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CHAPTER-1
INTRODUCTION

1.1 Fog Computing

One of the inventions now receiving much attention is the IoT, which provides
enormous advantages to researchers [1]. This evolution of the Internet of Things is
approaching a point when many of the items already in our environment will access
Internet connectivity capabilities to interact with each other without the participation
of a human being. Initially, the Internet of Things was envisioned as a way to cut
down on the amount of time humans spend manually entering data, as well as to make
use of a variety of sensors to gather data from their surroundings and to enable the
automated storing and processing of all of these data. Since the Internet of Things is
defined by constrained calculations, its competitors in the storage and processing
space face wvarious difficulties, including performance, security, privacy, and
dependability. The Cloud of Things (CoT), the combination of IoT devices with cloud
storage, processing, and analytics, is the best solution to solve most of these problems.
The CoT accelerates and reduces the expense of setting up and integrating
sophisticated data processing & deployment while streamlining the process of

obtaining and processing Internet of Things data.

Many benefits are achieved for different Internet of Things applications due to the
integration of the Internet of Things combined with Cloud Computing. Creating new
Internet of Things apps is difficult because a diverse collection of devices runs on
different platforms [2]. This is because apps built for the internet of things produce
vast amounts of information via sensors and other hardware and generate a massive
amount of data, resulting in recommendations about various courses of action. It will
take considerable bandwidth to upload all these files to the cloud. Cloud computing

and other forms of fog computing may help solve these problems [3].

Computing in a cloudy environment is what Cisco first referred to as fog computing.
It is an emerging technology that offers various advantages for various areas,
particularly the Internet of Things (IoT). IoT users may use services that include fog
computing's processing and data storage, analogous to cloud computing, This fog

computing notion is founded on the hint that fog devices should be equipped with



local data processing capabilities and local storage rather than sending information to
a remote server. The cloud & fog are two different terms for the same thing: storage,
computation, and networking resources. The IoT uses fog computing to enhance
efficiency and performance while reducing the amount of information that must be
sent to a remote server for processing, analysis, & storage. Instead of being
transmitted into the cloud, this information is gathered via sensors routed edge
network devices, which will be processed and temporarily stored. This will result in a

reduction in both the amount of network traffic and the amount of delay.
1.1.1 Fog Computing: Definition

Fog computing is a relatively new archetype of computation that is spread. Cisco
created it in 2012 to help with cloud computing and boost QoS (quality of service) to
generate various supported IoT applications [4]. The literal interpretation of the word
"fog" reveals the characteristics of this meteorological phenomenon: when clouds are
high in the atmosphere, fog descends to the earth and surrounds humans. There are
several definitions for fog that all center on the same concepts. One of these
definitions 1is that a fresh computing paradigm is called fog computing. It might be
considered to further cloud computing's reach at a network's periphery to lessen the
cloud's load. While resecarchers characterized fog computing as a novel computing
paradigm discovered in transcend challenges associated with cloud computing,
researchers also defined it as an outgrowth of cloud computing, fog computing, and
services located at the user's proximity edge. The word "fog" refers to the distribution

of data processing the periphery of a net.

In summary, fog computing refers to a “small cloud that is located on the end user's
network edge”. The cloud performs tasks such as preprocessing data, assigning roles
and policies, filtering specific tasks, or caching certain information earlier, sending it
to an enormous cloud where it can be stored and thoroughly analyzed. Because of
Fog's commitment to being neutral, the company has provided new capabilities and

solved several cloud computing issues.
1.1.2 Fundamentals of Fog Computing

The Internet of Things will include billions of additional gadgets, most of which will
be connected to the network. This will have limited access to specific resources. The

need for an intermediary computer layer becomes apparent to overcome the



difficulties presented by these devices and satisfy the prerequisites imposed by the
application domain. The idea of computing in the fog is the most recent offspring of
technological innovations that have evolved from the physical isolation operational
elements. It's the computational layer that is physically closer to the sensors and
actuators of the perception layer. This layer offers computing, networking, and
storage services. This Fog layer affords the various distinctiveness addressed in the
subsequent sections to handle these services and meet the demands placed on IoT

systems[4].
1.1.3 Characteristics of the IFog Layer

This paragraph compares and contrasts the characteristics of this Fog layer, which
serves as a computational middleware between the perceptual and cloud levels.
Unlike the Cloud layer, the Fog layer 1s physically located nearer perception [5]. As a
result of this closeness, the Fog layer has various benefits that help define it. One of
its many instant advantages is that the Cloud is aware of its users' whereabouts. This
level of awareness is made possible due to the devices comprising the Fog layer being
dispersed over a vast geographical area. As shown in Fig. 1.1, every gateway part of
the fog layer manages a subset of the Sensory layer nodes [6]. These gadgets with
limited resources will be positioned close to one another, making it simple for the
controlling gateway to find each device. Here, location awareness can meet various
functional and non-functional needs associated with IoT applications. Some examples
of these requirements include mobility and security. Unlike centralized Clouds, fog
layers are more widely distributed throughout the sky. This is one of the other closely
linked properties of the Fog layer. The concept of centralization in this situation is
relative; from the perspective of the client side, the Cloud is a consolidated layer.
From the cloud's organizational structure perspective, the servers are globally
dispersed; nevertheless, this distribution is not at the scale expected to emerge through
the layer of Fog [7]. To provide just one example, consider cloud computing
companies like Amazon, which have many data centers in various geographic areas.
Because of the relative proximity to the gateways and the widespread nature of the
deployment, the fog layer's regional spread presents a unique challenge compared to

other layers.
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Figure. 1.1: IoT based on Fog: A high-level overview

The benefits of location awareness & widespread geographic dispersion help meet the
needs of mohility-based gadgets or "things" operating at the perception laver. Since
the Fog layer 15 so close to the nodes, it 1z possible to use the perception laver's
sensors and actuators in real-time interaction. Among the most notable features of the
fog layer 18 its widespread geographic dispersion, which, in turn, contributes to its
ability to provide low communication latency. Specific application fields for the IoT,

like healthcare or automotive, rely heawily on such functionality [8].
1.1.4 Organization and Design of the Fog Layer

The Fog laver iz capable of being structured productively to fulfill the needs To
kegin, consider a network gateway ot a wireless hotspot serving customers in the
immediate area The purpose of this kind of gateway 15 to forward data packets from
the network to the Internet-connected back-end infrastructure system. Multiple access
points may be organized in the broader environment to provide users with continuous
connections across the desired region. This can be done by providing the users with a
network that spans the whele environment. Jo many different types of dewices
connect to the Fog laver, and it 1g possible to imagine this laver as a network of
gateways that extends across a broader region. In addition to transmitting networl
packets, these networked intelligent gateways can process or store the data, depending

on the context.



The Fog layer is shown in Fig.1.1, and it is the layer in which dispersed Smart
gateways communicate with one other, the Cloud, and the sensor layer. Fog layer

gateways must have a network interface to support many wireless network protocols.
1.1.5 The main critical aspects of Fog computing

. The ability to pre-process data (filtering, eliminating repetitions, resolving
conflicts, gathering, & classifying) to convert it from raw to smooth data,
which deereases the amount of the data and enables it to flow on the link and
offload the burden for the cloud and offers locality awareness, was made
feasible by the large - scale deployment of Fog nodes at the edge of the

network near the user.

. Fog may make quick decisions before data is uploaded to the cloud or in an

urgent situation.

. Even when Internet connectivity is lost, the Fog nodes may help increase

service availability and mobility.

. Data security may be enhanced by the fog applying a policy or encrypting it
before sending it to the cloud.

® Fog may also support new use cases, including augmented and virtual reality

apps that run in real time.
1.1.6 Comparison between Cloud and Fog

This cloud delivers a tremendous quantity of resources and services to a customer at a

cheap cost via three tiers of service (degrees of control), namely:

. Software as a Service (SaaS) enables users to access cloud services like
storage, computing, and other functions. A third party offers online software
applications; users may only use these programs to handle their documents

online.

. Platform as a Service (PaaS) enables users to create and run cloud-based
applications that can be accessed anytime and anywhere. This is because some
businesses will deploy applications on the cloud so that their staff or clients
can use them without worrying about resources, data security, backups,

management, etc.



. A user of Infrastructure as a Service (Taa®) has wirtual access to and control
over specific resources, such as the OF, the LAN, and the hard drive wia the
Internet. Specific programs need high-performance computing (HPC) before
assessing how well they handle large datasets, some applications need

virtualized root access to a resource to manage and use it however they see fit.

The fact that all these service levels were developed using vast amounts of raw data
that had already reached the cloud would negatively impact the link's capacity,
bandwidth, speed, etc [9].

The Fog computing as edge model offered sewveral solutions to deal with these
problems, improve cloud quality, and broaden the scope of serwices that may be

provided to end users.
1.1.7 Characteristics of Fog Computing

Computing in the fog 1z a development of cloud computing that 15 more specifically
applicable to IoT dewices. Fig 1.2 illustrates how fog computing bridges endpoints
atnd the cloud by giving end dewvices networking, cotnputation, and storage space. Fog
nodes are the name given to these gadgets. Anvwhere there 13 a network connection,
they can be used Fog nodes can be considered any dewice with computing, storage,
and a network connection, including industrial controllers, switches, routers,
embedded servers, and security cameras [ 10].

Y

£ Cioud

[ Cloud Compailing

End Devices

Figure 1.2 A& cloud extension that1s closer to end-user devices

The fundamentals of the cloud are said to be fog computing. The following succinct

description of cloud computing charactenstics:



. Low latency and location awareness: These are supported by fog computing,

allowing nodes to be placed in various places.

. Geographical distribution: These services & applications are offered. Unlike
the centralized cloud, the fog allows for the implementation of solutions

everywhere.

® Scalability: Broad sensor networks monitor the environment. Resources for
computation and storage are dispersed throughout the fog and can support

such large end devices.

® Mobility support: As a significant component of fog applications, it facilitates
mobility strategies like location ID separating protocol (LISP), necessitating a

distribution to a directory system.

® Unlike cloud computing apps, which employ batch processing, fog computing

applications provide real-time interactions between multiple fog nodes.

. Heterogeneity: There is a wide range of possible configurations for fog nodes,
also known as end devices, and they must be deployed in compliance with the
specifications of the platforms they were designed for. The fog might function

on any number of different systems.

. Interoperability: A fog system's components may communicate and cooperate

across several domains and service providers.

. Support for cloud engagement and online analytics: The fog, which is in the
network's center for ingesting and processing data close to the end users'

devices, there must be a connection between the cloud and end devices.
1.1.8 Cases and examples of Fog usage
i) E-health system

This one is among the most significant applications within the smart city context.
Using IoT infrastructure, it aims to provide healthcare at higher standards and during
emergencies. The patient must wear specific clothing or devices equipped with
sensors to monitor vital signs, including pulse rate, hypertension, sugar level,
effluence in the air, temperature, and more. This data must be uploaded to the cloud

(server provider) for collection and analysis to foresee future threats. The patient will



be informed if there is any unusual behavior or if a health emergency is anticipated.

Even in an emergency, a family member or an ambulance may be called.

Because it affects people's lives, this system is susceptible, primarily to delays. Sadly,
the cloud cannot accommodate the sudden influx of many functions because of the
scheduling of these services from meeting this demand. For this, fog computing is
used, which allows it to serve an infinite number of patients concurrently without

compromising latency.

The city (smart city) will have a highly populated Fog node network, and patients
may wirelessly connect to any node closest to them. All detected data will be sent to
Fog to collect and categorize it. Then, instead of transferring enormous amounts of
data, It will compile aggregate statistics for all data sets and upload just those
statistics to the cloud, where they may be stored indefinitely and studied in the future.
This will reduce the link's bandwidth and capacity and improve performance. In
addition, if an emergency arises, the fog will be able to recognize it immediately and

make the appropriate choice without having to get in touch with the leading cloud.
ii) Traffic organization system

The prerequisites for these structures are rapid responses & tools to gather data
immediately to analyze automobiles and the best path based on the traffic volume on
each street. A network of Fog nodes that could be embedded in things like connected
automobiles or traffic lights is required to operate such a system. Cars will constantly
send signals to the nearest traffic signals (Fog node). The node will count items &
transmit that transfer valuable information and applications to the cloud, combine the
data, make a decision, & send alerts to the fog nodes once again. Finally, cars get
them from fog nodes. Another possibility with comparable systems is that a group of

intelligent cars might work together to achieve a common objective.
iii) Energy control system

Each appliance in a connected device periodically notifies the server supplier (cloud)
of its power consumption rate. However, this causes network congestion and enables

the cloud to track the user's habits to provide data on his devices and energy use.

Alternatively, fog nodes might be used to avoid disclosing unnecessary or otherwise
sensitive user data by caching data, calculating device-level average consumption, and

then sending that data to the cloud. This improves the performance and the utilization

8



of network and cloud resources.
iv) Face recognition system

Instead of acquiring their system, some organizations utilize this system that depends
on the cloud, which has all the data on their workers, to do computations, produce
results, and track attendance. Consequently, each employee will upload a picture to

the cloud, which will analyze it, run an algorithm, and then provide the results.

There will be a great deal of lag and extra effort for the cloud and network to handle if

many workers submit their images through a connection.

This issue may be resolved using the Fog to modify the picture before transmitting it.
Instead of sending the whole picture to the cloud, the fog node will perform a feature
extraction work on the image. This will free up network resources and shift jobs to the
cloud—yvirtual reality, e-learning, video conferencing systems, and other technologies

all leverage related concepts.

There are several more applications that fog may enhance and make more complex,
including mobile learning, decision-making, e-governance, shopping, crowd

management, etc.
1.2 Architecture of Fog Computing

A "fog computing” technique moves data processing and storage to the network's
edge. The fog shares little processing power, storage, and networking capabilities
between client computers and the mainstays of cloud computing's server farms. Low
and predictable latency is the primary goal of fog computing for time-sensitive ToT

applications.

This section provides an overview of architecture specified in software, radio access
networks for fog, and fog computing's hierarchical design to comprehend better how
fog computing enhances capabilities at the network's periphery regarding processing,
communication, storage, & service (F-RAN). One of the most fundamental and
extensively used structures in three-tier fog computing is Fig. 1.3, which depicts the

building's layout. Following is a discussion of the tiers:

Tier 1-Things/End Devices: In this tier, gadgets connecting to the Internet of
Things, such as sensor networks, mobile gadgets used in the European Union

(including smartphones, tablets, cards, vehicles, and wristwatches), and more. The

9



phrase "terminal nodes" is ofien used to describe these last stops (TH ). These THs
wrill presumably be GPS-equipped (GPS).

Tier 2-Fog: This isthe "computer fog" layer because it mimics the wirtual fogs look.
Fog nodes consist of the hardware in a network, such as a switch, router, router
bridze, and Access points at this lewvel. These fog nodes can cooperate to share

resorces for computing and storage.
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Figure. 1 3: A three-tiered design for fog computing,

Tier 3—Clbud : The highest tier is home to traditional cloud serwers and data centers.
This tier has an adequate amourt of computational and storage resources.

1.2.1 Layered architecture for fog comp uting

Fig. 1.4 shows fog computing's six layers: Transit, pre-processing, monitoring,
virtualization, temporary storage, and security. The physical THs and the sartual
sensor nodes are the main elements of the physical and wirtualization layer. The
monitoring layer owersees the desired task and keeps an eye on energy usage concerns
that are caused by the hardware. Actions commected to data management, filtering, and
cutting are carried out in pre-processing—the data is solely in temporary storage for a
predetermined amourt of time. In the security laver, the problems that pertain to
security are addressed and resolved. Finally, the transport laver sends data to the
clond [11].
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Transport ‘ Uploading pre-processed and secured data to the
Cloud

Layer

Security Layer

Encryption/decryption, privacy, and integrity
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Figure 1.4 Layered architecture of fog computing.

Physical, virtual, and virtual sensor networks are only a few different types of nodes
involved in the physical and virtualization layers. These nodes are managed and
maintained by determined by the sorts of services they need and the demands placed
on them. Various sensors are dispersed around the landscape to detect the
environment and transmit the data they acquire via gateways to higher layers, where it
will be further processed and filtered. The momitoring layer keeps track of the
network's components, resource utilization, and the presence of sensors and fog nodes
[12]. This layer keeps track of everything the nodes are working on, including what
tasks they are working on, when they are working on them, and what the next step
will need them to complete. The finctionality and status of all apps and services
installed on the infrastructure are kept under surveillance. The energy usage of fog
devices 15 also measured and monitored. Because fog computing uses various devices,
each with a unique degree of power requirements, energy management may be both

timely and efficient.

