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ABSTRACT 

 

Distributed Systems have significantly contributed to the evolution of the field of computing by 

enabling job distribution and resource sharing. Distributed computing paradigms such as Cloud and 

Fog have eased users by making high-end resources available to the user without even possessing 

them physically. Users of these computing paradigms can use resources by paying nominal costs 

per their usage, scale their subscription, or shift from one set of resources to another as per their 

changing computational requirements. In this scenario, efficiently handling the requests and 

resources becomes crucial so that the available infrastructure can be utilized optimally. Job 

scheduling and load balancing are the formal ways to map the job requests on appropriate resources 

in DS appropriately. Both job scheduling and load balancing are prevalent research topics among 

researchers, and a considerable volume of literature is available to introduce tools and techniques 

for it. These techniques are expected to resolve the challenges faced by distributed computing, such 

as imbalanced load, the geographical coverage of resources, over/under utilization of resources, 

meeting Service Level Agreement, maintaining Quality of Service, and curbing the number of 

denied jobs. This thesis presents three frameworks: the first is a software agent-based broker 

framework for load balancing in a Partitioned Public Cloud, an ML classification-based dual broker 

framework that integrates QoS parameters for scheduling applications’ jobs in FEs. This framework 

categorizes the resources available at the nodes as compute-intensive, memory-intensive, and GPU-

intensive. 

The suitable category of the newly submitted job is determined using Naïve Bayes Theorem, and 

these jobs are mapped onto the suitable category of the resources using Self-Organizing Maps. In 

addition to this, QoS parameters availability, physical distance, latency, and throughput are 

integrated into this system. The third framework proposed in this thesis is a multilevel hierarchical 

broker for job scheduling in hexagonal FEs for better global geographical coverage of distributed 

and ad-hoc Fog services to select the Fog node based upon a newly introduced parameter: QoS 

Score. Hexagonal Fog environments are introduced for geographic grouping of the Fog resources 

for better coverage of geographical regions of Fog resources. Experiments are performed using 

CloudSim, Aneka, and Azure platforms. Results have proved the improved performance of 

proposed frameworks in terms of average response time, average wait time, average completion 

time, resource availability, and average resource utilization compared to the conventional 

methodologies used for job scheduling in Cloud and Fog environments.  
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CHAPTER 1 

INTRODUCTION 

This thesis addresses the complexities of orchestrating services in Cloud and Fog computing 

environments by proposing Broker-Based Frameworks (BBFs). These frameworks leverage 

intelligent brokering strategies to optimize resource management, service orchestration, and 

deployment in heterogeneous computing environments. The thesis outlines the architecture and 

components of the BBF, emphasizing its potential to enhance responsiveness, resource 

efficiency, resource utilization, and resource availability in Distributed Computing Systems. 

Overall, the proposed BBFs offer a solution-oriented approach to the challenges associated with 

service orchestration in dispersed and dynamic computing ecosystems. 

 

1.1 Orchestration  

The term orchestration describes managing and synchronizing services, apps, and resources in 

Cloud and Fog Computing (FC) contexts. Cloud orchestration is the process of overseeing 

services and resources in a distant, centralized data center. It usually manages storage, 

networking, Virtual Machines (VMs), containers, and other Cloud infrastructure resources. 

Applications in Cloud settings can be automated, managed, and scaled using orchestration tools 

such as OpenStack, Docker Swarm, and Kubernetes. FC involves orchestrating computing, 

storage, and networking resources in edge devices, gateways, and local servers. Orchestration 

tools such as Cisco IOx, OpenFog, or edge computing (EC) platforms can manage and automate 

the services in FC environments. [1]–[3] 

 

Figure 1.1: Roles played by the orchestration. 
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A service orchestration engine plans directs, and automates the interactions between various 

services or systems in a network or application environment.  

