the 

reference for each video sequence. To analyze the visual content, we extract 50 frames from 

every video sequence, evenly spread out across the entire duration. Each frame is divided into 

10 randomly positioned patches, resulting in a total of NPv = 500 color patches per video. 

These patches are of dimension 256x256 pixels, a choice that yields favourable outcomes in 

our study. The collected dataset exhibits considerable diversity, encompassing varying 

camera models and resolutions, thereby enabling a comprehensive evaluation of the proposed 

technique's performance.  

This inclusive dataset approach enhances the robustness of our methodology, as it is designed 

to handle a wide array of video scenarios encountered in real-world multimedia forensics 

tasks. By encompassing a broad range of resolutions and camera models, our approach 

accounts for real-world variations and challenges, bolstering the practical applicability and 

generalizability of our findings. It allows us to validate the effectiveness of the suggested 

technique under diverse conditions, ensuring its relevance across a spectrum of multimedia 

forensics scenarios. our dataset comprises 1110 videos with resolutions spanning from 720p 

to 640x480, recorded by 25 different cameras. Ground truth information about the source 

camera model is employed for classification assessment. We systematically extract visual 

content through a well-defined process of frame and patch selection. The resultant dataset 

demonstrates an appropriate diversity of scenarios, models, and resolutions, serving as a 

comprehensive foundation for evaluating and validating the proposed technique's 

performance and effectiveness. This thorough and inclusive approach enhances the practical 

utility and applicability of our methodology, enabling its potential deployment in real-world 

multimedia forensics applications. To ensure robustness and address potential concerns of 

overfitting and reduced prediction accuracy, we strategically devised a custom dataset for our 

feature extraction process, departing from the Kaggle dataset that comprises ten classes and 

275 instances. Recognizing the limitations associated with the Kaggle dataset, we 

meticulously curated a new dataset with enhanced parameters, consisting of 1300 instances 

distributed across three distinct classes: iPhone 6s, Xiaomi Note 4x, and Samsung Galaxy J7. 
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Our decision to construct this new dataset was driven by the need to mitigate the 

aforementioned challenges and cultivate a dataset that aligns more closely with the objectives 

of our study. This strategic approach empowers us to curtail potential overfitting concerns 

and elevate the precision of predictive outcomes. Furthermore, our dataset enhancement 

strategy encompassed the introduction of two novel classes into the analytical framework. 

Inclusive of 275 samples each, these classes encompassed Samsung Galaxy Note 3 and HTC 

One M7 camera instances, thereby augmenting the dataset's comprehensiveness and diversity.  

The crux of our methodology hinges on feature extraction, a pivotal process that underpins 

the classification task. This involved the meticulous provision of our curated dataset to the 

model, enabling the extraction of salient features intrinsic to each camera model. These 

features, culled from the intricate nuances of the dataset, hold the key to discerning and 

characterizing camera models. By employing a feature-centric approach, we transcend the 

limitations of mere pixel-level analysis, delving deeper into the distinctive traits embedded 

within the data. The aggregation and analysis of these features facilitate a more profound 

understanding of the unique characteristics exhibited by each camera model, enabling 

accurate classification based on a comprehensive array of discriminating attributes. Upon 

extracting and analyzing the distinctive features of the camera models, our classification 

process ensued. These features, which encapsulate an array of intricate details and patterns, 

are harnessed to systematically categorize the camera models. The classification process 

harnesses the amalgamation of features to make informed and precise determinations, 

underpinning the core predictive capability of our proposed model. we judiciously 

transitioned from the Kaggle dataset, steering clear of its potential limitations, and 

painstakingly curated a novel dataset with heightened attributes and strategic class 

composition. This dataset refinement was instrumental in surmounting issues such as 

overfitting and accuracy diminishment. The subsequent feature extraction process facilitated 

a profound analysis of camera model characteristics, furnishing the groundwork for a robust 

classification mechanism. By anchoring our classification on these distinctive features, we 

establish a principled and technologically sophisticated methodology for camera model 

categorization, offering enhanced accuracy and predictive prowess. 

Table 2 presents the average error rate and the standard deviation of the confidence score 

related to the patch dataset's test split. It also illustrates different values of a crucial variable, 

which we refer to as. These parameter values have been systematically explored to gauge 

their impact on the susceptibility to adversarial instances, particularly instances where FGSM 

perturbations yield negligible visual alterations in the context of untargeted attacks. The  
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Table 5.1: Details of the dataset. 

