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ABSTRACT

Digital forensics is a critical research branch that focuses on identifying the original source and
verifying the authenticity of digital data, particularly concerning visual information, which
poses a major challenge for forensic experts in the present digital era. This field extensively
employs image and video data to validate the accuracy of information during the picture
gathering phase and to detect tampering throughout the digital image processing pipeline.
However, image and video forensics stand as the most significant challenge in the current
digital landscape due to the continuous modification of digital content using freely available
software and editing tools. Ensuring the authenticity of images and videos involves employing
various forensic methods from image acquisition to storage. Despite the complexity of this
task, two major hurdles faced by researchers in digital forensics include identifying the source
of acquired images and videos to establish their origins with specific devices, models, or
brands, which holds particular importance when examining historical context. Additionally,
detecting image forgery is essential to preserve the integrity of digital data for legal purposes,
as forged images distort original content and disseminate false information. With the ready
availability of software editing tools, the risk of modifying captured images with deceptive or
defamatory content has increased, leading to the spread of fake information on social media
platforms.

In this thesis, we aim to enhance the accuracy of source identification for images and videos
using a deep learning framework. Additionally, we focus on image forgery detection to prevent
the misuse of falsified content. Our proposed approach involves utilizing the Twin CNN
Architecture (TCA) for image source identification, where the initial DNCNN (Denoising
Convolutional Neural Network) is used to remove noise from the original dataset, followed by
the second CNN architecture to classify images based on extracted features from various
convolutional layers. This approach improves the effectiveness of class prediction and
efficiency in identifying original source. Furthermore, we introduce a CNN-based architecture
for accurately classifying forgery in given images, detecting unseen forgeries through feature
extraction from multiple convolutional layers, and employing an SVM classifier for precise
labeling. Lastly, our deep learning-based CNN Multi-Modal Camera Model Identification

improves video source identification accuracy through the use of CNNs.

Keywords: Image Forensic; Forgery; CNN; Video Forensic; Image Denoising
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CHAPTER 1

INTRODUCTION

1.1 Preface

In the current digital era, researchers face the challenging task of validating the authenticity
and trustworthiness of images captured with widely accessible digital devices. With digital
images being an integral part of everyday life, the ability to manipulate them using advanced
digitization and image analysis tools raises ethical concerns [1]. Addressing this issue, two
key aspects are emphasized: determining the imaging system responsible for capturing the
image and detecting potential forgeries. In contemporary society, the value of images and
videos as pivotal evidence in legal proceedings and daily conflicts cannot be overstated. The
imperative to ascertain the device employed for image capture, particularly in instances of
video surveillance or covert recordings, underscores its indispensable role as crucial evidence
within the judicial system [2]. To address these obstacles, digital image and video forensics
concentrate on discerning and scrutinizing fundamental aspects within images and videos.
Key objectives include origin recognition without prior image analysis or registration,
extracting hidden information, and detecting manipulations [3]. To trace the origins of
collected images or videos, a comprehensive examination of the digital image processing
pipeline is conducted, spanning from the initial acquisition phase to the storage phase
depicted in Figure 1.1.
To trace the initial origin of the image acquired is approachable in the following way:
e ldentifying the source camera model that captured the original image.
e Was this image captured uniquely by a single device, or does it seem to be a
composite of multiple images?

Image forensics operates on the principle that a digital image carries inherent evidence from
its creation to subsequent stages in its life cycle. Collecting and analyzing these digital
footprints helps understand how digital content evolves. ldentifying the image source
involves two main methods: one follows the image processing pipeline's traces traditionally,
while the other relies on feature extraction techniques to determine the image's original

source. In conventional image forensics, source determination is carried out throughout the



image acquisition, compilation, and final editing phases based on intrinsic artifacts or
footprints [3]. Now a day’s image source identification done based on data driven approach
to extract features and match similarity index with original image. In recent years, Image
source recognition done by different machine learning approaches to improve the accuracy
over the conventional approaches. In which multiple features are extracted from image patch
dataset and train the model to classify the given input image. Due to noise in image dataset
apply different denoising filters to restore the original image then apply classifiers to detect
original source and enhance the effectiveness of prediction. In recent scenario, deep
learning-based model is used for image source identification give high accuracy over
traditional approaches. In deep learning framework, first collect the dataset according to

develop model and then train model on dataset and test the accuracy on given input image.

Digital Camera Processing

R G
Optical Imaging CFA
> Leem H|> Filtar E:> H|> Sensor Interpolation In Camera
G B Scﬂj.-.'arlel )
CCD or Proces_.smg(-h hite
. Balancing,Contrast
CMOS Saturati i
CFA Pattern Sensor EUEIEER)

<

Camera
jpegCompression

Cut-Camera
Processing

Final Digital Digital Image
Image

Figure 1.1. Image processing cycle in digital device

Researchers must deal with a number of challenges while developing a video camera model
detection system that they do not have to deal with for image manipulation-based systems.
Do changing different frame types and used during video encoding, for instance, have an
impact on the forensic traces used to identify camera models? If that's the case, how should
this be considered while creating and implementing a video-based recognition system? On
the basis of a single M x M picture patch, many image-based systems are capable of making
decisions about the source model that are reliable. Can this be done with videos, or will the
accuracy that can be achieved with just one patch be too low? Where in a movie should
these patches be obtained from if forensic data from numerous patches is required? Digital

videos are large, making their utilization computationally expensive [4].



The ease of falsifying digital images through readily accessible software tools on digital
devices has led to an increase in manipulated content. Device-oriented forgery can be either
innocuous or perilous, depending on its intent. Deliberate use to disseminate false
information poses a significant threat to society. Often, image manipulation serves as a tool
wielded by malicious individuals to tarnish the social or financial standing of public figures.
Typically, device forgery involves benign alterations such as contrast adjustments or
brightness modifications. Moreover, built-in filters in smart devices facilitate effortless
modification of original images, allowing easy sharing. The repercussions of image forgery
extend to influencing public sentiments and perpetuating false information within society
[5]. Images find extensive use across various domains such as image forensics
investigations, legal proceedings, surveillance systems, smart detection technologies, and
medical imaging. Presently, researchers face the formidable challenge of detecting and
notifying users about forgeries, providing authentic documentation. Traditional methods of
image forgery, like copy-move and image manipulation techniques, pose significant threats
to image integrity and the preservation of valuable information [6]. The proliferation of
mobile applications has facilitated the rapid dissemination of misinformation on social
media platforms, leading users to assume the accuracy of all available information
associated with specific users. To detect user-intended forgery, examination involves
scrutinizing the following aspects:

e Has the provided image been altered or remains unaltered?

e Has the provided image been edited to enhance features or modify specific elements?

e Has the provided image been created by amalgamating two or more images using an

intelligent system?

In our endeavor, our primary objective is to precisely detect and identify these alterations,

particularly focusing on image forgery, as illustrated in Figure 1.2.

Figure 1.2. Image Forgery Example
Video Source camera identification, according to [7], [8], is a significant topic that



concentrates on several issues related to source class, such as model, brand, and sensor type.
The procedure of determining the authenticity of information comes from the claimed

source is known as source validation. Video forgery example is shown in given Figure 1.3.

Figure 1.3. Video Forgery Example

1.2 Problem Statement

In conventional picture forensics, source determination is based on intrinsic artifacts or
imprints that are traces during the image acquisition phase, compression, and final editing
phases. Researchers concentrate on the features of the lens, sensors, and CFA (color filter
Array) interpolation techniques throughout the image acquisition phase. The light rays that
reach the sensor array pattern and are reflected by the lens during the picture acquisition
phase are transformed into continuous signals. Each camera model has a distinct lens
system, various types of sensors, and demosaicing methods for color filter arrays. The lens
creates several types of artifacts and leaves distinctive traces to identify the camera model
during the production process. Different digital gadget parts leave distinct traces in the
photos that are taken. Investigators discover a link between hardware artifacts and acquired
image artifacts based on these traces [9]. The artifacts found in modified images, such as
object shape removal, contrast value alteration, sensor pattern noise, and application of
connection with altered picture information and genuine image, are the focus of traditional
image forgery detection techniques [10], [11]. The forgery detection cycle shown in Figure
1.4.
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Pattern/Frame in
| Image/Video

Forgery Detection
and Identification

|Feature Extraction } Correlation

: Post Processing

Figure 1.4. Image/Video Forgery General Cycle

By using a data-driven approach, CNN has become adept at handling computer vision tasks
in recent years. CNN is a data-driven methodology to extract traits from faked images and
forecast how the original image will change based on intrinsic attributes. Because of greater
pixel value correlation, the CNN-based technique was successful. The CNN model learns
characteristics from a trained dataset, identifies significant forgery artifacts, and accurately
classifies the forgery [12], [13] . As malware's influence has grown, it is now easier than
ever for anyone to post, download, and distribute files online, including audio, image, and
video content. This has led to an increase in the amount of video forgeries online. Adobe
Photoshop and Video Editor are among the multimedia tools commonly utilized to modify
media files. Furthermore, a common method of harmful video forgery involves
manipulating a video sequence by adding or removing items within the frame [14].

Recent strides in image and video forensics owe their progress to the ongoing advancements
in deep learning, computer vision, and signal processing techniques. Innovations like
convolutional neural networks (CNNs) [15], recurrent neural networks (RNNSs), and
generative adversarial networks (GANs) have been explored by researchers, aiming for
enhanced accuracy and efficiency in forgery detection. These technologies have reshaped
the landscape, offering promising avenues for more precise and effective detection methods.
CNNs have proven valuable in image forensics, extracting intricate features and patterns to
identify manipulations or alterations. RNNs excel in analyzing temporal relationships in
video data, enhancing deepfake and video forgery detection. Meanwhile, GANs [16], known
for generating realistic fake content, are now applied adversarially in forensic contexts,
challenging existing methods and refining overall accuracy. Beyond deep learning
advancements, blockchain technology's integration offers a promising solution to ensure the

integrity and traceability of digital media. By timestamping and storing forensic analyses on



a tamper-resistant blockchain, investigators maintain permanent records of manipulations or
alterations, bolstering the trustworthiness of presented evidence [17]. These collective
developments empower image and video forensics to address the growing challenges of
detecting digital forgeries, preserving the integrity of digital content, and maintaining the

trustworthiness of evidence in an ever-evolving digital landscape.

1.3 Contributions

This dissertation presents significant contributions to the field of image and video forensics
by leveraging deep learning models. In this study, we made use of the recently created
VISION dataset, which contains over 35,000 images and videos collected from 35 various
portable devices made by 11 major manufacturers. It is noteworthy that many existing
datasets intended for picture forensics do not contain photographs taken at various times and
with diverse levels of quality. This gap is filled by the VISION dataset, which offers an
extensive and varied collection of multimedia content recorded using a variety of cameras
and recording settings. As it includes a wide range of real-world scenarios, this special
dataset enables more thorough and realistic evaluation of image source identification
techniques. Researchers can use it to assess how well deep learning-based methods handle
varying image qualities and temporal factors. Conventional image forgery detection centers
on altered image artifacts like object tampering, contrast changes, sensor pattern noise, and
correlating forged and authentic image data. These are key areas scrutinized in detecting
falsified images. By using a data-driven approach, CNN has become adept at handling
computer vision tasks in recent years. CNN uses a data-driven methodology to extract
characteristics from fake images and forecast how the genuine image will change based on
intrinsic parameters. Because of greater pixel value correlation, the CNN-based technique
was successful. The CNN model finds significant artifacts of a forged image, learns features
from a trained dataset, and accurately classifies the forged image. The major findings
mentioned above align with the following research objectives.

i.  The image source identification/detection from small cluster capturing devices has
been studied but images obtained from large cluster of capturing devices with high
dynamic range images has not been analyses yet.

ii. mage forgery detection in shared information using a deep convolutional neural

networks model.



iii. Technique to analyze the video capturing source and enhancement in accuracy of the

video capturing device using deep learning model.

1.4 Thesis Outline

This thesis is structured into chapters to facilitate comprehension. Here's a concise overview
of each chapter's content for clarity and coherence.

CHAPTER 1: Provides an introductory overview of key concepts related to digital
forensics, image processing pipelines, image forgery, and image/video source identification.
Furthermore, it delves into the application of deep learning models to enhance accuracy in
identifying image forgeries and their original sources, particularly focusing on
Convolutional Neural Networks (CNNs). Finally, the chapter outlines the problem statement
and articulates the research objectives of the thesis.

CHAPTER 2: Give insight a comprehensive review of the literature, offering insights into
the various aspects of digital image forensics, image processing, and the use of different
machine learning and deep learning models. It also lays the groundwork for the research
conducted in this thesis by identifying research gaps and emphasizing the role of CNNs in
image and video analysis. The knowledge gained from this review serves as a valuable
foundation for the subsequent chapters, which will delve into the methodology,
experimentation, and contributions of the research.

CHAPTER 3: Presents a novel strategy for image source identification by introducing a
Twin Convolutional Neural Network Architecture (TCA) designed to enhance the accuracy
of source identification. Within the TCA framework, the initial CNN architecture, referred
to as DnCNN, is utilized to remove the unknown level noise from the original dataset,
creating 256x256 patches for the training and testing phases. Subsequently, the second CNN
architecture is engaged to classify images by leveraging features extracted from multiple
convolutional layers using a 3x3 filter, thereby enhancing the efficiency of predictions.
CHAPTER 4: Proposes novel approach utilizes a CNN-based architecture to classify image
forgeries, demonstrating a unique capability to identify even previously unencountered
forgeries by extracting features from various convolution layers. The integration of an SVM
classifier ensures high-precision labeling of forged images. This methodology not only
enhances the accuracy of image forgery detection but also extends its applicability to
emerging types of forgeries.

CHAPTER 5: Proposes Two unique camera model recognition techniques were developed



using Convolutional Neural Networks (CNNs) for deployment within an enhanced multi-
modal framework. The developed multi-modal approaches amalgamate both audio and
visual data to tackle the identification challenge of original device, demonstrating clear
superiority over mono-modal methods, which solely rely on either visual or audio cues from
the examined video sequence to perform the identification.

CHAPTER 6: It outlines the thesis's conclusion and forecasts its future scope, encapsulating
the significant achievements and delineating potential avenues for further exploration and

development.



CHAPTER 2

PRELIMINARIES AND BACKGROUND

2.1 Introduction

Digital image forensics has emerged as a pivotal discipline in recent times, primarily
driven by the ubiquitous adoption of digital images and the accessibility of sophisticated
image editing software. The fundamental objective of image forensics revolves around the
precise identification, comprehensive analysis, and conclusive authentication of digital
images to safeguard their integrity and establish their veracity. This comprehensive literature
survey delves into the essential technical methodologies, advanced techniques, and
formidable challenges encountered in the realm of image forensics. In the digital age, images
and videos have taken over as the primary information bearers. Visual media are increasingly
being used to transmit information, even rational knowledge, due to its expressive power and
simplicity of acquisition, delivery, and preservation. As a result, pictures and videos are now
often used as evidence in both court cases and disagreements in daily life [2]. The primary
subject areas of image source model identification, digital image forgery detection, and video
frame forensics analysis are covered in this introduction to the developing discipline of digital
image forensics. In source camera identification, we aim to pinpoint the specific camera
model—or the precise camera—that captured the captured picture. Establishing a picture's
validity or revealing any possible manipulation with the image is the aim of forgery detection
[18].

2.2 Related Work

This study focuses on scrutinizing methodologies within image and video forensics,
particularly exploring the innate characteristics within digital images throughout their life
cycle. It delves into the transition from traditional image processing to the cognitive image
processing paradigm, aiming to analyze these evolving approaches comprehensively. The
investigation aims to uncover the distinct footprints left by these methodologies as they

evolve and adapt to the shifting landscape of image processing techniques.



10

2.2.1 Digital Image Formation Pipeline

An image is described mathematically as a function f[x, y], with x and y as spatial
coordinates and f[x, y] as the intensity value at that position. In digital form, the image
becomes an array of integers, a 2-dimensional array (f(x, y)) depicted in Figure 2.1. Here, X
ranges from 0O to the image's height (h-1), and y ranges from 0 to the image's width (w-1). The
intensity values within this digital image fall within the range of f(x, y) € [0, L-1], where L
represents the maximum intensity value. This representation as an array allows the discrete
handling of the image's visual information, aiding in its processing and analysis, essential in
various image-related tasks. The discrete nature of digital images enables computational
methods to manipulate and interpret visual content efficiently, paving the way for extensive
applications in image processing, computer vision, and other domains reliant on visual data
analysis, where L-1 is equal to 255 for an 8-bit image, indicating the maximum intensity level
[19].

F(X,Y)
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Figure 2.1. Image Pixel Array Representation

Image processing involves the acquisition of real-world scenes, which are then stored in a
compressed digital format on various devices. However, a major challenge in this process lies
in preserving the integrity of the image throughout the post-processing cycles Figure 2.2.
Ensuring the image's integrity becomes crucial, as multiple operations are applied to the
image during post-processing, and any degradation or alteration can impact the accuracy and
reliability of the visual information [20].In the context of digital image processing, the
acquired information undergoes conversion by diverse digital image processing units to be

represented in digital form. Silicon-based sensors play a crucial role in this process, where
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they convert the incident light intensity into analog signals. The widely adopted CFA pattern
in digital image capture devices is the Green-Red-Green-Blue (GRGB) Bayer pattern. This
mosaic arranges pixels with varying intensities of red, green, and blue in a specific pattern
[21]. Since each pixel in the Bayer pattern only captures one of the three primary colors,
Digital Image Processing (DIP) utilizes various interpolation algorithms, known as
demosaicing, to reconstruct a full-color image. Other than the prevalent Bayer pattern,
alternative Color Filter Array (CFA) configurations like Cyan-Yellow-Green-Magenta
(CYGM), and Cyan-Magenta-Yellow (CMY) can function as alternatives. In addition to
demosaicing, Digital Image Processing (DIP) integrates supplementary methods to elevate
image quality. These techniques encompass advanced white balancing of captured image,
profound noise level reduction, implied different matrix manipulation, image intensity
sharpening, aperture correction, and fine-tuning gamma correction. These processes
collectively refine image attributes, ensuring higher quality and improved visual fidelity in
the final output. These enhancements play a crucial role in addressing various image
imperfections and enhancing overall image quality, contributing significantly to the realm of

digital image processing and its diverse applications across industries. [22].

Overall, this intricate process of image transformation through sensor capture, CFA
utilization, and advanced digital image processing techniques ensures the production of high-

quality and visually accurate digital images.
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Figure 2.2. Digital Image Processing Cycle
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2.3 Image Processing Paradigm

In the 18th century, people started finding ways to turn real scenes into digital or similar
signal formats through what became known as Traditional Image Processing. A major
moment came in the early 1920s when Bartland achieved a groundbreaking feat. They
transmitted the very first digital image through an undersea cable, sending it from London to
New York. At the other end, the image was reconstructed, marking a huge leap forward for
handling images with computers. This breakthrough opened the door for computational
image processing methods. These included various techniques like Image Enhancement,
Restoration, Color Modification, Contrast Adjustment, and more. They were all designed to
make images look better and clearer. Fast forward to the 1940s, computers began to emerge,
allowing for manipulation of algorithms and new ways to improve image quality. This was
also when images started to be stored as arrays of bits, changing how we saved and handled
visual data. The 1960s saw another leap with the progress of satellite imaging. Now, satellites
could capture images of landscapes and even identify objects from space. By the 1970s,
digital image processing found extensive applications in the medical field, significantly
impacting medical imaging. During the 1980s, image processing found its way into many
different fields like creating artistic effects, visualizing medical data, inspecting products in
industries, and aiding law enforcement [2][3]. As the 20th century went on, image processing
kept growing in areas like automotive technology, computer vision, and specialized
industries, showing how flexible and useful it could be. In Figure 2.3, you can see the shift
from the old-school way of handling images to a more advanced cognitive image processing
system. This change represents how image processing techniques and methods have evolved
and improved over time. This transition has played a pivotal role in unlocking new

possibilities and applications in the field of image processing [23].
2.3.1 Traditional Image Processing

In the early 1700s, image capture began with the invention of the camera obscura, utilizing a
pinhole to project inverted real object images. Advancements like the Optical Camera
Obscura expanded this by duplicating images through mirrors [24]. Soon after, scientists
experimented with metal plates coated in various chemicals to capture scenes. In the mid-
1700s, the Calotypes method emerged, utilizing white shells to refine image quality, yet
motion picture capture remained a challenge [25]. Early image processing involved time-

consuming conversion of light intensity into analog form and storage in electronic devices.
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Thin films were eventually employed to expedite capture and streamline commercial image

production. A significant advancement occurred in 1961 when photo sensors were capable of

converting light intensity into digital form [26]. This marked a pivotal shift in image

processing paradigm to provide a comprehensive understanding of the evolution of traditional

image processi

ng.