 

 

Figure 1.2: Broker as a Service Orchestration Agent 

 

Orchestration is crucial in Cloud Computing (CC) and FC to simplify and automate 

application and service deployment, scaling, and management. It ensures reliable, scalable, and 

efficient resource utilization in complex and distributed computing environments. [4]–[6] 

 

1.2 Distributed Systems 

Distributed Systems (DS) refers to two or more computers working together through a network 

to finish a single job, which is distributed over a group of computers, heterogeneous in operating 

systems, node characteristics, network design, and communication medium [7]. The generic 

quality of DSs in a group of autonomous computer components is that these seem like a single 

cohesive system to the users [8]. DS comprises autonomous computing nodes for better 

accessibility, transparency, openness, and scalability [9].  

 

To optimize autonomous communication between nodes, a DS's performance can be 

measured through execution time, throughput, efficiency, system utilization, turnaround time, 

waiting time, response time, overheads, and reliability [9]–[12]. Figure 1.3 demonstrates the 

categories and relevant examples of DS.
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Figure 1.3: Categories of distributed systems. 

 

1.3 High-Performance Distributed Systems 

This category includes computing paradigms such as cluster computing, grid computing, and 

CC. FC is another paradigm that enables delivering Cloud application services closer to the 

Internet of Things (IoT) devices at the edge rather than relying on a distance Cloud. In contrast 

to transferring IoT data to the Cloud, which processes and stores it remotely on IoT computers, 

Fog provides better latency-sensitive resources. Thus, FC is the ideal choice for enabling the 

IoT to provide efficient and trustworthy services to many clients. Figure 1.4 highlights the 

fundamental differences between Cloud and FC paradigms. 

 

 

Figure 1.4: Cloud vs Fog computing paradigms. 
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1.4 Load, Load Balancing and Job Scheduling 

In the context of CC, load refers to the volume of work or demand on a server, network, or 

system at a specific time. It mainly concerns how much resource is used or consumed in a 

Cloud-based infrastructure. Compute, network and storage loads are just a few examples of the 

components that comprise the term load in distributed systems [13]. Load balancing in DS 

evenly distributes network traffic or computational workload across multiple servers that 

optimize resources, scalability, fault tolerance, performance enhancement, and cost efficiency 

[14] [15]. On the other hand, job scheduling in cloud and fog computing efficiently allocates 

computing resources and manages task execution to manage resource utilization, prioritization, 

fairness, adaptability, flexibility, and latency [16]–[18]. 

 

1.5 Brokers  

In Cloud and FC environments, Cloud Brokers (CBs) and Fog Brokers are significant for 

resource management, communication facilitation, and operational optimization. To help 

choose and handle Cloud services, Cloud brokerage involves mediators who link consumers or 

businesses with Cloud service providers. Cloud service brokers (CSBs), such as Right Scale 

and Gravitant, are instances of CBs. They offer platforms for managing Cloud services from 

various vendors. Figure 1.5 demonstrates the positioning and contribution of the brokers in DS. 

 

 

Figure 1.5: Overview of a broker-based system. 
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Companies that work with FC concepts include Cisco, IBM, and Microsoft. Some of these 

companies may also develop or offer Fog brokerage services. The brokerage model inevitably 

changes as technology develops and the demand for effective resource management in various 

computing environments increases. 

 

1.6 Open Issues 

Table 1.1 discusses some of the most commonly researched issues in the field of DS: 

 

Table 1.1: Open Issues in the field of DS. 

Open Issue  Description 

The complex and dynamically 

changing Fog computing environment 

[19]–[22] 

Heterogeneous Fog computing equipment leads to 

uneven resource distribution, causing latency 

issues and hindering overall system performance. 

Strategies like load balancing and resource 

optimization are needed to address these 

challenges. 

 

The volume of requests and prolonged 

task queues [19], [22], [23] 

Vital Fog Nodes (FNs) may be unable to process 

all of the service's input data because they have 

limited computational, storage, and other resource 

capabilities. 

 

Mobility causes dynamic changes [19], 

[21], [23] 

Mobile FNs dynamically influence Fog computing 

resources, necessitating adaptable resource 

allocation systems to manage the server shifting 

seamlessly. 

 

Dynamically changing resource 

requirements [19] 

Diverse application behaviors, time variations, and 

environmental conditions impact computing 

aspects like resource sharing, job scheduling, and 

task offloading, which shape the resource 

allocation in FC. 
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Load Balancing [19], [21], [23] Load balancing techniques aid in optimizing task 

transfer between Fog and Cloud systems to 

minimize overload and processing time. However, 

exploratory strategies often favor more robust Fog 

resources, impacting workload balance. 