The pre-processing carries out the functions of data management. This layer analyses
gathered data and data filtering and trimming to extract significant information. Next,
the data that have been pre-processed are stashed away momentarily within the layer
of temporary storage. After the information has been uploaded to the cloud, keeping
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them in local storage is no longer necessary, and they may have the quick storage

medium removed from their possession.

The process of encrypting and decrypting data is a function that is carried out inside
the security layer. In addition, it is possible to apply integrity safeguards to the data to
prevent tampering with them. The next step, which takes place at the transport layer,
involves uploading the data already pre-processed to the cloud. This provides the
ability to extract and provide more helpful services in the cloud. Only a subset of the
captured data is sent to the cloud to make the most optimal use of the available power.
The data is processed by the gateway device linking the Internet of Things to the
cloud before being uploaded to the cloud. A smart gateway is the name given to this
particular sort of gateway. The cloud is the destination for the data sent from smart
gateways after being acquired by sensor networks and other Internet of Things
devices. The information sent to the cloud and saved there is ultimately used to
produce services for end users. To make the most of the fog's limited resources, a
communication protocol for fog computing must be as lightweight as possible while
maintaining flexibility. Therefore, the fog's application situation should be considered

while selecting the communication protocol.

The architecture of FC is also used as inspiration for the design of the fog node. In
light of the characteristics of FC, the architecture will be developed in two stages:

computing and networking.
1.3 Fog Services Types

Fog services may also be used to achieve fault-tolerant fog computing. When a fog
node hosting an IoT smart city application (IoTSCA)-supporting fog service dies, it
may be replaced by a comparable service offered by a different healthy fog node
situated near enough for the application to continue running without interruption.
Depending on the kind of service, there are a few possible routes When optimizing
and implementing fault tolerance for a fog service. Certain services need to be
considered more than others to achieve fault tolerance. To further comprehend various
potential fault-tolerance problems and solutions for these kinds, it is crucial first to

explore the multiple sorts of fog services [13].

I Stateless vs. Stateful Services: Fog services vary significantly when managing

state data. The most recent state data may affect the operations and results of a

12



stateful fog service since it is updated with each service invocation.

2. Non-Real-Time Services Vs. Real-Time Services: Real-time fog services must
act and respond immediately. If not done in time, these activities and reactions
are meaningless. If activities or answers are delayed, the service-using
application may suffer. Fog computing supports this service better than cloud
computing. Fog nodes near IoT devices may improve control by being closer
to information and activities. Services updated in real time can do various
[oTSCA tasks rapidly and accurately. However, fog computing may allow
non-real-time services without time limits; they are more straightforward to

fault-tolerate services that are not real-time.

3. Single-Level vs. Multiple-Level Services: Single-level services are executed
within a fog node and finish their activities without requiring other services,
the cloud, or IoT devices. Single-level services at the same fog node may call
each other. However, a multiple-level service uses other node services to
perform its duties. Cloud, fog, and IoT devices are additional nodes. Another
fog node with identical capabilities may handle a single-level service., which

1s the main difference in failure tolerance.
1.4 Fault Tolerance in Fog Computing

In contrast to the cloud, devices are spread out throughout a network in the Fog
computing paradigm, making failure more likely. Since the Fog is still developing,
whether or not Fog computers can tolerate faults has not been investigated. However,
the cloud computing paradigm is where fault tolerance has received the most research.
Most frequently, availability is used to gauge fault tolerance. Proactive and fault
tolerance methods are used, depending on whether they are utilized at the workflow or
task level in the cloud to handle errors—techniques for reducing the impact of system
failures via reactive fault tolerance afier they have already happened. Workflow
rescue, job migration, task resubmission, replication, rollback and recovery, user-
defined error handling, and checkpointing and restarting of jobs are techniques based
on thig policy. To prevent recovery from faults and errors, anticipating potential
failures and swapping out questionable parts with fully working alternatives is what
proactive fault tolerance is all about. Cloud computing's limited proactive fault

tolerance strategies include self-healing, preemptive migration, and software
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rejuvenation.

A system's fault tolerance enables it to continue operating after a component fails.
This malfunction might be caused by hardware, software, or a network issue. The
consequence of the fault tolerance approach is a fully functional system that operates
with reduced capabilities rather than completely shutting down. Much of the current
research on wireless networks, distributed computing, cloud computing, and peer-to-
peer computing is based on fault tolerance, which primarily employs more resources
to cover inevitable accidents or failures. This is particularly true in terms of

scheduling [13].

The primary backup approach, which duplicates the fragments of a job and allows
each principal subtask to have a backup for increased resilience, is often addressed
concerning this subject. If there is a restriction on the number of fog nodes, as would
be the case when installing gateways for the Internet of Things, then the system's
performance might suffer due to this strategy. This is because the backup resources

would be squandered.

Virtual machine (VM) procedures for backup are being thoroughly researched as an
alternative to using physical nodes that prevent the occupation of additional physical
nodes. One of the premises upon which these techniques are based is that the main
virtual machine (VM) of a chunk and the backup VM of that chunk cannot be
deployed in the same physical nodes together. This method works well in cloud
computing environments that use potent nodes. However, fog nodes' performance
may suffer significantly when loading two or more virtual machines due to their
limited capacity. Although several overlapping techniques are being investigated to
conserve virtual machine resources, these methods still need a compromise between

reducing latency and protecting tasks.
1.5 Research Gaps

The researchers have provided a straightforward but all-encompassing technique for
bringing multi-part IoT applications to fog networks while maintaining QoS. The
reviewed literature reveals that the reliability of the fog node, which is responsible for
communication between loT devices and cloud infrastructure, most published works
have not been remunerated [28][29]. The fog paradigm must provide real-time

responses and also be able to handle server faults in real time [30]. Fog computing
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still faces challenges, mainly when dealing with mobile nodes. Fog computing also
tackles an issue of mobility when the tasks originate from ubiquitous mobile
applications in which the data sources are moving objects [5]. The mobile user’s
location and direction should be predicted for allocating the scheduling request to
minimize the overall latency [32] effectively. The best cost path optimization is
required to reduce packet transmission time [26][27]. The following research
gaps(RG) have been designed based on the literature survey, which can also be

explored in terms of the IoT-Fog framework:

RG1. Existing Fault Tolerance & Service Placement techniques were based on static
priority and did not deal with real-time server faults. The reliability of the fog node

has not been taken into consideration.

RG2. The issue of mobile user’s request allocation needs to be addressed.

RG3. QoS parameters should be optimized for packet transmission time
minimization.
1.6 Research Objectives

To fulfill the above-mentioned research gaps, this research aims to design an adaptive
fault-tolerant framework and latency-aware service placement scheme for a fog

computing environment. The research objectives as framed to achieve this task are as

follows:

1) To develop an Adaptive fault tolerant service by using reactive techniques.
2) To design a mobility-aware service placement for allocation of service.

3) To optimize network path in fog environment.

1.7 Thesis Organization

This research uses the following segments to represent the means and schemes for
adaptive fault tolerance framework and mobility-aware and latency-sensitive

scheduling algorithms in the Fog computing environment.

Chapter 1 Introduction: This chapter provides an overview of fog computing. It also

covers the study's contributions and new problems in fog computing.

Chapter 2: Fog Computing Environment- the State of the Art: The classification

of IoT and fog computing is covered in detail in this chapter. The research and work
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of other researchers on handling errors in fog computing are discussed and analyzed

in this chapter.
Chapter 3: CR-BM-based Framework for Fault Tolerance :

The framework projected in this chapter carries out adequate Quality of Service (
QoS) conscious practices built on the amalgamation of Checkpoints and Replication
(CR) for fault diagnosis, and the Bee-Mutation (BM) algorithm has been employed
for efficient allocation of service to the best fog devices. The fog service monitor has
been set up to track the effectiveness of the nodes in the fog layer. The CR and BM
modules analyze the service monitor in cooperation for the proposed hybrid
architecture to be fault-tolerant. Additionally, the suggested CR-BM pedestal hybrid

structure performance has been assessed using a range of performance metrics.

Chapter 4: Efficient Mobility Aware Scheduling Algorithm

This chapter proposed an adaptive service discovery and mobility-aware scheduling
algorithm presented. Simulation results showed that the proposed algorithms can

provide uninterrupted service to [oT devices.
Chapter 3: Particle Bee Optimization for Fault Tolerance

In the fog-supporting scenario, this chapter provided a helpful strategy that increases
overall performance by determining the optimal cost path and shortens packet
transmission time by choosing the nearest neighbor among fog nodes. The proposed

approach also protects against live server failure by repeating server activity.

Chapter 6: Conclusion and Future Directions: This chapter summarizes the
findings and plans for fault tolerance and QoS-based frameworks in the fog

computing environment.
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CHAPTER-2
REVIEW OF LITERATURE

2.1 Introduction

Fog computing is a kind of distributed computing that uses "edge" nodes to access
cloud-like services. In fog computing, "Fog" is the same as everyday life. Tt is
possible to encounter fog between clouds and the ground in the real world, and this
concept is employed in fog computing to symbolize the region between clouds and
the physical world. In other words, fog nodes are placed in the path that connects the
cloud to the user's endpoint devices. The cloud and fog concepts appear relatively
comparable regarding management, computing, communication, and data storage.
However, there are a few crucial differences. Fog is tailored to use cases that need
near-instantaneous responses but can still function with a little more delay. However,
the cloud has application performance limitations and is susceptible to location and
latency because of its centralized nature and users' propensity to spread out over
enormous distances. Fog computing, like cloud computing, enables the use of several
forms of service provisioning, such as "Software as a Service,” "Platform as a
Service," and "Infrastructure as a Service" (IaaS). The following features, exclusive to

fog computing, set it apart from other approaches to computing:

e Fog nodes know their logical position within the more extensive system and the
latency costs associated with connecting with other fog nodes; fog computing has the
lowest possible associated latency. Because fog nodes are positioned close to end-user
devices, the processing of incoming data and response times of these devices are

significantly faster than those of cloud services.

eCompared to the centralized cloud, services and applications operating in
geographically distributed divisions are excellent candidates for fog computing

backgrounds.

¢ Fog computing allows maintaining and processing a variety of data kinds via the use

of various forms of network communicative capability.
2.1.1 Comparative Study of QoS and Service Placement based schemes

This section carried out a review based on a series of parameters that the various

17



researchers considered for all edge paradigms. Table 2.1 analyzes these parameters

based on which research gaps have been found and objectives derived.

Table 2.1: Issues addressed in various paradigms

References Comparative Study Paradigm’s
Fault Mobhility Service QoS Latency
Tolerance Placement | Considerations | Sensitive
Luiz etal [13] ® %4 % % % Fog
Wang et al. [14] *® *® v »® »® Fog
Satria et al. [15] v ® % ® Mobile
Edge
Verba etal. [16] ® ® J % M Fog
Liuetal . [17] ® ® ® % < Fog
Baranwal et al . [18] ® ® v J % Mobile
Edge
Kimovski etal . [19] ® v 74 J % All edge
Paradigm’s
Ghosh et al . [20] v < % J J Cloud, Fog,
ToT, and
Edge
Wagas etal . [21] ® o % % % Fog
Alarifi et al. [22] v ® ® % ® Fog and
Cloud
Souza etal. [23] v ® % % % Fog and
cloud
Skarlat et al .[24] ® ® v v ® Fog
Wang et al . [25] ® v x S ® Fog
Verma et al . [26] ® v v % % Fog
Mahmud et al . [27] ® ® % J J Fog

2.1.2 Fog Computing Frameworks and Fault Tolerance Schemes

Different research studies consisted of a full investigation of various frameworks and

fault tolerance schemes in a fog computing environment are presented in this section.

In-depth taxonomies, performance metrics, and parameter analyses were also given.
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In [28], Al-Khafajiy et al. proposed an IoT-based fog computing framework to
enhance the QoS for IOT apps. This proposed system allows for collaboration
amongst Fog nodes at a particular location to make data processing possible in a
shared manner. This meets the quality of service requirements and provides for the

most significant number of service requests to be fulfilled.

In [29], Garcia-Valls et al. discussed designing and validating a framework that
improves the service time of chosen activities at the fog servers. More specifically,
this improvement increases the service time of those activities that distant patients
request. It does this by taking advantage of the capabilities of modern processors to

parallelize activities that can be executed on reserved cores.

In [30], Verma et al. presented a novel architecture in the Fog Computing
environment based on a scheduling algorithm to handle the increasing number of final
users with less complexity and more efficiency. The issue of network delay is
overcome by an innovative kind of computing paradigm that is known as fog
computing. The main distinguishing feature of fog compared to cloud computing is
that it operates on the periphery of a network. One additional benefit is that it makes it

possible to implement location-dependent applications.

In [31], Mazumdar et al. have developed a collaborative strategy to provide on-time
service; other fog nodes must take up some of the work of a single node struggling
under strain. A three-layered loT-fog-cloud system framework is presented to
overcome this limitation and satisfy the needs of real-time programs. An evaluation of
the proposed framework work 1s performed by a simulation study using performance

indicators such as latency and service response rate.

In [32], Apat et al. discussed the role and importance of the generic three-tier
architecture's fog orchestration node. The primary goal of this design is to facilitate
the equitable allocation of workloads among a system's resources (physical
equipment, software, network bandwidth, etc.) that are dynamically associated with
the Internet of Things (IoT). In addition, the author discussed a few difficulties related
to resource management that need to be accounted for to provide improved QoS to

customers.

In [33], Wen et al. mentioned a Byzantine fault-tolerant networking strategy and two

resource allocation algorithms for IoT fog computing. They aimed to create a
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protected fog network that they dubbed SIoT Fog. This network would withstand
Byzantine faults and make the transmission and processing of IoT extensive data
more efficient. They focused on latency as a metric for examining the simulation's
findings. The findings of the simulation indicate that their tactics may be able to

contribute to the development of an effective and dependable fog network.

In [34] Araujo et al., the researcher presented a resilient agent-based fog computing
architecture. This architecture utilizes machine leaming and a statistical model to
forecast the time until an instance is revoked. It also contributes to the refinement of
fault tolerance parameters and the reduction of total execution time. Experiments
showed that their model is accurate to a great degree, attaining a success rate of 94%,

which shows that it is useful when applied to realistic settings.

In [35], Samann et al. recommended a Fault Tolerant Data Management (FTDM)
method in healthcare ToT fog computing. FTDM effectively organizes and manages
the data produced by IoT devices in the healthcare industry through clearly defined
components and stages. The research included energy usage, execution cost, network
utilization, latency, and execution time as performance evaluation factors. The
simulation results show that the suggested FTDM technique lowers heat output by
3.97 times, cost of execution by 5.09 times, network usage by 25.88 times, latency by
44.15%, and time to execute 48.89 times. When compared to the existing Greedy
Knapsack Scheduling (GKS) strategy. The recommended approach is thus quite

successtul in these circumstances.

In [36], Bakhshi et al. explain how container-based architectures are often used for
cloud computing and how they may play a crucial part in creating fog computing
infrastructures. The authors have examined the difficulties of implementing
containerization at the fog layer and have chosen to concentrate on one of those
difficulties: the supply of fault-tolerant persistent storage. In addition, the article
provided a container-based fog architecture that uses so-called storage containers.
These containers combine the fault-tolerance techniques already built into storage

units using a decentralized consensus mechanism to guarantee data integrity.

In [37], Tong et al. presented a brand-new short-circuit diagnostic method with a high
degree of diagnosis accuracy, a strong fault tolerance, and minimal delay time. Wide-

arca backup protection data is transformed into targeted information with tiny
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package sizes and transported between the corresponding fog nodes to generate
incidence matrices in each node. Utilizing the matrices for the location of the defect,
each fog node may determine its diagnostic value. The findings demonstrate that the
technique can maintain 100% correctness in all three mistake scenarios and provide a

reduced latency when there is a significant network load.

In [38], Ozeer et al. suggested a fault tolerance technique that considers these three
features of the fog-based IOT environment. To achieve fault tolerance, the
application's state must be saved in a manner that is not coordinated. Notifications are
sent out if a fault has been identified; this helps mitigate the effects of failures and
dynamically modify the program. The data saved throughout the process of
conserving the state are utilized for recovery, and this procedure considers the data's

consistency concerning the physical world.