2.3.2 Computational Image Processing

Computational image processing represents a significant advancement over traditional

methods, leveraging diverse algorithms to construct images of interest. This approach ensures

seamless integration between the acquisition phase and computational operators, resulting in

enhanced picture quality with higher resolution. Computational processing finds extensive

applications in various domains, such as medical imaging, Synthetic Aperture Radar (SAR),

seismic imaging, and high dynamic range (HDR) images [27][28][29]
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2.3.3 Object Identification-Based Image Processing

The essence of identifying objects or targets holds a central position in the image processing
3.0 framework, encompassing various processes of capturing images and videos through
diverse devices like smartphones, satellites, and robotic image systems. This approach
empowers researchers to implement real-time applications in computer vision, unlocking
numerous possibilities across different fields. Object detection has seen substantial utilization
in diverse applications, ranging from video surveillance, image captioning, and robot vision
to enhancing digital camera positioning, satellite image analysis, drone scene examination,
road accident detection, enemy spotting in military operations, autonomous driving, and
computer-human interactions [55]. Its broad spectrum of applications signifies the pivotal
role of object detection in advancing computer vision technologies and its significant
contributions to solving real-world challenges and automation. This task involves analyzing
input images to identify specific objects like vehicles, obstacles, aerial entities, animals, or
buildings within suggested regions in both images and videos, is performed by the object
detection process, which is a crucial technology linked with visual analysis and image
processing. Object detection is frequently used to identify static objects, but in recent years,
researchers have begun to focus on moving objects by utilizing advanced machine-learning
techniques. Object identification is also crucial in biometric methods like iris and face
recognition, fingerprint recognition, and locating moving objects in videos. Many industries,
including manufacturing, human resources, healthcare, autonomous driving, and others,
employ target detection. Figure 2.4 depicts a typical detection of an object scenario that

follows:
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Figure 2.4. Object Detection Analysis
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Traditional object identification methods involve the sequential extraction of pixel values
from the source image, followed by correlation analysis to identify objects within the
image[56]. However, this approach typically yields low accuracy, ranging from 40% to 50%.
To significantly improve accuracy, advanced techniques such as machine learning and deep
learning have been employed, resulting in substantial enhancements with accuracy levels
reaching 80% to 99% [55][57], [58]. Figure 2.5 presents a taxonomy outlining various object
detecting methods, providing a structured overview of the different approaches and their
respective characteristics.
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Figure 2.5. Object Detection Techniques

2.3.4 Industrial Automation Based Image Processing

In the 20th century, the advancement of image processing has played a pivotal role in driving
industries towards automation. Classical image processing techniques are employed to create
accurate representations of genuine object pictures using various formation approaches. In
Industry 4.0, intelligent systems are integrated with smart vision systems, enabling precise
control over production quality, reduced labor requirements, and increased output efficiency.
Industrial smart vision systems synergize computational processing with advanced object
recognition methods to facilitate automated production inspection, quality control, error
reduction, shorter production times, part identification, robotic control implementation, and

real-time monitoring of assembly line output [59][60].
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2.3.5 Cognitive Image Processing Paradigm

In the realm of automotive computer vision systems, image processing assumes a vital role in
tackling intricate human challenges. The modern digital landscape witnesses an
overwhelming influx of image and video data transmitted across various devices and
networks, inundating the online sphere with vast digital information. Yet, existing vision
systems encounter difficulties in managing and processing this extensive data flow.
Traditional image processing primarily aims to improve image resolution and furnish
comprehensive information. However, in legal contexts, distinguishing authentic data from
altered information poses challenges due to the application of computational image
processing operators tailored to user specifications, potentially modifying original data. On
the contrary, cognitive image processing introduces an innovative approach by directly
extracting data and insights from readily accessible digital sources online, offering a
promising avenue for more astute and precise data analysis [60]. Cognitive image processing
has proven its worth across various IT domains, showcasing its effectiveness in tasks like text
extraction, image comprehension, spatial analysis, and facial recognition. This technology
leverages advanced algorithms and deep learning methodologies to intelligently process and
interpret images, enabling accurate and efficient extraction of textual information,
comprehensive picture comprehension, spatial analysis of complex scenes, and reliable facial
recognition capabilities. Its applicability in these diverse fields highlights the potential for
cognitive image processing to revolutionize various industries and contribute to the

advancement of artificial intelligence and computer vision technologies.
2.4 Digital Image Forensic

Digital forensics encompasses diverse scientific methodologies and techniques utilized to
trace the original source and guarantee the legitimacy of digital data. In the contemporary
digital landscape, ensuring the credibility and trustworthiness of visual information presents
substantial hurdles for forensic specialists [61]. These digital forensic methods find extensive
use in analyzing image and video data, aiming to validate the authenticity and source of
information, starting from the initial image capture phase through storage on the original
device and across every step of the digital image processing workflow.[62]. The core
objective of digital forensic investigations is to establish the trustworthiness and accuracy of
digital evidence in a manner that is admissible in legal proceedings. This is particularly

crucial in cases involving cybercrimes, data breaches, intellectual property theft, and other
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digital offenses. Forensic experts employ robust methodologies and specialized tools to
analyse digital images and videos, ensuring that the evidence can withstand legal scrutiny and
maintain its evidentiary value. The first step in digital forensic analysis is often image
acquisition, where investigators gather the digital media that is relevant to the investigation.
This process involves preserving the integrity of the data, adhering to strict chain of custody
procedures to ensure that the evidence remains unaltered throughout the investigation. The
acquisition phase also involves recording metadata and identifying crucial information such
as timestamps, camera settings, and other pertinent details that may aid in the analysis[63].
Once the images and videos are acquired, forensic experts delve into the various phases of the
digital image processing pipeline. This includes examining the original images and their
metadata to identify any potential tampering or alterations. Common techniques employed in
this phase include noise inconsistency analysis, copy-move forgery detection, and detecting

inconsistencies in compression artifacts.

Moreover, digital forensic analysis delves into the examination of image processing
operations applied to the images. These operations can include resizing, cropping, filtering,
and various enhancement techniques. The goal is to determine if any of these operations have
been utilized to manipulate the visual information in any way. Deep learning and machine
learning models have become increasingly valuable tools in digital forensics. These models
can be trained to identify patterns associated with image manipulation, recognize image
sources, and detect specific artifacts indicative of tampering. Such techniques have
significantly enhanced the ability to detect forgeries and establish the authenticity of visual
evidence. Another crucial aspect of digital forensic analysis is steganography detection.
Steganography involves hiding information within images or videos in a way that is
imperceptible to the human eye. Forensic experts utilize sophisticated algorithms to detect
and extract hidden data, ensuring that no incriminating information remains concealed. To
further validate the integrity of the evidence, digital forensic experts also focus on error level
analysis and analysing inconsistencies in lighting and shadows within the images. These

methods can reveal potential manipulation attempts or digital compositing[64].

In conclusion, digital forensics plays a pivotal role in ensuring the accuracy, authenticity, and
integrity of visual information in the current digital era. Through meticulous examination of
image and video data, employing advanced techniques, and leveraging cutting-edge
technologies like machine learning and deep learning, forensic experts can detect forgeries,

establish the original source of the data, and provide crucial evidence in legal proceedings.
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The continuous advancement of digital forensic methodologies will remain paramount in
upholding the trustworthiness of visual information and safeguarding the integrity of digital
evidence in the ever-evolving landscape of digital technologies. The forensic taxonomy
obtained from the extensive survey is presented in Figure 2.6 below.
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2.4.1 Image Source ldentification Techniques

Image source identification involves the process of determining the origin of an image
through rigorous analysis and techniques given in Figure 2.7. Two fundamental methods are
commonly employed for this purpose. The first approach relies on the traditional image
processing pipeline tracing. In this method, various stages of the image processing pipeline
are analyzed, which includes operations such as compression, filtering, and resizing. By
examining the distinct patterns left by these operations, it becomes possible to infer the
source from which the image originated. However, this approach may face challenges when
images have undergone multiple transformations or have been subjected to significant post-
processing. The second approach revolves around feature extraction-based techniques. In this
method, distinctive features, such as statistical properties, noise patterns, and camera sensor
fingerprints, are extracted from the image. These features serve as unique identifiers for
different image sources. Advanced machine learning algorithms are often employed to
classify images based on these extracted features, enabling accurate identification of the
image source[65]. To improve the effectiveness of image source identification, researchers
have developed a diverse range of approaches. These include methods that integrate multiple
features, utilize deep learning models for more precise classification, and consider specific
imaging devices or platforms. The field of image source identification remains an active area
of research, with ongoing efforts to enhance its reliability and applicability in various real-
world scenarios, such as forensic investigations, copyright protection, and fake image

detection.
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Figure 2.7. Image Source Identification Approaches

The traditional image capture and processing approach involves several distinct steps that
culminate in the storage of the image in a compressed format within the device's database.
During the digital image life cycle, the image is initially captured by a digital device, and the
incident light intensity from the object interacts with the color filter array (CFA). The CFA

serves to convert the incident light intensities into specific color values for each channel
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(Red, Green, Blue). Subsequently, various interpolation techniques are employed to convert
the individual channel data into a single-colored image, where each color's intensity is
represented within the range of 0 to 255. This transformation enables the image to be visually
interpretable by human observers and facilitates further processing and storage. Figure 8
visually depicts the sequential stages of the traditional image processing pipeline in Figure
2.8 associated with a specific imaging device. These steps encompass image capture, color
filtering, interpolation, and the final representation of the image in the device's database [66].
This traditional approach to image processing has served as a fundamental foundation for
image source identification and understanding the characteristics of digital images generated

by various devices.
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Figure 2.8. Digital Device Internal Processing
2.4.1.1 Conventional Approach for Image Source Identification

In traditional image forensics relies on the identification of source-specific footprints and
intrinsic artifacts present in images during the acquisition, compression, and editing phases.
During the image acquisition phase, researchers closely examine the characteristics of the
lens, sensors, and CFA (color filter array) interpolation techniques. In the image acquisition
phase, light rays are captured by the lens, and the sensor array pattern converts them into
continuous signal form. Unique lens systems, sensor qualities, and color filter array
demosaicing techniques are found in each camera model. During the manufacturing process,
lenses produce various types of artifacts, leaving behind distinctive traces that enable camera
model identification. Different digital device components imprint diverse footprints in
captured images, and researchers establish correlations between these device artifacts and the
artifacts present in the captured images. Notably, each camera model exhibits lens distortion
artifacts, which prove valuable in camera model identification. Radial lens distortion is linked
to optical systems and influenced by nonlinear geometrical parameters, such as the lens's

focal length and shape. Chromatic aberrations, dependent on the lens dispersion index and
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varying wavelengths following Snell’s Law, also contribute to the identification process.
Vignetting, which causes intensity fall-off towards the corner of the image, likewise leaves
discernible traces used for identification purposes. By thoroughly analyzing these footprints
and artifacts, researchers in traditional image forensics can effectively trace the origin and
history of digital images, aiding in various applications, including authentication, tamper

detection, and source attribution [67].

In image source forensics, each camera model exhibits distinct internal footprints caused by
sensor defects during the manufacturing process. These sensor defects introduce noise into
images, which serve as essential clues for forensics analysis. To identify the camera model,
researchers estimate the sensor pattern noise within the image by employing denoising filters.

Subsequently, they correlate this noise pattern with the original image.

A commonly utilized feature for image source forensics is Photo Response Non-Uniformity
(PRNU) noise. By estimating the residual noise present in the image, researchers can
effectively extract the PRNU noise [68]. This involves a systematic process that includes

various steps, which are outlined below:

e First, the image is preprocessed to remove any artifacts or irrelevant noise that could
potentially interfere with the PRNU estimation given in Eq 2.1.

e Next, a denoising filter is applied to the preprocessed image to suppress noise and
enhance the detection of the underlying PRNU noise pattern.

e The denoised image is then correlated with the original image to determine the
specific PRNU noise unique to the camera model.

e Statistical techniques and algorithms are often utilized to refine the estimation

process, ensuring robust and accurate identification of the PRNU noise.
R=1-F() (2.1)

Here R is the residual noise of the image, I is the original image and F() is the denoising filter
applied on the original image and obtain a denoise image using low pass filter or various
other denoising techniques. To identify the original source and determine a correlation
between the noise pattern and the test image,[69] employed the sensor pattern noise
estimation technique. Implement the technique and determine the highest likelihood estimate
of PRNU noise in a certain picture in order to find the original source [70]. Because each
picture contains varying noise in various places, [71] uses the local information of the image

to locate the source and introduces a method to choose the best region of the image.[68]
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determine the weighting factor for boosting the SPN to get the SPN magnitude that is
inversely proportionate. Using pair-wise magnitude relations of the obtained picture with its
residual noise, [72] suggested a unique method of source detection. To determine the original
camera model, [73] made advantage of the dust-spot function. Suggested using the Minimum
Mean Square Error (MMSE) approach for calculating PRNU using wavelets. To determine
SPN elements and determine the image's original source, [74] recommended using principal
component analysis. [75] provide a formula for computing inter-channel demosaicing
artifacts. A suggested technique by [76] that uses an SPN predictor and content-adaptive
interpolation calculates the value of the center pixel from its neighbors' pixels. To extract the
SPN from various photos, [77] various filters were utilized. After examining all of the
conventional methods, anticipate the accuracy comparisons shown in the accompanying chart
Figure 2.9 and Figure 2.10.
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Figure 2.10. Image Transformation-Based Accuracy Prediction

[78] outlined a unique method for information extraction and employed binary similarity
measures along with HOWS to identify the source model. In order to determine uniform
gray-scale invariant in picture texture owing to device hardware and its interpretation
technique causing artifacts, [79] created Local Binary Pattern (LBP). [80] suggested a WLBP
operator that combined LBP with various excitations. Use CFA interpolation traces using a
minimal mean square estimate to determine the internal footprints [81]. In order to improve

robustness, [82] presented a unique method based on CFA interpolation with 1022.
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coefficients. Accuracy prediction based on picture pre-processing, image transformation, and
local image feature stages after study of inherent artifacts of the image processing pipeline
shown on Figure 2.11. Some classifiers are also used to forecast the original source and
categorize the picture source based on feature extraction. The following provides an accuracy
prediction study of several classifiers in Figure 2.12:

920
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Figure 2.12. Different Classifiers Accuracy Prediction

2.4.1.2 Deep Learning Based Approach for Image Source Identification

A variety of machine learning techniques have been used recently to increase image source
detection accuracy compared to earlier methods. In which the model is trained to identify the
provided input picture while features are taken from the image dataset. Apply several
denoising filters to the picture dataset to recover the original image after which classifiers are
used to find the original source and boost prediction accuracy. Comparisons of accuracy

enhancement following the use of various filters are shown in the Figure 2.13.
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Figure 2.13. Data-driven Approaches Comparison
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Deep learning models perform better on computer vision issues as a result of the quick
growth of artificial intelligence. The identification of the camera model or brand is a difficult
problem in picture forensic science. In order to increase the accuracy of the predictions, the
deep learning technique uses a data-oriented paradigm as opposed to the inherent
characteristics of the camera or picture. Large datasets are better served by these models,
although prediction time is longer. It's essential to choose the features from the dataset before
designing a specific deep learning model for a specified job. A basic convolution network
with 3 convolution layers and 2 fully connected layers was used by [83] to establish the first
deep learning model to identify picture sources, and accuracy was noted at 72.9%. [84] Use
the Leaky Rectified Linear Unit (L-ReLU) and enhance the number of layers to attain
improved accuracy. [85] presented a CNN architecture with linked layers and additional
convolutional layers. In order to improve accuracy, batch normalization is also used.[86]
Create a model based on Residual Neural Network (Res Net) to better accurately determine
the source. It boosts the model's layer count to 26, which improves the potential of making
predictions with an estimated 99% accuracy.[87] To locate small-size picture source cameras,
use ResNet to examine saturated photographs, smooth images, and other images. [88] To
increase accuracy and rate the degree of similarity between two input images from different
sources, two neural networks were used [89]. A denoising convolution neural network
(DNCNN) model was proposed to link the device footprint based on maximum likelihood
estimate and the picture footprint relying on sensor pattern noise, pick the best attributes for
model fitting, and improve accuracy forecasting compared to previously applied models. The
camera source identification using convolution neural network (CSI-CNN) method picks the
best patch from the picture, calculates SPN for all of the patches, and then adds residual
blocks to the network structure to boost accuracy. Recursively extracting camera
characteristics from several CNN layers is how [90] suggested camera attribute classifier
works. In the Table-2.1, a number of deep learning models created using various datasets to

identify the original source are compared.

Accuracy increased above traditional and classifier-based methods after investigation of
several deep learning model architectures as ResNet, XceptionNet, and DenseNet using
various authentic datasets. Changes in convolutional layers, linked layers, and activation
functions in various topologies cause variations in accuracy. The methodologies based on

deep learning are data-driven and do not rely on the internal workings of the gadgets. The
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accuracy forecast of all recently developed deep learning models is studied and shown in the

Table 2.1.

Archit
ecture
Al
A2

A3
A4
A5

A6
A7
A8

A9
A10
All
Al2

Architecture

Al
A2
A3
A4
A5
Ab
A7
A8
A9
A10
All

Table 2.1: Deep learning models for image source identification[91].

Input
Size

48%x48%3

32x32x3

36x36x3
64x64%3
256%256%3

64x64%3
64x64%3
256%256x%2

256%256
256%256%3
64%x64%3
64x64%3

Table 2.2: Deep learning architectures analysis with accuracy prediction

Input Size

48x48x%3
32x32x3
36x36%3
64x64x3
256%256%3
64x64x3
64x64x3
256x256%2
256%256
256%256%3
64x64x3

Convolution Part

Layers Activation
3 RelLU
2 L-
ReLU
3 RelLU
13 RelLU
1 conv ReLU
12
Residual
4 -
10 -
4 TanH
3 RelLU
3 ReLU
6 RelLU
1 conv ReLU
3
Residual

Classifiers

Softmax
SVM
Softmax
Softmax
Softmax
Softmax
Softmax
ET
Softmax
Softmax

Softmax

Pooling

Max
Max

Train: Test

73

8:2
3:2
7:3
8:2

4:1
8:2
8:2
4:1

Dataset

Dresden
MICHE-I
Dresden
Dresden
Dresden
Dresden
Dresden
Dresden
Dresden
Dresden

Dresden

Model
Accuracy (%)
72.9
98.1
93
94.7
93
94.93
98.58
98.01
97.41
94.14

Fully Connected Part
Layers  Activation Dropout

1 ReLU Y
2 L- Y

ReLU
1 ReLU
2 -
1 ReLU -
1 ReLU -
2 TanH -
2 ReLU
2 ReLU Y
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Al12 64x64x3 Softmax 4:1 Dresden 97.03

2.4.2 Image Forgery Detection Techniques

With the proliferation of digital cameras and smart gadgets, image editing has become easily
accessible to anyone. While some alterations, like adjusting brightness or converting to black
and white, are innocuous, others can be malicious and damaging, especially when aimed at
public figures and politicians. The main motivations behind image fabrication are often
driven by sinister intentions, such as disseminating distorted information, promoting
immorality and fake news, fraudulently obtaining money from unsuspecting audiences,
tarnishing the reputation of well-known individuals, and exerting negative political influence

on digital platform users.

Consequently, ensuring trustworthy digital information exchange necessitates unequivocal
identification of photographs and videos before their utilization [92]. By enforcing robust
image forensics and verification techniques, digital media platforms can mitigate the spread
of harmful content and safeguard against the negative consequences of manipulated images.
Such measures play a vital role in combating the proliferation of misinformation and
malicious practices within the digital landscape. As technology advances and image editing
tools become increasingly sophisticated, it becomes imperative to continually enhance image
forensics and verification mechanisms to maintain the integrity and credibility of digital

media content [93]. Among these, the three most frequent modifications are:

e Copy-move is the method entails copying a specific section of one picture into
another.

e Image splicing is the process of copying a section of one image and combining it with
another.

e Object removal is a process that involves the elimination of a specific region within
an image, followed by the restoration of the surrounding area to fill in the gap. This
restoration is achieved by painting or reconstructing the remaining portion, ensuring

the cohesiveness and visual continuity of the image.

We strive to precisely detect these adjustments in our work. Figure 2.14 displays the fake
picture. Forgery detection systems fall into two primary categories: active (non-blind) and
passive (blind) approaches. Active methods require prior information about the image,

integrated at stages like capture, acquisition, or post-processing.
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Figure 2.14. Digital Image Forgery Example

Techniques like digital watermarking and digital signatures exemplify active forgery
detection, embedding identifiable information directly into the image to verify its
authenticity. Passive methods, however, don't rely on prior data and instead analyze the
image's inherent properties. These techniques scrutinize statistical anomalies or
inconsistencies in the image, detecting potential forgeries without prior knowledge. The
distinction between active and passive approaches lies in their reliance on prior information;
while active methods embed specific data, passive methods infer authenticity based on
intrinsic image traits. Both approaches serve as crucial tools in detecting image tampering,
contributing to the robustness of forensic analysis in various domains. The choice between
active and passive methods often depends on the available information and the desired level
of intervention or analysis required in different forensic scenarios. In these methods, specific
data is embedded into the image, enabling subsequent validation and authentication processes
[94]. Figure 2.15 illustrates the principle of utilizing embedded data to verify the image's
authenticity.

i

Image Forgery

Active | ( Passive
(Non Blind) _ (Blind)

Figure 2.15. Digital Forgery Classification



29

Active forgery detection has the advantage of higher accuracy and robustness since it
operates with prior knowledge of the embedded information. However, its effectiveness relies
heavily on maintaining the integrity and security of the embedded data. On the other hand,
passive forgery detection systems, also known as blind techniques, do not require any prior
knowledge about the image. Instead, they rely solely on analyzing the image's content and
statistical characteristics to identify potential manipulations or forgeries. Passive methods are
advantageous in scenarios where prior knowledge is unavailable or difficult to obtain, but
they may exhibit reduced accuracy and sensitivity compared to active techniques [95]. To
enhance forgery detection capabilities, researchers are continuously exploring hybrid
approaches that combine the strengths of both active and passive methods. Such
advancements aim to provide more comprehensive and reliable solutions for detecting
various types of image forgeries and ensuring the integrity of digital media content in diverse
applications, including forensic investigations, copyright protection, and digital content

authentication.
2.4.2.1 Non-Blind Image Forgery

Methods like digital watermarking and digital signatures, as seen in Figure 2.16, are used for
active forgery detection. Here's how they work: before an image is sent through an
untrustworthy public channel, a specific authentication code is added into the image content.
This code acts like a unique tag for the image. Later on, when the image is received, this code
can be extracted and compared with the original one that was added before. This comparison
helps verify if the image has been tampered with or forged in any way. However, the
successful application of this technique requires specialized equipment or software capable of
inserting the authentication code into the image before its distribution [92]. Numerous review
articles have investigated active forgery detection and have established a hierarchical

framework for its classification.