 

Task Scheduling [19], [21], [23] Task scheduling complexity arises from the 

substantial difference in capacity between FNs and 

Cloud servers, compounded by network 

heterogeneity and the uncertain wireless 

environment. 

 

Real-Time Responsiveness [19], [21]–

[24] 

 

Managing real-time, delay-sensitive IoT 

applications alongside multidimensional 

complexities poses a key challenge for Fog 

computing networks. 

 

Big Data Analysis [19], [23], [25] Effectively distributing vast high-dimensional data 

from end-user devices and the IoT among resource-

limited FNs poses a challenge for learning 

algorithms in big data analytics to yield reliable 

findings. 

 

Load Prediction [19]–[21], [25] 

 

Dynamic resource auto-scaling in Fog 

Environments (FEs) is crucial for efficiently 

distributing resources to varied workloads, 

preventing "Over-Provisioning" due to scarcity and 

"Under-Provisioning" from excess requests. 

 

 

All the issues discussed in this section are generic. However, there are domain-specific 

variations of these issues, such as reinforcement learning [19], fuzzy logic [20], offloading 
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mechanism [21], bandit learning [22], and digital twin perspective [25]. All these domains have 

different perspectives to view these issues and research their solutions in different dimensions.   

 

1.7 Motivation 

The rapid and effective placement of application jobs on available FNs for latency-sensitive 

Internet of Things (IoT) jobs improves the performance of a DS. If nodes are selected correctly 

and effectively, the probability of achieving low latency increases automatically [26], [27]. 

 

This thesis proposes job scheduling and load-balancing solutions for high-performance 

systems. These problems, being highly significant to the DSs, are widely researched by 

researchers, resulting in various techniques in this field. As per our knowledge, the existing 

solution could not address the following issues which our work is intended to resolve:  

 Lack of autonomous behavior in scheduling and balancing components,  

 Classification of available resources and mapping jobs to appropriate classes, 

 Single point of load scheduling and balancing,  

 Geographic coverage of Fog resources.  

 

1.8 Research Gaps  

To the best of our knowledge, some of the existing gaps in the field of study are presented in 

this section: 

1. PC has a large search space due to the accommodation of a massive number of Cloud 

or Fog resources which needs mechanism to introduce autonomous behaviour in and 

across the partitions.  

2. Considering FN as a single bulk of resources and allocating jobs without segregation 

and QoS parameter consideration is not optimal for resource allocation in the Fog 

Environments. 

3. Load increases on scheduling brokers with expansion in the geographic areas, and there 

are chances that the scheduling entities overlap some of the resources left unattended. 
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1.9 Objectives 

As a result of our work, we suggest three progressive frameworks, which are: 

 To design a software agent (SA)-based broker framework for load balancing in a Partitioned 

Public Cloud (PPC) 

To reduce the search space in the Public Cloud (PC), to reduce the congestion at a single job 

scheduler, and to insert autonomous behavior in the load balancing technique, an SA-based 

broker framework is introduced for a single Cloud, which resulted in a reduced number of 

detained jobs, improved makespan, better average execution time (AET), maximum execution 

time (MET) and total execution time (TET). This method yielded good outcomes, but it can be 

enhanced by incorporating machine learning (ML) classification methods for automated 

decision-making and considering Quality of Service (QoS) parameters when evaluating system 

performance. 

 

 To develop an ML-based dual broker framework by integrating QoS parameters for 

scheduling applications’ jobs in FEs 

An ML classification-based dual broker framework is proposed by integrating QoS parameters. 

Two brokers are used: Global Broker (GBR) deployed at the centralized level and Local 

Brokers (LBRs) deployed at each FE. This framework considers three QoS parameters: 

Physical Proximity (PP), Bandwidth (BW), and Device Quality (QD). A combination of Naïve 

Bayes Theorem and Self-Organizing Map (SOM) is used in this approach to classify and map 

jobs on a suitable set of resources (Generic, Compute Intensive, GPU Intensive, and Memory 

Intensive). This approach improves average resource utilization (ARU), resource availability 

(RAV), average response time (ART), average waiting time (AWT), and average completion 

time (ACT). However, this approach does not address geographical resource coverage, so some 

pervasively scattered nodes may be left unattended or overlapped. Congestion issues may still 

arise at dual-level hierarchical brokers when considering globally scattered Fog resources. 