In [39] Naim et al. suggested that one of the paradigms for delivering high availability
in computerized systems where application service is replicated to several nodes is
called "fault tolerance."” However, resident on-site applications, such as those found in
small clinics, are still susceptible to outages and would need a certain amount of time
and human intervention to recover. The middleware will detect failure through
heartbeat checks, and simultancous service replication will occur. If an outage is
identified, the middleware will take the necessary steps to assume its role as the

secondary service provider.

Table 2.2: Research Gaps related to various Fog Computing Frameworks and Fault Tolerance

Schemes
References Features Research Gaps
Al-Khafajiy et al .[28] Fog computing framework for enhancing QoS, but RG1, RG3
the reliability of fog nodes has not been considered.
Garcia-Valls et al. [29] Framework improves service time only. RG1
Verma et al. [30] Architecture overcomes network delay issues, RG1
doesn’t explore, and gives closer attention to the
processing of the fog node.
Mazumdar et al. [31] A three-layered architecture is needed to overcome RG1
the issue of real-time programs, but aspects of fault
tolerance have not been explored.
Apat etal. [32] A layered architecture for allocating workload RG1,RG2
among the resources but not classifying the actual
resource requirement.
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Wen etal [33] A fault-tolerant strategy for developing an effective RG1,RG3
fog network didn’t explore other parameters, ie.,
response  time, throughput, and associated
overheads.

Araujo et al. [34] A fault-tolerant-based  architecture  reduced RG1
execution cost only.

Samann et al. [35] Fault-tolerant data management handles RG1,RG3
malfunctioning tasks and nodes but does not explore
the QoS parameter.

Bakhshi et al. [36] A fault-tolerant base using a decentralized RG1
consensus mechanism to preserve data integrity
only.

Tong et al. [37] A short circuit diagnostic-based fog framework has RG1

strong fault tolerance and minimal delay but is
specific to short circuits and doesn’t explore other
features.

Ozeer et al. [38] A fault-tolerant-based technique has been proposed RG1
for preserving data consistency conceming the
physical world. This technique can be improved by
providing fault monitoring and more sophisticated
fault detection services.

Naim et al. [39] A fault tolerant-based mechanism that provides the RG1
advantage of automated backup for applications.
The proposed method is limited to delivering
recovery only.

This section analyzed the fog computing environment's different architectures,
frameworks, and fault-tolerant schemes. The authors also examined the essential
qualities of fog computing frameworks and highlighted various problems associated
with their architectural design, service measure quality, service placement, and
communication modalities. Most IoT frameworks enclose sensing devices that
monitor the environment in which it is established. The usage of [oT in an automated
environment monitors complex systems. The scalability of the fog system provides an
increased probability of failures. In some instances, hardware faults and software bugs
can adversely affect the system's reliability and performance. To address these, a user-
transparent and redundant replications fault-tolerant deployment and execution
approach s needed. Hence, there should be a module for fault diagnosis to detect the
fault accurately in the automated system. This fault-diagnosing model may save the

system and humans from any catastrophic events.
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2.1.3 Mobility Aware Scheduling Schemes

The articles understood the research concerns via a thorough taxonomy and identified
significant obstacles in previous work. The articles also looked at current approaches
to several problems, presented a meta-analysis based on QoS metrics, and described
various tools for implementing Fog task scheduling algorithms. According to this
systematic review, potential researchers found it simple to pinpoint particular research

issues and future paths to improve scheduling effectiveness.

In [40], Kaur et al. have presented a mongrelized load corresponding approach (Tabu-
GWO-ACQ) for scientific processes and a Fog Figuring Infrastructure of Task
Scheduling (FOCALB) for such presentations combines tabu search, Grey Wolf
Optimization (GWO), and Ant Colony Optimization (ACO). The author summarized
the findings and compared the simulated experiments' execution times, costs, and
energy use to those of several current models, demonstrating that FOCALB
minimizes the energy consumed by fog nodes, speeds up processing, and costs less to

install costs.

In [41], Wadhwa et al. have created a novel scheme for efficient placement and
organization of computational and memory. TRAM is a novel scheme for proficient
allocation of resources and their management and also improves the system's overall
performance. It is recommended to ensure the consumption of resources at the fog
layer. The method tracks the degree of job concentration using the expectation
maximization (EM) algorithm and determines the current resource condition. The
experimental findings showed that TRAM effectively reduces task execution time,

network use, energy use, and average loop delay.

In [42], Kochovski et al. addressed and developed a practical technique for using Al
in construction projects through the DECENTER Fog Computation & Brokerage
Platform. The researcher created a Mobility-aware Genetic Algorithm (MGA) for fog
service placement. This MGA aims to facilitate the mobility of nodes while
preserving the energy efficiency of the infrastructure and the Quality of Service (QoS)
requirements of the applications. The projected framework offers promising energy

reduction and delay violation results compared to alternative strategies.

In [43], Science et al. suggested a data offloading mechanism that considers deadlines

and implemented it on fog nodes. After evaluating these parameters, the node
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controller offloads the job to the appropriate fog node. According to the experimental
findings, the suggested method achieves an overall delay time of 24% and 17%
shorter than the two benchmark algorithms. The deadline-aware data offloading
technique achieves a 79% likelihood of achieving the deadline for time-sensitive
applications. Task scheduling and offloading strategies are the focus of the research;

however, the impact of scalability has not been explored.

In [44], Choudhari ¢t al. proposed the architecture, queuing & priority model for the
priority assignment module. Presentation analysis demonstrates the suggested
technique significantly lowers total cost and overall response time compared to other
job scheduling algorithms. They think this research is essential for the development of
fog computing, and various application fields may benefit from the priority-based

approach.

In [45], Murtaza et al. contributed by adding streamline moment variable IoE
requests. This method specifically studied the different IoE service request types and
proposed an ideal technique for allocating the best available fog resource in
accordance. They thoroughly assessed the effectiveness of the suggested strategy via
simulation and its accuracy using rigorous checking. In terms of both energy

efficiency and service quality, the findings of the examination are encouraging (QoS).

In [47], Mahmud et al. proposed a context-aware approach to application request
allocation in the fog pedestal milieu is needed to deal with the problem of varying
data sensing frequencies from different industrial Sensing devices; a problem made
more complicated by the sheer volume of data generated by these sensors. The new
policy's performance is compared to the current placement policies in real-world and
simulated Fog scenarios. The experiment's findings demonstrate that, compared to
alternative placement rules, this method delivers an overall 16 percentage point

reduction in service delays, network easing, and compute load control.

In [48], Bahnasawy et al. recommended a brand new algorithm that was going to be
known as the Deadline Aware Resource Allocation (DARA) algorithm. The method is
contrasted with the DRAM algorithm, which stands for the Dynamic Resource
Allocation Method. The simulation results demonstrated that the suggested algorithm
offers superior performance regarding the overall cost, the amount of resources used,

and the total amount of money spent.
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In [49], Al-Tarawneh et al. presented a bi-objective Strategy for deciding where to
deploy applications in fog computing settings. The proposed method tries to install
software applications on the base fog devices in a way that considers the criticality of
the applications involved and any security criteria that must be met. The suggested
algorithm's capacity simulation findings show that optimizing application location in
fog computing environments concerning performance metrics and efficiency is

possible.

In [50], Pham et al. presented the Price-aware Scheduling heuristic as a scheduling
method. The key objective is to find a middle ground between the required cost of
using cloud resources and the speed with which applications may be executed. This
tactic aims to improve the schedules generated by the Cost-makespan-aware Task
scheduling to conform to any time limits or quality of service standards set by the
system's users. The experimental findings demonstrate that their scheduling
methodology is more cost-effective and produces more incredible performance than

other methods.

In [51], Caminero et al. provided a network-aware scheduling technique to select the
most appropriate fog node to execute an application within a specific time. The
comparison demonstrates that their approach is the only one that, with specific
settings in some of the analyzed conditions, can execute all of the submitted tasks
within their deadlines, producing an optimal solution. Only their proposal can

complete all the work by the deadline.

In [79], Maiti et al. said they have considered accesses as possible people who may
benefit from a fog node being deployed in their vicinity. This work optimized the
number of fog nodes deployed to reduce the overall delay caused by data aggregation
and processing. Compared to traditional approaches to Internet of Things data
processing in traditional cloud environments, their findings indicate that doing so with
a Latency in the Internet of Things (IoT) network might be reduced with the proper

placement of fog nodes.

Several open research issues and intriguing future paths are mentioned as potential
focus arecas for more study in fog computing. The scheduling issues and challenges
arising due to user mobility in the fog-cloud system's hierarchical environment should

be considered. There should be a need to take different scenarios of user mobility at
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edges based on their requirements. The response time sensitivity of their requests was

also considered for allocating the service requests of devices located at the cloud edge

to the most appropriate actuators.

Table 2.3: Rescarch Gaps Related to Mobility-Aware Scheduling Schemes

References Features Research Gaps

Kaur et al. [40] The task scheduling-based approach only focuses on RG2
energy consumption minimization.

Wadhwa et al. [41] A novel scheme for the proficient allocation of RG2
resources has been developed but does not take care of
the mobility-aware environment of fog computing.

Kochovski et al. [42] Mobility algorithms focus on service placement RG1,RG2
specific to construction projects.

Science et al. [43] A data offloading-based scheduling mechanism only RG2
takes into account the work’s deadline.

Choudhari et al. [44] The proposed task schedulers significantly lower the RG2
total cost and overall response time.

Murtaza et al. [45] This scheduling scheme allocates the best available fog RG2
resource based on its accuracy and rigorous checking.

Nguyen et al. [46] The proposed scheduling strategy considers only RG1,RG2
execution time and cost.

Mahmud et al. [47] A context-aware approach to request allocation RG2
minimizes service delays and balances the load.

Bahnasawy et al. [48] A Deadline resource allocation algorithm minimizes RG2
overall cost but is silent about the other essential
parameters, i.e., User Mobility and location prediction.

Al-Tarawneh et al. [49] | The proposed strategy provides efficient service RG2
placement, but the user’s mobility is not considered.

Pham et al. [50] A price-aware scheduling strategy has been presented RG1,RG2
to mimimize cost only

Caminero et al. [51] The proposed scheme is based on a network-aware RG3

scheduling technique, and only the network's current
stage was considered.

2.1.4 Quality of Service (QoS) bases schemes

A literature review was provided in this section emphasizing QoS approaches

established in academia for Internet of Things applications. This work also reviews

and explores current trends in research. An in-depth look into the relevant literature

will precede the presentation of background information on the Internet of Things,
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quality of service measurements, and essential enabling technologies. This section
also indicates that the most frequent quality of service measures to consider are
latency, reliability, throughput, and network use. The examined studies took into
account the indicators that were relevant to their respective provisioning strategies.
The researcher concluded that the primary emphasis of academic research has been

placed on application-specific QoS provisioning strategies.

In [52], Wang et al. suggested a qCon framework for managing network resources for
containers that are QoS-aware to control the amount of outgoing traffic in fog
computing. While developing a lightweight framework, qCon strives to offer load
balancing and capacity shaping to meet containers' varying performance needs. For
this reason, qCon enables the simultaneous application to multiple containers of the
three scheduling rules: Minimum and maximum bandwidth reservations and

proportionate share scheduling are all used.

In [53], Shaheen ¢t al. suggested a simple structure that uses the idea of a fog head
node, which monitors additional fog nodes regarding user registrations and location
awareness - The recommended LLAFF offers a precise location-aware method that
consistently meets QoS. This suggested framework surpasses IFAM and TPFC, which
target IoT applications when RAM and CPU use are considered. The framework is
more lightweight since it uses 8.41% less RAM and 16.23% less CPU power than
TPFC and IFAM.

In [54], Ayjla et al. suggested an ensemble QoS-aware traffic flow control technique
in SDN's built architecture. The proposed method operates in three stages: the first
stage involves designing a linear ordering scheme to remove dependencies on
incoming packets; the second stage consists of creating an application-specific traffic
classification scheme; and the third stage involves designing a queue management
scheme to schedule the flow of traffic efficiently. An experimental environment

assesses that the suggested method performs well regarding various QoS factors.

In [55], Yao et al. tackle this joint optimization issue, which is presented as a mixed
integer nonlinear programming (MINLP) problem. This problem aims to reduce the
system cost (VM rents) while simultaneously ensuring QoS criteria. After that, a
method for approximating the issue is suggested as a solution. The results of the

simulation show the performance of their proposed approach.
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In [56] Kan et al. addressed the critical challenges of offloading decision-making and
resource allocation in MEC systems, including radio and computing resources. Their
work is intended to improve QoS and outcome; this work models the QoS
experienced by end users using a cost function that they devised independently. This
allows us to establish a cost-minimization issue. Based on the numerical findings,
their suggested approach significantly improves quality of service (QoS) while

gaining a considerable performance advantage over competing systems.

In [57], Hosen et al. presented a Proxy-based clustering routing (QACR) for route
selection. To balance the energy consumption of nodes, a cluster's number of CHs is
adaptive and varies based on cluster condition. The QACR has been evaluated
through simulations for different circumstances. The obtained findings demonstrate
that, in comparison to the current protocols, the QACR enhances the quality of service

concerning packet delivery rate, network latency, and throughput lifespan.

In [58], Yousefpour et al. introduced a FOGPLAN-based framework for dynamic fog
service provisioning that is QoS-aware (QDFSP). This is done to fulfill the quality of
service and low latency needs of applications while keeping costs minimal. They
addressed the QDFSP in one instance by presenting a potential formulation of the
issue (in the form of an optimization problem) and two effective greedy methods for

solving the issue.

In [59], Tuli et al. discussed a performance engineering technique that is being built as
part of the COSCO framework for improving the quality of service in edge/fog/cloud

computing by use of artificial intelligence and coupled simulation.

In [60], Bidi et al. made their first contribution by proposing a fog-based fault-tolerant
architecture. While effectively and quickly responding to user demands for service
composition, this architecture overcame the scalability and reliability concerns
common in smart cities. These metaheuristics were based on artificial bee colonies,
genetic algorithms, and particle swarm optimization. The findings that were achieved
based on the produced prototype of their proposal suggest that their proposed strategy
is preferable to other current options for service composition. Specifically, the

comparison was made using these results.

In [61], Guevara et al. presented a set of CoS for use with fog applications. This set

includes the QoS criteria that most accurately represent fog applications. An
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illustration of the implementation of this technique may be found in the evaluation of
classifiers concerning their effectiveness, precision, and resistance to noise. Here, Fog
computing relies heavily on distributed computing. In addition, the decision-making
process for the fog scheduler may be simplified by categorizing the many uses for fog

computing.

In [62], Guo et al. explained that the sofiware-defined network (SDN) technique,
which is renowned for its adaptability and elasticity, has been incorporated into the
Internet of Things (IoT). This technique can extract information from historical traffic
needs by interacting with the underlying network environment. Extensive simulation
studies have been carried out regarding several different performance indicators for
the network, and the results have shown that this DQSP has excellent convergence

and a high level of efficacy

The researchers have provided a straightforward but all-encompassing technique for
bringing multi-part IoT applications to fog networks while maintaining QoS. This
section looks at several techniques that may be used to determine whether an
application is suitable for deployment in a fog environment. The researchers also
analyzed how fog computing may enhance network resilience and delay analysis

experienced by network traffic.

This review also concluded that using fog computing makes the edge networks more
robust to difficulties in the core network and prepares the network for a better
response time if interactive requests are made. This section's articles mvestigated
various QoS assurance techniques: administration of services and resources,
communications, and applications. Regarding the chosen methodologies, the study
illustrated their benefits, drawbacks, tools, assessment kinds, and QoS aspects. Based
on the papers examined, the outstanding topics and difficulties that need additional
study and research in QoS-aware techniques in fog computing are illustrated in Table

2.4,
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Table 2.4: Research Gaps Related to QoS Aware Schemes

References

Features

Research Gaps

Hong et al. [52]

A framework (qCon) has been projected for controlling
outgoing traffic only in fog computing.

RG3

Shaheen et al. [53]

A location-aware method that consistently meets QoS
requirements but does not explore the dynamicity of end-
user

RG2, RG3

Aujla et al. [54]

A QoS-based traffic flow mechanism has been described.
Packet transmission time analysis has not been introduced.