Active Image Forgery

(Non Blind)
Digital Digital
Signature Watermarking
Simple Basic Advance Fragile Semi Fragile Robust

Figure 2.16. Non-Blind Image Forgery Classification.
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This hierarchy is structured based on the complexity and effectiveness of different
approaches. At the forefront of the hierarchy are techniques that employ robust and
imperceptible watermarking, making it difficult for adversaries to remove or alter the
embedded information. Within this category, researchers have explored digital signature-
based approaches, where cryptographic methods are used to ensure the authenticity and
integrity of the image data. In the next tier of the hierarchy, researchers have investigated
steganography-based techniques. Steganography involves concealing information within the
image data itself, making it less visible to potential forgers. This category includes
approaches that leverage various image transformations or frequency domain techniques to
embed the authentication code securely. Finally, the hierarchy also encompasses methods that
rely on specialized hardware or specific image acquisition processes to insert the
authentication code, ensuring tamper-resistant authentication. These techniques offer an
additional layer of protection but may impose practical constraints on their widespread
adoption due to hardware limitations or complex deployment requirements [95]. As active
forgery detection continues to evolve, researchers are actively working on enhancing its
robustness, efficiency, and compatibility with various image formats and transmission
channels. The ultimate goal is to provide reliable and scalable solutions to counter the rising
challenges posed by image forgeries, ensuring the integrity and authenticity of digital media
in a wide range of applications, including copyright protection, image forensics, and secure
digital content distribution [94].

2.4.2.2 Blind Forgery Techniques

Passive or blind forgery detection techniques don't need the sender's signature or watermark
to check if received images are genuine. In Figure 2.17, you can see how these methods
work. They're built on the idea that even if digital forgeries aren't visible to us, they might
still change the statistics or consistency of a natural scene in an image. This could create new
differences or strange bits that can be used to spot if something's been tampered with. What's
great about passive forgery detection is that it doesn't need any info about the original image
beforehand [96]. In real life, current passive forgery detection methods use different ways to
find signs of tampering and pinpoint the changed parts in an image. These methods analyze
statistical features, noise patterns, or inconsistencies in the image to identify potential
alterations. By detecting each sign of tampering separately, these techniques increase their

robustness and accuracy in detecting various types of forgeries [92]-[96].
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Figure 2.17. Classification Passive Image Forgery

Some common signs of tampering that passive forgery detection techniques may look for

include:

1) Inconsistencies in noise patterns or statistical properties, which can indicate regions
that have been manipulated.

2) Abnormalities in image compression artifacts, suggesting regions that have undergone
editing or alteration.

3) Inconsistent lighting or color inconsistencies that may indicate blending or

manipulation of image components.

Passive forgery detection is particularly valuable in scenarios where prior knowledge about
the image is unavailable or when images have undergone sophisticated alterations that can
bypass active forgery detection methods [97]. By exploiting subtle inconsistencies and
artifacts introduced during the forging process, passive forgery detection approaches
contribute significantly to the field of image forensics, enabling reliable identification of
manipulated images and ensuring the integrity of digital content in various applications, such
as law enforcement, digital media forensics, and content verification. Ongoing research in
this area continues to advance the effectiveness and versatility of passive forgery detection
techniques in combating the ever-evolving landscape of image manipulation and fraudulent
activities. In the study of preventing picture fakes, various strategies are available. Some of

the older methods rely on particular clues or traces that forged images often leave behind
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[97]-[99]. In contrast, modern approaches leverage Convolutional Neural Networks (CNNSs)
and deep learning methods to address this challenge. Before delving into the deep learning-
based strategies, it is pertinent to discuss various conventional methodologies. Conventional
forgery detection methods rely on analyzing characteristic artifacts that emerge during the
image manipulation process. These artifacts may include inconsistencies in noise patterns,
discrepancies in compression artifacts, or irregularities in lighting and color distribution. By
identifying and analyzing such artifacts, conventional techniques attempt to detect and locate
image forgeries. While these methods have been effective to some extent, they may struggle
with complex or well-crafted forgeries that skillfully conceal the typical signs of tampering.
In recent years, deep learning techniques, particularly CNNs, have revolutionized image
forensics. These approaches are data-driven and can automatically learn intricate patterns and
features that indicate image manipulations. Deep learning-based strategies often involve
training CNN models on large datasets of authentic and manipulated images to learn to
distinguish between genuine and forged content. One of the primary advantages of deep
learning-based forgery detection is its ability to adapt and generalize across various types of
forgeries. By learning from extensive data, these models can identify subtle and complex
alterations that may go unnoticed by conventional methods. However, these deep learning
approaches require substantial computational resources for training and can be data-hungry,
necessitating access to diverse and well-labeled datasets for effective learning [100]. In
conclusion, the battle against picture counterfeiting has seen significant advancements with
the emergence of deep learning techniques. While older conventional methodologies continue
to be relevant and useful in certain scenarios, deep learning-based strategies offer the
potential for enhanced accuracy and versatility in detecting various types of image forgeries.
The ongoing development and refinement of deep learning approaches hold promise for
further improving image forensics and bolstering the security and reliability of digital media

content.
2.4.3 Video Source ldentification Techniques

In recent times, a proliferation of digital devices has seen the integration of high-quality video
cameras, enabling the unhindered and cost-free capture of videos. The surge in digital video
usage on various online platforms like YouTube, Facebook, Twitter, and WhatsApp has led
to a significant trend. However, this widespread adoption has also brought forth a multitude
of security challenges. If unattended, these challenges could have severe consequences,

particularly in situations where video content plays a crucial role in critical decisions related
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to illegal activities, including issues like movie piracy and child pornography. The growing
reliance on digital videos across diverse multimedia platforms amplifies the urgency to
address these challenges. Neglecting to tackle these security issues could not only
compromise the integrity of online content but also have broader societal implications,
underscoring the importance of robust security measures in managing digital video content on
these platforms. To bolster the reliability of incorporating digital video into everyday life
scenarios, the incorporation of copyright protection and video authentication mechanisms
becomes imperative. While the realm of source camera identification rooted in digital images
has commanded substantial research attention, the forensic scrutiny of videos has received
comparatively less focus. This disparity in attention can be attributed to a spectrum of
complexities encompassing compression, stabilization, scaling, cropping, and the inherent
dissimilarities within frame types that manifest when storing videos on digital platforms.
Resultantly, the availability of comprehensive and sizeable standard digital video databases,
augmented by current repositories reflective of novel devices grounded in emergent
technologies, remains wanting. The overarching objective of this paper resides in furnishing
an all-encompassing survey of advancements witnessed over the preceding decade in the
domain of source video identification. This exploration is undertaken through a critical
examination of prevailing techniques, notably the likes of photo response nonuniformity
(PRNU) and machine learning methodologies, which have contributed to the progress in this
arena[116]. Gaining a nuanced comprehension of the fundamental mechanisms underlying
the video production process within digital cameras is of paramount importance. This
intricate process is elucidated schematically in Figure 2.18. Commencing with the initial
stage, the optical lens dutifully captures the incident light from the scene. A pivotal stride in
video generation involves the downsizing of the output originating from the full-frame
sensor. This deliberate reduction in spatial dimensions serves to curtail the data volume
necessitating subsequent processing. The facets of acquisition and color manipulation are
tactically orchestrated: color-interpolated image data is subject to down sampling, while pixel
readout data undergoes sub-sampling during the acquisition phase. A prevalent technique
harnessed for rectifying blurring stemming from inadvertent camera movement is electronic
image stabilization. This methodology is judiciously applied during postprocessing in
contemporary cameras. Additionally, the postprocessing phase encompasses the prospect of
image scaling and cropping, facilitating further diminution in dimensions. To optimize the
efficiency of storage and transmission for the postprocessed images, a pivotal operation
ensues wherein the sequential imagery is encoded into a standardized video format.
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Figure 2.18. Video Acquisition Cycle

Source camera identification is systematically evaluated with respect to video content,
delineated into two distinct categories depicted in Figure 2.19: the utilization of Photo
Response Nonuniformity (PRNU) analysis and the employment of advanced machine

learning methodologies.

Video Source
Identification
Techniques

PRNU based Machine Learning
Approaches based Approaches

Figure 2.19. Video Source Identification Techniques
2.4.3.1 PRNU Based Approach

The research carried out by [117] used a Photo Response Nonuniformity (PRNU) technique
involving a minimum average correlation energy (MACE) filter [118]. This method was
designed to reduce the effect of noise on Normalized Cross-Correlation (NCC). They
extracted PRNU from reference videos and applied the MACE filter to it. Interestingly, this
process didn't affect the test (query) videos. The investigation encompassed seven

camcorders, revealing a potential accuracy enhancement of up to 10% through the application
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of this filter. [119] adopted a classification-oriented paradigm for source camera
identification using PRNU. They extracted PRNU-based features from estimated frames and
deployed wavelet sub band decomposition. The feature space was classified using a Support
Vector Machine (SVM). In a noteworthy departure, [120] introduced a pragmatic yet
efficacious approach. PRNU extraction was confined exclusively to the green channel of each
frame, chosen for its inherent noisiness within the RGB channels. Frames were then resized
to 512x512 pixels, followed by wavelet denoising to derive residual signals. This strategy,
evaluated across 256 videos from six devices, convincingly underscored the efficacy of
resizing in enhancing source camera identification. [121] conducted a comprehensive case
study evaluating existing methods for source camera identification, thereby serving as a
valuable resource for nascent researchers in this domain. [122] introduced an innovative
method centered on estimating PRNU from I-frame camera video rolls, known for their
camera axis rotation. They improved the process using Wiener filter (WF) and zero-mean
(ZM) operations in the Fourier domain, and they further enhanced it with rotation
normalization. When tested on the VISION database [123], their approach showed significant
advancements compared to existing methods. Meanwhile, [124] focused on refining PRNU
through an enhancement and clustering strategy. They initially estimated PRNU from a
macroblock within frames and then enhanced it based on the method outlined in [125]. This
technique effectively boosted high-frequency elements, overpowering noise patterns. To
improve the sensor noise fingerprint, they applied smaller weighting factors to strong signal
components in the wavelet transform domain. This refined the effectiveness of PRNU-based
identification. They concluded by using the unsupervised agglomerative clustering technigue,
previously described in [126], for the categorical classification of videos obtained from the
VISION database, as detailed in [123].

In a recent investigation by [127], they meticulously examined the optimal frame type
suitable for identifying the source camera. This assessment, undertaken within the context of
compression and stabilization, unveiled noteworthy revelations. Specifically, it was
demonstrated that I-frames manifest superior outcomes in instances of stabilization, with the
foremost PRNU insights emanating from the initial 1-frame. Among the realm of P-frames,
the acme of dependable PRNU insights is concentrated within the P-frames constituting the
inaugural Group of Pictures (GOP). This revelation is meticulously explored and
substantiated utilizing the VISION database. The realm of PRNU-based camera identification

within the context of video content is significantly challenged by the intricate process of
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image stabilization, whether enacted during capture or post-processing. Essentially, the
process of digital stabilization entails a tripartite workflow: motion estimation, smoothing,
and the alignment of frames predicated on meticulous motion correction analysis. This
endeavor involves the calculation of feature trajectories by tracking key points across
successive frames and estimating motion, often accomplished through either parametric
models or by harnessing the geometric interrelationships between frames, as highlighted in
the works of [128], [129],[130]. The nature of camera motion stabilization, be it two-
dimensional (2D) or three-dimensional (3D), holds paramount significance. Contemporary
methodologies tend to gravitate toward the utilization of 3D motion models to surmount the
inherent constraints associated with 2D modeling. These advanced approaches, while
acknowledging the complexities of reconstructing 3D with depth information, streamline the
3D structure and heavily rely on the precision of feature tracking accuracy, as exemplified by
the contributions of [131], [132]. The main goal in video stabilization is to precisely line up
consecutive frames using geometric registration. This counters any perspective distortion by
using Euclidean transformations, like scaling, rotation, and translation, alone or combined.
These transformations are applied carefully, often using a varying warping method, to adapt
to how the camera moves during recording. An interesting thing happens when these
transformations are applied to each frame: they create a lot of variation in camera motion,
making it tricky to match pixels between frames. This makes the usual method of aligning or
averaging PRNU patterns at the frame level less effective in accurately estimating a reference
PRNU pattern. The final step in stabilizing a video is figuring out and undoing these frame-
level transformations. This step is crucial for identifying where the video came from. The

aggregate outcomes of these algorithms are visually depicted in Figure 2.20.
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The overarching focal point of these algorithms resides in furnishing a transformation
mechanism adept at surmounting alignment quandaries that arise in diverse scenarios. In
methodologies that entail the extraction of reference patterns, the transformation is often
informed by images captured by the same camera, encompassing both video frames and flat
frames, with further integration of initial frames from videos achieved through averaging
procedures. In the study conducted by [139],a resolution to the challenge of stabilization was
sought through the implementation of a straightforward inverted transformation technique
during the process of noise pattern extraction. In contrast, [140] undertook a distinct
approach, wherein the identification of stabilization instances within each video was
accomplished through a two-pronged strategy. Primarily, the PRNU of the initial and
concluding frames was juxtaposed in order to discern the occurrence of stabilization at the
outset. In the analysis performed by [141] the identification of the source camera was
executed under the presumption that the reference PRNU pattern could have been established
from images or an unstabilized video source. Addressing the variance in resolutions between
videos and images, the alignment of PRNU patterns was undertaken for a subset of I-frames,
typically ranging between 5 to 10 frames. This alignment procedure encompassed the
determination of appropriate scaling, shifting, and cropping parameters for each individual
frame, leading to the creation of an aligned PRNU pattern through frame combinations
exhibiting congruence. [142] devised an innovative approach to PRNU pattern estimation that
accommodates weakly stabilized video sources. This methodology engenders the generation
of an alignment reference predicated upon a selection of frames. By employing pairwise
matching between PRNU estimates from diverse frames, the detection of stabilization
instances is facilitated. Subsequently, a reference PRNU pattern is derived through the
aggregation of frames displaying a significant match, thus establishing a reference for
alignment purposes. In cases where the reference PRNU pattern is already discerned at an
alternative resolution, as exemplified in [141], the said reference pattern is harnessed for
comparative analysis against other PRNU patterns. Particle swarm optimization (PSO)
methods, as elucidated in [155], are adeptly employed to ascertain the transformation
parameters in this context, effectively streamlining the comparative process. In scenarios of
weakly stabilized videos, a notable observation was made wherein rotation parameters could
be disregarded, thus expediently expediting the search process. For the estimation of the

PRNU pattern, an initial foundation is established through weak stabilization applied to flat
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and stationary content. Subsequently, verification of stabilized videos involves the extraction
of five I-frames, which are subsequently juxtaposed against the established reference PRNU
pattern. The comprehensive evaluation of outcomes utilizing the VISION database robustly
validates the efficacy of this method. In an evolutionary progression of their prior work, [156]
further elaborate on their original research, wherein they introduced a comprehensive
approach to scrutinizing source camera attribution in videos. This advanced method delves
into the nuanced spatial fluctuations inherent to stabilization transformations, postulating an
augmented degree of freedom in the exploration of these transformations. Notably, the
discernment of transformations is conducted at a subframe granularity, entailing the
incorporation of an array of constraints geared towards validating their accuracy. This
intricate validation process is underpinned by a judicious computational framework, affording
the requisite flexibility in the pursuit of optimal transformation solutions.

The post-decoding phase, following a filtering procedure within the decoder (i.e., the loop
filter), involves the translation of the bitstream into individual video frames. Subsequently,
each extracted frame undergoes a sequential processing stage aimed at the extraction of the
PRNU pattern. Prior to commencing the analytical process, an assessment of the stabilization
level inherent within the videos is performed, utilizing the criteria delineated by [141], [142].
This preliminary evaluation serves to eliminate videos characterized by either inadequate or

weak stabilization.

To accommodate the spatially variable characteristics of stabilization transformations, the
PRNU patterns are subdivided into smaller blocks, a practice found to yield optimal
outcomes when employing 500 X 500 blocks. The identification of PRNU transformation
parameters is then orchestrated through a block-specific search mechanism, obviating the
likelihood of false inversions. A weighting protocol considers the compression levels of
transformed blocks before aggregating them. The final alignment evaluation entails a detailed
comparison of the estimated PRNU pattern with the reference PRNU pattern. [144] takes a
distinct approach, emphasizing the creation of a sturdy reference. This deviates from previous
methods that aimed to remove stabilization effects from query frames. The focus shifts
toward establishing a reliable reference, departing from earlier methods centered on
eliminating stabilization effects from the frames under examination. Their approach involves
several essential steps applied to flat I-frames, including cropping, shifting, and using inverse
transformations. Additionally, they propose an improved framework to compare PRNUSs from

motion-stabilized videos. [142] A groundbreaking search technique is introduced to swiftly
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determine scaling and rotation parameters in the frequency domain, expediting the discovery
of inverse transformations. Leveraging the Fourier-Mellin transform outlined in [157], it
estimates scale, rotation, and shift between images, providing straightforward solutions.
Experiments conducted on the VISION database affirm its significantly enhanced efficiency
compared to existing methods. When sensor resolution exceeds the desired resolution, a
combined strategy of cropping and scaling is deployed to downsize images or frames.
Cameras utilize bicubic or Lanczos scaling and their variants for downsizing still images.
Additionally, pixel binning and line skipping techniques are concurrently employed to
alleviate camera processing overheads, primarily in video capture scenarios. These
approaches work synergistically to manage resolutions, ensuring efficient downsizing while
minimizing computational burdens in diverse imaging contexts. This method's acceleration of
inverse transformation discovery, coupled with the amalgamated strategies for resolution
management, presents a promising paradigm in handling imaging processes, particularly in
scenarios demanding swift transformations or resolution adjustments. Central pixel
utilization, entailing the exclusion of peripheral pixels, constitutes a prevalent strategy in
video capture, efficaciously reducing camera processing demands. Nonetheless, the exclusive
reliance on cropping bears a substantial drawback when applied to still images, manifesting
as a narrowed field of view as the cropping region expands. To counterbalance this limitation,
cropping is frequently amalgamated with resizing operations. Building upon the foundations
laid by [145], [158] embark on a comprehensive extension of their research, concentrating on
distinct aspect ratios engendered by resizing and cropping techniques for both images and
videos, thereby enriching the arsenal of methodologies for source camera identification. This
augmentation further encompasses the introduction of a dedicated database tailored to the
intricacies of resizing and cropping concerns, furnishing a versatile resource for empirical

investigations in this domain.
2.4.3.2 Machine Learning Based Video Source Detection

Table 2.3 concisely encapsulates the array of machine learning methodologies presented in
this study. Broadly categorized, the works of [138] [119] are also positioned within the realm
of machine learning techniques. [159] undertook an in-depth exploration, deploying machine
learning strategies for source camera identification. Their approach involved the extraction of
distinctive features from the bitstream, encompassing quantification factors and motion
vectors. They harnessed these traits for subsequent classification via a Support Vector
Machine (SVM) classifier.



40

Table:2.3 Machine learning Based Source Identification.

References = Machine learning  Year Features
based Methods
[159] SVM Classification 2010  Feature extraction involves obtaining

characteristics including bitstream data,
quantization factors, and motion vectors.

[160] SVM Classification 2012 A feature extraction technique grounded in
Conditional Probability (CP).
[119] SVM Classification 2016  Attributes derived from wavelet transform
[88] CNN Framework 2019  Deriving discernible noise signals from a
provided frame.
[161] MISLnet CNN 2020  Introducing a restricted convolutional layer
Framework within grayscale mode.
[162] MISLnet CNN 2020 Incorporating a constrained convolutional
Framework layer within the RGB mode.
[163] MISLnet CNN 2012  The common network functions by receiving
Framework two deep feature vectors as input and
transforming them into a 2D similarity
vector.