 

 To develop a multilevel hierarchical broker for job scheduling in hexagonal FEs for better 

global geographical coverage of distributed and ad-hoc Fog services 

The third approach is a multilevel hierarchical broker-based framework for job scheduling in 

hexagonal FEs for better global geographical coverage of distributed and ad-hoc Fog services. 

The RoI (Region of Interest) in this chapter is divided into hexagonal regions due to the equal 

distance between their centers and ensuring complete coverage of FNs. This approach considers 
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global-level Fog resources across the Geographical Regions (GRs) and is flexible enough to 

add multiple hierarchical brokers to manage the increased congestion along with the expansion 

to multiple GRs. As an output of this approach, we could achieve higher RAV, ARU, ART, 

AWT, and ACT.  

 

1.10 Organization of the Thesis 

The thesis has been organized into 6 chapters as described below:  

Chapter 1: This chapter introduces the basic concepts of DS and narrows their scope while 

discussing the work's background concepts, open issues, motivation, and objectives.  

 

Chapter 2 presents the existing state-of-the-art approaches proposed by other researchers. The 

literature review is divided into four sections: first, basic concepts and the three sections contain 

a literature review corresponding to each objective.  

 

Chapter 3: This chapter discusses partitioning the public Cloud (PC) and applying software 

agents, in the form of brokers, for load balancing. 

 

Chapter 4: This chapter discusses an application’s job allocation to suitable resources using 

ML classification techniques in a dual broker-based system. Two ML techniques are used in 

the proposed framework: the Naïve Bayes approach and the SOM. 

 

Chapter 5: This chapter presents a multilevel broker-based approach considering the global 

geographical coverage of the Fog resources using hexagonal FEs. The proposed framework 

introduces a parameter QoS score to rank the available resources based on this score.  

 

Chapter 6: This chapter summarizes and concludes the thesis and presents the potential future 

directions.  

 

The thesis ends with a list of references and synopsis. This thesis aims to propose and 

implement the frameworks for efficiently scheduling applications’ jobs on DS, such as Cloud 

and FC environments. Though CC and FC paradigms have resolved the issues of resource 

scarcity to a noticeable level, carefully allocating available resources to the jobs ensures optimal 
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resource utilization. This thesis resolves job scheduling at three different levels by introducing 

job scheduling frameworks for each.   
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CHAPTER 2 

LITERATURE SURVEY 

 

2.1 Introduction 

This chapter presents the systematic literature review for all three objectives in this thesis. The 

following sections of the chapter present the literature studied for each proposed framework. 

Section 2.2 contains the set of papers relevant to broker-based systems and orchestration. The 

literature referred to in Section 2.3 is related to basic CC concepts, partitioning, load-balancing 

techniques, SAs, and PCs. The literature in Section 2.4 is related to the FC, ML techniques, IoT 

applications’ job scheduling techniques, and QoS parameters. Section 2.5 contains the literature 

surveyed for IoT applications’ job scheduling techniques, Geographic Region (GR) coverage, 

QoS parameters, and hexagonal structures. 

 

2.2 Broker-based Systems and Orchestration 

In DS, brokers can be used on various resources, including BW, Cloud, information, IoT, QoS, 

resource, and service brokers. Each one of these plays a particular role in the systems in which 

they are used. The jobs carried out by brokers in a DS can vary from application to application, 

even though their overall role remains constant [28]. In DS, brokers can serve a variety of roles 

in message queueing systems, content delivery networks, collaborative content distribution 

networks, and the security industry [28] [10] [29] [30].  

 

In 2016, Suomalainen et al.  [31] designed an improved architecture based on an information 

brokering system's privacy and security requirements. They suggested an adaptive pseudo-

optimization architecture that made privacy attacks more difficult and offered real-time updates 

on how reliable the platforms' privacy protection mechanisms were. The authors developed this 

architecture to enhance infrastructure utilization in smart cities through real-time information 

sharing at the district level. They focused on measuring energy consumption and found their 

framework to be helpful. 