RG3

Yao et al. [55]

The projected scheme has reduced the system cost while
ensuring QoS criteria but didn’t explore the other essential
parameters, 1e., latency, associated overheads, and
availability.

RG3

Kan et al. [56]

The projected scheme tackles the issue of cost
minimization only, specifically designed for the mobile
edge computing paradigm.

RG3

Hosen etal. [57]

Proxy-based clustering routing (QACR) enhances QoS
concerning packet delivery rate, network latency, and
throughput. The reliability of packet flow should also be
ensured by employing some fault tolerance mechanisms.

RG1, RG3

Yousefpour al. [58]

A dynamic fog service provisioning framework has been
devised to minimize the cost and latency requirement.

RG3

Tuli et al. [59]

The proposed strategy improved QoS in cloud/edge/fog and
did not explore the application dynamicity and

RG3

Bidi et al. [60]

Fog-based fault tolerant architecture is specifically
designed by mapping to a generalized traveling salesman
problem, not exploring other loT fog environment 1ssues.

RG1, RG3

Guevara etal. [61]

The analytics-based approach did not explore fog-based
application dynamicity.

RG2, RG3

Guo et al. [62]

A Software Defined Network{SDN) - Internet of Things
(IoT) architecture for improving the routing strategy and
assuring QoS. Not specific for fog environment.

RG3

2.2 Summary

The high dynamic and heterogeneous nature of devices at the cloud edge causes

failures to be a popular event, making fault tolerance indispensable. Most ecarly

scheduling and fault-tolerant methods did not highly consider time-sensitive requests.

This increases the possibility of delays in serving these requests, which causes

unfavorable impacts. As projected in Table 2.1, various fault tolerance schemes
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depicted disclosed that no schemes or policy in the published works paid closer
attention to the reliability of the fog node, which is responsible for communication
between [oT devices and cloud infrastructure; significantly less work has been done in
the field of fault tolerance so there is a need to propose a framework for providing a
fault tolerance service in the fog-cloud environments. In [42][43][44][45], it was
depicted that the scheduling issue of the request of [oT devices arises due to the user’s
mobility in the hierarchical environment of the fog-cloud system. There should be a
scheduling method for allocating service requests of devices located at the cloud edge
to the most appropriate actuators. It can also classify the requester devices according
to the response time sensitivity of their requests and scenarios of user mobility at
edges. The work in [60][61] is intended to improve QoS and outcome; this work
models the QoS experienced by end users using a cost function optimization. This

literature review disclosed the issue of cost minimization.
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CHAPTER 3

CR-BM-BASED FRAMEWORK FOR FAULT
TOLERANCE

3.1 Introduction:

The exponential increase in Internet of Things (IoT) technology has led to digitizing
all aspects of life. The number of connected devices is expected to reach 50 billion
devices. IoT devices range from household devices to industrial, autonomous
transportation, smart cities, and environmental monitoring sensors/actuators. All these
devices must be connected to the internet to meet their prospective. With its services
(platform, infrastructure, and software), cloud computing can be a promising option

for IoT devices.

However, cloud computing cannot handle the massive growth. Contacting cloud data
centers is considered to be expensive and raises network bottleneck congestion issues.
Furthermore, the delay tolerance of ToT devices varies depending on how critical they
are. For example, healthcare and traffic-controlling IoT devices require lower
response times than household ToT devices. At this level, the need for a decentralized
computing architecture has emerged. In 2012, Cisco mtroduced the term fog
computing as an expansion of cloud computing, which mainly focuses on bringing
data processing geographically closer to the data source. Open Fog consortium
defines fog computing as “a horizontal system-level architecture that distributes
computing, storage., control, and networking functions closer to the user along a
cloud-to-thing continuum.” This augmentation allows the distribution of the workload
over widespread computing resources to reduce response time and bandwidth

consumption, resulting in a higher quality of service.

One of the primary motivations for implementing fog computing is to provide an
acceptable level of QoS in cloud computing platforms for location-aware, latency-
responsive applications. Furthermore, fog computing needs QoS to assess and monitor
the services appropriately supplied. Some implemented QoS measures i cloud
computing did not apply to fog structure due to the diverse properties of fog
computing, such as device diversity, geographic spread, and mobility [62]. Existing

research indicates that in future QoS-based fog settings, QoS characteristics can be
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represented as execution and response time, resource utilization, security, execution
cost, trustworthiness, energy convention, availability, scalability, & throughput must

be maximized.

Although QoS is a significant problem in fog computing, there has been no systematic
or universal study on its fundamental techniques. As a result, this work undertook
thorough research to identify, taxonomize, and systematically compare previous
studies concentrating on QoS in fog computing. Briefly, the following are the study's

primary contributions:

® Providing a thorough and systematic examination of the available QoS

providing options in fog computing.

® Providing a technical categorization for QoS-aware techniques in fog
computing.
. Introducing the current difficulties around the Quality of Service (QoS) issue

in fog computing.

. Identifving primary focus for future research and development on QoS-aware

methods.
3.2 Fault tolerance:

When a computer system or network device has fault tolerance, it may continue to
function normally despite a bug or a series of bugs in the code that runs the system.
Several reliable measures are included in the fault tolerance to forestall malfunctions
like this. The availability and reliability of a fault-tolerant system are maintained even
it one or more faults or failures occur in the system's components, allowing for the
provision of the service at hand. Tolerant bug systems are those that can continue
functioning despite the presence of an error. It might help to start with a description of
error, as the mind often associates it with malfunction and failure. However, there are

three key distinctions[63].
3.2.1 Failure

If the system's misbehavior allows it to adequately fail at least one of its capabilities,
then it is malfunctioning and has failed to perform as planned. It turns out that a flaw
in the system is to blame for the breakdown. Therefore, the issue is physical or results

from a failed piece of hardware or software. A flaw in the system that allows errors to
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occur is ealled a bug. It is possible for software, virtual computers, and even hardware
to malfunction, fail, or have flaws. There has to be a way for the system to recover
from the error and keep running normally. The fault line 1s shown in Fig. 3.1.

Y

Fault Causes Error Results in
|

|\ J

Figure 3.1: The path to failure
3.2.2 Fauk types

The hardware, virtual machines, and application layers make up the three tiers of the
cloud platform. Every one of them is broken. These errors may occur when the
software runs on any layer of hardware or virtual computer. Therefore, the proper
course of action should be taken, given the nature of the failure. In cloud computing,

errors may be divided into several types.

Network problems: Network faults are errors that involve networks. This error
happens when the data is not intended for whatever reason, such as packet loss, a
closed date, a failed destination, a broken connection, etc. Hardware flaws, such as

CPU crashes, memory crashes, crash failures, etc., are physical flaws.
Media faudt: Errors brought on by a lack of communieation tools.
Frocessor issiie: An operating system malfunction caused a fault in the processor.

Process fawlts: are errors brought about either by a shortage of resources or software

flaws.

Service termination fault: The application still needs to access the resource even after

its expired service life.

Transtent: This kind of defect only ever emerges once and lasts a very long period
before dissipating when the measures are taken. For instance, a network
communication from the origin to the destination may initially be unable to reach its

intended recipient but eventually succeeds.

Alternate: faults are distributed alternately and again. These failures are not good,
mainly because each component failled or malfunctioned concerning the other

components, such as a bad connection.



Stable: Even when broken systems are fixed or, in certain circumstances, entirely

replaced, this form of failure persists in the system.
3.2.3 Fauli tolerance types

Hardware and software fault tolerance are the two categories into which fanlt

tolerance may be divided Fig. 3.2 displays this group:
3.2.3.1 Hardware fault tolerance

For a computer system to be fault tolerant, it must be able to recover on its own if
many random failures occur in its hardware components. Fartitioning a computational
system into many modules is a common theme in the approaches proposed for this
study. There has always been a backup for every part of the system. As a result, if a
problem arises with one module, the other module may go on wsually. Fault-tolerant

technigques consist of two varieties: error handling and dynamic recovery.

v v

Hardware fault Software fault
tolerance tolerance

v | v

error handling dynamic recovery

Figure 3.2: Types of Fault Tolerance

Fault coating is a structural redundancy method that retmoves defects in a collection of
mixed components. A malfunctioning module's flaws are eliminated by voting on the
owtput of many identical components that carry out comparable tasks. Dynamic

retrieval: This methodis only used when a single copy of the work or computation is
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produced to execute. This method promotes selfrepair. Additional spare components
are employved to carry out backup activities, similar to a fault-costing strategy

(preventive redundancy).
3.2.3.2 Noftware fault tolerance

cimilar to how hardware faults are handled, software faults (programming flaws) may
ke exploited using static and dynamic techniques. IMN-version programming, which
employs static redundancy in the form of separate programs, is one of these

technicques. They are all acting in the same way.
3.3 Fault Tolerance Policies in Cloud Computing

Following 1z a classification of several methodologies and tactics based on fault

tolerance [63][64]:
3.3.1 Tolerahle Preventive fault

The action-oriented fault is the tolerance policy; it prevents errors and failure by
foreseeing them and substitutes the doubtful component It finds the 1zsue before it
arises. Preventive migration, software repivenation, self-healing, and other methods
are some of the strategies based on this strategy.

Errornous Stopped
+—— Normal Working ——» «— Working —» +Working-

Fanlt is detected and

recovery is started

Figure 3.3: Timetable for a precautionary fault detection system

software rejuvenation 15 a process that creates the mechanism for reloading regularly.

This method facilitates a fresh start by returning the system to its initial condition.

Mligration Prevention: Migration Prevention relies on the feedback loop control

system. The application 15 constantly watched and examined.

self-repair: An excellent task may be broken down inte many components.
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Petformance is raised by using this technique Thiz functionality automatically
controls application sample flaws when sewveral instances of an application are

operating virtually on various devices.
3.3.2 Tolerable reaction fault

A responsive fault tolerance policy tries to lessen falures when they occur. The
systemn gains additional power using this technigque. This policy provides the
foundation for various strategies, including inspectionfrestart, function reassignment,
wotldflow release, managing a user's unigque behavior, retrial, labor migration, =-

Guard, etc.

Errornous Stopped
+—— Normal Working ———» «— Working —» «— Working —*

Fault is detected and

recovery is started

Figure 3.4: Timeline for a reactive fault detection system

Inspection: & waluable process for addressing errors, a method for handling big,
lengthy jobs After each system meo dification, a thorough inspection i done using this

procedure.

Work migration: Sometimes, atask cannot be completed on a particular computer due

to various factors. One may move the task to another machine if one computer fails.

Duplication: 1t 15 the werb form of copying. Various activities are repeated and
implemented to succeed and get the desired cutcome on multiple rescurces. Check out

safety bundles blocking instructions that don't have safety features in this situation.

m-Guard: less interference with regular processing flow. It 13 based on rollback and

worlt retrieval.

Eetry: It will reamplement and retrieve a task in this situation. The simplest method

to reuse inside a single source 15 this one.
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Resubmitting a task: When a task fails, that fact is established. In this instance, the

task is again delivered to the same source for execution at runtime.
3.3.3 Adaptive fault tolerance

Depending on the range of control inputs and present location within its space, the
tolerance of an application failure necessitates a change. The instructions are
automatically adjusted by adaptive tolerance to the status control. Preserving the
validity of crucial modules while adhering to any time and resource limitations offers

the most modules and resources for redirection.
3.3.4 FFault-tolerance Models in Cloud Computing:

Large-scale data centers have been established due to increased service demand and
rising resource consumption. High performance was formerly considered the primary
factor in data center architecture. Data center failure is prevalent in today's era of
computing, which may be partially attributable to the massive amounts of data kept,
given the rise of cloud computing-supported data centers for storage purposes and the
need for cloud services. Different degrees of admittance might be necessary for each
application or each data item as the size of the data increases and access to it becomes
more challenging. To ensure robustness and reliability in any system, fault tolerance
is used. The strategies may be categorized into proactive and reactive, depending on

the fault tolerance rules and processes.

When failures do occur, reactive fault-tolerance policy aims to minimize them. It may
be separated into approaches for handling errors and treating faults. Error processing
is used to get rid of mistakes in calculations. The goal of error treatment is also to stop

mistakes from resurfacing.

AFTRC is a fault-tolerance paradigm for real-time cloud computing applications
based on the idea that real-time systems may benefit from the computational power
and scaled-up virtualized cloud setting for improved real-time request execution. In
the suggested paradigm, the system actively tolerates errors and bases decisions on

the dependability of the processing nodes.

LLFT: As a service provided by the cloud's owners, the low latency fault-tolerance
(LLFT) middleware in the projected paradigm offers distributed applications
implemented in the cloud computing environment. This paradigm is predicated on the

notion that one of the critical difficulties with cloud computing is ensuring that
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applications operating there don't interrupt the user's experience. To safeguard the
application against defects, this middleware duplicates the application using a semi-

active replication or semi-passive replication technique.

FTWS: A suggested model called FIWS includes a fault-tolerant workflow
scheduling method that uses task duplication and resubmission depending on the
priority of the jobs in heuristic matrices to provide fault tolerance. This model is built
on the idea that a workflow is a collection of activities that are completed in a specific
sequence according to data and control dependencies. Planning a process that
considers task failure in a cloud setting might be quite challenging. To fulfill the
deadline, FTWS duplicates the tasks and schedules them.

FTM: is a model that has been put out to get around the problems with the on-demand
service's current techniques. They provide a novel viewpoint on developing and
maintaining fault tolerance to attain dependability and resilience. Using this specific
technique, a user may declare and apply the desired fault tolerance without knowing
how to do so. This FTM architecture may be seen as an amalgamation of many web

services components, each with a specific capability.

CANDY: A thorough availability model is created semi-automatically from a system
specification specified by a systems modeling language by the component-based
modeling framework known as CANDY. This approach is founded on the idea that
one of the critical characteristics of cloud services is a high availability guarantee,

which is also one of the essential, challenging concerns for cloud service providers.

Vega-garden: This paradigm was developed for a cloud computing environment based
on virtual clusters to address the usability and security issues infrastructure sharing

brings.

FT-Cloud: A framework and its design for constructing the cloud applications are
called FT-Cloud. FT-Cloud utilizes the component invocation organization and
frequency to identify the component. There is an algorithm to compute fault tolerance

stately automatically.

MAGI-CUBE: is a cloud computing storage design with excellent reliability and
minimal redundancy. The system they build for writing and reading of files,
maintaining metadata, and other tasks. Additionally, they created a file scripting and

repair component that runs autonomously in the background. This paradigm is based
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on the idea that the three competing elements of a storage system are high
dependability, high performance, and cheap cost (space). A model of the Magi cube is
suggested to provide this facility.

3.4 CR-BM-Based Hybrid Framework

The proposed system has utilized the reactive fault tolerance scheme for efficient fault
tolerance and detection in the projected framework. The genetic Algorithm and
Artificial Bee colony have been amalgamated to form the Bee- Mutation algorithm for
proficient allocation of end-user requests. The subsequent attempts were made to
realize the appropriate accomplishment of the projected fault tolerance and detection

structure:

a. The checkpoints smooth the execution of the futile request and resume it from

the crash position in the projected IoT-Fog-based system.

b. The replication scheme was engaged to produce user’s request replicas on

different resources until the whole assignment became futile.

c. The assignment of end-user requests was optimized using the Bee-Mutation

algorithm.
3.4. 1 Preliminaries
3.4.1.1 Checkpoint

This method set up various checkpoints either at the application level or at the system
level. The primary prerequisite is the knowledge of the failure occurrence in the
system framework. The recovery from the crash commences from restarting the task

where it lefi-off.
3.4.1.2 Replication

The method of fault tolerance that is most frequently used in storage devices like grid,
cloud, and fog, where failure i1s more likely to occur, is rephcation. It is
characteristically utilized to amplify the resource's accessibility and availability in a
distributed storage system. Since the storage system is classically huge and
composite, selecting replicas and placing them in a suitable position is the biggest

replication problem.
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3.4.1.3 Artificial Bee Colony The Artificial Bee Colony is an optimization algorithm
inspired by honey bees' foraging habits in nature. The Eq. 3.1 yields the new neighbor

solution

Slijas Sl;; = NI j + ¢ ; (NI, j — NI ;) (3.1)

(i#K) (¢i5€ (-1,1)

The values of Sljand NIi were evaluated using the greedy selection method to update
the solution with the higher fitness value. The solution is chosen based on the

probabilistic model as indicated in Eq. 3.2.:

B o —EE 3.2
L
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Where Ft;, Ft;, are the fitness measures of the " and j" swarm solution [68].