Methodically, they extracted motion vectors from each macroblock within P-frames and
scrutinized multiple bitstream attributes. These attributes encompassed metrics such as the
count of bits, P-frames, and B-frames within a Group of Pictures (GOP). They explored
differences between adjacent P-frames and B-frames, delving into granular quantization
factor details. This included scrutinizing the maximum consecutive macroblocks sharing
identical quantization values within frames categorized as I, P, and B, organized in a specific
sequence. Statistical measures such as mean and variance were employed to analyze the
number of consecutive macroblocks sharing these quantization values across frames of
varying types. Their approach involved a comprehensive assessment of multiple parameters
within the video bitstream, extracting nuanced details related to frame types, quantization
factors, and statistical attributes. This detailed analysis provided insights into the intricacies
of video compression and encoding, aiding in feature extraction and subsequent classification
using the SVM classifier. By examining these various attributes within the video stream, they
aimed to identify patterns or anomalies contributing to improved classification accuracy in
their forensic analysis of video content. Their exploration of quantization factor attributes
involved looking at how much the quantization parameters differed among neighbouring
macroblocks in different frame types, along with the corresponding average disparity. Motion

vector attributes were equally scrutinized, wherein a defined search window facilitated the
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estimation of maximum horizontal and vertical dimensions. This methodological synthesis
substantiates a meticulous investigation into machine learning-driven source camera
identification. [160] introduced an innovative paradigm of feature extraction centered on
conditional probability (CP) for the explicit purpose of source camera identification. The
efficacy of these features was also demonstrated in the domain of steganalysis applications,
as exemplified in the work of [164]. The foundation of conditional probabilities lies in
quantifying the likelihood of occurrence of event B, given the prior occurrence of event A.
The extraction process encompassed the retrieval of JPEG Discrete Cosine Transform (DCT)
coefficient arrays from individual frames, subsequently facilitating the derivation of CP
features from these coefficients. The extraction of features was executed at the granularity of
blocks, each comprising an 8x8 array of coefficients within a frame. Employing an SVM
classifier, the extracted features were subjected to classification to discern the source camera.
Worth noting, the method's validation was confined to a selection of videos emanating from
four distinct devices. In [88], a Convolutional Neural Network (CNN) underpinned by sensor
pattern noise (SPN) was introduced, aptly named SPN-CNN. The conceptual basis rested on
CNN's inherent capability to extract signal signatures characterized by noise from an
assemblage of images, as theorized by [89]. Consequently, the network was systematically
trained to discern noise patterns. Rigorous testing on the VISION database, as curated
by,[123] unequivocally showcased the method's superiority over the Wavelet denoiser.
Remarkably, the study elucidated a marked enhancement in results when restricting the CNN
inputs exclusively to I-frames. [161], [162] contributed to the panorama of deep learning
methodologies through the introduction of the MISLnet CNN architecture. Rooted in an
extension of the constrained convolutional layer initially introduced by [17], the architecture
demonstrated its salience through an innovative majority voting strategy that aggregated
decisions at the video level. This was achieved by feeding frames into the network. A distinct
feature of this architecture is the incorporation of a foundational layer utilizing three kernels
with a size of 5, meticulously designed to elicit inter-pixel relationships independent of the
scene's content. Rigorous experimentation, conducted on the VISION database, reaffirmed
the potent efficacy of this constrained convolutional layer in augmenting the performance of
deep learning architectures, especially when compared to counterparts lacking such a feature.
It's pertinent to note that the disparity between these methods lies in the dimensions of images
and color modes employed, with [162] utilizing RGB mode and [161] employing grayscale
mode. Image patches for the former are sized at 480, while the latter employs patches of
dimension 256. [163] harnessed a CNN architecture akin to the prior works of [17],
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Expanding its capabilities for extracting features, along with a specially designed similarity
identification network to confirm the source camera, sets this approach apart. What makes it
unique is how it uses a similarity network to connect pairs of various deep learning feature
vectors to a enhanced 2D similarity network vector. Constructed on foundational principles
detailed in [165]. For video-level decisions, they introduced a fusion method leveraging the
mean of the inactivated output layer from the similarity network. Validating this on the
SOCRatES dataset, curated by [166], showcased the method's efficacy and applicability in
forensic video analysis. Experimental results unequivocally demonstrated the method's

notable superiority over conventional approaches, exemplified by [167].
2.4.3.3 Deep Learning based Approach

Deep learning, which falls under machine learning, focuses on using complex hierarchical
architectures in artificial neural networks. These structures can learn in different ways:
supervised, semi-supervised, or unsupervised. Most developed models are designed on
Convolutional Neural Networks (CNNs), but they can also involve propositional formulas or
hidden variables organized in layers. These layers, akin to nodes, resemble the architectural
patterns seen in enhanced deep learning networks or deep Boltzmann framework machines,
as elucidated by [168] of significance, the current landscape of deep learning primarily
employs convolutional layers to capture and encapsulate the essence of scene content,
shifting the emphasis away from the traditional role of detecting camera-specific attributes
such as noise patterns. However, it is worth noting that deep learning methodologies, such as
CNNs and Siamese networks, as expounded upon by [169], can be suitably harnessed to fulfil
this particular objective. Recognizing the growing importance of identifying camera models
is crucial in multimedia forensic investigations. The abundance of digital content—images,
videos, audio sequences, and the like—is continuously increasing, a trend expected to
continue with ongoing technological progress. This surge is largely due to the internet's rise
and the globally use of social media network to share content, which have sped up the
proliferation of forged data of digital content. As a result, tracing the origins of this content

has become a challenging task [170].

In the realm of forensic investigations, the ability to trace the lineage of digital content
assumes paramount importance. This capability is pivotal in unmasking the culprits behind a
spectrum of crimes, including untracked rape case, remote areas drug trafficking, and acts of
terrorism, by establishing the provenance of digital materials. The unfortunate proliferation of
incidents like revenge porn further underscores the potential for private content to go viral on
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the internet. Given these multifaceted scenarios, the imperative to retrieve the origin of
multimedia content is a foundational tenet [171]. In light of these considerations, the focus of
this study is to ascertain the smartphone unique model identification employed for capturing
digital video. This objective is pursued through a composite approach involving the
extraction and fusion of both visual and auditory information derived from the multimedia
content. The domain of forensic literature has seen limited dedicated exploration towards
identifying the provenance of video sources, prompting our focused investigation into video
source attribution. In juxtaposition, the sphere of digital image analysis has garnered
substantial attention within the domain of digital imaging. Evidential traces imprinted onto
photographs at the instance of image capture proffer an avenue to discern the specific camera
model employed for image acquisition [172]. This pursuit unfolds through two cardinal
trajectories: model-based and data-driven methodologies. The former, namely the model-
based approach, delves into harnessing the distinctive traces emanating from the digital image
capture process to decipher the camera type. These traces, intricately entwined with
procedural nuances, serve as conduits to unveil the camera's identity through meticulous
tracing. Numerous processing operations and imperfections inherent to the image acquisition
pipeline, including residual dust particles and noise patterns [173], have been harnessed as
conduits to communicate informative cues, thereby substantiating accurate camera model

identification.

In recent years, the advent of digital data and computational prowess has ushered forth data-
driven approaches that markedly outshine their model-based counterparts. The data-driven
paradigm adeptly captures an array of model-related traces, diverging from the conventional
focus on specific traces arising from image acquisition. This expanded scope results from the
intricate interplay of system components that facilitate the capture of diverse model traces.
One of the key data-driven methods revolves around learned features. These approaches
involve feeding digital images into deep learning structures, allowing the models to pick up
specific features related to the model and establishing connections between images and where
they come from [174]. The CNN models have emerged as the preeminent solutions within
this domain, gaining widespread prominence. To the extent of our current understanding, the
realm of video sequence-based camera model identification remains relatively uncharted,
with only a singular study found in existing literature. In this manuscript, we harness
sophisticated deep-learning methodologies to forge efficacious avenues for unique camera

model of device for attribution through video sequences. Our approach creates the
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segmentation of video frames into discernible patches, from which pertinent features from
patch dataset are extracted for better result. These features are subsequently amalgamated to
yield a precise classification outcome for each video. Elucidating further, our study centres on
harnessing advanced deep-learning paradigms to formulate potent methodologies for source
camera identification within video frame sequences. In this endeavor, we propound an
approach that entails the automated extraction of pertinent attributes from both visual and
auditory components of videos. This is achieved through the adept utilization of CNNs,
endowed with the capability to effectuate classification through the amalgamation of the
extracted features. Our proposed approach centres on a mixed-modal framework we've
termed "multi-modal.” This name summarizes how our method works: it simultaneously
gathers visual and auditory details from query videos to solve the identification challenge.
Our methodology relies on both visual and audio content. To explain it more, in terms of
visual content, we carefully isolate specific sections extract patches from the frames. In view
of, the audio domain, we judiciously extract content from patches from the LMS of the
separated audio-based track enshrined within the video frames, lending credence to our
solution for the identification predicament. Pertinently, the proposed technique espoused by
the authors aligns with the mono-modal paradigm, characterized by an exclusive reliance on
the visual facet of a given video to fuel the classification endeavor. In our quest to fathom
multi-modal camera model identification, we proffer two discrete methodologies, each
hinged on the pivotal information thus garnered [175]. Both methodologies operate in the
realm of Convolutional Neural Networks (CNNSs), whereby a dyad of visual and audio
patches is adeptly presented to the networks for informational ingestion. The inaugural
approach entails a juxtaposition and amalgamation of individual scores furnished by a duo of
CNNSs. These CNNs, meticulously primed in consonance with a mono-modal tenet, cater to
distinct data domains—wherein one CNN is rigorously calibrated to decipher solely visual
data, while the other grapples solely with auditory data. In contrast, our second approach
embarks upon the tutelage of a solitary multi-input CNN. This multifaceted CNN is astutely
cultivated to concurrently process both visual and audio patches, thereby coalescing the
potency of dual domains. In the pursuit of methodological robustness, we undertake a
comprehensive analysis of each proposed approach, delving into the intricacies of three
distinct network configurations and data pre-processing protocols. These configurations are
meticulously tailored around established CNN architectures that reign supreme in the realm
of cutting-edge video processing, ensuring an optimal amalgamation of efficacy and

performance.
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Our evaluative endeavors are underpinned by a meticulous examination of the Vision
dataset—a comprehensive compendium comprising approximately 650 unaltered video
sequences, accompanied by their corresponding renditions across various social media
platforms. This corpus constitutes a rich tapestry of nearly 2000 videos, all impeccably
captured by 35 contemporary smartphones [176]. The scope of our experimentation extends
beyond the confines of the original pristine footage. By incorporating videos subjected to the
transformative algorithms of WhatsApp and YouTube, we engage in a multifaceted
exploration. This dual-pronged approach not only scrutinizes the ramifications of data
recompression but also probes the uncharted waters of disparate training and testing datasets,
a scenario often rife with challenges. In our pursuit of comprehensive assessment, we
establish a baseline benchmark by unraveling the intricacies of mono-modal attribution
quandaries. This strategic comparison serves as a beacon, allowing us to gauge the attained
results against a yardstick of reference. It is undeniable that recent strides in the domain of
multimedia forensics predominantly gravitate toward video sequences. The contemporary
landscape is typified by an array of approaches that either dissect visual or audio constituents
in isolation or opt for a symbiotic synergy of both modalities. This entrenched dichotomy
serves as a cornerstone, propelling our dedicated exploration into the intricate intricacies of
multimedia source identification. The utilization of both visual artifacts and audio content
cues into the domain of multimedia forensics has emerged as a relatively nascent endeavor,
albeit one that has yet to comprehensively address the intricate task of camera model
identification within its purview. Our proposal entails a systematic examination of outcomes
garnered from the isolated exploitation of either visual or audio patches, thus yielding a

mono-modal avenue for the classification of query video sequences [177].

The bedrock of our investigation lies in a meticulous experimental campaign, orchestrated to
unravel the comparative efficacy of mono-modal and multi-modal methodologies. The
empirical insights garnered unequivocally affirm the supremacy of the latter, casting a
shadow of inefficiency over the former. The demonstrated prowess of our pursued multi-
modal strategies aptly surpasses the conventional mono-modal paradigms, thereby offering a
streamlined and more potent solution to the task at hand. Furthermore, an intriguing
observation surfaces in relation to data compression's impact on classification endeavors. Our
empirical analysis reveals a salient pattern wherein data subjected to more robust
compression, such as videos transmitted via the WhatsApp application, pose a formidable

challenge in the classification realm. In stark contrast, data subjected to milder compression,
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exemplified by content uploaded onto YouTube, exhibits a comparably favorable ease of

classification [178].

This holistic analysis synthesizes a compelling narrative, underscored by empirical evidence,
highlighting the nascent convergence of audio-visual cues in the realm of multimedia
forensics. Moreover, it showcases the ascendancy of our multi-modal methodologies in
unravelling intricate camera model identification puzzles, all while shedding light on the
nuanced interplay between data compression and classification challenges. Despite these
challenges, our investigation has revealed a notable trend: even within this intricate context,
multi-modal strategies continue to exhibit superior performance compared to their mono-
modal counterparts. This observation underscores the resilience and adaptability of multi-
modal approaches in addressing the complexities inherent in the task. In pursuit of feature
extraction and subsequent categorization within a sequential image dataset, the video
classification algorithm leverages advanced feature extractors, notably convolutional neural
networks (CNNs). These CNN-based feature extractors parallel their image classification
counterparts, facilitating the process of categorizing videos based on extracted descriptors.
Harnessing the power of deep learning-driven video categorization, a realm encompassing
activities and events within visual data sources like video streams is attainable. The
intricacies of such activities are scrutinized, categorized, and tracked, enabling
comprehensive analysis within the visual domain. The implications of deep learning-powered
video classification transcend mere surveillance, extending into various domains including
anomaly detection, gesture recognition, and the discernment of human activities. These
multifaceted applications highlight the versatility of video classification as a potent tool in the

realm of information processing and understanding.

In essence, our exploration delves into the crux of multi-modal supremacy within intricate
contexts, while the utilization of CNN-based feature extractors for video classification
underscores the intersection between image and video analysis. This convergence bears
testimony to the profound impact of deep learning in extracting meaningful insights from
dynamic visual data sources, fostering a plethora of practical applications beyond the scope

of traditional video understanding paradigms.

Initiating the process of video classification entails a systematic sequence of steps, each

contributing to the comprehensive categorization of video content.
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e The initial phase involves the creation and curation of training materials, constituting
a pivotal foundation for subsequent classifier development and refinement.

e A judicious selection of a suitable classifier constitutes a pivotal decision in the video
classification process, the choice of which should align with the specific objectives
and characteristics of the dataset.

e The classifier's proficiency and effectiveness must be honed through a continuous
process of education and assessment, wherein its performance is meticulously
evaluated and optimized.

e Harnessing the potential of the chosen classifier, the subsequent step involves the
adept processing of video data, wherein the classifier's learned knowledge is applied
to categorize and label diverse video content.

e Training the classifier extensively on specialized video datasets like the Kinetics-400
Human Action Dataset significantly amplifies its efficacy in activity recognition.
These curated datasets serve as pivotal resources specifically designed to facilitate and

enhance activity recognition pursuits.

An enhanced classifier can be effectively trained the data by harnessing the vast and high-
fidelity reservoir of activity recognition video data present in expansive datasets like the
Kinetics-400 Human Action Dataset. This meticulously compiled collection encompasses a
plethora of meticulously tagged video clips, each contributing to the enhancement of the
classifier's knowledge base [179]. The initial stage of the process entails provisioning the
video classifier with annotated footage or video clips, thus initiating the intricate

classification process.

Within this framework, a robust and intricate deep learning-based video classifier is
constructed, comprising convolutional neural networks meticulously engineered for video
analysis. This classifier exhibits the capability to prognosticate and classify videos content
based on the inherent characteristics of the video inputs, thereby demonstrating the prowess
of deep learning methodologies in the realm of video classification [180]. A crucial
component of the procedure involves the rigorous evaluation of the classifier's performance, a
step indispensable in ensuring its efficacy and fine-tuning. Furthermore, the versatility of the
classifier extends to real-time applications, as it can be adeptly employed to categorize
activities depicted in live webcam video streams or collections of dynamically streamed
video clips. The profound capabilities of the classifier extend to encompass various training

paradigms, encompassing techniques and utilized the developed the Slow path and Fast



48

improved paths (Slow Fast), ResNet with (2+1) D convolutions, and enhanced two-stream
approach to Inflated-3D approaches, as illustrated in Figure 2.21, all facilitated by the
expansive resources provided by the Computer Vision Toolbox. Manufacturers of DSLR
cameras, including industry giants like Canon, Nikon, and others, routinely employ intricate
calibration algorithms as a prelude to capturing scene imagery, a procedure that significantly
contributes to the elevated cost of professional-grade DSLR cameras. In light of this, there is
a compelling impetus to engineer novel calibration techniques that are not only
computationally efficient but also cost-effective, aiming to render them on par with
established methodologies employed on a global scale. The overarching objective is to
democratize the calibration process, thereby rendering it accessible and economically viable
for a wider demographic. The calibration protocols undertaken by leading DSLR camera
manufacturers involve intricate procedures aimed at achieving optimal performance and
accuracy in image capture. The deployment of such sophisticated algorithms imparts a
substantial financial burden, consequently elevating the price point of premium DSLR
cameras. To address this challenge, it is imperative to embark on the development of
alternative calibration techniques that circumvent excessive computational demands while
concurrently maintaining an uncompromised standard of quality. The successful
implementation of such techniques would, in turn, lead to a notable reduction in cost,
rendering professional-grade image-gathering equipment more affordable and accessible to a

broader spectrum of users.
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Figure 2.21. 3D Methods for Video Classification Classifier Training
Efforts in this direction are propelled by the aim of democratizing advanced imaging
technologies, aligning with the principles of cost-effectiveness and widespread accessibility.
By engineering calibration techniques that are both computationally streamlined and
financially viable, it becomes feasible to equip a larger populace with the means to engage in
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high-quality image acquisition, thus fostering a more inclusive and participatory imaging
landscape on a global scale [181]. The process of identifying the specific camera model
employed to capture the photographic and video frames showcased within this article hinges
upon the meticulous scrutiny of numerous distinctive traces embedded within the images and
video frames during the image acquisition process. This endeavor encompasses an
exploration of the idiosyncrasies inherent to the acquisition of digital photographs, thereby
fostering a comprehensive understanding for readers seeking to delve into this domain.
Subsequently, a comprehensive exposition on the Mel scale and its implications for audio
content in video sequences will be presented, thereby facilitating a nuanced comprehension of
the subsequent analytical framework. The exposition elucidates the merits of the Log-Mel
Spectrogram (LMS) as an invaluable tool for scrutinizing temporal variations in audio tracks,
as well as their evolving spectral attributes [182]. Over the preceding decades, the endeavor
to discern image camera models has engendered an array of methodological avenues, each
honing distinctive methodology. Central to these methodologies is the pursuit of discerning
noise pattern characteristics germane to individual camera models from the furnished images
and videos. These noise patterns, often dubbed traces, are conjectured to stem from
manufacturing anomalies that manifest uniquely within each camera model [183]. In seeking
to fulfill this aim, diverse approaches have emerged, each striving to ascertain the distinctive
noise patterns harbored by varying camera models. This proactive endeavor hinges upon a
multifaceted analysis of images or videos, culminating in the extraction of discernible traces,
thereby constituting a foundational framework for camera model attribution. The core tenet
driving these methodologies is the premise that the distinctiveness of these noise patterns is
intimately tied to the intricate manufacturing nuances intrinsic to each camera model, thus
propounding a novel facet for model differentiation within the realm of multimedia forensic
investigations[184]-[186].

Within the realm of multimedia forensics, an extensive focus has been directed toward the
intricate endeavor of blind source device identification. This pursuit entails meticulous
analysis of discernible traces, encompassing phenomena such as sensor dust and defective
pixels, thereby culminating in the formulation of multifaceted strategies aimed at discerning
the originating capturing device. A pivotal turning point in this trajectory was instigated by
Lukas et al., who introduced the pioneering concept of harnessing Photo-Response Non-
Uniformity (PRNU) noise as an unequivocal marker for defining the distinctive geometry of a

camera sensor, thus engendering a notable paradigm shift [187]. An inherent characteristic of
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PRNU noise lies in its multiplicative nature, a trait that imbues it with a remarkable resilience
against removal even when subjected to sophisticated high-end processing equipment. This
intrinsic multiplicative essence renders PRNU noise exceptionally tenacious, resisting
effective elimination. Notably, this persistence persists unrelentingly even after subjecting the
image to JPEG compression at an average quality level. In the context of exploring the
applicability of PRNU-based camera forensics for image recovery from standard Scene
Matching Points (SMPs), investigations have unveiled a salient caveat. It has come to light
those alterations, whether instigated by users or the SMPs themselves, have the potential to
vitiate the efficacy of PRNU-based source identification. Such alterations could erode the
fidelity of the PRNU-based inference, thus impeding its reliability as a robust source
identification mechanism. This nuanced insight accentuates the need for a comprehensive
understanding of the interplay between PRNU-based identification and potential image
modifications within the broader domain of multimedia forensic analysis. Emerging
advancements in camera software integration encompass novel digital identification
technologies aimed at mitigating the destabilizing ramifications stemming from unsteady
hands during video capture. This innovative paradigm involves a programmatic evaluation of
user-induced movements, discerning their impact on the pixel allocation within the
camcorder's image sensor. Within this dynamic framework, the manipulation of specific
pixels within the image sensor is orchestrated to counteract the destabilizing influences
associated with unsteady hands. For Android-based devices, a degree of user agency is
accorded, enabling the activation or deactivation of image stabilization features. In contrast,
i0S-based devices do not provide users with the capacity to modulate this setting, indicative

of a distinguishing feature between these two ecosystems.