Device Model Name Number of Instances Captured From 

IPhone 6s 1500 self 

Xiaomi Note 4x 1560 self 

Samsung Galaxy j7 1600 self 

Samsung Galaxy Note 3 1000 Kaggle 

HTC One M7 550 Kaggle 

 

investigation unfolds within the realm of the patch test split, yielding noteworthy insights. 

Among the array of evaluated values, it becomes evident that a value of = 0.005 engenders an 

optimal trade-off between the error rate and perceptible alterations in the image domain. This 

strategic selection stems from a meticulous balance achieved between the discriminative 

prowess of the trained DenseNet model detector and the observable changes in the 

manipulated image. 

The performance metrics substantiate this strategic choice. When exposed to examples 

created with the determined ideal value of, the improved DenseNet model achieves an 

average accuracy rate of 93.1 percent. Simultaneously, the model's maximum trust rating is at 

a remarkable 95.3 percent. This robust performance manifests the detector's aptitude in 

effectively categorizing instances while maintaining a high degree of certainty in its 

predictions. An interesting observation emerges as the value of is modulated. It becomes 

apparent that the perceptibility of manipulations is intrinsically linked to the magnitude of. As 

this parameter escalates, the visual impact of manipulations becomes progressively 

pronounced. This nuanced relationship underscores the intricate interplay between model 

sensitivity and the detectability of adversarial interventions. 

In summation, the exploration of diverse values for within the framework of the patch dataset 

test split furnishes crucial insights into the trade-off between error rates and perceptual 

alterations. The judicious selection of = 0.005 emerges as a pivotal decision point, offering an 

optimal equilibrium between classification accuracy and the visual fidelity of manipulated 

instances. The ensuing performance of the trained DenseNet model is marked by a 

commendable average error rate of 93.1 percent, complemented by a robust average 

confidence level of 95.3 percent. Moreover, the delineation of the relationship between and 

the perceptibility of manipulations accentuates the dynamic nature of the detector's 

responsiveness and its consequential impact on adversarial instance detection. 
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Table 5.2: The error rate and confidence score of the DenseNet model. 

Ǫ Value Error Rate (%) Confidence Score (%) 

0.01 97.3 97.8 

0.02 94.8 91.0 

0.03 92.6 93.9 

0.04 93.7 92.8 

0.05 98.4 94.8 

0.06 96.7 98.6 

0.07 91.5 99.4 

0.08 90.6 97.1 

0.09 92.0 92.0 

0.11 91.4 91.2 

 

The table demonstrates the error rate and confidence score resulting from an untargeted 

FGSM attack on the test partition, evaluating the performance of our trained DenseNet 

model. The provided chart, which is displayed in Figure 5.8, compares the suggested 

methodology with alternative approaches. 

 

 

Figure 5.8. Comparing the Suggested Approach with Alternative Approaches 
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The additional experiment was limited to using the second set of attributes and involved CFA 

interpolation. The evaluation yielded a precision of 86.93%. Although this outcome is 

considered acceptable, it falls short of the results achieved in the first experiment that relied 

solely on co-occurrences. To further enhance accuracy and achieve an average of 97.81%, a 

fusion approach was employed by combining both feature sets and applying them in tandem. 

This amalgamated approach resulted in an impressive average accuracy of 98.75% across all 

three feature sets. Table 5.3 comprehensively illustrates the outcomes of the aforementioned 

experiments, providing a detailed overview of their respective accuracy rates. 

 

Table 5.3: illustrates classification accuracy derived from the VISION dataset. 