3.4.1.4 Genetic Algorithm (GA)

A well-known optimizer that works with coded chromosomes is the GA. The GA
typically uses the three important operators listed below [24]. The probability values
are entered into the GA's selection operator, and the rank-based selection method is
used to obtain the best fitness. However, the Artificial Bee Colony algorithm is used
to carry out the recommended approach of the selection process. Two fitness values
are used for the cross-over operator, and Eq 3.3 is used to calculate the cross-over

probability (COp) as,

Flmax—Ft;

if Ft; > Ft,, then K,

ifFt; < Ft,, then K, M} -

C0p={

Where Ft;, Ft, are the superior of the two solutions, and average fitness value are in
solution population respectively, and Ft,,,, is the maximum fitness value. The K;

and K, are the overall value that ranges from 0 to 1.

After the annihilation of the cross-over operator, the mutation operator is engaged
over its output. Analogous to the cross-over, the mutation probability (Mp) is

predictable by using Eq. 3.4 as:

if Ft; < Ft,, then K, -2 —a

Mp = Ftmax —Ft; (3.4)
if Ft; > Ft,, then K,

Where Ft; is the individual fitness of solution and K; and K, are the overall value that

ranges from 0 to 1.
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3.5 Proposed Methodology

Here, Fig. 3.5 depicts the suggested CRBM structure for deploving the service to
locate the fault in the hybrid IoT-Fog environment. The proposed system mtegrates
the cloud, numerous [oT devices, and fog nodes. In this case, the layer that gathers the
data from the monitoring environment comprises IoT devices. With the aid of the
service broker, this acquired data is also sent to the fog nodes for additional
processing. This calculation makes the data available for the service to process further
and reallocate in response to user demand. Securing the scalability and accessibility of
data is a top priority, and this is done by eftectively balancing the workload and
allocating the resources according to the proper job schedule. When the fog nodes
receive a request to transmit data, they process the available data before sending the
user the response. The efficient fog node can be selected to process the request of IoT

devices. The tegrity of the data is also ensured by choosing the optimum fog node.

Fog
Monitoring
System

A check|for fault

CR
technique optimize |service placement
A
SERVICE BROKER > B§I
algorithm
A

S5 &4

IoT devices
Figure 3.5: Proposed framework for service placement and fault tolerance

Therefore, there must be a fault-free or higher fault-tolerance system to attain faster
response from available fog nodes. The projected system utilizes two methods to
ensure improved fault tolerance. The checkpoints are established using the first
method, and the existing fog nodes are replicated using the second method. The
placement of a service profoundly depends on several QoS factors, including the use
of the CPU, RAM, processing speed, and time. Other factors, such as response time
and latency, can also be considered. The proposed CRBM framework uses the Bee-

Mutation algorithm to optimize the QoS parameters. The fog nodes are strategically
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positioned in the suggested design to provide services. The suggested paradigm
comprises [oT devices and fog nodes with a cloud-based fog monitoring system. The

following are the responsibilities of fog nodes:

a. IoT devices transmit data they have collected from the real-time environment

to fog nodes for further processing and estimation.

b. Following processing and estimation, data is available for fulfilling user

requests, and fog nodes reallocate resources in response to user demand.

c. After processing the request, the fog nodes revert the response to the user—the
most efficient fog node among available fog nodes for handling the requests.

The response is quickly processed without any data loss via the best node.

d. Following the fault tolerance framework, checkpoints are positioned at various
periods during the processing of the fog nodes to assess their current state—

use of replication and checkpoint to prevent the node from acting another way.
3.5.1 Diagnosing faults using the CR module

The proposed framework employs the CR module to carry out the problem
diagnostics, as shown in Fig. 3.6. Two different defect detection models are
implemented in this module. First, checkpoints are positioned periodically while
processing fog nodes. These checkpoints maintain system functionality despite any
unanticipated failures by analyzing the current status of each fog node in the
framework. These checkpoints also connect to the resource server and scheduler in
the fog monitor. Here, the resource server is used to freeze the process in any failure-
like scenario and to continue the process from the neighboring checkpoint. At the
same time, the scheduler offers the information about the fog nodes required for
responding. Mechanisms used by the CR module lead to better time management and
less resource use. Second, the proposed fault diagnostic uses a passive replica
methodology as the replication method. This method involves the fog nodes forming
onto the primary node after receiving the request for additional request processing.
This strategy also installs the secondary or backup fog nodes in the background along
with the primary fog nodes. These backup nodes operate constantly, and if the
primary node fails, control is transferred to the appropriate backup node without
pausing the current request processing. This replication technique combines the

checkpoint strategy to ensure errors are handled cormrectly without interfering with
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ongoing operations.
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Figure 3.6 : Workflow for checkpoint & replication of prop osed framework
3.5.2 Optimal service placement with BM

The placement of service to the efficient fog nodes is the next crucial factor in the
projected framework. The bee-mutation method has been proposed for placing a
service to the best fog node, as shown in Fig. 3.7. The CPU, memory, network
bandwidth, system time, and processing speed of the fog nodes QoS metrics are input
for the BM algorithm's evaluation. These input parameters are first given into the
artificial bee colony algorithm, which uses Eq. 3.1 to produce solutions for the bee
aleorithm and Eq. 3.2 to calculate the probability fitness value. After obtaining the
probability fitness value, the genetic algorithms cross-over operation is applied over
the probabilities acquired to produce a new breed of values for each parameter of the
fog nodes in Eq. 3.3. The mutation operator is conducted by replacing them with the
values acquired using Eq. 3.4 with a mutation rate of 10% over the generated cross-
overvalues. The suggested alrorithms use an iterative approach with gradual

gxpansion to get the desired results. All of the datasets use a certain amount of
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iterations.

The algonthm requires that the fitness functions in Eq. 3.2 can be computed for each
iteration. The cross-over operator is then applied to two fitness values and the cross-
over probability. This can be done by utilizing Eq. 3.3 and Eq. 3.4 to determine
crossover mutation probability. Check pointing and replication algorithms are
complicated by O(n) rmunning time, and iteratrve bases bee mutation methods are

O@m2) difficult.

Load the CGoS parameters of fog node (N}

™o initialize the random vector from the
population (R;)

I

Estimate the fitness function of the
random vector F{R;)

if F(R;) =F(R))

Yes Mo

Calculate fitness
function for next Change F{F;) = F(R;)
value FiRV; .4}

L l

Compute the probability of fitness value

|

Perform crossover operation on the obtained
probability of fitness valoes

l

Compute the mutation values

w

[G’EE the optimized fog node for service glace:ne:n]

Figure 3.7: Workflow for Service Placement in CRBM
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3.0 Result and disoassion

The expanded wversion of 1FogSim 15 used to simulate the proposed framework;
1tFogSim can be used on vanious operating systems, mcluding Windows and Linux,
and needs a minmmum of 8 GB of main memory and an Intel Dual-core processor

runtiung at 1. 87 GH= or above.
3.6.1 Paformance Analysis

Several performance mdicators have been used to assess the performance of the
proposed hybrid CE-BM systemw Five fog devices were considered for this
framewotl, Fig. 3 8 provides a detailed analysis of the performance of the hybnd
CEBM framework
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Figure 3.8: Analysis of the overall performance of the hybnd CEBM framework
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Throughput 1= critical for proficient data transfer, particularly 1n the IoT-Fog networls.
The number of packets each device transtmits in a second has been used to measure
the throughput of the devices. The dewices' collective throughput 1 around 856
packets per second. The response time indicates how long it takes the fog nodes to
respond to a request from the end user. The response time 15 the total amount of ime
required for node deployment, make span, and request commumcation. The projected
framewotk responds in roughly 78 8 milliseconds. Scalability in the IoT-Fog system

refers to the capacity to handle a given number of user requests without
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compromising fault tolerance. The average number of user requests handled (URP)
among the five devices is 88.6. The proposed system has an overall effectiveness of
86.4%. The primary requirement for any loT-Fog svstem is the availability of fog
nodes to receive and process requests. Availability is the node's uptime as a
percentage of its overall time. The availability of the proposed system is around
78.2%. The system's reliability considers its efficiency in producing accurate results,
while its usability deliberates its efficiency in carrying out the procedure efficiently.
The projected Checkpoint Replication Bee Mutation (CRBM) based hybrid
framework has a usability and reliability rating of 79% and 80.6%, respectively. Any
system that is deployed will undoubtedly have costs and other overheads. Therefore,
the system needs to be efficient and have low overhead costs. The suggested
framework has an average overhead of around 76.6%, and its cost-effectiveness is

73.4%.

3.6.2 Comparative analysis

Regarding execution cost and network utilization, the projected CR-BM-based hybrid
framework has been contrasted with the already existing genetic algorithm in the fog-
based system, as shown in table 3.1. Comparing the projected framework's execution
cost to the cost of the existing genetic algorithm, which is $85042.20, as illustrated in
Fig. 3.9.

Table 3.1: Comparison of proposed and exusting loT-Fog algorithms

Parameter Existing Genetic Algorithm [24] Novel Bee Mutation
Execution Cost of Fog Cloud | $85042.20 $82020.20
Total network usage (Mbps) 635550.0 626020.0
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Figure 3.9: Execution cost of Proposed and Existing Algorithm
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Figure 3.10: Total network usage proposed and existing Algorithm

In comparison to the suggested CR-BM-based hybrid framework, which obtained a
total network use of 626020 Mbps, the existing Genetic Algorithm GA-based IoT-Fog
framework had a greater total network consumption of 635550 Mbps. The network
used for both strategies is displayed in Fig. 3.10, and Table 3.1 compares the proposed

and current methods.
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3.7 Summary

The efficient service placement and fault-tolerant QoS-aware hybrid CR-BM
architecture have been developed. The projected model takes into account the
combination of the well-known checkpoints and replication and Bee-Mutation
approaches for the diagnosis of faults. In this case, the checkpoint technique starts the
process from the pre-defined checkpoints established when there is a failure, whereas
the replication technique avoids a delay in the checkpoint mechanism. As an outcome,
the projected hybrid CR-BM framework is fault-tolerant. Placing the service
strategically among the fog nodes is another feature of the proposed approach. A
revolutionary Bee-Mutation method that combines the Artificial Bee Colony and
Genetic method has been presented to place services in the best possible order.
Throughput, performance, cost-effectiveness, and other performance indicators have
all been used to assess the performance of the proposed CR-BM-based hybrid
framework. Additionally, we have presented a thorough comparison between the
proposed framework and the currently operational GA-based Fog system regarding
execution costs and network use (Mbps). The suggested framework surpasses the
previous model in the given results, utilizing the network at a rate of 626020 Mbps
and costing $82020.20 to execute.
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CHAPTER-4

MOBILITY-AWARE AND LATENCY-SENSITIVE-
BASED SCHEDULING

4.1 Introduction

As the processing power and data transfer rates of mobile devices like smartphones,
smart watches, and in-car entertainment systems grow, the computing demands of on-
the-go consumers also rise. The usage of a distant resource, such as a large-scale
computing capacity housed in a data center, is commonplace in modern software.
Cloud services may store and process data and tasks offloaded from mobile or fixed

devices, allowing them to provide additional app assistance.

With an increased emphasis on the Internet of Things (IoT), innumerable devices are
spread and linked to the Internet, and creating and consuming data needs new levels
of scalable resource management [70]. The data dynamic and heterogeneity from the
predicted rapid proliferation of connected devices, known colloquially as Big Data,
will need novel processing models and infrastructures to handle its three primary
dimensions: data volume, velocity, & variety. One significant feature of this new age
is that data production and consumption are extensively scattered at the network's
edges (i.e., closer to or at end-user devices). While the cloud computing centralized
data center architecture can manage many different kinds of applications and
enormous volumes of data, its infrastructure and network connections to the edge are
not built to handle the Big Data phenomena. Compute, and data management
approaches that provide computing capability at network edges are the subject of
significant study in this areca. New distributed computing architectures that use edge
capacity closer to data generation include mobile clouds, vehicular networks, and fog
computing. 2 With data created at the edge, data creation and consumption may occur
at various locations and times. Distinct applications may have different needs in this
setting, particularly regarding reaction time. Currently, apps often depend on the
cloud for data and processing support, which may be insufficient for low latency
needs. Furthermore, application execution in cloud data centers does not account for
user mobility, and data or processing of an application might occur in a

geographically distant data center. In distributed computing, data processing may be
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kept closer to the user, minimizing network traffic to data centers and improving

application response times due to decreased network latency or delay|[71].
4.1.1 A General Scheduling Framework:

Scheduling methods differ greatly depending on the kind of network, the intended
use, and the environment, making direct comparisons difficult. One strategy for
dealing with this complexity is to break out the scheduling challenges and compare
them individually. This emphasizes the need for a comprehensive design to handle all
expected networks and scheduling challenges. Here, we provide a framework to help
with planning challenges and show the fundamental components of all scheduling
algorithms to enable comparisons across existing approaches. There are five main
parts to the framework, which are shown in Fig. 4.1. The many parts of this diagram
represent different but equally important aspects of a scheduling algorithm. In the
following paragraphs, we detail each part in detail [72].

4.1.2 Information Collection

The approach of information collecting that includes the fewest problems is known as
the gathering of static information. According to this strategy, the person in charge of
managing the network is the one who is accountable for instantly putting the
necessary information into the system. For instance, in a long-distance static mesh
network, the nodes are manually scattered throughout a geographical region, and then
the neighborhood connectivity of each node is figured out. In addition to that, the
network remains unchanging. This kind of network may sustain the transmission of
exceedingly massive volumes of data. In Fig. 4.1, each fog node is responsible for a
different coverage region, and a group of fog nodes is referred to as a location area
(LLA). The use of tier partitions improves the granularity of place descriptions. A tier
comprises n mobile nodes governed by the middleware in the center of all tiers. In this
example, middleware serves as a link between mobile and fog nodes. This work
presents a proactive method of fog computing that uses the Hidden Markov Model to
facilitate proactive fog service discovery & process migration—the suggested

framework for mobility-aware systems.

51



Knowledge B Informetion Collaction

E Static | | Periadic ]!Evcntéla:nsl'

Schedule Caloulatian

-I—'I Dusy Cycle
Scheduling

s
GCharmsi
[.ﬁss&gn‘ru:r!: ] [ Reating ] -l—{ Irterierence

= Aescheduing ]

(0001 |

Cessemeratian Scheduls
Range Control i) Propagation

Figured.l: Comprehensive framework for scheduling in wireless networks.

Stafic: The most straightforward information collecting option is static infornmation
gathering, in which the network management complex codes the relevant information.
For example, nodes are mamually planted in a long-distance fized wireless tmesh
network 1n a geographical region, and each node's neighborhood connectivity is

predefined.

Feriadic: Modes in the network are kept up-to-date on any changes to the networl
state thanlks to the scheduling node's regular transmission of control packets Among
the ewvents that may convey a change ih network state are beacon packets in mesh &

ad hoc networles.

Event-Based: A node sends cut an event packet to neighboring nodes when it notices
a change in a monttored parameter. For example, an event message might provide a

list of inaccessible nodes to highlight the inadequate timeline.
4.1.3 Knowledge Management

Thiz patt's primary function 18 storing relewvant information for the scheduler in a
format that scheduling algoritthms can read and understand If a mesh network's
topology 1s represented as a graph or tree, with reachability values instead of
coordination values, this would be an example of such a data structure Depending on
how far away their respective sources are from the scheduling node, there are three

types of necessary knowledge.
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Intra-Node: In this kind of timetable, nodes rely on their data to determine what needs
to happen and when. Priority-based packet scheduling is one method used to organize
data before it is sent across a network. In this scenario, scheduling may be based on

local data collected at each node.

N-hop Neighbors: The scheduler in this category gathers network information from
nodes and hops away from the scheduling node. Because obtaining information from
faraway nodes is challenging in most circumstances, the value of N is minimal.
Because one-hop neighbors are in the interference range of a scheduling node and
possess crucial scheduling information, the knowledge of the first-hop neighbors
(N=1) is often employed in the literature. A node may learn this information by
passively listening to packets from surrounding nodes or actively exchanging control

packets to modify its neighborhood database.