In the pursuit of attributing video sources through the prism of active digital identification
hinging upon the PRNU fingerprint, an intricate challenge surfaces in the form of alignment
disruption during the identification process. This perturbation-induced misalignment renders
the task of source identification elusive, thereby incapacitating the discernment of video
sources characterized by active digital identification mechanisms. The underlying implication
is that the inherent dynamics of active digital identification methods cast a shadow of
uncertainty upon the viability of PRNU-based source attribution within this context [188]. It
is essential to recognize and address these intricate interactions to refine the accuracy and
reliability of source identification in the realm of digitally enhanced video capture.

Notwithstanding the strides made by HSI in formulating a reference-side solution,
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specifically pertaining to the estimation of fingerprints from static photographs, the
underlying challenge remains unresolved. Within the domain of forensic video analysis, a
myriad of evolving techniques hold promise for unearthing evidentiary insights. Yet, prior to
their application, a multitude of unanswered inquiries necessitate comprehensive exploration
to validate their efficacy within this context. Moreover, the realm of forensic video analysis
unveils heightened complexities compared to its image analysis counterpart, posing
formidable obstacles in comprehending the intrinsic data of videos. This intricacy is rooted in
the intricate compression structures that videos adopt, presenting a stark contrast to the
relatively straightforward formats employed by images. While an image frame encapsulates a
sequence of discrete images that collectively unfold over time, imbuing the visual narrative
with motion and temporal evolution, a video entails a reservoir of information ingeniously
encoded and decoded through mathematical methodologies, colloquially known as codecs.
These encoded frames, pivotal components of the multimedia tapestry, are encapsulated
within a multimedia file format, interwoven with complementary tracks housing audio,
metadata, and subtitles. Converging as multimedia files, this amalgamation mirrors the
complexity inherent in the video medium, requiring an intricate orchestration of encoding and
decoding mechanisms to facilitate seamless interpretation and playback. The nuanced
intricacies of multimedia files, brimming with encapsulated visual and auditory dimensions,
underscore the multifaceted challenge that forensic video analysis endeavors to surmount
[189]. By delving into the depths of video compression paradigms and the intricate interplay
of multimedia elements, the quest for refining and advancing forensic video analysis

confronts multifarious dimensions demanding systematic exploration and resolution.
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CHAPTER 3
IMAGE SOURCE IDENTIFICATION USING TWIN

CNN ARCHITECTURE

3.1 Proposed Framework

This section introduces a Twin CNN Architecture for image source identification. A novel
model is devised to preprocess the dataset and accurately classify images with appropriate
device class labels, as outlined shown in Figure 3.1. Within this proposed framework, the
input consists of an image dataset, and the output involves classifying the source device along
with class-level information. The effectiveness of prediction is quantified through high-
accuracy measurements. The procedure is detailed as follows: The initial step involves
generating patches of size 256x256 from the original dataset, considering the varying

resolutions of device models for captured images.
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Figure 3.1. Proposed Framework using Twin CNN Architecture for Image Source ldentification



53

3.2 Conversion of Data Sets into Patches

This conversion of images into patches is executed using MATLAB to ensure quality
preservation. The optimal patch is selected from the images to proceed with the analysis

depicted in Figure 3.2.

Input Image Dataset
Patch Creation

MATLAB
Processing

XxY 256%256
Resolution Patches

Figure 3.2. Conversion Image into Patches

Upon establishment of a meticulous dataset with distinct device IDs, the subsequent phase
involves employing the 'MATLAB' software to generate patches of dimensions 256x256
from the initial dataset. It is noteworthy that these patches inherently harbor noise attributed
to material imperfections. To mitigate this noise, the DnCNN model is harnessed for

denoising the image dataset.

3.3 Denoising of Patches

The selection of DNCNN Architecture for denoising is substantiated by its competence in
handling Gaussian noise instances with indeterminate noise labels within random images.
DnCNN architecture leverages residual learning techniques and integrates batch
normalization to optimize denoising outcomes for the image dataset. Employing a 3x3 kernel,
the patch is subjected to convolutional processing, while the omission of a pooling layer
maintains the patch's dimensions post denoising. The DnCNN model is configured with
dimensions of 35x35 and is structured with an expanded depth ranging from 17 to 20 layers,
categorized into three distinctive layers. The initial layer employs convolutional operations
combined with the ReLU activation function, where a 3x3x3 filter yields the generation of 64
feature maps. This strategic arrangement facilitates the initial feature extraction process.
Within the second layer, the convolutional filter is invoked, accompanied by batch
normalization, which synergistically heightens the learning rate to optimize prediction

accuracy. The incorporation of the ReLU activation function within this layer further
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augments learning efficiency. In the ensuing third layer, a single convolution filter, structured
with dimensions of 3x3x64, is employed to effectuate the reconstruction of the native picture
dimension within the DNCNN framework. The holistic architectural progression of DNnCNN
is concisely outlined as follows shown in Figure 3.3.

Noisy Image Denoised Image

l
Conv+RelU

l
Conv+BN+RelU

\
Conv+BN+RelLU

4
Conv+BN+RelLU

l

Conv
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Figure 3.3. DnCNN Architecture for Denoising the Image
Following dataset pre-processing, we introduce a CNN architecture comprising four distinct

layers, aimed at source identification by virtue of feature extraction via convolution kernels.
The classification CNN architecture takes a 256x256 resolution image as input. To effectuate
feature extraction from the input image, we deploy a convolution filter characterized by
dimensions of 3x3x3. It is imperative to note that the trailing dimension varies depending on
the image type. For grayscale images, '1' is utilized, whereas color images entail a '3' due to
their trichromatic nature. Subsequent to convolutional filtering, we employ a max pooling
layer, serving to extract maximal values post-convolution while concurrently reducing the
feature dimensions to 64x64. The leaky rectified linear unit (ReLU) activation function is
harnessed to generate an output, which subsequently serves as the input for the successive
layer within the CNN Architecture. This approach enables robust feature extraction and
encapsulates the inherent multi-channel nature of color images while ensuring dimensionality

reduction via pooling, thereby facilitating subsequent processing and classification.

3.4 CNN Architecture Operations

The architecture's design encompasses tailored strategies for varying image characteristics,
thereby enhancing adaptability and accuracy in the source identification process. In our
approach, we incorporate padding and a stride value of 2 within the convolutional layers. To
enhance accuracy, we iteratively execute this convolutional process for a total of four layers,

culminating in the presentation of the resulting output to the SoftMax layer. This latter layer
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serves to produce probabilistic values ranging from '0" to '1' for each device category,
effectively discerning distinctive feature characteristics. In the context of source
identification, the procedure entails inputting a random image from the test set into the
model, which subsequently predicts the original source of said image.

The convolutional network's functionality can be mathematically encapsulated through the

following equation:

X y
P, =f Z T Wy Ly + Wi (3.1)

x=0 y=0
In this context, f represents the activation function employed within the convolutional
framework. The notation P;j; pertains to the estimated pixel value at the specific coordinate
(1,J) within a given image. Wy signifies the shared weight value utilized in the convolutional
layer, while Wy denotes the bias element integrated within the filter structure to achieve
balance. Notably, these parameters are iteratively learned from the available data and are
optimized throughout the training process to attain their most effective values. The max
pooling layer serves to extract features by identifying the maximum value following the
convolutional operation depicted in Figure 3.4, subsequently diminishing the dimensionality

of the input image.
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Figure 3.4. Kernels Operation in Convolution Layer
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The designated kernel is applied to the input image (1), engaging convolutional operations to
transform the original pixel values, and subsequently discerning the maximum value among
them. The conversion process adheres to the ensuing function:

f() =max(0,1) ={I,1 =00, <0 (3.2)

The max pooling layer functions to filter out low-intensity feature values within the image,
thereby enhancing both the quality and predictive accuracy. Within this network, a 2x2 filter
is implemented within the max pooling layer, coupled with a stride of 2" and padding. The

conversion process is visually represented in the accompanying figure:
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Figure 3.5. Max Pooling Layer Conversion Operation
Upon extracting features from the patches, a precaution against overfitting is taken by
employing a parameter of 0.5 between the fully connected layers. The process of feature
extraction is carried out across all convolutional layers, after which a softmax classifier is
applied. This classifier predicts values ranging from 0 to 1 through the utilization of the

subsequent expression:

exp(Cn (I))
1) =
WD) =m0 (0)

Here “I” is the input image patch, “n” denotes the number of clusters based on a number of

devices ne(1,m). Where Cn(Il) = In(P(I/Cn)P(Cn)), P(I/Cn) denotes the conditional

(3.3)

probability, and “y” is the final output of softmax function which belongs to 0<<1. The

flow of architecture is shown in the below Figure 3.6.
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Table 3.1: Proposed CNN Architecture for device classification.

Output

256%256

128x128
64x64
32x32
16x16

3.5 Result Analysis

Operator Dimension

Conv, 3%3, Stride=2
Conv, 3%3, Stride=2
Conv, 3%3, Stride=2
Conv, 3%3, Stride=2
Conv, 3%3, Stride=2

Activation Function
Leaky ReLU
Leaky ReLU
Leaky ReLU
Leaky ReLU
Leaky ReLU

The datasets employed in this study originate from the "VISION' dataset developed by the

Communications Signal Processing Laboratory (https://lesc.dinfo.unifi.it/\VVISION/dataset/).

This dataset has been meticulously curated to cater to the digital forensic community's

requirements, encompassing high dynamic range images and videos. The compilation

comprises media content captured by 35 contemporary devices from 11 distinct brands,

namely Samsung, Sony, Wiko, Xiaomi, Microsoft, LG Electronics, Lenovo, Huawei, Asus,


https://lesc.dinfo.unifi.it/VISION/dataset/
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Apple, and OnePlus. Within this dataset, there are a total of 11,732 native images, among
which 7,565 are shared images distributed via platforms like WhatsApp and Facebook,
encompassing both low and high quality variants. The images are categorized into various
classes depicted in Figure 3.7 within the dataset.
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Figure 3.7 . Vision Dataset Organization

In this research endeavor, we have conscientiously opted to focus on a solitary device image
emanating from a specific brand. This strategic decision aims to expedite and enhance the
precision of our image source identification process. To achieve this, we have meticulously
culled 'FLAT" and 'NATIVE' images at random from the comprehensive dataset, thereby
crafting a distinct dataset exclusively comprised of these flat or native images, encompassing
all 11 different brands. This methodological approach ensures that we have a streamlined and
consistent set of images for rigorous analysis. The selected images correspond to a diverse
range of brands, each bringing its unique characteristics to the fore. This meticulous curation
and subsequent analysis of individual device images provide us with a rich and
comprehensive dataset that is essential for our investigation into image source identification.

For elucidation, the specific details pertaining to the chosen device images, along with their
respective brands, are furnished in the Table 3.2. Within our devised framework, the initial
input to our model comprises patches of dimensions 256x256, a well-suited scale for robust
feature extraction. Following the comprehensive assembly of the dataset, a pivotal pre-
processing step ensues: the entire dataset is systematically transformed into corresponding
patches. An indispensable augmentation to our methodology lies in the application of

denoising procedures across the entire dataset, effectuated through the sophisticated DNCNN
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architecture. This denoising process culminates in the attainment of patches characterized by

uniform dimensions, thereby facilitating subsequent classification.

Table 3.2: Device characteristics with image type.

Device Brand Resolution Image Category Images
D1 Samsung 2560%1920 Flat, Native 30
D2 Apple 3264x2448 Flat, Native 30
D3 Huawei 3968x%2976 Flat, Native 30
D4 LG 3264x2448 Flat, Native 30
D5 Lenovo 4784x2704 Flat, Native 30
D6 Sony 5248%3936 Flat, Native 30
D7 Mocrosoft 3264x1840 Flat, Native 30
D8 Wiko 3264x2448 Flat, Native 30
D9 Asus 3264x1836 Flat, Native 30
D10 Xiaomi 4608%2592 Flat, Native 30
D11 OnePlus 4640%3480 Flat, Native 30

Our proposed approach hinges upon the utilization of a meticulously curated high-resolution
image dataset, a strategic maneuverer that underpins the discerning identification of image
source. Pertinent to the experimental phase, the model is rigorously trained utilizing the
designated dataset. For the subsequent testing regimen, a subset of 10 images per distinct
device serves as the basis for evaluation. It is noteworthy that the training and testing
accuracies, although commendably hovering around the 90% mark, are somewhat
constrained due to the relatively limited number of available images, an inherent constraint
that calls for strategic consideration in the overall assessment. To quantitatively evaluate the
efficacy of our classification framework, we rely on a confusion matrix, a quintessential tool
for gauging the accuracy of our classification endeavours.

The evaluation parameters are computed using the provided equations:

Precision = i 3.4
recision = TP+ TP (3.4)
Recall = i 3.5
¢ = TP Y EN (3-2)
2 X Precision X Recall
= (3.6)

Precision + Recall
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TP + TN
TP+ FN+TN + FP

Accuracy = (3.7)

The specifics of this confusion matrix are succinctly provided in Figure 3.8, thereby affording

a comprehensive overview of the classification performance across distinct categories.
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Figure 3.8. Accuracy Confusion Matrix for Fewer Data input Patches

Upon augmentation of the image dataset by increasing the count of images per individual
device, an intensive training regimen spanning 400 epochs was undertaken. This strategic
augmentation, along with the extended training interval, facilitated a noteworthy
enhancement in both training and validation accuracy, culminating in an impressive

achievement of 93.6%.

For a comprehensive understanding of the dynamic evolution of accuracy and loss throughout

the training process, we present the accuracy and loss curve in the subsequent visualization in
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Figure 3.9, providing a concise depiction of the progressive convergence of our model's

performance metrics.
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Figure 3.9. Train and Testing Loss and Accuracy Comparison

Upon completion of the model's rigorous training and subsequent meticulous testing, we
present the achieved classification accuracy, meticulously organized into a confusion matrix

with increasing the number of images to 30 per device, as follows shown in Figure 3.10
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During the training model on dataset the training accuracy achieve 96.7% and validation

accuracy is approximate 93.6%.

Choosing the architecture topology and fine-tuning hyperparameters are not straightforward
tasks; they necessitate in-depth analysis and a comprehensive understanding of both
theoretical principles and practical considerations. This complexity arises from the fact that
the configuration of a CNN model depends on various factors, including the nature of the
data under consideration. For example, the data may differ in terms of size, image
complexity, or the specific task at hand. In this section, we discuss the various factors that

inform the selection of the CNN architecture we propose.

The Figure 3.11 provided displays a comparison of accuracy with other techniques.
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Figure 3.11. Comparison of other Techniques

In the final experiment, we evaluate the impact of altering the hyper parameters of the
regularization algorithm. When we introduced the dropout technique to mitigate overfitting, a
new hyperparameter was introduced: the probability 'p’ that dictates the retention rate for each
node in a layer. During training, dropout functions by either alive a node with a probability 'p'
or deactivating it (setting its value to zero) otherwise. In this proposed model, conducted an
experiment in which we tested various values for this hyperparameter 'p' depicted in Figure
3.12.



63

1.0 = Dropout Test =
+ e er—
0] fxﬂ._.,«:zﬁc?r -
> \
@ 0.8 |
5 — KeepProb=0.35
&‘3 0.7 —— KeepProb=0.45
= KeepProb=0.50
0.6 4
==== KeepProb=0.55
0.5 T T T Y
0 200 400 600 800 1000

Epochs

Figure 3.12. The dropout hyperparameter analysis, we examine various node retention probabilities,

specifically, 0.35%, 0.45%, 0.5%, and 0.55%, respectively

This study introduced a novel deep convolutional neural network architecture, characterized
by four convolutional layers, one fully connected layer, and a SoftMax classifier, aimed at
discerning the original camera source of images. Through a systematic exploration of various
learning configurations, an optimal balance between testing and learning performance was

achieved. The key advantages of the proposed approach for camera source identification are:

1. Mitigation of the challenge posed by limited forensic image samples through image
patch cropping, yielding ample training data. This is achieved by enabling the input
layer to process image patches of dimensions 256x256x3.

2. Empirical validation substantiates the claim of enhanced efficacy, reinforcing the

viability of the proposed method.

To gain deeper insights and further refine the technique, future research endeavours will
extend the application of the proposed strategy to a more extensive dataset, thereby the
proposed method aims to be applicable and effective in real-world situations beyond
controlled experiments, with the goal of combating fake news, deepfake videos, and the
malicious use of forged images to defame individuals in today's social media landscape. The
outcomes of the proposed method could serve as valuable evidence in forensic investigations

of images and videos from specific devices.
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3.6 Conclusions

In conclusion, this study introduces a groundbreaking deep convolutional neural network as a
robust solution for identifying the source of images. The model's commendable testing and
learning performance are the result of a combination of architectural innovation, input
preprocessing, and learning paradigms working synergistically. As the field of image
forensics evolves, the approach revealed in this study marks a significant step forward in
improving accuracy and efficiency in the crucial task of identifying the primary camera of

images.

Looking ahead, we anticipate a sustained trajectory of research and refinement that will
ultimately contribute to the progress of image forensics and its practical applications. This
future-oriented perspective underscores our commitment to advancing the field and

addressing the challenges of image source identification.

Some potential limitations and challenges associated with the proposed Twin CNN
architecture for image source identification include computational complexity, scalability
issues, and performance evaluation under varying conditions. The computational complexity
of the architecture may pose challenges in terms of processing time and resource
requirements, particularly for large-scale datasets or real-time applications. Scalability issues
may arise when scaling the architecture to handle increasingly large datasets or when
deploying it in different environments. Additionally, accurately evaluating the performance
of the architecture under diverse conditions, such as varying lighting conditions or image
qualities, may be challenging and require comprehensive testing and validation procedures.
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CHAPTER 4
IMAGE FORGERY DETECTION USING CNN

ARCHITECTURE WITH SVM CLASSIFIER

4.1 Introduction and Motivation:

CNNs are designed with a structure that mirrors the intricate workings of the human visual
system, with interconnected nonlinear neurons. This design has already exhibited remarkable
potential across a spectrum of computer vision applications, prominently in tasks like object
recognition and image detection. However, the versatility of CNNs extends beyond
traditional visual tasks and into realms such as image forensics, presenting intriguing
prospects for detecting image manipulations. In contemporary digital landscapes, image
forgery has become alarmingly accessible due to the proliferation of sophisticated editing
tools. Consequently, the ability to identify manipulated images is of paramount importance,
as the consequences can be far-reaching. CNNs, equipped with their ability to discern
intricate patterns and deviations, emerge as potential tools for tackling this challenge. The
process of image forgery often involves transplanting components from one image onto
another. This manipulation gives rise to a host of artifacts that might evade casual human
observation. However, CNNs possess the computational prowess to perceive these subtle
deformities, even when imperceptible to the naked eye. By analysing the finer details and
discrepancies in pixel-level distributions, CNNs can act as vigilant detectors of tampered
imagery. The convolutional layers of CNNs play a pivotal role in this discernment process.
Through a hierarchical analysis of features, these layers break down the image into smaller,
more manageable components. This dissection enables the network to identify irregularities
that might indicate image manipulation. Furthermore, the non-linear activation functions
integrated within the architecture empower CNNs to model complex relationships, making
them adept at identifying patterns that might signify tampering. To harness the potential of
CNNs for image forensics, it is imperative to develop tailored training methodologies. This
involves exposing the network to a diverse array of manipulated and authentic images,

enabling it to learn the intricacies of image tampering. The training process involves fine-
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tuning the network's parameters to enhance its discriminatory capabilities. Techniques such
as transfer learning approach, which enhanced pre-trained models on large HDR image
datasets, can expedite this process by providing a solid foundation for image analysis. In
practice, CNNs' proficiency in image forensics could manifest in various applications. These
networks could serve as integral components of digital platforms that scrutinize media
content for authenticity. By systematically analysing images and flagging potential
anomalies, CNNs can offer an additional layer of security and trust in an increasingly visual
digital landscape. The convergence of CNNs and image forensics holds significant promise.
By capitalizing on the networks' inherent ability to decipher intricate patterns and detect
deviations, the field of image manipulation detection stands to benefit greatly. CNNs, through
their non-linear interconnected architecture and hierarchical analysis, offer a compelling
avenue for bolstering the integrity of digital imagery and upholding the authenticity of visual
content. The utilization of such images introduces a distinct enhancement in the manipulated
content, primarily attributed to the dissimilarities in compression algorithms between the

manipulated region's source and the background images.

4.2 Proposed CNN Architecture with SVM Classifier

Leveraging this insight, we proceed to train a CNN model to improve accuracy with a focus
on picture authenticity. The practical implementation of this novel approach is depicted
through the procedural depiction in Figure 4.1. Our approach involves harnessing the
divergent compression artifacts present within the manipulated area and the background. The
CNN model is meticulously trained on a diverse dataset encompassing both manipulated and
genuine images. The network learns to distinguish the nuanced patterns arising from
compression-induced inconsistencies. The proposed method showcases the culmination of
this theoretical framework, culminating in a practical and applicable solution. Figure 4.1
visually encapsulates the sequential stages of our method. Initiated by the input image, the
process encompasses intricate feature extraction, enabled by the CNN's hierarchical layers.
Subsequently, the model's learned discriminative capabilities come into play, facilitating the
classification of the image's authenticity. This comprehensive workflow epitomizes the
operationalization of our pioneering approach, underscored by the fusion of compression
artifact analysis and CNN-based image evaluation. In this context, a novel technique has been
devised for the automated detection of counterfeit images, leveraging CNNs.