 

In 2016, López et al. [32] developed a scheduler using the assistance calculations Deferrable 

Server and Earliest Deadline First (EDF) (DS). The self-reconfiguration of the manufacturing 

framework was quite enticing because setbacks could occur on any one of the specifics of the 
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assembling framework. The article proposed a method to tackle this issue. The approach 

involved analyzing the time taken by the system to produce an item and adjusting the rate of 

plant components of the specific operation accordingly. This helped identify the deficiencies of 

the system and address them effectively. 

 

In 2018, Ferdosian et al. [33] presented a two-level downlink scheduling system that resolved 

significant difficulties by attempting to deliver all sorts of traffic while striving to meet the 

performance constraints of the LTE. A cogent resource allocation method was created for the 

higher-level algorithms using a game theory model to guarantee per-class fairness. The greedy-

knapsack method was improved at a lower level for improved QoS and throughput to distribute 

resources to the best possible bearers. The suggested method's effectiveness was assessed under 

normal and overload network conditions. According to simulation results, the suggested 

scheduling algorithm performed better than reference scheduling strategies based on 

throughput, fairness, and QoS performance as measured by the rate of packet loss and latency 

for various service classes. 

 

In 2019, Hwang et al. [34] introduced and outlined the U-mosquitto protocol, an improvement 

to the popular MQTT Mosquitto broker. They tried to expedite the delivery of crucial signals 

by sending them out more quickly than other system messages. Studies have demonstrated that 

as the number of publishers rises, so does the difference in delivery time between routine 

communications and urgent messages. 

 

In 2020, Mei et al. [35] introduced a new function for CB, which acts as a mediator between 

Cloud providers and short-term Cloud users to reduce costs. Short-term customers often pay 

more than their usage due to hourly billing cycles, even when not using Cloud Resources (CRs) 

for long periods. Long-term users receive discounted CRs, while short-term users do not. To 

address this issue, the CB rents reserved VMs at a lower cost and then distributes these 

resources to users at a lower cost on demand. The authors of a recent study focused on CB 

configuration and calculating a fee that ensured maximum profit for the broker while lowering 

the cost for Cloud consumers. They modeled a profit maximization problem as an ideal multi-

server setup price problem and suggested a heuristic strategy that used partial derivative and 

bisection search methods to optimize the problem. The authors also analyzed the factors 
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influencing the broker's profit, such as user demand, VM buy price, and VM sale price. A linear 

price-demand function is used to find the best options. 

 

In 2020, Oh et al. [36] investigated the subject of user cost minimization in MCC networks. 

Different brokers assign CRs to mobile users in an MCC model, which was considered. A 

competitive approach and a compete-then-cooperate method were examined as performance 

bounds for Cloud reservation strategies. Cooperation can lead to significant gains over 

competition in markets with fewer brokers. However, in markets with many brokers, the 

benefits of cooperation are negligible, indicating no clear advantage to working together. 

 

In 2020, Zhang et al. [37] focused on researching the price and selection of services for IoT 

applications in a multi-MEC (Multi Edge Computing) system with multiple Edge Cloud Service 

Providers (ESPs). The researchers specifically paid attention to the distribution of workload. 

They modeled the situation as a Stackelberg game, where the Cloud Service Broker (CSB) 

determines the Cloud service price and load balancing strategies to maximize revenue. Next, 

IoT users can select which ESP service they want. The backward induction method is used to 

find the best solutions. The proposed strategy is validated using simulation data. 

 

In 2020, Mishra et al. [38] studied the progress made in M2M (Machine-to-Machine) protocol 

research, specifically focusing on MQTT, AMQP, and CoAP, over the past two decades. They 

found that MQTT research has outpaced the others. To assist academics and end-users in 

selecting a broker or client collection that best suits their needs, they have provided a 

classification to compare the features and characteristics of several MQTT solutions, including 

brokers and libraries, currently available in the public domain. Lastly, they highlighted some 

significant findings from my comparison and identified a few topics that require further 

investigation. 