Network Wide Obtaining global network information enables the determination of an
optimal schedule - although an NP-hard problem, global knowledge persistence is
often short, especially in mobile networks. This kind of information management is

often used in centralizing schedulers to ensure punctuality and reliability from start to

finish.
4.1.4 Schedule Calculation

In the schedule calculation section, one or more scheduling algorithms take the
information as inputs and produce a schedule for a subset of nodes in distributed
scheduled for all nodes in centralized scheduling. Scheduling methods use the nodes'
resources to carry out the scheduling process, regardless of the scheduler type. We
evaluate the computational ordering of various algorithms and compare their
execution times. In a perfect world, algorithms would have a logarithmic or linear

computing order rather than a polynomial or exponential one.
4.2 Mobility in Fog Computing

This work looked at the fundamental idea of mobility and the challenges that are
associated with it. The section may be broken down into three distinct portions: an
overview, a low dynamic environment, and a high dynamic environment. In fog
computing, the overview section is the foundational component for mobility. In this
section, we have covered both systems for allocating time and managing

transportation. Since scheduling is crucial, we must be flexible while maintaining the
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highest service standards (QoS). Here, it explores vehicular networks' role in fog
computing and the difficulties that come with it. The following two sections discuss
the differences between low- and high-dynamics settings. To provide more nuanced
details for readers and academics, these sections concentrate on human mobility &
vehicular fog computing. To increase the system's level of consciousness, researchers
are looking at the effects of movement in the fog zone. However, many existing
studies neglect mobile devices and scheduling strategies in fog computing data

centers in favor of optimizing server selection for mobility[73].

To improve QoE and network benefit, it is required to hone in on the calculation
approach at both the mobile device and fog computing scheduling levels. Therefore,
we provide a scheduling system and mobility management as two fundamental
necessities for enhancing the quality of experience, the quality of service, and

decreasing latency in fog computing[19].
4.2.1 Overview

Research on mobility in the fog zone is being conducted for adaptive, big data, and
real-time urban surveillance tasks, including continuous target monitoring. Most
existing studies, however, are geared at bettering how servers are selected in light of
users' mobile devices. The scheduling algorithms employed in fog computing data
centers and mobile devices are ignored in this research. Focusing on mobile devices &
planning at the fog level is necessary to enhance experience quality and reap the
advantages of network connection. Therefore, we provide two primary criteria, a
scheduling system & mobility management, to improve fog computing's QoE and

QoS while reducing latency.
4.2.1.1 Scheduling Mechanism

Fog computing results in decreased latency and cooperative efforts to cancel or
diminish the effects of excessive traffic congestion in the leading network.
Nevertheless, this may make it more challenging to manage the computation
priorities, quality of service, and priority of low-delay application requests of each
end user. The fog computing server's primary responsibility in the conventional
scheduling system is communicating the offloading priority order to the end

users|74].

It depends on the various local computing data, channel gains, and latency needs of
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individual users. Because of the changing settings, the static scheduling technique
can't be used directly with mobility in the case of multiuser fog computing systems.
This includes channels that change over time and connections that come and go at
random. As a result, the scheduling method became more challenging to implement
with the introduction of dynamic environments. For example, what end users will do,
when they will complete it, and where they will accomplish it to meet their quality of

service and latency needs.

In addition, the scheduling algorithms used in fog computing must consider the
mobility of data sources and sinks and intelligent and wearable devices. It is essential
that scheduling consider users' geographic location when formulating resource
allocation strategies to protect the financial benefits that come from fog computing's
close proximity to end users. In light of what has been said thus far, the ever-changing
nature of the surrounding environment drives us to devise an adaptive server
scheduling system that, among other things, periodically reclaims the scheduling
order and considers the input from real-time users. By using adaptive scheduling
techniques, the users in the worse condition will be given greater offloading
antecedences to meet the computing deadlines they have set for themselves. A design
that takes into account mobility and gives offloading priority is also demonstrated.
This method is applied to forecast users' mobility profiles and channels accurately. It
will assist in overcoming the influence that movement has on the function and will re-
determine the offloading antecedence. Second, the use of a resource reservation

technique may result in an improvement in the operation of the server scheduling.

In addition, mobility management and traffic control are offered to improve the
quality of experience (QoE) for users doing latency-tolerant jobs. The use of an
intelligent cell association process accomplished the construction of this. Regarding
edge caching, the mobility predication is included to optimize the movement of
content caches placed at the edges. Caching at the network's periphery is recognized
as a valuable contributor to maximizing the use of the backhaul restriction imposed by
network concretion. The idea of caching on the edge may be extended to mobile edge
computing, which allows for more flexible and context-aware caching decisions
(MEC). It makes it possible for processing and storage resources to be located at the
edge of mobile networks. MEC servers provide for the investigation and use of a large

number of gathered radio access network context data, which may give an adaptive
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caching method to users' context-aware information. Fog computing helps alleviate
the strain on the network's backbone by decreasing lag time and encouraging
collaboration. However, this might make it more challenging to prioritize low-delay
apps and cater to users' preferences regarding quality of service, computation power,
and other metrics. Under the classical scheduling system, the fog computing server is
responsible for communicating with the priority order offloading to the end users. It
depends on the various computational data, channel gains, and latency needs of the
consumers. Due to the ever-changing nature of fog computing deployments with

many users, a static scheduling approach cannot be used in tandem with mobility [75].

Figure 4.2: End-user mobility in the fog/edge computing scheduling process.

This entails not just intermittent connections but also channels that change over time.
As a result, the introduction of dynamic environments has increased the difficulty of
the scheduling process. One illustration is how users process the different requests to
improve performance parameters. Because of this, proficient scheduling techniques in
cloud computing with smart & wearable devices need to accommodate the data from
diverse mobile sources and be submerged. The scheduling process should consider the
end-user's locations while distributing resources to retain the advantages of fog
computing a close range from the end users, as shown in Fig. 4.2. In light of the above
debate, we feel compelled to develop flexible server request scheduling schemes,

which retrieve the scheduling sequence at irregular intervals and include input from
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real-time users. Because of adaptive scheduling, the users in the worst condition will
be given earlier offloading antecedences to ensure they meet their computing
deadlines. The priority offloading design that takes mobility into account is also
discussed. The method is used to foresee individual users’ mobility profiles and
channels accurately. It'll aid in getting around mobility's impact and recalculating the
offloading antecedence function. Second, an effective technique for reserving

resources may provide more efficient server scheduling.

In addition, this work discusses mobility management and traffic control to improve
users' quality of experience with latency tolerance jobs. The intelligent cell
association technique was used in the making of this. Edge caching incorporates
mobility prediction to facilitate the transfer of edge-based content caches. Edge
caching is also recognized as a valuable tool for exploiting the asymmetrical
limitation of a concrete network. For more thorough compromise and context-aware
caching decisions (MEC), edge caching could be used for mobile edge computing. It
makes it possible for mobile edge networks to have access to computing and storage
facilities. By analyzing and using the vast amount of context data acquired from radio
access networks, MEC servers may provide an adaptive caching mechanism for users'

context-aware information.
4.2.1.2 Mobility Management

To provide a consistent computing service and ensure Quality of Service (QoS) for
customers sensitive to latency, fog computing servers can reserve specific dedicated
processing resources for mobile users. For example, the end user views video material
when they wander from one access point (AP) to another. In this scenario, the video
content is not lost[5]. The fog system must be capable of providing the end-user with
the same video material from where it was left without causing any disruption to the
service, as seen in Fig. 4.2. To accomplish this goal, architectural modules such as
mobility aspects are necessary to ensure the end-users mobility management. Through
the use of mobility handling algorithms, mobility may be carried out in a variety of
choices. For instance, the algorithm for dealing with mobility may require the
mobility aspects to copy the video and drive a copy to the terminal access point (AP)
with fog capability if numerous end users are watching the same video while traveling
in various directions. However, resource deracination also coincides with focusing on

resource management strategies in the case of moving fog nodes.
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On the other hand, users who are tolerant of delay can obtain on-demand provisioning
from edge servers. This hybrid server need may improve the server scheduling to
provide the maximum number of users with a high Quality of Service (QoS) while
maximizing the income the servers generate. Nevertheless, there is a possibility that
the fog computing computation offloading may fail owing to intermittent connectivity
or/and rapid channel change in wireless channels. The failure is a catastrophe for
applications that are responsive to latency and also for apps that require resources. As
demonstrated, designing fault tolerance that considers mobility is crucial for fog
computing systems, including fault prevention, detection of faults, and recovery from

failure.
4.2.1.3 Low Dynamic Environment

Device-to-device communications, abbreviated as D2 communications, are
considered a fresh paradigm with considerable potential for confirming proximity-
based applications. These interactions occur underneath cellular networks and utilize
the same spectrum as cellular users (CU). D2D fogging is becoming a new paradigm
in the framework for mobile task offloading, and it does so by capitalizing on the
benefits of direct-to-device connection. In this case, mobile users are functioning in a
low-activity zone, and they can constructively share the computational and storage
resources among themselves through the base station (BS). Furthermore, mobile
device competence is perpetually advancing, and the multiplexing benefit may be
used to advocate cooperative task execution for various applications. Despite this,
D2D fogging is fraught with difficulties brought on by time-varying cellular positions
and the lack of functional D2D connections. The cellular positions that change with
time and the stochastic and capricious D2D connections are caused by the dynamic
nature of the mobile users and the processing capacity of the devices they are using.
Furthermore, the task offloading architecture should make a more robust effort to

achieve network-wide optimum energy saving.

Device-to-device communications, abbreviated as D2D communications, are
considered a fresh paradigm with considerable potential for confirming proximity-
based applications. These interactions occur underneath cellular networks and utilize
the same spectrum as cellular users (CU). It's becoming more common to use D2D
fogging as a mobile task offloading framework, and it does so by capitalizing on the

benefits of direct-to-device connection. In this scenario, mobile users work in a
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sparsely populated location and may effectively pool their computing and
communication capabilities via the ground station (BS). Furthermore, mobile device
functionality is constantly improving, and the multiplexing advantage may be
exploited to promote collaborative job completion execution for various applications.
Despite this, D2D fogging is fraught with difficulties brought on by time-varying
cellular positions and the lack of functional D2D connections. In addition, the
framework for task offloading should give a better effort to achieve network-wide
optimum energy saving for users' job performance. The next step, although certainly
not the least important, is for the D2D fogging model to provide an acceptable
incentive approach. It has a strong focus on user cooperation, and as a result, a more
effective incentive approach may prevent excessive exploitation that undermines the

users’ motivation to work together[76].

When dealing with user mobility in a fog computing system, it is essential to make
advantage of D2D fogging to build various D2D linkages. Because of these linkages,
a user's calculation can be offloaded to other nearby users. This not only makes
effective computing potentials possible but it also lowers the amount of energy
needed for data transmission. This makes it possible for us to research users' mobility,
which opens up new design concerns for fog and edge computing. For example, to
take advantage of the benefits offered, D2D & cellular communications both provide
the possibility of using the edge servers at the BSs, which have vast computational
power, to handle data that requires a lot of processing. This will shorten the amount of

time that the server spends performing computations.
4.2.1.4 High Dynamic Environment

Roadside units (RSUs) cloud servers behave as fog nodes, & automobiles serve as the
data-generating layer for vehicular fog computing (VFC), used in dynamic settings, as
shown in Fig. 4.3. They provide various mobile services, including ads,
entertainment, and disaster relief efforts. VFC provides driving security, traffic
effectiveness, and substantial convenience by transmitting important information.
With the introduction of increasingly advanced devices & equipment, such as cellular
networks & cloud computing, during the last 10 years, VFC networks and associated
applications have seen substantial development. Along with the potential, several
significant obstacles also surfaced, such as the sharp rise in the need for data

transmission and processing power[77].
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Figure 4.3: The vehicular fog computing mohility scenario.

Innovative applications that deal with composite data processing and storage
procedures include self-driving technology and augmented reality (AR) techniques.
Higher data transfer, caleulation, and storage levels are needed, which poses
significant problems to the current traditional vehicle networks, Therefore, VFC is
garnering interest as data centers and better processing resources to meet this
continuously growing need in data transmission and computing skills, Due to the fast-
moving vehicles, the WFC is taken into account. However, there might be two
difterent situations for wehicular fog computing: services and applications for

stationary and mowving cars,
4.3 Prop osed Mobility Aware Framework

This architecture of fog computing is hierarchical, and the choice of the placement of
processing and storage depends on the constraints imposed by the applications as well
as the geo-location of the users. It can potentially deliver decreased latency and traffic
congestion in the core network. These processes must include the data source and sink

mobility in the fog.
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Figure 4.4: Proposed Mobility Aware System Framework

The scheduling of fog computing should consider users' location as part of the
resource allocation algorithms to keep the benefits of fog computing close to
consumers, as shown in Fig. 4.4. In addition, a user's actions determine the time and
location of mobile devices and the quality of service limits. Therefore, it is impossible
to obtain an accurate prediction of mobility if there is a lack of information or if the
behavior of users is unexpected. As a result, scheduling in the setting of failed
mobility prediction is an intriguing research challenge that calls for substantial study
in fog computing. It is possible to construct scheduling models that capture mobility
patterns, and it is also possible to design resource management algorithms that are
more effective. However, the practical resource management system and scheduling
algorithms for cloud computing are still in place. These issues are caused by the

uncertainty and the fluidity of the resources utilized in fog computing.
4.3.1 Availability Prediction

The predictor of availability is the one who makes predictions about the registered

MRP's dynamic availability.
4.3.1.1 Physical Availability Prediction

P1(t) denotes the hidden state at time t, and P2(t) represents the location visited at
time t. P1(t) and P2 (t) also have specific dependencies that are conditional. In this

situation, the wvalue of the hidden wvariable P(t -1) determines the conditional
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probability distribution of a hidden variable P1(t) at time t. However, at time t, the
observed position P2(t) iz dictated by the hidden variable P1(t). These probabilities

must be computed for a particular observation series.

P(B)=Z P(B | A)P(A) (4.1)

‘Where PA is an unobservable variable representing the user's last known position
PA= <P{AA),P(AB),P(BA),.....~. and the user's current location, PB, viewed at time
t, 15 represented by PB= <P{BA), P(BB), P(AB),.....>>. For training an HMM, we are
given an output sequence, P1, and we must determine the optimal values for the

probabilities at each state tranzition and the final output.

The mobile device Md's movement type estimates its physical availability. The nature
of the motion may be used to determine which way the body will be moving. Using a
hidden Markov model (HMM) for forecasting, we can determine where the mobile
device (My) will be soon. The direction of Md's motion concerning Fn is used to infer
the nature of the motion. Both forward motion (i.e., toward Fy) and backward motion
(i.e., away from Fj) have been considered here. Because the present pogition of a
mobile resource solely relies on its past locations, the Hidden Markov Model may be
used to anticipate the movement that will occur [79]. Assumed to be embedded in the
Fog layer, the GPS pinpoints the whereabouts of Ma The Haversine formmula
calculates the gap between the My and the Fy. How far away iz My computed as D,
and R is the Radiug, as shown in Fig. 4.5.

‘Where, D=R8 (4.2)

P1

..ﬂ

P2

Figure 4.5: Mobile Devices Distance Calculation between two position
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D =R(sin ' == V4RZ — %) (4.3)

P1-P2
Mg = (4.4)
Ty
_ FxA-P2
Py, = T (4.5)
_Pa
P,F = T (4.6)

Distance D between the two different mobile device positions using Eq.4.2 and Eq.
4.3. P1 and P2 are the two different positions of mobile users. Mg is the user’s
mobility of two other locations, as shown in Eq. 4.4. T is the time taken to reach out
from P1 to P2. P4 physical availability of mobile users can be calculated via Eq. 4.5.
PaF 1s the physical availability factor calculated using Eq.4.6. TrT is the mobile

user’s time spent in a particular tier, as shown in Fig. 4.4.
4.3.3 Resource Allocation

The Cloud-Fog environmental paradigm in a computer system is dynamic and
complicated; consequently, resource allocation might be difficult for providers. A
technique based on prediction has been investigated to analyze the necessary
resources for the FC system [78]. In this method, the mechanism for calculating the
likelihood of giving something up has been used.[82] They developed their work
using an allocation strategy, particularly for dispersing the workload within the
context of hybrid cloud and fog systems. The computation of resource allocation may
be more accurate thanks to examining the disparity between delay and power usage
[83]. Applving a combined resource allocation model for various cloud and fog

relationships and architectural configurations is possible. Based on the procedures
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taken to appropriate the funds, these models can only anticipate the results for
different FC uses. The assessment process may be advanced by contributing to

developing the FC apps and determining the needed resources.