67

Obtaining CASIA 2.0
Dataset from Kaggle

l Feature (Creating feature |
Extracting using wvectors of each
Importing necessary pre-trained CNN _ image

libraries ilPh'charm T i

Applying patch Training CNN Training of SVM
extraction to the Model Classifier
dataset T ~ l
: - ' " Predict
Storing extracted : Building CNN :
patches in folders Architecture G’":’::;“k'd

Figure 4.1: Proposed Classification Model

Our approach involves the automatic construction of hierarchical representations through
convolutional operations, applied to input-coloured images or patches. Specifically, the CNN
architecture proves to be highly advantageous for addressing challenges within copy-move
detection and image splicing scenarios, wherein tampered regions are manipulated or
duplicated. A distinctive feature of our proposed technique lies in the initialization of the first
layer's weights within the CNN architecture. These weights are strategically set to correspond
with fundamental high-pass filters, as utilized in the creation of residual maps within a spatial
rich model (SRM). The incorporation of SRM-based filters functions as an innovative
regularization strategy, yielding multiple advantages. This incorporation of SRM-based
initialization serves a dual purpose. Firstly, it effectively mitigates the influence of the
underlying image contents during the detection process. Traditional detection mechanisms
often struggle with capturing subtle inconsistencies arising from tampering due to the
dominance of content-related features. By integrating SRM-derived filters, our CNN-based
approach acquires an enhanced capability to discern these intricate artifacts, thereby
reinforcing its sensitivity to tampering cues.

Secondly, the utilization of SRM-driven initialization aligns with the requirement to address
diverse tampering procedures. The complex nature of image manipulation techniques
necessitates an adaptable approach that can accommodate a spectrum of potential alterations.

By utilizing filters rooted in the SRM framework, our CNN model gains a robustness that
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extends across a wide array of tampering scenarios, enhancing its versatility and applicability.
The hierarchical construction of representations through CNN layers acts as a pivotal element
in our approach. These layers progressively extract abstract features, allowing the network to
progressively learn and represent increasingly complex patterns inherent in the images.
Through these hierarchical transformations, the CNN adapts to the intricacies of both
authentic and manipulated visual content, thereby enabling accurate differentiation between
the two. In essence, our technique embodies a synergistic fusion of CNNs and the
foundational principles of a spatial rich model. By initiating the CNN architecture with SRM-
derived filters, we harness the advantages of regularization and robustness, culminating in a
discernment mechanism that excels in detecting counterfeit images. The hierarchical
extraction of features within the CNN further augments its proficiency, ensuring a
comprehensive grasp of the underlying visual elements. Collectively, these components
coalesce to establish an innovative approach that exhibits notable potential within the realm
of counterfeit image detection. Upon extracting dense features from test images utilizing a
pre-trained CNN as a descriptor, the culmination of our approach involves the generation of
final features for support vector machine (SVM) classification through a feature fusion
process. This step amalgamates the intricate visual characteristics captured by the CNN,
paving the way for robust classification. To rigorously evaluate the efficacy of our method, a
comprehensive assessment was conducted. A publicly accessible dataset renowned for its
utilization in picture forgery identification was employed for comparative analysis. This
enabled a meticulous appraisal of our approach's accuracy in contrast to a previously
employed image forgery detection system, fostering a data-driven validation of our
technique's proficiency. The cornerstone of our approach lies in the strategic architecture of
the CNN employed for feature extraction. This architecture, depicted in Figure 4.2, is
purposefully designed to encapsulate the unique requirements of our forgery detection
framework. The CNN's hierarchical layers enable the progressive extraction of intricate
visual elements, allowing the network to comprehend both subtle and prominent cues
indicative of image tampering. By utilizing a pre-trained CNN as a descriptor, our approach
taps into the wealth of knowledge encoded within the network's learned weights. This enables
an efficient and effective portrayal of images in a feature-rich manner, forming the basis for
subsequent SVM classification. The fusion of features accentuates the discriminative
capabilities, ensuring a comprehensive representation that is well-suited for accurate
classification. Our methodology culminates in the creation of robust final features for SVM

classification through a feature fusion process, leveraging dense features extracted from test
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images using a pre-trained CNN. The extensive evaluation against a benchmark dataset
reinforces the effectiveness of our approach in image forgery identification. This validation is
substantiated by the tailored CNN architecture designed to encapsulate the intricacies of the
forgery detection task. The holistic framework, as depicted in Figure 4.2, illustrates the
orchestrated integration of these elements, ultimately contributing to a potent image forgery

detection methodology.
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Figure 4.2. CNN Architecture for Classification of Forged Images

4.3 CNN Layers Operations Involved in Proposed Framework

A CNN model is developed with key components: it starts with convolution layers, followed
by fully connected layers, and ends with a SoftMax classifier. Each convolution layer is
composed of three main components: convolution operations, non-linear activation functions,
and pooling operations. Notably, feature maps serve as the input to these convolutional
layers, facilitating the extraction of hierarchically structured features.

The intricate orchestration of these components is encapsulated within the CNN Architecture
execution sequence, as detailed below:

e Convolution Operation: In this initial phase, convolutional filters are applied to the
input feature maps. This process involves sliding these filters across the input,
detecting localized patterns and generating feature maps that emphasize distinct visual
cues.

e Non-Linear Activation: After the convolution step, non-linear activation functions
like ReLU are applied to the resulting feature maps. This brings in non-linearity,
allowing the network to understand intricate relationships within the data.

e Pooling Operation: After applying the non-linear activation, the network performs

pooling operations. Pooling helps shrink the feature maps, reducing their size while
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keeping vital information. Max pooling and average pooling are popular methods
used for this purpose.

e Fully Connected Layers: Following several convolutional and pooling layers, the
network incorporates fully connected layers. These layers create broad connections
throughout the neural network, aiding in a comprehensive understanding of features
gathered from earlier steps.

e SoftMax Classifier: The final phase involves the SoftMax classifier, responsible for
assigning probabilities to classes. It computes the likelihood of each class being the
correct classification for a given input, aiding in the ultimate categorization.

This intricate sequence reflects the CNN's capacity to progressively extract intricate features
through successive convolutional and pooling layers. The utilization of non-linear activation
functions enriches its ability to capture nuanced relationships, while pooling operations and
fully connected layers contribute to global feature integration. The SoftMax classifier
provides a probabilistic framework for making categorical predictions based on the network's
learned representations. In essence, the CNN Architecture execution sequence underscores
the interplay of convolution, non-linearity, and pooling in a hierarchical manner, culminating
in a powerful framework for feature extraction, abstraction, and classification.

After extracting extensive features from dataset images using a pre-trained CNN, we generate
N sets, each containing 400 features. These sets are amalgamated into a unified representation
per image to facilitate subsequent support vector machine (SVM) classification. The SVM's
role is crucial in detecting potential image alterations. It operates by leveraging these
combined feature vectors as input, enabling the system to discern and classify alterations
within the images based on the consolidated representations. This methodological approach,
utilizing pre-extracted features and SVM classification, forms a fundamental stage in
identifying and categorizing potential modifications or anomalies present within the images
sourced from the dataset. The SVM leverages these high-dimensional feature vectors to learn
patterns and relationships indicative of image tampering, subsequently providing predictions
on, determining if any modifications have been made to an image. The integration of these
steps underscores the holistic approach in which the pre-trained CNN, feature extraction, and
SVM classification collectively contribute to the task of image authenticity assessment. By
strategically merging the N feature representations and harnessing the discriminative power
of the SVM, our methodology encapsulates both local and global visual cues, thus enhancing

its accuracy in detecting image manipulation.



71

4.4 Dataset Discussion and Result Analysis

The CASIA v2.0 dataset encompasses a fusion of three distinct categories of image
collections, each contributing to the dataset's comprehensive composition:

e Authentic Images: This subset encompasses unaltered images, devoid of any editing
interventions. Constituting a significant portion, this category comprises 7,491
images, each in its original state, serving as a benchmark for authentic imagery.

e Tampered Images: Within this category, images have undergone diverse forms of
manipulation, resulting in a total of 5,123 photographs. Primarily characterized by
operations like copying, pasting, and combining, these images illustrate various
manifestations of tampering and represent a critical aspect of the dataset.

e Masks: The technique of pixel masking is employed to accentuate regions of
alteration. Specifically, the pixel values of tampered images are strategically set to 0,
delineating the altered region. Concurrently, all non-altered background pixels are
also assigned a value of 0. This meticulous masking procedure enables the precise
extraction of altered regions while emphasizing their contrast with the unchanged
background.

The amalgamation of these three distinct image categories within the CASIA v2.0 dataset
culminates in a robust and comprehensive resource for image forensics and tampering
detection research. The juxtaposition of authentic images, manipulated counterparts, and the
innovative masking approach collectively equips researchers and practitioners with a diverse
range of data, fostering a deeper understanding of image manipulation and enhancing the
efficacy of tampering detection algorithms. The subsequent table outlines the description of

attributes present within the dataset:

Table4.1: Image dataset detail.

Authentic Images | Tampered Images Masks

7,491 5,123 5,123

The devised methodology encompasses the development of a pivotal function, aptly named
"Patch Extractor,"” tailored to the precise extraction of patches from images. This function is
invoked by furnishing it with a set of essential arguments, elucidating the intricate parameters

and specifications governing the patch extraction process. Upon invoking the Patch Extractor
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function, a series of critical arguments are supplied to orchestrate the extraction procedure.
These encompass the dataset's path, serving as the source repository of images, and the
designated path of the output, which designates the location where the extracted patches will
be deposited. Additionally, the function accommodates the specification of a stride value,
dictating the spatial shift between consecutive patches shown in Figure 4.3. Moreover, a
parameter controlling rotation is integrated, enabling the generation of rotated patches,
thereby augmenting the diversity of the extracted dataset. A fundamental component of the
Patch Extractor function is the determination of the desired number of patches to be extracted
from each image. This parameter facilitates the fine-tuning of the granularity of patch
extraction, catering to specific research objectives and experimental requirements. By
encapsulating these diverse arguments and parameters, the Patch Extractor function
demonstrates a versatile and adaptive framework for efficient patch extraction. This
foundational function not only streamlines the extraction process but also offers a
customizable avenue to tailor the extraction process in alignment with distinct research needs,

ultimately enhancing the precision and versatility of patch-based analysis.
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Figure 4.3. Extraction of Patches from Genuine and Altered Images

Our algorithm effectively identified instances of image tampering, achieving a notable
training accuracy of approximately 96%. Notably, the accuracy curve showcases a discernible
pattern of improvement throughout the training process. Commencing at an initial level of
around 50% accuracy during the early epochs, the algorithm's performance progressively
advances. The trajectory of accuracy demonstrates a consistent upward trend, exhibiting a
steady and incremental rise. This upward momentum continues until a point of stability is
reached at approximately 86-87%, a level consistently maintained during the final epochs.
This plateau in accuracy implies the algorithm's proficiency in reliably discerning tampered
images, as indicated by its sustained performance over multiple iterations. Simultaneously,

the loss function, a pivotal metric in optimization, exhibits an inverse pattern. Initiated with
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the first epoch, the loss value gradually decreases over subsequent epochs. This gradual
reduction underscores the algorithm's ability to align its predictions with actual outcomes,
optimizing its parameter settings to minimize discrepancies. The loss function gradually
converges, culminating in a stable pattern during the concluding epochs. This convergence
further corroborates the algorithm's convergence towards an optimal state, signifying an
effective adaptation to the underlying data distribution. Our algorithm showcases
commendable performance in detecting image tampering, yielding an impressive training
accuracy of approximately 96% depicted in Figure 4.4. The accuracy's consistent ascent and
subsequent stabilization, along with the gradual decline in loss, collectively underscore the
algorithm's robustness and efficacy in addressing the complex task of image tampering

detection.
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Figure 4.4. Training Loss and Accuracy of the CNN Model
For the comprehensive assessment of the model's performance, the test dataset serves as the

foundation for the construction of a confusion matrix. In this evaluative endeavor, the support
vector machine (SVM) demonstrated its adeptness in discerning between altered and original
images. Specifically, among the pool of 1,008 tampered images, the SVM proficiently
distinguished them from 1,426 unaltered counterparts, yielding a commendable accuracy.
While the SVM's classification prowess is evident, a marginal subset of misclassifications
occurred. Specifically, a total of 72 altered images were erroneously categorized, falsely
resembling original images. Furthermore, a limited count of 17 genuine images encountered
misclassification, being inaccurately associated with the tampered category. The resulting
confusion matrix encapsulates this interplay of correct and misclassifications, offering a

quantitative depiction of the SVM's performance across the dataset. This analytical
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framework furnishes an insight into the model's precision, recall, and overall discriminative
capabilities, thus providing a comprehensive profile of its efficacy in image tampering
identification. The SVM's evaluation via the confusion matrix showcases its prowess in
accurately discerning between altered and original images, exemplified by the substantial
accuracy achieved. The slight occurrence of misclassifications, though limited, offers an
avenue for potential refinements, thereby contributing to the continuous enhancement of the

algorithm's detection accuracy.

Table 4.2: Outcome of Classification Prediction.

Image Category | Actual Image Predicted Misclassified
Native 1443 1426 17
Forged 1152 1008 72

The application of SVM classification yielded a commendable accuracy of 96.8% within our
model. To gauge the efficacy of various recommended strategies for detecting image

forgeries, a comprehensive comparative analysis was undertaken is shown in Figure 4.5.
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Figure 4.5. Comparative Accuracy Analysis

Despite the notable progress achieved in image forgery detection, the field remains ripe for
further advancements to enhance its efficacy in the future. Notably, neural networks have
demonstrated remarkable capabilities even in the face of challenges, exhibiting a high degree
of performance and showing promise in their potential to discern altered images. The
augmentation of the CNN layer holds the prospect of refining the model's detection prowess.
Multiple adjustments can be explored to fine-tune its architecture, thereby potentially

elevating the detection rate and fostering even more precise results. However, a critical



75

consideration arises from the dataset composition, particularly in the context of real-world
manipulation scenarios. The CASIA dataset, while comprehensive, may lag behind in
accurately reflecting the diverse array of alterations encountered in practical situations. To
address this limitation, a more expansive and representative dataset encompassing a wider
spectrum of tampering techniques is imperative. Upon delving into the details of the
confusion matrix, intriguing observations emerge. Instances of misclassification highlight the
complex nuances inherent in image analysis. Certain images were incorrectly categorized,
often sharing common characteristics such as blurring, fog, sun flare, or reflection. These
intricacies underscore the intricacies of tampering detection, where the visual interplay of
authentic and manipulated elements can lead to subtle misinterpretations. Of particular note is
the instance where genuine images, albeit featuring blurred areas, were mistakenly labelled as
manipulated. This scenario emphasizes the sensitivity of the detection process to nuanced
visual traits, where certain genuine images might inadvertently exhibit features characteristic

of tampering.

4.5 Conclusions

In conclusion, the domain of image forgery detection continues to hold untapped potential for
future advancements. Neural networks, such as CNNs, exhibit prowess in spite of challenges,
hinting at their evolving capacity to identify tampered images. The refinement of model
architectures and the integration of diverse datasets are key pathways towards augmenting
accuracy. The intricacies revealed in the confusion matrix emphasize the intricacies of image
analysis, warranting a nuanced approach to ensure precision in discerning authentic and

manipulated content.
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CHAPTER 5
MuLTI-MoDAL CAMERA MODEL IDENTIFICATION

IN VIDEOS USING DEEP LEARNING-BASED CNNS

5.1 Video Forensic Process

In comparison to the well-established use of traditional photography-based evidence in legal
cases, the areas of source forensic query video analysis and processing multimedia evidence
are relatively new and continually developing fields. The latter segment, referred to as
"enhanced forensic video analysis” [190], is the focal point of our endeavors. It entails the
meticulous scrutiny of videos and associated data through advanced analytical tools, aiming
to uncover intricate details and insights. Our work is specifically oriented towards the domain
of enhanced forensic video analysis. This involves the orchestration of a comprehensive
architectural framework, as illustrated in Figure 5.1. This architecture encompasses three
pivotal components, each contributing to the holistic process:

e Crime scene analysis: This foundational phase involves a meticulous assessment of
the crime scene, establishing a context for subsequent analysis. Factors such as
lighting, camera angles, and environmental conditions are scrutinized to inform the
subsequent data collection and analytical phases.

e Data collection, video enhancement and analysis: Central to the process is the
systematic collection of relevant data, which forms the basis for subsequent analysis.
Advanced video enhancement techniques are employed to optimize the visual quality
of the content. The resultant data is then subjected to rigorous analysis, aiming to
unveil hidden details, patterns, and anomalies.

e Presentation and findings enlargement: The culmination of the analysis phase
involves the synthesis of findings into a coherent and compelling narrative.
Employing effective presentation techniques, the enhanced insights are showcased to
stakeholders, enhancing their understanding and contributing to informed decision-

making.
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The essence of our work lies in harnessing cutting-edge video analysis tools to decipher
complex forensic evidence. Through the intricate interplay of crime scene analysis, data
collection, video enhancement, analysis, and presentation, our enhanced forensic video
analysis architecture embodies a comprehensive approach to elucidate intricate details that
might otherwise elude conventional scrutiny. This systematic approach aligns with the
evolving landscape of forensic video analysis, contributing to the advancement of this nascent

yet crucial domain.

5.2 Approach for the Analysis of Query Videos for Source

Identification Forensic

The preceding framework underscores the clear delineation of two fundamental categories
within forensic video analysis. These categories are notably characterized by a systematic
classification based on the scrutiny of video content and its inherent type.
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5.2.1 An Investigation into Types of Forensic Video and
Analytical Approaches

A conspicuous aim of forensic video analysis is the discernment of unauthorized reproduction
or tampering within video files. Furthermore, an imperative task is to ascertain potential
alterations inflicted upon the video content. Additionally, the study is positioned to unveil
concealed information through the identification of the video source and a meticulous
examination of video steganography for the detection of covert data. Notably, the
identification of the video source serves as a pivotal evidentiary foundation, as evidenced by
research [161]. This identification process holds significance in determining whether the
video source emanates from a camera or a tokenized device, as depicted in Figure 5.2.
Forensic audio analysis, forensic video analysis, image analysis, and computer forensics have
all been formally established as distinct fields of inquiry by the American society of crime
laboratory directors laboratory accreditation board (ASCLD/LAB). Notably, a surge in the
formation of digital and multimedia divisions is witnessed across a spectrum of private,
public, and state/local law enforcement entities. These specialized units often encompass
various or all of the aforementioned disciplines. Notably, certain scenarios witness the same
examiner undertaking examinations for multiple agencies, showcasing the interdisciplinary
nature of their role. Specialization frequently ensues for examiners within larger federal and
state agencies, as well as across various fields, culminating from extensive training and
evolving into subject matter expertise over years. The realm of video evidence enhancement
offers a range of techniques, as exemplified by studies. Of paramount importance is the initial
submission of high-quality video recordings, a crucial prerequisite for yielding optimal
outcomes through the enhancement process. It is imperative to refrain from submitting
digitally compressed or analog copies that have undergone additional compression. Such files
are rendered unsuitable for enhancement due to the cumulative effect of compression, which

diminishes their capacity to undergo further improvement.

5.2.2 Enhancement of Videos Techniques

To accomplish this objective, a diverse spectrum of methodologies has been employed in the
past decade to enhance video quality. These approaches have found applications in video
monitoring systems, intelligent highway systems, safety-monitoring systems, and various

other contexts. For instance, introduced an innovative technique that incorporates color
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information into low-quality video footage to facilitate luggage identification. A distinctive
strategy involves the construction of human-like temporal templates to discern an object's
motion direction. By accurately aligning these templates with pertinent parameters, the
object's trajectory can be effectively ascertained. Numerous researchers advocate for the
establishment of luggage detection systems. Chuang et al., for instance, conducted a study
aimed at identifying missing colors via a ratio histogram. This endeavor exemplifies the
breadth of techniques employed to improve video quality and underscores the multifaceted
nature of video enhancement in diverse application domains. The variable under
consideration corresponds to the ratio derived from color histograms [174]. To identify absent
colors, the integration of a tracking model becomes imperative. In the context of low-quality
videos, the foremost objective of forensics is to extract maximal information from them,
thereby bolstering the investigative process. This section endeavors to outline strategies
aimed at augmenting video quality to amplify information extraction capabilities.
Specifically, when dealing with low-quality videos or images, employing histogram
equalization (HE)-based methodologies exhibits heightened potential for detecting
supplementary information in contrast to conventional techniques. A pertinent illustration

involves the utilization of a webcam to discern objects, employing the recommended

technique as depicted in Figure 5.2. This exemplifies the efficacy of the proposed approach in
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Our research focal point centers on the intricate task of camera model identification within
video sequences, predicated on the intrinsic content of these visual data streams. The
principal thrust of our investigation resides in the discernment of the originating camera
model from digital video sequences, as delineated by the work of [191]. The impetus for this
inquiry stems from the extensive exploration of digital image analysis within the forensic
domain, resulting in remarkable achievements. Within the scope of this study, our attention is
honed on video sequences hailing from a diverse array of smartphone models. Our innovative
approach converges informational and auditory components within these videos, fostering a
comprehensive analytical framework, an approach articulated by [192]. The research
trajectory commences with an exploration of the classic mono-modal paradigm. This facet
delves into the endeavor of source camera model identification rooted exclusively in either
visual or auditory attributes. The ensuing sections of this discourse expound upon this mono-
modal issue in detail. Subsequently, the research landscape transcends into the realm of the
multi-modal quandary, a core tenet of our investigation. This intricate facet amalgamates both
visual and auditory cues, culminating in an evolved problem wherein the confluence of these
modalities contributes to the determination of the sound source's origin. our research

endeavors to unravel the complexities of camera model identification within video sequences.

