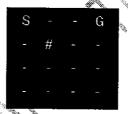
JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT TEST -2 EXAMINATION- APRIL-2024

COURSE CODE(CREDITS): 19B1WCI837 (3)

MAX. MARKS: 25

COURSE NAME: REINFORCEMENT LEARNING

COURSE INSTRUCTORS: DHA


MAX. TIME: 1 Hour 30 Minutes

Note: All questions are compulsory. Marks are indicated against each question in square brackets. Make Assumptions, where ever necessary.

Q1. There is a grid-world environment with a goal state, obstacles, and a terminal state, where an agent needs to navigate to the goal while avoiding obstacles. The agent can move in four directions: up, down, left, and right. The goal is to find the optimal policy that leads the agent from the starting state (S) to the goal state (G) while avoiding obstacles.

Consider a 4x4 grid-world with the following layout:

[CO-3, Marks: 3+3]

S: Starting state, G: Goal state, #: Obstacle
Assume the given policy to be a uniform random policy.

- a) Give an algorithm to obtain the optimal policy using policy iteration method.
- b) Trace the steps of the algorithm until the policy converges. Then, give the final optimal policy for the grid world problem.
- Q2. a) Dynamic Programming can be used to solve the Planning problem in Reinforcement Learning. Justify.

 [CO-1, Marks: 3+2+1]
- b) Explain utility of Bellman Optimality equations.
- b) Define Monte Carlo Reinforcement Learning
- Q3. a) Describe how the choice of the discount factor affects the performance of the first-visit Monte Carlo method. [CO-3, Marks: 3+4]
- b) Given a game: A player competes against a dealer in a simplified version of the Blackjack card game, where the goal is to obtain a hand with a total value as close to 21 as possible without exceeding it. Each state in this problem represents the player's current hand value and the dealer's

face-up card. The possible actions are hitting (requesting an additional card) or standing (ending the turn). The player receives positive rewards for winning (say +1), negative rewards(say -5) for losing, and zero rewards for draws. By applying the first-visit Monte Carlo method, give the strategy for maximizing their expected winnings over time.

Q4. a) Model-free prediction methods are used in real-world applications where it's challenging to model the dynamics of the environment. Justify the above statement in case of autonomous driving.

[CO-3, Marks: 3+3]

b) Compare First Visit and Every Visit Monte Carlo Policy Evaluation.