It is planned that the distribution of resources, which will be used to address the
particular requirements of the FC setting, will be arranged in such a way as to
accomplish the goals of the FC environment as a whole. Utilizing the capabilities of
the resources efficiently and meeting the system's needs efficiently may help enhance
the resource allocation process, which is necessary for conformance with the network

delay and low latency management.
4.3.4 Mapper and Allocator

The mapping process is responsible for mapping procedures such as identifying
mobile users, the system state, and the job required. The mobile user is identified by
mapping the fog node ID from the proposed system. The job demand is mapped to the
dynamically projected location of the mobile user, which is how mapping is
accomplished. The allocator function receives notification of the fog node's or
resource's availability only if the conditions for the mobile user are satisfied. Requests
that are currently being processed and those that are waiting in line are both aspects of
resource status, as shown in Table 4.1 in RQ-Running, and RQ Wait Queue. The
resource states' potential policy traits have three essential information attributes: user
requests in the execution state, requests in the waiting queue for execution, and

requests that remain caleulated using RQ Remain in Table 4.1.

This information about the job credential is typically utilized to make predictions
about the condition of the fog node. In its most basic form, the algorithm assigns jobs
to fog nodes in the middleware depending on the processing capacity of these nodes
in decreasing order. Conversely, it's possible that some tiers don't have access to a
sufficient number of fog nodes. In this instance, the suggested method returns to the
previous level, which is the point at which it was determined that adding one
additional fog node would provide the desired effect of increasing the total amount of
resources that are accessible. The system does not begin allocating the resource until
after the optimum allocation has been finished, and it utilizes the bare minimum of the

available resources for the next round of allocation rather than the maximum.
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Table 4.1: Parameter for the resource state

Acronym Function Formula
RQ Runing Requests in execution state RQ=nZ;

_ Number of requests in the _
RQ Wait Queue RO=—nW1

waiting queue

RQ Remain

A sum of remaining node *
Expected time for executing

requests

NRi

RQ = ; remaint(t) x CPU(t)

Algorithm 4.1 is employed for location prediction of mobile user’s devices from the

start location. Availability was predicted by generating the equivalent state probability

in the Markov chain. Distance between the start to the current location was calculated

via Eq. 4.2 and Eq. 4.3

Algorithm 4.1 : Location prediction

Input: Start location

Qutput: Mobile Device L.ocation Information

1. for Mgy € N— My} do
for My € T;do
for Pi(t) «— M *Pi(t-1) do
Phy avail ();
Phy avai fact ();

end for
end for

end for

2
3
4
5
6. Compute distance ();
7
8
9

Algorithm 4.2 is employed for mobile user’s request allocation to fog device. The

available fog nodes were arranged in descending order of their precedence, and

precedence was assigned to each fog device as per their computing capability.
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Algorithm 4.2 : Mobile device request allocation

Input: Mobile Device Location Information, fog nodes f; .

Output: An efficient allocation of mobile device requests to fx

1. Compute precedence among all the fog devices f;
2. Arrange fx list in descending order of their precedence.
3. f; —pgetstatus();

4 forfyeN-{f;}do

5. if precedence > f; then
6. Rq = nWy

7. Ry = nZ;

8. Update fx list

9. else

10. Search f; list

11. end if

12. end for

4.4 Performance Analysis

The projected mobility-aware scheduling technique was tested in a fog computing
environment using the iFogsim toolkit because of its affluent set of simulation
services that efficiently facilitate improving and assessing various scheduling
algorithms for heterogencous distributed computing environments, i.¢., fog and
mobile edge environments. This work has analyzed several characteristics, such as
execution time, network bandwidth, overall delay, and the precedence-based
scheduling mechanism provided by QoS parameters. A proposed environment was
simulated with three tiers, each with 100 mobile devices and 20 fog devices reserved
for resources. The system configuration for our experiment is set with a scheduling
cycle of 100 milliseconds. To assign computing resources to mobile users, 20 fog
nodes have been considered. Concurrently, mobile users submit requests to the cloud,
with each request containing up to 200 MB of data. For each task, the delay was taken
into account. Throughput is essential for efficient data transfer, especially in the IoT-
Fog network. The amount of packets the device transfers in a second has been used to

gauge its throughput. The devices' combined throughput is approximately 85.6
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packets per second. The scheduling choice affects the overall network use according

to the expected environment.
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Figure 4.6: Analysis of Physical Availability Factor vs. Execution Time

As shown in Fig. 4.6, the physical availability factor declines, and the execution time
increases. Based on its presentation, the suggested mobility-aware framework has also
been evaluated by utilizing several performance measures. The projected framework
consists of 20 fog devices and 100 ms time spam for calculating the execution time at
three different criteria, i.e., Physical availability factor greater than 0.60, between 0.30
and equal to 0.60, and less than or equal to 0.30. The results also show that the
execution time falls as the number of fog devices increases and increases when the

number of fog devices decreases.

The projected algorithm's overall average response time ig 78.6 milliseconds. The
response time was when the fog nodes responded to a request. The response time 1s
the total time spent on node deployment, communication, and request processing.
Three scheduling algorithms have been compared based on response time and are

shown in Fig. 4.7.
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Figure 4.7: Analysis of response time of existing and proposed algorithms

The Proposed mobility-aware scheduling strategy also effectively reduced delays for
various user requests. However, when more mobile users move and send requests to
fog devices, the fog devices have to handle all mobile device requests. As a result, the

overall delays decrease with the powerful fog device resources, as shown in Fig. 4.8.
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Figure 4.8: Analysis of delay of existing and proposed algorithms
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In this case, with the adoption of the proposed strategy, fog resources also handle
low-delay demand requests and decrease overall delays of the proposed framework
compared to others. Fig. 4.9 depicts the total data transmitted over the network for
each scheduling approach. The FCFS technique leads to a specific rise in network use,
while the proposed strategy decreases network use. Delay-priority scheduling is more

network-intensive and causes increased network usage as a result.
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Figure 4.9: Total network usages of proposed and existing algorithms

4.5 Summary

This chapter introduced the mobility-aware and latency-sensitive scheduling strategy
in the mobile device composition of a fog environment. The mobility-based scenario
brings a dynamic compuiing demand at the network's edges. The mobility-aware
scheduling policy anticipates the mobile user's location and distributes the requests to
effective fog devices. The experiment's findings have shown how the execution time
is impacted by physical availability. The result also concludes that if we increase the
number of fog resources, then it will decrease the execution time and increase the
cost. The proposed strategy's response time, delay, and network usage were also

calculated, and compared with the existing strategy.
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CHAPTERS

PARTICLE BEE OPTIMIZATION FOR FAULT
TOLERANCE

5.1 Introduction

Fog computing is a relatively new paradigm of computation that is spread. Cisco
created it in 2012 to help with cloud computing and boost QoS (quality of service) to
generate various supported IoT applications. The literal interpretation of the word
"fog" reveals the characteristics of this meteorological phenomenon: when clouds are
high in the atmosphere, fog descends to the earth and surrounds humans [84]. There
are several definitions for fog that all center on the same concepts. One of these
definitions 1s a novel computing archetype called fog computing that might be
considered for further cloud computing reach at a network's periphery to lessen the
cloud's load by carefully finding more compact heterogeneous devices like PCs,
Gateways, Data Centres, Servers, etc. Fog Computing can sustain [oT applications in
terms of time-responsive transmission and network bandwidth. The attributes of fog

computing consist of [85]:

® Low latency and awareness of service quality mean that nearby edge devices

handle the source data.

. Bandwidth reduction and reduction of data transmission time.

. The capacity for decentralized decision-making.

® Heterogeneity and compatibility between different communication
technologies.

Fog computing is a kind of distributed computing that uses "edge" nodes to access
cloud-like services. In fog computing, "Fog" means the same thing as everyday life. It
is possible to encounter fog between clouds and the ground in the real world, and this
concept is employed in fog computing to symbolize the region between clouds and
the physical world. In other words, fog nodes are set up in the path that connects the

cloud to the user's endpoint devices, as shown in Fig. 5.1.
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Figure. 5.1: Deployment of Fog in IoT Applications.

The central objective of this research was to develop a technique called “Fault
Tolerance & Service Placement” for Fog Environments. The two exclusive strategies,
Check Pomting and Replication and Novel Particle Bee Optimisation, are derived
from hybridizing the original Ant Bee Colony and Particle Swarm Optimisation
scheme. The employed methods provide numerous functions in a fog environment,

including:

® Service for fog placement through managing mobile clients from numerous

data centers in various regions.

o Using the nearest neighbour to reduce packet transfer time while performing

transmission checkpointing.
o Enhanced efficiency during proxy replication.

. Network Optimisation Using Best Cost Path Determination.

In this chapter, the technique “Fault Tolerance & Service Placement” is implemented
to address live server fault tolerance by simulating server operations when
synchronizing 1t with a proxy server; checkpointing has three benefits: (1) Quality of
Service Awareness (QoS) awareness, (i) low latency, and (ii1) reduced network

bandwidth utilization.
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5.2 Quality Of Service (QoS)

The foundation of Quality of Service (QoS) is based mainly on reliability, network
latency, energy consumption, and throughput, all of which crucial services and
imperative for fog are computing. In addition, it is also essential to consider the
management of resources, utilization of power models, resource scheduling policies,
and handling of power outages for ensuring QoS. The accuracy of the result or action
might be impacted if any sensors malfunction for whatever reason [86]. Fog must
uphold high reliability and strict QoS promises because it is designed to interact with
latency susceptible systems. The latency consciousness requirement won't be met in
such a case. According to Madsen et al., the accessibility of a variety of approaches
and schemes collaborates with the fidelity of network connection and data to ensure

correctness, which is essential for creating projects based on fog computing.
5.2.1 QoS in fog computing

Providing an appropriate service quality for location awareness and latency-receptive
applications inside a cloud computing infrastructure is one of the most significant
reasons for adopting fog computing. In addition, quality of service is necessary for
fog computing to assess and monitor the services provided effectively. The QoS
practices utilized in cloud computing do not apply to fog computing because of the
unique properties of fog computing, such as the wast diversity of devices,
geographical spread, and mobility. According to previous research findings, fiture
QoS-based fog environments should prioritize optimizing quality of service (QoS)
characteristics, including response time, resource usage, cost, execution time,

dependability, energy consumption, availability, scalability, and throughput.

Delivering an appropriate degree of QoS is a crucial concern in fog computing. Some
aspects of QoS in cloud computing are irrelevant in fog computing due to distinct
factors, such as heterogeneity, mobility, and dispersion. Supporting real-time
applications is one of the main goals of fog design. Fog-based systems take into

account a number of QoS parameters for a successful system design [88].
Throughput: The highest desired service rate that the system can handle.

Deadline: The time a request must be submitted to be processed before it is

considered late.
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Response time: The interval between a user's request and the time it takes to get a

response.
Resource utilization: The best use possible of a system's resources.

Cost: The price a service applicant must pay for calculation, communications, or data

storage over a specific period.
Execution time: The time it takes for a program to run entirely.

Energy consumption: The quantity of energy a resource uses to provide the required

service.

Reliability: A system's capacity to complete its needed functions under specified

conditions and at specified times.

Availability: A system's capacity to guarantee that the requested resources are

available and performing as intended.

Scalability: The capacity of a computer system is such that system performance is
maintained with an increase in the number of service requests or resource

applications.

Security: Safe approaches safeguard the data now accessible in the fog/cloud

environment.
5.2.2 QoS in IoT

[oT's primary goal is to connect devices to the Internet. By building a network of
interconnected objects, this objective is accomplished. The quantity of data gathered
would rapidly rise as IoT devices proliferate. This rise is caused by the gadgets'
capacity to provide many services simultaneously. Consequently, numerous elements
necessary for user-side QoS prediction have been clarified. The Quality of Service
(QoS) service, which prioritizes application traffic over a network, is also referred to
as a quality assurance service of network connection. IoT networking relies heavily
on quality of service (QoS) since it manages the network's operation and resources
and provides a secure connection. QoS systems analyze traffic to control things like
delays, bandwidth use, and lost packages. The Internet of Things and the services that
it enables should prioritize the quick and effective delivery of data. Because of this,
IoT has to provide various services, from which users may choose the most

appropriate option depending on the Quality of Service requirements. Because
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Internet of Things systems combine computation and communication with physical
objects, a wide variety of criteria and metrics must be satistfied. To have an efficient
and successful IoT system, each component must fulfill the Quality of Service

standards[89][90].

Regarding the objects, the IoT devices' quality of service (QoS) may be influenced by
power consumption, coverage, the ideal number of active sensors, sensor quality, data
bulk, trustworthiness, and mobility. When taken by itself, any of the indicators
discussed above run the risk of not being significant. However, there is much more to
consider when considering the various devices employved for providing. For instance,
the accumulated power consumption of hundreds of sensors that only use 0.9W each
might significantly affect the amount of power used by the network. For
communication, the quality of service provided by the network would comprise
throughput, reaction time, availability, capacity, maintenance time, and jitter.
Concerning computing, the data analysis programming models inside the cloud need

quality service measures that fulfill throughput and reaction time requirements.

However, the QoS requirements for the cloud infrastructure layer may be broken
down into four categories: CPU consumption, memory usage, network latency, and
network bandwidth. With context to the applicability areas of the Internet of Things,
the primary Quality of Service criteria shift depending on the application's field. For
instance, an application that monitors a patient's health must satisfy requirements for
confidentiality, security, exactitude, longevity, responsiveness, resilience, accuracy,
dependability, and availability. However, time-sensitive applications regard low
latency as the need with the greatest priority. In contrast, less time-critical
applications, such as building automation, emphasize the usage of the network and the

efficiency of energy use.
5.2.3 Qos requirements

Next, the apps that will run on fogs, especially those made feasible by implementing
fogs, will be identified, and the service quality demands of fog applications, along
with other needs, will be supplied. Additional requirements will also be

shown[91][92].

Bandwidth: Users need to be able to set a minimum bandwidth requirement for an

application's needs. This might call for a Guaranteed Bit Rate (GBR) requirement and
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a Non-Guaranteed Bit Rate (NGBR) requirement for best-effort applications.

Delay sensitivity: applications that need to work instantly, such as facial recognition

in large groups, need the assurance that delay limitations will not be exceeded.

Packet loss: Applications susceptible to data loss, such as those dealing with

finances, may need lossless transfer services.

Reliability: Certain applications need failing fog components to be restored as rapidly

as possible to carry out actions within the allotted amount of delay.

Availability: Consists of a measurement of the frequency with which, during the
process's execution, users have access to the fog's resources of the application. On the
other hand, applications and services whose execution may be delayed for a limited

time don't insist on having access to materials at all times.

Security: Personal and vital information will be sent through applications. It is
necessary to implement either information security techniques or mission-critical
application software. In addition, As the future information superhighway, the fog
network necessitates stringent measures to ensure the privacy of all user-generated

content.

Data location: The end device may store data locally, using a Fog layer or an off-site

Cloud storage facility. All three alternatives are viable.

Mobility support: Even for end users with high mobility, constant connectivity
should be guaranteed. End devices provide processing power for applications like
rendering, and continuous connectivity is essential to carry out all the processing.
That is required. Connectivity is also critical for collaborative operations in separate

fog devices or fogs.

Scalability: Because of user movement and the usage of applications or sensors may
cause changes in the user count in a fog. Big data processing may need some time to
handle data streams. Fog demand might vary. Hence, resource flexibility must be

offered to meet such demands to make such applications profitable.
5.3 Proposed Methodology

Several services, including 1) monitoring one fog node by another, ii) performing

replication for a fog service, ii1) identifying the list of neighboring nodes, and iv)

75



providing transmission checkpointing, can be supported by fault tolerance in fog
computing. By replicating the server's operations and checkpointing when
synchronizing it with a proxy server, the proposed technique "Fault Tolerance &
Service Placement" addresses the live server fault tolerance and offers 1) Quality of
Service Awareness, 11) Low Latency, and 1i1) Reduce Network Bandwidth usage. The
two exclusive strategies, Check Pointing and Replication and Novel Particle Bee
Optimisation, are derived from hybridizing the original Ant Bee Colony and Particle

Swarm.
In a fog environment, applied approaches provide various services, including.