Model N Constraint 

Type 

Overall Flat Indoor Outdoor WA YT NA 

ResNet50 60 Conv 55.20 64.81 50.74 41.71 55.10 51.60 62.80 

ResNet50 60 Conv 55.20 64.81 50.74 41.71 55.10 51.60 62.80 

MobileNet 60 None 71.57 85.32 62.87 75.45 78.66 67.96 71.66 

MobileNet 60 Conv 56.18 64.74 47.21 56.51 53.60 46.20 53.00 

MobileNet 60 PRNU 62.70 63.96 53.11 61.12 58.80 63.50 67.30 

MobileNet 60 None 75.87 76.92 64.62 75.02 74.84 77.68 75.90 

MobileNet 60 PRNU 61.74 65.96 54.14 67.14 57.81 65.54 68.31 

 

 

Figure 5.9. Classification Accuracy of Camera Proposed Methods 
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The table that follows gives a thorough summary of each Convolutional Neural Network's 

(ConvNet) particular test accuracy as well as the total test efficiency for each of the three 

different settings—flat, indoor, and outdoor. Furthermore, three types of compression are 

included in the evaluation: native (NA), WhatsApp (WA), and YouTube (YT). N I-frames 

per movie were used in the testing as well as training stages of a standard procedure that 

produced consistent outcomes. It is noteworthy that the obtained results align with those of 

parallel tests conducted, confirming the reliability of the PRNU-based methodology. Across 

all tested scenarios and compression types, the accuracy achieved through PRNU analysis 

significantly outperforms the accuracy observed with limited counterparts. The accuracy 

measurements are underpinned by a rigorous evaluation process conducted on the VISION 

dataset. This dataset provides a solid basis for evaluating the effectiveness and efficacy of the 

ConvNets in different compression circumstances and parameters. 

 

Table 5.4: compares the accuracy of MobileNet when it is compared to different counts of I-frames per  

video (I-fpv). 

 

In order to establish a comprehensive comparative analysis, an analogous experiment was 

undertaken utilizing the I-frames methodology. The outcomes of this experiment have been 

meticulously documented in Table 4. The results of this study demonstrate that the model 

may get a remarkably high degree of accuracy even with a restricted number of I-frames used 

in testing. 

It is worth noting that the VISION dataset, central to this study, comprises movies of 

relatively short duration. Consequently, the pool of available I-frames is inherently 

constrained. Attempts to augment the number of extracted I-frames do not yield a 

commensurate increase in accuracy, owing to the inherent limitations posed by the dataset's 

compressed temporal scope. 

I-fpv Overall Flat Indoor Outdoor 

1 69.12 71.1 57.5 76.5 

5 72.31 79.8 59.6 75.4 

30 74.10 82.1 62.3 76.0 

50 73.51 81.5 61.6 75.4 

100 73.71 82.1 61.6 75.4 

All 73.71 82.1 61.6 75.4 

1 69.12 71.1 57.5 76.5 
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The implications of these results are twofold. Firstly, they underscore the model's inherent 

resilience and capacity to deliver consistent accuracy levels, even in scenarios characterized 

by limited data points such as I-frames. Secondly, the study highlights the influence of 

dataset characteristics, with the temporal brevity of the VISION dataset movies contributing 

to the observed phenomenon of accuracy stabilization despite efforts to expand the I-frame 

extraction process.In essence, the study underscores the interplay between the model's 

robustness and the data constraints presented by the dataset's temporal attributes. This insight 

is of paramount importance in both refining the model's application and in comprehending 

the intricacies of video-based analysis within the context of limited temporal information. 

 

Figure 5.10. Fig: Test Accuracy of Mobile,net Frames per Videos 

Drawing from our accumulated expertise, we firmly assert that the most efficacious 

overarching approach involves the integration of the Late Fusion technique, coupled with a 

judicious configuration of the EE192 model based on our experiential insights. In scrutinizing 

both native and YouTube video sequences, this composite methodology consistently delivers 

the most accurate outcomes across various testing paradigms, regardless of the presence of 

cross-tests or the distinction between non-cross and cross-tests. Interestingly, the cross-test 

results, encompassing WhatsApp data, align closely with the performance of the alternative 

configurations, if not exhibiting a slight diminution. This phenomenon can be attributed to the 

remarkable adaptability of the trained CNNs within this setup to the specific training data 

they encounter. These CNNs exhibit a nuanced sensitivity, rendering them less versatile and 

more susceptible to the pronounced data compression characteristic of platforms like 

WhatsApp, which, in turn, elucidates the comparatively suboptimal performance observed. 

In essence, this observation underscores the intricate interplay between the network's 

adaptability to diverse training data and its susceptibility to compression-induced variations. 
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By aligning Late Fusion methodology with EE192 configuration based on these insights, our 

approach demonstrates superior versatility and robustness, while also shedding light on the 

nuanced dynamics that govern performance fluctuations across distinct compression contexts. 