 

In 2021, Akanksha et al. [39] proposed a method to increase profit by optimizing the CB's 

setup. The maximization technique used by the CB is influenced by several factors, such as the 

customer's request, the selling price of the resource, the purchasing price, and the intensity of 

the request. The proposed approach seeks to optimize the profit of the CB by providing cloud 

infrastructure from an infrastructure vendor at a lower cost while meeting clients' demands. 
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Finally, the Hill-Climbing method is used to assign resources dynamically. The suggested 

solution used QoS and service price as determining variables to maximize the CB's net profit. 

 

In 2021, Razian et al. [40] proposed a scalable anomaly-aware approach (SAIoT). The process 

has two main parts. The first part uses a machine learning-based anomaly detection technique 

to identify any pre-existing abnormal QoS records. The second part employs a reliable and 

efficient metaheuristic algorithm to discover an optimal composition close to ideal. The 

experimental findings derived from real-world data sets showed that their methodology 

achieved a composite plan's average QoS value enhancement by 30.64 percent for the same or 

less cost as earlier efforts, like information theory- and declared QoS-based methodologies. 

 

In 2021, Gruener et al. [41] developed a resilience testing tool for MQTT brokers called 

MAYHEM 2021. This tool helps IoT practitioners, researchers, and broker suppliers make 

better architecture, design, and implementation improvement decisions. The researchers used 

MAYHEM for resiliency experiments on several MQTT brokers, including VerneMQ, 

Mosquitto, HiveMQ, and EMQ X. Their experiments yielded some interesting findings, such 

as: 1. MQTT QoS Level 0 is already robust against minor packet loss, 2. Most clustered MQTT 

brokers prioritize performance and availability over communication integrity; 3. Message loss 

may occur due to selected broker message persistency solutions. 

 

In 2021, Gruner et al. [42] Self-Sovereign Identity (SSItrust-enhancing) attribute aggregation 

capability is proposed to be used by an Attribute Trust-enhancing Identity Broker (ATIB) to 

provide standard protocols and abstract SSI solutions. Although the brokered integration 

strategy, ATIB upholds a high level of security for users and does not violate any of the ten 

fundamental SSI requirements. The authors assessed ATIB's authentication process after 

connecting it to uPort, Jolocom, and HL Aries/Indy. These assessments included attributes used 

for authorization, performance measures, and SSI compliance review.  

 

In 2021, Abhishek et al.  [43] Offered the design and development of a Cloud service 

orchestrator that could assist the providers of application and network services in smoothly 

deploying their services on the required Cloud (Private or Public). 
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Table 2.1: Types and Implementation of Brokers on various resources 

Ref. 

No. 

Title Year Published 

In 

Summary Limitations 

[31] Enforcing 

secure and 

privacy-

preserving 

information 

brokering in 

distributed 

information 

sharing 

2016 IEEE 

transactio

ns on 

informatio

n forensics 

and 

security 

Broker Type: Information 

Broker 

Issue Addressed: An 

enhancing architecture 

based upon the security 

and privacy needs of an 

information brokering 

system 

1. Single-level 

brokering, 2. 

QoS is not 

considered, 3. A 

single parameter 

is considered, 

which is cost, 4. 

Global coverage 

is not 

considered; 5. 

No clustering of 

resources and 

jobs. 

 

[32] ReconFigureura

tion Distributed 

Objects in an 

Intelligent 

Manufacturing 

Cell 

2016 IEEE 

Latin 

America 

Transactio

ns  

Broker Type: Object 

Request Broker 

Issue Addressed: a 

scheduler utilizing the 

calculation 

EarliestDeadline First 

(EDF) and the help 

calculation Deferrable 

Server (DS) 

1. Single-level 

brokering, 2. 

QoS is not 

considered, 3. A 

single parameter 

is considered, 

which is cost, 4. 

Global coverage 

is not 

considered; 5. 

No clustering of 

resources and 

jobs. 

[33] Fair-QoS Broker 

Algorithm for 

Overload-State 

Downlink 

Resource 

Scheduling in 

LTE Networks 

2018 IEEE 

Systems 

Journal 

Broker Type: QoS Broker 

Issue Addressed: 

A two-level scheduling 

system that supplies all 

types of traffic while 

attempting to fulfill LTE 

performance criteria 

solved the important 

issues. 