5.3 Camera Model Identification Approaches

We navigate through the monolithic mono-modal pursuit before delving into the nuanced
intricacies of the multi-modal inquiry, encompassing both visual and auditory dimensions.
This comprehensive exploration promises to unveil novel insights and methodologies in the

realm of advanced forensic video analysis.

5.3.1 Mono-Modal Camera Model Identification

Consequently, the underlying quandary materializes in the form of discerning the device
model employed for capturing specific media within a singular modality. For instance,
consider the scenario where an image is captured; in such instances, it becomes indispensable
to ascertain the precise camera model responsible for the image's acquisition. This attribution
serves a pivotal purpose: it enables the retracing of the image's lineage to its point of origin.
Furthermore, this attribution extends to audio recordings, necessitating the inclusion of the
recorder's model alongside the recorded audio, as expounded by [193]. Within the mono-

modal attribution paradigm, the crux lies in associating a video, the focus of our inquiry, with
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the device category responsible for its capture. This attribution rests solely upon the visual or
auditory cues intrinsic to the video's content. In essence, the essence of the attribution process
hinges on the distinct characteristics exhibited by the visual and auditory components within
the video. In practical terms, this implies that the model of the camera or recorder wielded for
capturing the media leaves an indelible imprint on the ensuing visual or auditory data. The
mono-modal framework operates within the confines of each modality, discerning the device
model with a singular focus—»be it the camera that captured a compelling image or the
recorder that preserved a captivating audio snippet. As we delve into the intricacies of this
mono-modal model attribution, we unravel the interplay between media, modality, and device
model. This exploration ventures beyond the surface and delves into the nuanced dynamics
that underlie the mono-modal attribution process, enhancing our comprehension of the
intricate tapestry that defines the origins of visual and auditory data within the realm of video
analysis. Our study navigates the intricacies of device model attribution within a solitary
modality, unveiling the essence of tracing media origins through the identification of
capturing devices. The mono-modal attribution, dissected within the context of video
analysis, underscores the significance of visual and auditory cues as the linchpin for unveiling
the device model that shapes the recorded content. This framework is integral to unravelling
the intricate tapestry of multimedia attribution and embodies a pivotal stepping stone within

advanced forensic analysis.

5.3.2 Multi-Modal Camera Model Identification

In the context of a video, identifying the camera model through multiple modes becomes a
complex challenge: accurately determining the device used to record the video. This task
involves gathering both visual and auditory data from the video. In the following example,
we'll explore a closed-set identification process where the main goal is to figure out the exact
camera model that recorded the video sequence. This determination is grounded in a
predetermined roster of known devices previously employed for recording purposes, as
elucidated by [194]. In this analytical pursuit, a foundational assumption is established: the
video under scrutiny emanates from a device within a designated family, one acquainted with
the investigator. This familiarity guides the investigator's inclination to associate the video
with a device belonging to this familiar device family. The assumption presupposes that the
recorded video aligns with the characteristic traits and idiosyncrasies intrinsic to the devices
encompassed within the designated family. However, an inherent susceptibility prevails

within this attribution process. The investigator could potentially err in ascribing the video to
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a specific device within the familiar family, inadvertently assigning it to a device that it did
not originate from. This misattribution can materialize if the video has been captured by a
device external to the pre-established familial pool. To mitigate this potential
misclassification, a comprehensive evaluation of both visual and aural attributes within the
video sequence becomes paramount. The intricate interplay between these modalities
contributes to a more accurate device model identification, reducing the likelihood of
erroneous attributions. By scrutinizing the amalgamation of visual and aural cues, the
investigator gains a holistic perspective, discerning nuances that aid in the precise
identification of the originating camera model. The multi-modal camera model identification
endeavor is encapsulated within the intricate domain of video sequence analysis. This
challenge hinges upon the discernment of recording device models, enlisting both visual and
aural cues as pivotal discriminators. The closed-set identification process, characterized by a
roster of familiar device models, underscores the investigatory nature of the pursuit.
However, the propensity for misattribution necessitates a comprehensive and nuanced
evaluation, ensuring the alignment of the video's inherent traits with the designated familial

attributes for accurate device model assignment.

5.4 Proposed Methodology

This research introduces a robust approach to the identification of closed-set multi-modal
camera models within video sequences, warranting further exploration and investigation. The
schematic representation of this pioneering approach is depicted in Figure 5.3, encapsulating
the essence of the proposed methodology. Central to our method is the utilization of both
visual and aural attributes intrinsic to the video content to ascertain the specific smartphone
model employed for recording. Through the integration of these dual modalities, the inherent
disparities among diverse camera models utilized within the source video cameras can be
effectively discerned, thereby enabling precise model identification, as elucidated by [195].
The proposed strategy can be succinctly outlined through two pivotal stages:

e Preprocessing and Content Extraction: This phase encompasses the extraction of
salient visual and auditory information embedded within the scrutinized videos. Prior
to the input into the CNNs, the data undergoes meticulous manipulation and
enhancement, an operation referred to as preprocessing and content extraction. This
preparatory stage is instrumental in facilitating effective data representation within the

CNNs, enhancing their analytical efficacy.
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e CNN Processing Block: The crux of the method resides within this block, which is
divided into two integral components: the Extraction Block and the Classification
Block, each contributing distinct functions. The Extraction Block processes the raw
data, effectively parsing it into discriminative features that encapsulate the essential
attributes of the visual and auditory content. Subsequently, the Classification Block,
constituted by a CNN, undertakes the intricate task of model classification based on
the feature-rich input. This involves the CNN's capacity to identify and differentiate
the unique characteristics that demarcate various camera models, thereby elucidating

the specific smartphone model utilized for recording.
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Figure 5.3. Flowchart Illustrating the Proposed Methodology

The synergy between these steps culminates in a comprehensive and sophisticated approach
to multi-modal camera model identification within video sequences. By harnessing the power
of visual and auditory cues, coupled with the analytical prowess of CNNs, the methodology
transcends the boundaries of conventional unimodal techniques. This innovative method
equips researchers and practitioners with a robust tool for the precise determination of camera
models, thereby augmenting the realm of advanced forensic video analysis. As future
investigations delve deeper into this method, its potential for refinement and enhancement

remains an exciting avenue for exploration.

5.4.1 Content Extraction and Pre-Processing

Our methodology starts with extracting and preparing visual and audio content, focusing on
thorough data standardization. This first phase involves a three-part process (shown in Figure
5.4) that's highly detailed in extracting and preparing the visual content found in the

examined video. These phases encompass:
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Temporal Frame Selection: The extraction of color frames from the video stream (Nv)
is executed strategically, selecting frames that are uniformly distributed over an
extended temporal interval [196]. This approach ensures temporal diversity and
robustness in frame representation. The video frames are categorized into two
dimensions, Hv and Wv, which correspond to their height and width, dictated by the
resolution of the video under examination.

Random Patch Extraction: In this phase, a random sampling process is employed to
extract NPv color patches, each characterized by dimensions HPV and WPV. These
patches serve as the data input for the CNNs. Subsequently, the extracted patches
undergo normalization to facilitate optimal training conditions within the CNNSs. This
normalization step aims to achieve a zero mean and unit variance across the data,
contributing to enhanced convergence and performance during the subsequent
analysis.

Audio Content Extraction and Pre-processing: Beyond visual content, this phase
encompasses the extraction and pre-processing of audio data embedded within the
video. Techniques such as spectrogram analysis may be applied to convert audio
signals into a visual representation, facilitating subsequent analysis within the multi-

modal framework.
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Figure 5.4. color frames from Nv, extracted as HV and WV sizes. As a result of this analysis, randomly

extraction of NPv visual patches of size HPVWPv from these frames



85

The intricate orchestration of these phases within the extraction and pre-processing stage lays
the foundation for comprehensive data representation, poised for insightful analysis. This
preparatory groundwork is instrumental in fostering the accuracy and efficacy of the ensuing
CNN-based analysis. The extraction and pre-processing phase of our methodology constitute
a pivotal preliminary step in the multi-modal camera model identification process. By
harmoniously integrating the temporal frame selection, random patch extraction, and audio
content pre-processing, the method primes the data for ingestion into the Convolutional
Neural Networks. This synergistic approach ensures data uniformity, diversity, and optimal
normalization, culminating in a robust data representation that forms the bedrock for
subsequent advanced analyses within the proposed framework.

The extraction and preparation of audio content from the scrutinized movie encompass a
structured process outlined in three distinct phases, as delineated in Figure 5.5:

e Audio Content Extraction: The initial phase entails extracting audio content from
the linking matrix set (LMS L) associated with the video sequence. The significance
of the LMS L as a robust tool for audio data is underscored by its extensive
application in various audio and speech classification studies. Through exploratory
experimentation, several audio attributes were derived from the short-time fourier
transform (STFT) signal's magnitude and phase. Notably, the LMS (predicated on the
STFT signal's magnitude) emerged as the optimal choice, rendering superior results. It
is noteworthy that LMS outperformed phase-based methods [197], yielding an
accuracy rate exceeding 80%. The LMS L, visualized as a matrix of dimensions Ha
Wa, is characterized by rows representing temporal nuances (varying in alignment
with video length) and columns delineating frequency content in Mel units.

¢ Random Patch Extraction: Subsequent to the audio content extraction, NPa patches,
each of dimensions HPaWPa, are randomly extracted from the LMS L. This step
enhances the diversity and comprehensiveness of the audio data that will be subject to
further analysis.

e Patch Normalization: The third phase of this process revolves around patch
normalization, akin to the normalization applied to the visual patches. This
normalization is instrumental in ensuring that the extracted audio patches exhibit a
zero mean and unitary variance. This enhancement facilitates consistent and
optimized data representation, fostering precision and efficacy during subsequent

analytical operations.
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Figure 5.5. Computation of LMS after the audio content, which has the size Ha Wa, has been selected. Random

extraction of NPa audio patches with sizes HPaWPa from the NPa audio patches

In summation, the comprehensive treatment of audio content extraction and preparation
within the proposed methodology encompasses a tri-fold process. Commencing with the
extraction of audio content from the LMS L, and proceeding to the extraction of randomized
audio patches, culminating in patch normalization, this systematic approach ensures the
meticulous handling and optimization of audio data. These preparatory steps collectively lay
the groundwork for subsequent analysis within the multi-modal camera model identification

framework.

5.4.2 CNN Processing

Upon retrieval of the pre-processed data, it is subsequently channeled into one or multiple
CNNs within the CNN processing stage. Here, the objective is to elicit distinctive features
corresponding to diverse source camera models and effectuate their subsequent classification.
A tangible manifestation of this approach lies in addressing the mono-modal camera
identification problem by feeding either the retrieved visual or auditory data into a CNN, as
illustrated by [198].

While any CNN architecture capable of data classification can, in principle, be harnessed
during this stage, our rationale behind the chosen architecture is expounded upon in
subsequent sections. The final layer of the classification network consists of a fully connected
layer containing nodes equal to the total number of camera models (M). Each node represents
a distinct camera model incorporated into the network. In application, the result is an M-
element vector called "y". Within this vector, the element "ym" encapsulates the probability
or likelihood that the model affiliated with the respective node accurately captured and

processed the input data. This vector consequently facilitates the extraction of valuable
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insights from the classification process, thereby furnishing a means to identify the anticipated

model "m" that engendered the input data.

5.4.3 Early Fusion Methodology

Similar to the first method, the second technique, known as "Early Fusion,"” involves merging
two separate CNNs to create a single CNN with multiple inputs. This fusion is achieved by
combining the final fully-connected layers of both networks and then adding three more
fully-connected layers to generate the final predictive outcome. This process imparts the
camera type classification with dimensionality cues, as delineated in Figure 5.6. Leveraging
paired visual and audio patches, each instance of Early Fusion prognosticates the projected
camera model predicated upon its respective estimation. The ultimate determination is
rendered through the final fully connected layer, culminating in the computation of "yEF,"
which represents the score emanating from this terminal layer [199]. During the training
phase, our methodology employs pairs of visual and audio patches as a cohesive mechanism
to train the complete network. It is imperative to underscore that this differs from the Late
Fusion approach, wherein there exists no discrete training procedure for the visual and audio
branches. In a parallel vein, both the training and testing stages mirror those employed in the
monomodal technique. However, a notable departure lies in the allocation of visual and audio
patch pairs throughout the entire network, unlike before, where single patches were primarily
used (mostly focusing on visual or audio content), the process shown in Figure 5.6 explains
the workflow of the Early Fusion technique, summarized in a flowchart. Understanding the
dimensions of input and output features related to the fully-connected layers is essential for
designing this methodology. This architectural understanding helps structure the Early Fusion
scheme systematically [200]. It's important to note that the output feature from the final
network layer matches the size of M, representing the number of assessed camera models.
This pivotal characteristic enhances the predictive capabilities of the network by
encapsulating the potential camera models within the final output layer. As the training phase
unfolds, the integrated utilization of visual and audio patch pairs instils a holistic perspective,
fostering a comprehensive understanding of the multi-modal intricacies inherent in the data.
The absence of disjoint training sequences, as witnessed in Late Fusion, underscores the
seamless synergy between the visual and audio domains. In this cohesive framework, the
amalgamation of information from both modalities imbues the network with a heightened

capacity for discernment and prediction.
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Figure 5.6. Pipeline of the Early Fusion Methodology
In the context of testing, the congruity with the monomodal technique remains palpable,
thereby ensuring a cohesive and coherent evaluation process. While parallel to its monomodal
counterpart, the Early Fusion methodology draws its potency from the integrated presentation

of visual and audio patch pairs, ultimately augmenting its predictive prowess and enabling
nuanced camera model identification.

5.4.4 CNN Architectures

Our approach centers on employing two distinct CNNs, namely EfficientNetB0 and VGGish,
pivotal in addressing the specified issue. EfficientNetBO occupies a pivotal position within
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the avant-garde EfficientNet family of CNN models. Renowned for its exemplary
performance in multimedia forensics tasks, it stands out as a highly promising candidate
within this lineage. Our strategic selection of the EfficientNetBO stems from its foundational
nature, rendering it an ideal choice to serve as our cornerstone model. Its inherent simplicity
allows for an extensive range of experimentation across various evaluation configurations.
Notably, the expedited training phases facilitated by EfficientNetBO offer an invaluable
advantage, fostering iterative experimentation across diverse parameter settings. Crucially,
preliminary investigations affirm the model's stability, corroborated by minimal deviations
when scrutinizing parameters, thus underpinning its efficacy in comparison to
computationally more intricate counterparts [126]. Furthermore, our methodology
incorporates the VGGish CNN, an exemplar derived from the esteemed VGG network
lineage, renowned for its efficacy in image classification. This strategic inclusion attests to
the inherent adaptability of CNN architectures, adeptly extending image-centric principles to
the realm of audio classification. By leveraging the strengths of VGGish, our framework
augments its multi-modal capabilities, collectively harnessing visual and auditory cues for
enhanced camera model identification. The dual utilization of EfficientNetB0 and VGGish
engenders a potent synergy, orchestrating a comprehensive analysis that transcends single-
modal paradigms. This tandem approach harnesses the prowess of each CNN to decipher the
intricate nuances embedded within distinct video sequences, accentuating the proficiency of
camera model identification. Through the orchestrated orchestration of EfficientNetBO and
VGGish, we orchestrate a nuanced understanding of the inherent attributes within diverse
video streams, effectively bridging the domains of visual and auditory data. This integrated
methodology fortifies our capacity to discern and distinguish camera models, propelling the
boundaries of multi-modal analysis and deepening our comprehension of camera model
identification. The realm of audio classification is enriched by the utilization of several
CNNs, with the VGGish CNN standing as an eminent exemplar. This network draws
inspiration from the well-established VGG networks renowned for their prowess in image
classification. To address our specific challenge, we adopt a dual-CNN strategy,
incorporating two distinct CNNs: EfficientNetBO and VGGish. EfficientNetBO holds a
significant position within the newly introduced Efficient Net family of CNN models. As a
member of this family, it is hailed for its outstanding performance within multimedia
forensics tasks. Of noteworthy distinction, EfficientNetB0 emerges as a frontrunner among its
counterparts, demonstrating remarkable capabilities in the realm of camera model
identification. Situated within the cutting-edge Efficient Net model family, EfficientNetBO
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showcases exceptional promise, particularly within the context of multimedia forensics,
substantiated by its performance in diverse scenarios (Pandeya & Lee, 2021). Our
comprehensive approach embraces both EfficientNetBO and VGGish, synergizing their
strengths to tackle the intricacies of camera model identification. By intertwining the
capacities of these two CNNs, we forge a robust foundation for multi-modal analysis,
advancing our understanding of camera model discernment through a confluence of visual
and auditory cues. Our selection of the Efficient Net model stems from its fundamental
nature, rendering it an ideal candidate for our research objectives. Its foundational simplicity
grants us ample leeway to explore a spectrum of evaluation configurations, enabling a
thorough investigation of our objectives. A notable advantage lies in the expeditiousness of
its training phase, affording us a considerable temporal allowance for comprehensive
experimentation. This temporal abundance facilitates the meticulous tuning of our model's
performance, contributing to a heightened understanding of its capabilities. Notably, our
preliminary experiments have already unveiled a pivotal insight: the absence of any
substantial discernible divergence when employing varying parameters. Specifically, when
evaluating EfficientNetB0's performance vis-a-vis computationally more intricate models
characterized by an augmented parameter count, no significant discrepancies have emerged.
This assertion, substantiated by empirical evidence, reinforces the efficiency and potency of
our chosen Efficient Net model, debunking concerns of parameter-heavy models that entail
greater computational demands [201]. Within the realm of audio classification, a diverse
array of CNNs is harnessed for discerning auditory features. Among these, the VGGish CNN
stands out, drawing its architectural inspiration from the renowned VGG network, initially
tailored for image classification. Notably, the design of VGGish capitalizes on the proven
efficacy of CNNs in audio classification tasks.

Upon traversing the dataset, the subsequent procedural imperative involves partitioning it into
distinct training and validation sets. The training set serves as the foundation upon which the
model's learning is cultivated, while the validation set serves as the crucible for assessing the
trained model's performance. An effective strategy encompasses the extraction of frames
from each video constituting both the training and validation sets. These frames, culled from
the videos, lay the groundwork for subsequent analysis. The trajectory proceeds with
preprocessing the extracted frames, culminating in their transformation into refined data
representations. Subsequently, the training set of pre-processed frames is marshalled to train a
specialized model, calibrated to glean nuanced insights from the audiovisual content. This
strategic training phase imparts a model with the requisite cognitive machinery for discerning
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intricate patterns and characteristics inherent within the audiovisual input. An intrinsic facet
of this process resides in the pivotal role of the validation set. During the evaluation phase,
the model's predictive capacity is scrutinized, with the frames extracted from the validation
set serving as the input for these assessments. The model's efficacy and aptitude are gauged
through the lens of these validation set frames, encapsulating its prowess in interpreting and
classifying the audiovisual content. Upon achieving satisfactory performance benchmarks on
the validation set, the trained model is poised to undertake the task of categorizing additional
videos, thereby extending its utility. This pivotal step leverages the model's acquired
cognitive capacity to discern and classify intricate audiovisual nuances within new video
inputs. Figure 5.7 offers a visual representation of the processing flow within the spatial
stream. The upper segment of the figure intricately delineates this trajectory. The
classification CNN is meticulously designed to categorize visual content, resembling the
structure of typical deep CNNs used for image classification. Each frame extracted from a
video serves as input to this network. The architectural enhancements involve a sequence of
convolutional layers, pooling layers, and fully connected (FC) layers. In this construct,
frames undergo a sequential process. Initially, they pass through convolutional layers,
instrumental in extracting complex features and patterns from the visual data. Subsequently,
pooling layers down sample the information, retaining crucial features while reducing spatial
dimensions. The network then integrates fully connected (FC) layers, facilitating
comprehensive connections across the processed visual information. These FC layers allow
for a holistic comprehension of features extracted from earlier stages, aiding in higher-level
decision-making. This architecture aims to systematically process individual frames,
extracting nuanced visual information through convolutional layers, distilling essential
features via pooling layers, and finally, comprehensively understanding these features
through fully connected layers. The network’s design enables it to grasp intricate details and
patterns within each frame, contributing to a comprehensive assessment of visual content in
the classification process. These components collectively synergize to facilitate the intricate
analysis and interpretation of the visual data ingrained within each frame. The convolutional
layers meticulously detect salient features, the pooling layers condense and abstract these
features, and the fully connected layers amalgamate these insights to make informed
classification determinations. In essence, the framework orchestrates an intricate cascade of
computational operations, which, guided by the model's training and prior learned insights,

culminate in the accurate categorization of visual content encompassed within each video
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Figure 5.7. Processing Pipeline for the Extraction of Two-Stream Features from CNNs

frame. This procedural framework ultimately empowers the model to systematically
categorize videos, affording a mechanism to extrapolate its acquired knowledge and

proficiency to novel audiovisual inputs.