5.6 Conclusions and Future Works 

This study introduces an innovative multi-modal approach aimed at discerning closed-set 

camera models within digital video sequences. This research uses both auditory and visual 

data that is taken from the video itself in order to pinpoint the exact smartphone model that 

was used to film a particular video. The suggested approach uses Convolutional Neural 

Networks (CNNs) to categorize the video according to its audio and visual characteristics. 

Patches from the video frames are used to create the visual portion, and patches from the 

audio track's Log-Mel Spectrogram are used to create the sound portion. The main objective 

is to use the Late Fusion technique to classify the query video by integrating the results of 

two distinct networks that are specialized in auditory and visual analysis. One person handles 

aural patches, while the other processes visual patches. After that, these combined scores are 

sent into a multi-input network that uses paired aural and visual patches fetched from the 

query video. This holistic approach integrates diverse modalities of information within a 

singular framework, fostering a comprehensive analysis of video sequences. The combination 

of visual and auditory cues, harnessed through state-of-the-art CNN architecture, empowers 

the system to effectively delineate nuances intrinsic to various smartphone models' 

characteristic capture patterns. By employing the Late Fusion technique, the system 

capitalizes on the strengths of individual mono-modal networks and orchestrates their outputs 

to achieve enhanced accuracy and discriminative power. This sophisticated strategy facilitates 

the identification process, resulting in a more refined and accurate determination of the 

source camera model for the given query video. This work aims to transform the field of 

electronic video clips camera model identification. Using the creative combination of visual 

and auditory data, as well as the calculated application of the Late Fusion technique, the 

suggested methodology enhances the precision as well as the precision of camera model 

categorization, hence expanding the potential applications of investigative multimedia 

processing. 

 

A single multi-input system is used by the Early Fusion technique to process input from both 

visual and auditory patch pairs retrieved from the query video. The fact that both of these 

tactics are multi-modal techniques for camera model identification must be emphasized. 
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Using a range of designs and data pre-processing methods, our study aims to investigate three 

different topologies for each of these approaches. We use video clips from the Vision dataset 

to assess the effectiveness of our experimental efforts. The scope of our assessment extends 

beyond solely original native videos captured directly by smartphone cameras. We 

intentionally include diverse video sources to explore an array of training and testing 

configurations, aiming to simulate real-world scenarios necessitating the categorization of 

data subjected to internet-based compression services. In pursuit of these objectives, we also 

incorporate videos that have undergone compression through algorithms employed by 

platforms such as WhatsApp and YouTube (commonly used for social media and uploading 

purposes). This multifaceted approach enables us to gauge the performance and robustness of 

our proposed multi-modal attribution strategy under varying conditions, thereby reflecting the 

intricacies encountered in practical contexts. Additionally, our investigation involves a 

comparative analysis between the multi-modal attribution strategy we introduce and 

conventional mono-modal attribution methods, along with other suggested techniques. By 

subjecting our proposed strategy to rigorous evaluation against established benchmarks and 

alternative methodologies, we strive to ascertain its distinct advantages and contributions 

within the realm of camera model identification. Our study employs a systematic approach, 

utilizing both Early Fusion and Late Fusion methods as multi-modal avenues for camera 

model identification. Through comprehensive experimentation involving different topologies, 

architectural variations, and real-world data scenarios, we seek to validate the efficacy and 

versatility of our proposed strategy, thereby enriching the discourse on multimedia forensics 

and advancing the field's analytical capabilities. On a comprehensive analysis, the Late 

Fusion methodology emerges as the frontrunner among diverse multi-modal approaches, 

notably surpassing the conventional mono-modal counterparts. Empirical evidence 

consistently substantiates the superiority of multi-modal methodologies over mono-modal 

ones. Notably, the Late Fusion technique achieves outstanding performance levels, exceeding 

a 99 percent accuracy threshold in distinguishing original video sequences from YouTube 

counterparts. 

However, it's noteworthy that a fraction of videos, albeit small, poses challenges for accurate 

modeling, primarily attributed to the pronounced compression characteristic of WhatsApp. 