1. Single-level 

brokering, 2. 

QoS is not 

considered, 3. A 

single parameter 

is considered, 

which is cost, 4. 

Global coverage 

is not 

considered; 5. 

No clustering of 

resources and 

jobs. 
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[34] Modification of 

Mosquitto 

Broker for 

Delivery of 

Urgent MQTT 

Message  

2019 IEEE 

Eurasia 

Conferenc

e on IoT, 

Communi

cation, and 

Engineeri

ng 

(ECICE) 

Broker Type: MQTT 

Broker  

Issue Addressed: 

Introduced the U-

mosquitto protocol, which 

is an enhancement to the 

widely used MQTT 

Mosquitto broker 

1. Single-level 

brokering, 2. 

QoS is not 

considered, 3. A 

single parameter 

is considered, 

which is cost, 4. 

Global coverage 

is not 

considered, 5. 

No clustering of 

resources and 

jobs. 

[35] Profit 

Maximization 

for Cloud 

Brokers in 

Cloud 

Computing 

2020 IEEE 

Transactio

ns on 

Parallel 

and 

Distribute

d Systems 

Broker Type: Cloud 

Broker 

Issue Addressed: A new 

function of a Cloud broker, 

which operates as an 

intermediary between the 

Cloud provider and the 

Cloud user to lower the 

cost of Cloud usage for 

short-term customers, who 

often pay more than their 

usage 

1. Single-level 

brokering, 2. 

QoS is not 

considered, 3. A 

single parameter 

is considered, 

which is cost, 4. 

Global coverage 

is not 

considered, 5. 

No clustering of 

resources and 

jobs. 

[36] Competitive 

Data Trading 

Model With 

Privacy 

Valuation for 

Multiple 

Stakeholders in 

IoT Data 

Markets 

2020 IEEE 

Internet of 

Things 

Journal 

Broker Type: IoT Broker 

Issue Addressed: An 

investigation of the subject 

of user cost minimization 

in MCC networks 

1. Single-level 

brokering, 2. 

QoS is not 

considered, 3. A 

single parameter 

is considered, 

which is cost, 4. 

Global coverage 

is not 

considered, 5. 

No clustering of 

resources and 

jobs. 

[37] Service Pricing 

and Selection for 

IoT 

Applications 

Offloading in 

the Multi-

Mobile Edge 

2020 IEEE 

Access 

Broker Type: IoT Broker 

Issue Addressed: An 

investigated service price 

and selection for IoT 

applications unloading a 

multi-MEC system 

1. Single-level 

brokering, 2. 

QoS is not 

considered, 3. A 

single parameter 

is considered, 

which is cost, 4. 
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Computing 

Systems 

Global coverage 

is not 

considered, 5. 

No clustering of 

resources and 

jobs. 

[38] The Use of 

MQTT in M2M 

and IoT 

Systems: A 

Survey 

2020 IEEE 

Access 

Broker Type: IoT Broker 

Issue Addressed: 

Examination of the 

evolution of M2M protocol 

research (Message Queue 

Telemetry Transport 

(MQTT), CoAP, and 

AMQP) over the previous 

20 years and discovered 

that MQTT research has 

surpassed the others 

1. Single-level 

brokering, 2. 

QoS is not 

considered, 3. A 

single parameter 

is considered, 

which is cost, 4. 

Global coverage 

is not 

considered, 5. 

No clustering of 

resources and 

jobs. 

[39] Advanced 

Mechanism to 

Achieve QoS 

and Profit 

Maximization of 

Brokers in 

Cloud 

Computing 

2021 EAI 

Endorsed 

Transactio

ns on 

Cloud 

Systems 

Broker Type: Cloud 

Broker 

Issue Addressed: A 

method centered on 

increasing profit by 

optimizing the Cloud 

broker’s setup 

1. Single-level 

brokering, 2. 

QoS is not 

considered, 3. A 

single parameter 

is considered, 

which is cost, 4. 

Global coverage 

is not 

considered, 5. 

No clustering of 

resources and 

jobs. 