5.5 Result Analysis

Within this section, our focus initially lies on introducing the dataset and outlining the
experimental framework that will underpin our investigations. This encompasses network
training parameters and configurations essential for network training. Subsequently, we detail
the chosen evaluation metrics and provide an insightful commentary on the achieved results.

Dataset: In this research, we utilize captured video frame patches obtained from the Vision
dataset, a newly introduced collection of images and videos specifically designed for
investigations in multimedia forensics. This dataset contains roughly 650 original videos
from different time variant in HDR captured by 35 latest smartphones, DSLR, and their
respective social media variants. The collection comprises approximately 2050 video with
different length, each clearly identifying the device used to capture it. For our
experimentation, we deliberately selected non-flat videos, depicting genuine scenarios with
various objects, from both the unprocessed source (i.e., videos captured directly via
smartphone camera without post-processing) and those subjected to compression through
WhatsApp and YouTube platforms. In our pursuit of the desired analytical granularity, we
aggregated videos from diverse devices belonging to the same model, facilitating
comprehensive model-level analysis. Notably, videos sourced from devices D04, D12, and

D17 are considered for evaluation, with the exclusion of D21 and D22 due to frame or audio
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track extraction difficulties, as per the Vision dataset nomenclature. Furthermore, original
videos not available in compressed form on WhatsApp or YouTube are omitted from our
analysis. Diverging from prevalent video analysis services, our approach extends beyond the
realm of high-resolution videos, encompassing a spectrum ranging from resolutions equal to
or exceeding 720p down to 640x480. Our dataset comprises 1110 videos, each approximately
one minute in duration, sourced from 25 distinct cameras. In order to assess how well our
method classifies videos, we use the given details about the original camera model as the
reference for each video sequence. To analyze the visual content, we extract 50 frames from
every video sequence, evenly spread out across the entire duration. Each frame is divided into
10 randomly positioned patches, resulting in a total of NPv = 500 color patches per video.
These patches are of dimension 256x256 pixels, a choice that yields favourable outcomes in
our study. The collected dataset exhibits considerable diversity, encompassing varying
camera models and resolutions, thereby enabling a comprehensive evaluation of the proposed
technique's performance.

This inclusive dataset approach enhances the robustness of our methodology, as it is designed
to handle a wide array of video scenarios encountered in real-world multimedia forensics
tasks. By encompassing a broad range of resolutions and camera models, our approach
accounts for real-world variations and challenges, bolstering the practical applicability and
generalizability of our findings. It allows us to validate the effectiveness of the suggested
technique under diverse conditions, ensuring its relevance across a spectrum of multimedia
forensics scenarios. our dataset comprises 1110 videos with resolutions spanning from 720p
to 640x480, recorded by 25 different cameras. Ground truth information about the source
camera model is employed for classification assessment. We systematically extract visual
content through a well-defined process of frame and patch selection. The resultant dataset
demonstrates an appropriate diversity of scenarios, models, and resolutions, serving as a
comprehensive foundation for evaluating and validating the proposed technique's
performance and effectiveness. This thorough and inclusive approach enhances the practical
utility and applicability of our methodology, enabling its potential deployment in real-world
multimedia forensics applications. To ensure robustness and address potential concerns of
overfitting and reduced prediction accuracy, we strategically devised a custom dataset for our
feature extraction process, departing from the Kaggle dataset that comprises ten classes and
275 instances. Recognizing the limitations associated with the Kaggle dataset, we
meticulously curated a new dataset with enhanced parameters, consisting of 1300 instances
distributed across three distinct classes: iPhone 6s, Xiaomi Note 4x, and Samsung Galaxy J7.
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Our decision to construct this new dataset was driven by the need to mitigate the
aforementioned challenges and cultivate a dataset that aligns more closely with the objectives
of our study. This strategic approach empowers us to curtail potential overfitting concerns
and elevate the precision of predictive outcomes. Furthermore, our dataset enhancement
strategy encompassed the introduction of two novel classes into the analytical framework.
Inclusive of 275 samples each, these classes encompassed Samsung Galaxy Note 3 and HTC
One M7 camera instances, thereby augmenting the dataset's comprehensiveness and diversity.
The crux of our methodology hinges on feature extraction, a pivotal process that underpins
the classification task. This involved the meticulous provision of our curated dataset to the
model, enabling the extraction of salient features intrinsic to each camera model. These
features, culled from the intricate nuances of the dataset, hold the key to discerning and
characterizing camera models. By employing a feature-centric approach, we transcend the
limitations of mere pixel-level analysis, delving deeper into the distinctive traits embedded
within the data. The aggregation and analysis of these features facilitate a more profound
understanding of the unique characteristics exhibited by each camera model, enabling
accurate classification based on a comprehensive array of discriminating attributes. Upon
extracting and analyzing the distinctive features of the camera models, our classification
process ensued. These features, which encapsulate an array of intricate details and patterns,
are harnessed to systematically categorize the camera models. The classification process
harnesses the amalgamation of features to make informed and precise determinations,
underpinning the core predictive capability of our proposed model. we judiciously
transitioned from the Kaggle dataset, steering clear of its potential limitations, and
painstakingly curated a novel dataset with heightened attributes and strategic class
composition. This dataset refinement was instrumental in surmounting issues such as
overfitting and accuracy diminishment. The subsequent feature extraction process facilitated
a profound analysis of camera model characteristics, furnishing the groundwork for a robust
classification mechanism. By anchoring our classification on these distinctive features, we
establish a principled and technologically sophisticated methodology for camera model
categorization, offering enhanced accuracy and predictive prowess.

Table 2 presents the average error rate and the standard deviation of the confidence score
related to the patch dataset's test split. It also illustrates different values of a crucial variable,
which we refer to as. These parameter values have been systematically explored to gauge
their impact on the susceptibility to adversarial instances, particularly instances where FGSM
perturbations yield negligible visual alterations in the context of untargeted attacks. The
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Table 5.1: Details of the dataset.

Device Model Name Number of Instances Captured From
IPhone 6s 1500 self
Xiaomi Note 4x 1560 self
Samsung Galaxy j7 1600 self
Samsung Galaxy Note 3 1000 Kaggle
HTC One M7 550 Kaggle

investigation unfolds within the realm of the patch test split, yielding noteworthy insights.
Among the array of evaluated values, it becomes evident that a value of = 0.005 engenders an
optimal trade-off between the error rate and perceptible alterations in the image domain. This
strategic selection stems from a meticulous balance achieved between the discriminative
prowess of the trained DenseNet model detector and the observable changes in the
manipulated image.

The performance metrics substantiate this strategic choice. When exposed to examples
created with the determined ideal value of, the improved DenseNet model achieves an
average accuracy rate of 93.1 percent. Simultaneously, the model's maximum trust rating is at
a remarkable 95.3 percent. This robust performance manifests the detector's aptitude in
effectively categorizing instances while maintaining a high degree of certainty in its
predictions. An interesting observation emerges as the value of is modulated. It becomes
apparent that the perceptibility of manipulations is intrinsically linked to the magnitude of. As
this parameter escalates, the visual impact of manipulations becomes progressively
pronounced. This nuanced relationship underscores the intricate interplay between model
sensitivity and the detectability of adversarial interventions.

In summation, the exploration of diverse values for within the framework of the patch dataset
test split furnishes crucial insights into the trade-off between error rates and perceptual
alterations. The judicious selection of = 0.005 emerges as a pivotal decision point, offering an
optimal equilibrium between classification accuracy and the visual fidelity of manipulated
instances. The ensuing performance of the trained DenseNet model is marked by a
commendable average error rate of 93.1 percent, complemented by a robust average
confidence level of 95.3 percent. Moreover, the delineation of the relationship between and
the perceptibility of manipulations accentuates the dynamic nature of the detector's

responsiveness and its consequential impact on adversarial instance detection.
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Table 5.2: The error rate and confidence score of the DenseNet model.

0 Value Error Rate (%) Confidence Score (%)
0.01 97.3 97.8
0.02 94.8 91.0
0.03 92.6 93.9
0.04 93.7 92.8
0.05 98.4 94.8
0.06 96.7 98.6
0.07 915 99.4
0.08 90.6 97.1
0.09 92.0 92.0
0.11 914 91.2

The table demonstrates the error rate and confidence score resulting from an untargeted
FGSM attack on the test partition, evaluating the performance of our trained DenseNet
model. The provided chart, which is displayed in Figure 5.8, compares the suggested

methodology with alternative approaches.
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Figure 5.8. Comparing the Suggested Approach with Alternative Approaches
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The additional experiment was limited to using the second set of attributes and involved CFA
interpolation. The evaluation yielded a precision of 86.93%. Although this outcome is
considered acceptable, it falls short of the results achieved in the first experiment that relied
solely on co-occurrences. To further enhance accuracy and achieve an average of 97.81%, a
fusion approach was employed by combining both feature sets and applying them in tandem.
This amalgamated approach resulted in an impressive average accuracy of 98.75% across all
three feature sets. Table 5.3 comprehensively illustrates the outcomes of the aforementioned
experiments, providing a detailed overview of their respective accuracy rates.

Table 5.3: illustrates classification accuracy derived from the VISION dataset.

Model N Constraint | Overall | Flat Indoor | Outdoor | WA YT NA
Type

ResNet50 | 60 Conv 55.20 64.81 50.74 41.71 55.10 51.60 62.80
ResNet50 | 60 Conv 55.20 64.81 50.74 41.71 55.10 51.60 62.80
MobileNet | 60 None 71.57 85.32 62.87 75.45 78.66 67.96 71.66
MobileNet | 60 Conv 56.18 64.74 47.21 56.51 53.60 46.20 53.00
MobileNet | 60 PRNU 62.70 63.96 53.11 61.12 58.80 63.50 67.30
MobileNet | 60 None 75.87 76.92 64.62 75.02 74.84 77.68 75.90
MobileNet | 60 PRNU 61.74 65.96 54.14 67.14 57.81 65.54 68.31
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Figure 5.9. Classification Accuracy of Camera Proposed Methods
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The table that follows gives a thorough summary of each Convolutional Neural Network's
(ConvNet) particular test accuracy as well as the total test efficiency for each of the three
different settings—flat, indoor, and outdoor. Furthermore, three types of compression are
included in the evaluation: native (NA), WhatsApp (WA), and YouTube (YT). N I-frames
per movie were used in the testing as well as training stages of a standard procedure that
produced consistent outcomes. It is noteworthy that the obtained results align with those of
parallel tests conducted, confirming the reliability of the PRNU-based methodology. Across
all tested scenarios and compression types, the accuracy achieved through PRNU analysis
significantly outperforms the accuracy observed with limited counterparts. The accuracy
measurements are underpinned by a rigorous evaluation process conducted on the VISION
dataset. This dataset provides a solid basis for evaluating the effectiveness and efficacy of the

ConvNets in different compression circumstances and parameters.

Table 5.4: compares the accuracy of MobileNet when it is compared to different counts of I-frames per

video (I-fpv).
I-fpv Overall Flat Indoor Outdoor
1 69.12 71.1 57.5 76.5
5 72.31 79.8 59.6 75.4
30 74.10 82.1 62.3 76.0
50 73.51 81.5 61.6 75.4
100 73.71 82.1 61.6 75.4
All 73.71 82.1 61.6 75.4
1 69.12 71.1 57.5 76.5

In order to establish a comprehensive comparative analysis, an analogous experiment was
undertaken utilizing the I-frames methodology. The outcomes of this experiment have been
meticulously documented in Table 4. The results of this study demonstrate that the model
may get a remarkably high degree of accuracy even with a restricted number of I-frames used
in testing.

It is worth noting that the VISION dataset, central to this study, comprises movies of
relatively short duration. Consequently, the pool of available I-frames is inherently
constrained. Attempts to augment the number of extracted I-frames do not yield a
commensurate increase in accuracy, owing to the inherent limitations posed by the dataset's

compressed temporal scope.
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The implications of these results are twofold. Firstly, they underscore the model's inherent
resilience and capacity to deliver consistent accuracy levels, even in scenarios characterized
by limited data points such as I-frames. Secondly, the study highlights the influence of
dataset characteristics, with the temporal brevity of the VISION dataset movies contributing
to the observed phenomenon of accuracy stabilization despite efforts to expand the I-frame
extraction process.In essence, the study underscores the interplay between the model's
robustness and the data constraints presented by the dataset's temporal attributes. This insight
is of paramount importance in both refining the model's application and in comprehending
the intricacies of video-based analysis within the context of limited temporal information.
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Figure 5.10. Fig: Test Accuracy of Mobile,net Frames per Videos
Drawing from our accumulated expertise, we firmly assert that the most efficacious

overarching approach involves the integration of the Late Fusion technique, coupled with a
judicious configuration of the EE192 model based on our experiential insights. In scrutinizing
both native and YouTube video sequences, this composite methodology consistently delivers
the most accurate outcomes across various testing paradigms, regardless of the presence of
cross-tests or the distinction between non-cross and cross-tests. Interestingly, the cross-test
results, encompassing WhatsApp data, align closely with the performance of the alternative
configurations, if not exhibiting a slight diminution. This phenomenon can be attributed to the
remarkable adaptability of the trained CNNs within this setup to the specific training data
they encounter. These CNNSs exhibit a nuanced sensitivity, rendering them less versatile and
more susceptible to the pronounced data compression characteristic of platforms like
WhatsApp, which, in turn, elucidates the comparatively suboptimal performance observed.

In essence, this observation underscores the intricate interplay between the network's

adaptability to diverse training data and its susceptibility to compression-induced variations.
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By aligning Late Fusion methodology with EE192 configuration based on these insights, our
approach demonstrates superior versatility and robustness, while also shedding light on the

nuanced dynamics that govern performance fluctuations across distinct compression contexts.

5.6 Conclusions and Future Works

This study introduces an innovative multi-modal approach aimed at discerning closed-set
camera models within digital video sequences. This research uses both auditory and visual
data that is taken from the video itself in order to pinpoint the exact smartphone model that
was used to film a particular video. The suggested approach uses Convolutional Neural
Networks (CNNs) to categorize the video according to its audio and visual characteristics.
Patches from the video frames are used to create the visual portion, and patches from the
audio track’'s Log-Mel Spectrogram are used to create the sound portion. The main objective
is to use the Late Fusion technique to classify the query video by integrating the results of
two distinct networks that are specialized in auditory and visual analysis. One person handles
aural patches, while the other processes visual patches. After that, these combined scores are
sent into a multi-input network that uses paired aural and visual patches fetched from the
query video. This holistic approach integrates diverse modalities of information within a
singular framework, fostering a comprehensive analysis of video sequences. The combination
of visual and auditory cues, harnessed through state-of-the-art CNN architecture, empowers
the system to effectively delineate nuances intrinsic to various smartphone models'
characteristic capture patterns. By employing the Late Fusion technique, the system
capitalizes on the strengths of individual mono-modal networks and orchestrates their outputs
to achieve enhanced accuracy and discriminative power. This sophisticated strategy facilitates
the identification process, resulting in a more refined and accurate determination of the
source camera model for the given query video. This work aims to transform the field of
electronic video clips camera model identification. Using the creative combination of visual
and auditory data, as well as the calculated application of the Late Fusion technique, the
suggested methodology enhances the precision as well as the precision of camera model
categorization, hence expanding the potential applications of investigative multimedia

processing.

A single multi-input system is used by the Early Fusion technique to process input from both
visual and auditory patch pairs retrieved from the query video. The fact that both of these

tactics are multi-modal techniques for camera model identification must be emphasized.
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Using a range of designs and data pre-processing methods, our study aims to investigate three
different topologies for each of these approaches. We use video clips from the Vision dataset
to assess the effectiveness of our experimental efforts. The scope of our assessment extends
beyond solely original native videos captured directly by smartphone cameras. We
intentionally include diverse video sources to explore an array of training and testing
configurations, aiming to simulate real-world scenarios necessitating the categorization of
data subjected to internet-based compression services. In pursuit of these objectives, we also
incorporate videos that have undergone compression through algorithms employed by
platforms such as WhatsApp and YouTube (commonly used for social media and uploading
purposes). This multifaceted approach enables us to gauge the performance and robustness of
our proposed multi-modal attribution strategy under varying conditions, thereby reflecting the
intricacies encountered in practical contexts. Additionally, our investigation involves a
comparative analysis between the multi-modal attribution strategy we introduce and
conventional mono-modal attribution methods, along with other suggested techniques. By
subjecting our proposed strategy to rigorous evaluation against established benchmarks and
alternative methodologies, we strive to ascertain its distinct advantages and contributions
within the realm of camera model identification. Our study employs a systematic approach,
utilizing both Early Fusion and Late Fusion methods as multi-modal avenues for camera
model identification. Through comprehensive experimentation involving different topologies,
architectural variations, and real-world data scenarios, we seek to validate the efficacy and
versatility of our proposed strategy, thereby enriching the discourse on multimedia forensics
and advancing the field's analytical capabilities. On a comprehensive analysis, the Late
Fusion methodology emerges as the frontrunner among diverse multi-modal approaches,
notably surpassing the conventional mono-modal counterparts. Empirical evidence
consistently substantiates the superiority of multi-modal methodologies over mono-modal
ones. Notably, the Late Fusion technique achieves outstanding performance levels, exceeding
a 99 percent accuracy threshold in distinguishing original video sequences from YouTube
counterparts.

However, it's noteworthy that a fraction of videos, albeit small, poses challenges for accurate
modeling, primarily attributed to the pronounced compression characteristic of WhatsApp.
This intriguing observation suggests the potential emergence of novel challenges and avenues
for advancement, particularly in the domain of identifying originating camera models for
videos that find widespread dissemination through social media platforms. The prevalence of
extreme compression in WhatsApp raises intriguing questions that warrant further
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exploration to comprehend the underlying factors contributing to this challenge. Furthermore,
a noteworthy aspect is the adaptability of the proposed multi-modal solutions to broader
scenarios encompassing more than two data modalities. The framework's flexibility is readily
amenable to extension, accommodating additional data sources seamlessly. This adaptability
envisions future scenarios where the complexity of data may demand integration across
multiple modalities, reinforcing the robustness and versatility of the Late Fusion approach.
It's also pertinent to acknowledge that the adoption of the Late Fusion approach offers a
streamlined training paradigm. By training the Convolutional Neural Networks (CNNSs)
independently for each target within the multi-modal architecture, the complexity of the
learning process is effectively compartmentalized. This modular training scheme facilitates
efficient handling of varying data modalities, enhancing the agility and scalability of the
approach in scenarios requiring expansive data integration.

In summation, the Late Fusion technique emerges as a potent contender in the realm of multi-
modal methodologies, showcasing remarkable performance advantages over traditional
mono-modal strategies. Its remarkable accuracy in distinguishing video origins, even in
challenging scenarios, highlights its potential relevance in contemporary multimedia
forensics. Moreover, its inherent adaptability and modularity position it favorably for future
explorations into more intricate multi-modal scenarios, underscoring its capacity to serve as a

foundational framework for advancing camera model identification and related endeavors.
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CHAPTER 6

CONCLUSION AND FUTURE SCOPE

6.1 Conclusion

In this study, we delve into the realm of image source identification, presenting a pioneering
deep convolutional neural network (CNN) as a robust solution to achieve commendable
testing and learning performance. The overarching goal is to enhance the accuracy of image
forgery detection, addressing the growing challenges posed by manipulated and altered
images in the contemporary real-world scenario. The proposed CNN model undergoes
several modifications in its architecture to improve the detection rate, ensuring its adaptability
and efficacy across various types of altered images. This iterative process of refinement is
crucial in developing a model that can reliably discern the source of images in a dynamic and
ever-evolving digital landscape. Our approach is specifically tailored to function efficiently in
the current real-world scenario, where the prevalence of altered images presents a significant
obstacle to conventional image forensics techniques. By subjecting the proposed CNN model
to rigorous modifications, we aim to fortify its ability to identify the primary source of
images amidst the complexities introduced by different types of image alterations.

The outcomes of our study reveal that the suggested multi-modal methods significantly
outperform traditional mono-modal methods in the context of image forgery detection. The
integration of multiple modes of information and features proves to be a pivotal strategy in
enhancing the model's overall performance. This underscores the importance of leveraging
diverse sources of data and signals to improve the robustness and reliability of image source
identification systems. A noteworthy aspect of our research is the exploration of fusion
techniques within the realm of multi-modal methodologies. The fusion technique emerges as
a potent contender, showcasing remarkable performance advantages over traditional mono-
modal strategies. By combining information from various sources and modalities, the fusion
technique demonstrates an enhanced ability to accurately identify the source of altered

images, even in scenarios where traditional methods may fall short.
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The significance of our findings extends beyond the realm of image forensics. It underscores
the broader potential of multi-modal approaches and fusion techniques in addressing complex
challenges across various domains. The success of our proposed CNN model and fusion
technique not only contributes to the advancement of image source identification but also
opens avenues for innovative solutions in related fields, such as computer vision and artificial

intelligence.

6.2 Future Scope

Looking ahead, our study paves the way for continued research and refinement in the field of
image forgery detection. The dynamic nature of digital manipulation calls for ongoing efforts
to adapt and improve detection methodologies. We anticipate that our multi-modal approach
and fusion technique will inspire further innovations, leading to more robust and reliable
solutions for identifying the source of images in an increasingly complex digital landscape.
This commitment to advancement reflects our dedication to staying at the forefront of
technological developments and addressing the evolving challenges in the realm of image

forensics.
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