This intriguing observation suggests the potential emergence of novel challenges and avenues 

for advancement, particularly in the domain of identifying originating camera models for 

videos that find widespread dissemination through social media platforms. The prevalence of 

extreme compression in WhatsApp raises intriguing questions that warrant further 
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exploration to comprehend the underlying factors contributing to this challenge. Furthermore, 

a noteworthy aspect is the adaptability of the proposed multi-modal solutions to broader 

scenarios encompassing more than two data modalities. The framework's flexibility is readily 

amenable to extension, accommodating additional data sources seamlessly. This adaptability 

envisions future scenarios where the complexity of data may demand integration across 

multiple modalities, reinforcing the robustness and versatility of the Late Fusion approach. 

It's also pertinent to acknowledge that the adoption of the Late Fusion approach offers a 

streamlined training paradigm. By training the Convolutional Neural Networks (CNNs) 

independently for each target within the multi-modal architecture, the complexity of the 

learning process is effectively compartmentalized. This modular training scheme facilitates 

efficient handling of varying data modalities, enhancing the agility and scalability of the 

approach in scenarios requiring expansive data integration. 

In summation, the Late Fusion technique emerges as a potent contender in the realm of multi-

modal methodologies, showcasing remarkable performance advantages over traditional 

mono-modal strategies. Its remarkable accuracy in distinguishing video origins, even in 

challenging scenarios, highlights its potential relevance in contemporary multimedia 

forensics. Moreover, its inherent adaptability and modularity position it favorably for future 

explorations into more intricate multi-modal scenarios, underscoring its capacity to serve as a 

foundational framework for advancing camera model identification and related endeavors. 
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CHAPTER 6 

CONCLUSION AND FUTURE SCOPE 

___________________________________________________________________________

 

6.1 Conclusion 

 

In this study, we delve into the realm of image source identification, presenting a pioneering 

deep convolutional neural network (CNN) as a robust solution to achieve commendable 

testing and learning performance. The overarching goal is to enhance the accuracy of image 

forgery detection, addressing the growing challenges posed by manipulated and altered 

images in the contemporary real-world scenario. The proposed CNN model undergoes 

several modifications in its architecture to improve the detection rate, ensuring its adaptability 

and efficacy across various types of altered images. This iterative process of refinement is 

crucial in developing a model that can reliably discern the source of images in a dynamic and 

ever-evolving digital landscape. Our approach is specifically tailored to function efficiently in 

the current real-world scenario, where the prevalence of altered images presents a significant 

obstacle to conventional image forensics techniques. By subjecting the proposed CNN model 

to rigorous modifications, we aim to fortify its ability to identify the primary source of 

images amidst the complexities introduced by different types of image alterations. 

The outcomes of our study reveal that the suggested multi-modal methods significantly 

outperform traditional mono-modal methods in the context of image forgery detection. The 

integration of multiple modes of information and features proves to be a pivotal strategy in 

enhancing the model's overall performance. This underscores the importance of leveraging 

diverse sources of data and signals to improve the robustness and reliability of image source 

identification systems. A noteworthy aspect of our research is the exploration of fusion 

techniques within the realm of multi-modal methodologies. The fusion technique emerges as 

a potent contender, showcasing remarkable performance advantages over traditional mono-

modal strategies. By combining information from various sources and modalities, the fusion 

technique demonstrates an enhanced ability to accurately identify the source of altered 

images, even in scenarios where traditional methods may fall short. 
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The significance of our findings extends beyond the realm of image forensics. It underscores 

the broader potential of multi-modal approaches and fusion techniques in addressing complex 

challenges across various domains. The success of our proposed CNN model and fusion 

technique not only contributes to the advancement of image source identification but also 

opens avenues for innovative solutions in related fields, such as computer vision and artificial 

intelligence. 

 

6.2 Future Scope  

Looking ahead, our study paves the way for continued research and refinement in the field of 

image forgery detection. The dynamic nature of digital manipulation calls for ongoing efforts 

to adapt and improve detection methodologies. We anticipate that our multi-modal approach 

and fusion technique will inspire further innovations, leading to more robust and reliable 

solutions for identifying the source of images in an increasingly complex digital landscape. 

This commitment to advancement reflects our dedication to staying at the forefront of 

technological developments and addressing the evolving challenges in the realm of image 

forensics. 
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