. Service for fog placement through managing mobile clients from numerous

data centers in various regions.

® Using the nearest neighbor to reduce packet transfer time while performing

transmission checkpointing.
. Enhanced efficiency during proxy replication.
. Network Optimisation Using Best Cost Path Determination.

The mentioned suppositions are considered to make fault tolerant in fog computing

utilizing ToT.

1) The configuration of fog sensor devices in the projected framework allows
them to connect with more than one neighbor node directly or indirectly.

1) Fog nodes manage node failure and carry out required communications.

111) Covering numerous distribution zones with fog nodes raises the amount of

fault tolerance..
1v) Localization of the input population will facilitate fault finding..

As per the consequence of the projected model, fog nodes offer services while taking
into account the following factors: 1) resource availability for allocation of services; i1)
accessibility maintenance among various services; iii) the limitation of real-time
services with periodic information and iv) timing and resource restrictions will not
overlap the proxy replications [94]. The algorithm depicts the numerous actions taken

during the tasks that are being presented.

The Novel Particle Bee Optimization algorithm initializes the input population and
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locates the source and neighbors of the fog sensor. The optimal solution cost is fixed
based on analyzing ecach transmission's completion time. As illustrated in Algorithm
5.3, the step is continued until service to each node is assigned. The framework of the

technique mentioned above is shown in Fig. 5.2.
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Figure 5.2: Optimized Framework for Fault Tolerance & Service Placement

For communication, the source device connects to the neighbor node. The neighbor
node N receives the data packets and reverts the source for each successfully received
packet. The acknowledgment contains the number of packets received and the
turnaround times (minimum, maximum, and average). The iteration was repeated
until every node identified the neighbor [93]. The central server makes device
connectivity possible. Cloud data centers house a concentrated amount of computing

and storage resources, which user devices can easily access[22].

The Fog service placements provide numerous advantages. The services provided to
several client devices are attended to by both the fog server and its replication proxy
server. The conduct of ants in nature serves as an inspiration for the optimization

technique. An iterative process called novel particle bee optimization creates the most
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affordable solution to an optimization challenge. Consequently, this converges the
parameters of the optimum cost solution space through further iterations that use
better results. The many functions of the suggested system are represented by the

algorithms listed below.

Algorithm 3.1 Service Allocation

Input: Initialize input population.

Qutput: An optimized service allocation among fog sensor nodes.

1 Begin

2 Initialization: MNClient ID;
3 Fog Sensors == Enabled;

4

5. for Run({virtulr gm O)&&(virtulr gm 1))
6 for (virtulr gm 0; MNclient ID++)
7 Actuator Signal==Enabled;

8 end for

9 for (virtulr_ gm 1; MNclient ID++)
10. Actuator Signal==Enabled;
11. end for

12. end for

13, end

Algorithm 5.2 Network Path Optimization

Input: Initialize the input population.
QOutput: The best solution cost calculated.

1. Begin

2. for (I==x;J==y; Next++))

3 4

4 Next ()

5. Until Best Solution(Best I, Best J);

6. §

7. end for

8.  Neighbour Path Optimization ()

9. §

10. Sensor Node ==Source;

11. Estimate the cost of the Source Node;
12. Sensar Node ==Neighbour;

13. Hstimate the cost of the Neighbour Node;
14. %
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15. Tterated Until Complete Network Path Optimized ;
16. Display the result for Best Cost();
17. end // Neighbour Path Optimization.

18. end

Algorithm 5.3 Delay Calculation

Input: Initialization
Output: Execution time, energy consumption,
and loop delay have been calculated.
1. Begin
Show()// for Every Node

2
3
4 Execution Time ();

5 Loop Delays();

6. Execution Delay for CPU Tuple();
7 Game_State Player ();

8 Game_State Global ();

9 Energy Consumed();

11. end

The algorithms above were implemented using the ifogsim simulation tool. The
performance evaluation is contrasted with the two best achievements displayed
algorithms, namely the genetic algorithm and the already projected novel gene

selection bee mutation scheme.

5.3.1 Network Path Optimization

The source and neighbors of the fog sensor node system are found using the Nowvel
Particle Bee Optimization algorithm, which also sets through initializing the input
population. The optimal solution cost is fixed based on analyzing each transmission's
completion time. Up till every service is assigned, the process is repeated. The
neighbor node N receives the data packets, which notifies the source device for each

packet it has received.

The acknowledgment comprises the minimum, maximum, and average turnaround
times and the number of packets received. The iteration process was repeated until all
the devices used the angel of arrival scheme of localization strategy to locate the

nearest neighbor. Circles in Fig. 5.3 represent IoT devices and sensor nodes, while
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rectangle boxes represent fog devices in multi-hop communication. Suppose W0 15 the
fog node. Nodes W21 and W22 of the sensor network are two hops distant from the
fog device, while 11, N12, and N13 are one hop away. The first step 18 determining

how far a fog device is from a sensor node.

K@ ©

Figure 5.3: Multihop Communication Layout using Path Cptimization

Let Dij stand for the distance between the fog device and the sensor node. Assume
NO and W21 are the two distinct nodes that can communicate with one another

through routing node W11,

N3

N

Figure 5.4; Fog Nodes distance caleulation using Angle of Arrival (Ao A)

In Fig. 5.4, the nodes N1 and N3 represent two different nodes communicating with
each other through the routing node N2,

The approaching signal message from node N3 has the elevation and azimuth angle of
arrival (Ao A) of and, respectively. Consider DTy to be the distance between nodes I3
and 2. In the figure mentioned above coordinates of W2, the spherical coordinate

system is (Radius Dy, inclination o, azimuth 8y,) which can also be transferred into
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the Cartesian coordinates of the proposed system.

Xij= DTjj Cos 8jj, Sin ajj (5.1)
Yij = DTjj Sin 85, Sin ajj (5.2)
Zij= DTijj Cos aij (5.3)
Car'li= [Xi. Yi. Zij | (5.4)

The Approximation of the coordinates of N3 is to be anticipated through the
coordinates of node N1, as shown in Eq. 5.1, Eq. 5.2, and Eq. 5.3 along the X, Y, and
Z axes. The distance between the Node N1 and Node N3 is calculated using Eq. 5.5.

Djj=|| CarTjj-CarTjj| (5.5)

The distance between a hop node and a fog node higher than two hops can be
calculated by computing the rotation matrix readings between the local coordinate
systems of the two neighboring nodes. After obtaining the value of the rotation matrix

Qij, the coordinates of the node N3 in the Local Coordinate system are determined.
CartT;= Qj Car'li-j + CartTj (5.6)

The service assignments in fog, which provide numerous advantages, come next. The
replication proxy server of the fog server shares the idea of attending to numerous
client device services. The actions of ants in nature serve as inspiration for the
optimization technique. An iterative approach called novel particle bee optimization is
used to develop the optimal cost resolution for an optimization problem. This
converges the optimum cost solution space parameters through further iterations that
use better results. The algorithms represent the many functions of the suggested

system.
5.4 Results and Discussion

The mobile devices' transmission readings fixed with timestamps communicated from
client to server are considered mputs for service placements. The device running
Windows 10 and equipped with an Intel(R) Core(TM) 17-4500U CPU and 8GB of
RAM. The proposed work implements a “Fault Tolerance & Service Placement”
technique for the FOG Environment. As described in the preceding section, the
method uses the revolutionary particle bee optimization algorithm and two innovative

algorithms, checkpointing and replication technique.
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Table 5.1 and Table 5.3 represent the transmission details of five devices of
Device ID 1-5. The IP 204.79.197.200 and TTL 121 are randomly assigned as per
algorithms. The total number of bytes considered for transmission is 32 bytes. This is
separated into four data packets, each with a minimum turnaround time of one
millisecond, a maximum turnaround time of one millisecond, and an average
turnaround time of one millisecond. All packets, however, are received with 0%
packet loss. Throughput, response time, scalability, performance, availability,
usability, reliability, overhead, and cost are the evaluation criteria for all active
devices. The effectiveness of the check-pomting and replication technique is assessed.
Concerning the devices, Device ID 3 has the highest throughput (93%), reaction time
(62%), performance (94%), availability (97%), and reliability (85%) as depicted in the
graph of the Fig 5.5. According to Table 5.5, Device ID 4 has the maximum
throughput of 88%, reaction time of 72%, performance of 84%, availability of 61%,
and dependability of 99%. The outcome is illustrated in Fig. 5.6 and Table 5., which
depicts the Particle Bee Optimization-Best cost calculation. Here, the best cost is

identified at tteration 49, with x- 3.0000937146270292 and y- 0.5000543228356094.

Table. 5.1. Packet Transmission details for Checkpointing

Minimum | Maximum | Average
No. Time No. of No. of Packet Turn Turn Turn
Device _ID | IP of TTL | Packets | Packets L Around Around Around
bytes (ms.) Sent Received s Time Time Time
(ms.) (ms.) (ms.)
1 204.79.197.200 32 1 121 4 i) 0 1 1 1
2 204.79.197.200 32 1 121 4 4 0 1 2 1
3 204.79.197.200 32 1 121 4 4 0 1 2 1
4 204.79.197.200 [ 32 1 121 4 4 0 260 267 262
5 204.79.197.200 32 1 121 4 4 0 1 8 3

This is separated into four data packets, each with a minimum turnaround time of one
millisecond, a maximum turnaround time of one millisecond, and an average
turnaround time of one millisecond. However, all packages are received with 0%

packet loss. The checkpointing and Replication technique's performance is evaluated
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based on the parameters throughput, reaction time, scaling, performance, availability,
usability, dependability, overhead, and cost for all the active devices. Throughput is
the most crucial parameter for more effectual data transmission, predominantly in the
proposed loT-Fog-based framework. Several packets sent by a specific device in a
second were used to compute the device's throughput. The time it takes the fog nodes
to react to a request is used primarily to calculate response time. Response time in this
work also includes the accumulation of node deployment, communication, and make-
span times for requests, as well as the capacity of the projected framework to handle

user requests without impairing the overall effectiveness of the suggested method.

Table. 5.2. Packet Transmission details for Replication

Minimum | Maximum | Average
No. No. of No. of Packet Turn Turn Turn
Device_ID | TP of TTL | Packets | Packets La(c)ss Around Around Around
bytes Sent Received Time Time Time
(ms.) (ms.) (ms.)
98.137.246.8 32 48 4 4 0 260 261 260
98.137.246.8 32 48 4 4 0 260 261 260
172.217.166.110 | 32 54 4 4 0 1 1 1
98.137.246.8 32 48 4 4 0 260 261 260
172.217.166.110 | 32 48 4 4 0 1 1 1

The primary obligation in this system is the fog node accessibility for receiving the
approaching request and processing that request in the node's uptime to the node's
total time. Usability is the statistic that pinpoints how many computing and storage
resources are needed to complete the procedure effectively. On the other hand, the
system's effectiveness might determine its dependability to produce precise results. In
terms of the devices, Device ID 3 has the maximum throughput (93%), reaction time
(62%), scalability (76%), performance (94%), availability (97%), and reliability
(85%). The outcomes are shown in the Fig. 5.4
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Table 3.3: Checkpointing Performance Evaluation
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According to Table 5.5, Device ID 4 has the maximum throughput of 88% with a response
time of 79%, performance of 87%, availability of 61%, and reliability of 99%; overhcad costs
and cost-effectiveness are 93 and 73, respectively. The Particle Bee Optimization-Best cost

calculation identifies the best cost at iteration 49, with x- 3.00 and y-0.500.

Table 5.5 Particle Bee Optimization-Best Cost Calculation

Iteratio | Best X Best Y Value

0 3.4515373536981553 0.6697843810097153 | 0.25318166066926995
1 2.5212136778952026 0.3479606909770237 | 0.12962068533529675
3 3.2409214817449 0.5641936583638616 | 0.019336250778752045
5 3.2409214817449 0.5641936583638616 | 0.019336250778752045
7 3.2409214817449 0.5641936583638616 | 0.019336250778752045
9 3.1661662016761607 0.5387507123923697 | 0.009133244544166903
11 0.009133244544166903 | 0.5387507123923697 | 0.009133244544166903
49 3.0000937146270292 0.5000543228356094 | 2.2116045281968125E-

The execution latency of the Fog device is shown in Table 5.8 for the player states
Virtulr game 0 and Virtulr game 1. The actuator signals are enabled for each device
in tandem with the game player, performing the corresponding reply action for each
transmission as illustrated in algorithm 5.1. The energy usage of various devices

according to algorithm 5.3 is shown in Table 5.6.

Table 5.6: Fog Device Tuple Execution Delay

Device Execution Delay (sec.)
Player Game State 2.332
EGG 3.416
Concentration 0.185
Sensor 3.186
Global Game State 0.056
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Table 5.7: depicts the energy consumption of various devices as per algorithm 3.

Devices Energy Consumption (kWh)
Cloud 459.585
Proxy-server 250.299
Fog Device 250.299

Table 5.8: Comparison with the existing algorithm

Existing Genetic Novel Particle Bee
Parameters
Algorithm Optimization
Cost of Fog Cloud Execution ($) 85042.0 81042.2
Total Network Utilization (Mbps) 635550.0 6126433
Execution Cost ($)
82,050 B Existing
algorithm
P Proposed
82,000 Algorithm
=
-«c-g 81,950
S
- -
81,850 :
Execution Cost Analysis
Algorithms

Figure. 5.6: Comparison of existing and proposed algorithms in terms of execution

cost
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Figure. 5.7: Comparison of existing and proposed algorithms in terms of network

utilization

Table 5.8 depicts a performance evaluation of the projected technique in contrast to
the already existing Genetic Algorithm (GA) and suggested Bee Mutation scheme.
The comparison results show that Novel particle bee optimization leads to reduced
network usage of 612643.34 and better execution cost of fog cloud 84042.20
considering the other two existing algorithms depicted in Fig. 5.6 and Fig. 5.7.

5.5 Summary

This chapter projected the "Fault Tolerance & Service Placement” framework that
handles live server fault tolerance by repeating server operations and checkpointing
when communicating with the proxy server. This minimizes the network use of
612643.34 at a lower fog cloud execution cost of 84042.20 in the context of evolving
fog technologies. Devive 1D 3 has the maximum throughput of 93%, reaction time of
62%, performance of 94%, availability of 97%, and reliability 0f 85% for the devices.
Further study into fog service placements may be conducted to improve fog sensor

devices' energy and resource efficiency.
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CHAPTER 6
CONCLUSION & FUTURE SCOPE

6.1 Conclusion

The proposed approach included checkpoints and replication procedures, two well-
known fault diagnostic methods, through a fog system monitor. The replication
technique avoids the checkpoint mechanism's delay. According to the results, the
suggested framework works better than the current model, using the network at
626020 Mbps for $82020.20. The checkpoint procedures start the process from the
pre-defined checkpoints established at the failure occurrences, which makes the

suggested CRBM method fault tolerant.

A mobility-aware service placement policy determines the mobile node's position and
assigns users' requests to the best fog devices. It can also improve the response time
and reduce the application loop delay. In this work, a mobility-aware scheduling
mechanism has been given for determining the position of mobile devices and
distributing their requests to fog nodes. The movement type, pattern, and direction are
used to determine the mobile node's physical availability in the projected framework.
The outcomes of the experiments have shown how physical accessibility affects

execution time.

The proposed framework, "Fault Tolerance & Service Placement,"” addresses real-time
server faults by duplicating the server's operations using a checkpoint while
synchronizing it during a proxy server. The solution addresses live server failure
tolerance by duplicating server actions and check-pointing when synchronized with a
proxy server. It also discusses pioneering particle bee optimization and an efficient
strategy for optimizing the optimal cost path utilizing the node localization scheme,
i.e., angle of arrival. The suggested plan reduces network consumption by 618020 for

an execution cost of $81900 less fog.

6.2 Future Scope

The projected fault tolerance-based framework has improved the overall performance
of the fog environment, and this work can further be enhanced by reducing the
overhead associated, response time, and execution cost. More realistic and

sophisticated mobility patterns can be implemented based on real data sets.
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