[40] SAIoT: Scalable 

Anomaly-

Aware Services 

Composition in 

Cloud IoT 

Environments 

2021 IEEE 

Internet of 

Things 

Journal 

Broker Type: QoS Broker  

Issue Addressed: a 

scalable anomaly-aware 

approach (SAIoT) with 

two primary parts: initially 

uses an ML anomaly 

detection method to 

eliminate any current 

anomalous QoS records, 

and the second employs a 

powerful and efficient 

metaheuristic algorithm to 

locate a close to ideal 

composition. 

1. Single-level 

brokering, 2. 

QoS is not 

considered, 3. A 

single parameter 

is considered, 

that is, cost, 4. 

Global coverage 

is not 

considered, 5. 

No clustering of 

resources and 

jobs. 
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[41] Towards 

Resilient IoT 

Messaging: An 

Experience 

Report 

Analyzing 

MQTT Brokers 

2021 2021 IEEE 

18th 

Internatio

nal 

Conferenc

e on 

Software 

Architectu

re (ICSA) 

Broker Type: MQTT 

Broker  

Issue Addressed: 

developed MAYHEM, a 

tool to test the resilience of 

MQTT brokers, that aids 

IoT practitioners, 

researchers, and broker 

suppliers in architectural 

decisions and design and 

implementation 

improvement 

1. Single-level 

brokering, 2. 

QoS is not 

considered, 3. A 

single parameter 

is considered, 

which is cost, 4. 

Global coverage 

is not 

considered, 5. 

No clustering of 

resources and 

jobs. 

[42] ATIB: Design 

and Evaluation 

of an 

Architecture for 

Brokered Self-

Sovereign 

Identity 

Integration and 

Trust-

Enhancing 

Attribute 

Aggregation for 

Service Provider 

2021 IEEE 

Access 

Broker Type: Identity 

Broker  

Issue Addressed: An 

Attribute Trust-enhancing 

Identity Broker (ATIB)  

uses Self-Sovereign 

Identity (SSItrust-

enhancing ) attribute 

aggregation capacity to 

provide standard protocols 

and abstract dedicated SSI 

solutions 

1. Single-level 

brokering, 2. 

QoS is not 

considered, 3. A 

single parameter 

is considered, 

which is cost, 4. 

Global coverage 

is not 

considered, 5. 

No clustering of 

resources and 

jobs. 

 

2.3 Load Balancing in Partitioned Public Cloud using S/W Agents 

Managing a large number of heterogeneous nodes in a public cloud is a challenging job. The 

geographic partitioning of the public cloud is a well-discussed solution to this challenge. The 

section below discusses a few load-balancing techniques for partitioned public clouds available 

in the literature:  

 

In 2013, Gaochao Xu et al. [14] suggested a Cloud partitioning-based load-balancing method 

for PCs. They suggested changing the load balancing technology depending on the load at any 

given time. This technique manages the partitions with high load status by using game theory. 

However, this technique required more testing to establish an effective refresh rate and load 

degree calculation method. The compromise was that extensive testing was needed to ensure 

system availability and effectiveness. 
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In 2014, Suguna et al. [15] suggested a solution to handle dynamic Cloud partitioning and load 

balancing. The Partition Manager, which assigns a job to a partition, and the Job Distributor, 

which selects the node to which this job might be distributed, are crucial elements of this 

strategy. Partitions are built dynamically to provide adequate load distribution. The honey bee 

algorithm is used to do this. Beyond geographical boundaries, this paper left room for 

improvement in the transparency and Cloud division. To increase efficiency in the cloud 

environment, they employ game theory. 

 

In 2014, Sanjay et al. [44] suggested a distributed algorithm that performs better for load 

balancing in a master-slave structure than the Closest Datacenter strategy regarding task 

distribution all through the system and optimized system performance... According to the study, 

a clustering method divides the network into clusters. A cluster is made up of all nodes. Inter-

cluster communication (ICC) nodes are present in each cluster. Clustering occurs during 

network initialization.   

 

In 2014, Hui Zhang et al. [45] the difficulties of service availability and dependability, a lack 

of Service Level Agreement (SLA), customer data security and privacy, and government 

compliance regulation requirements all dealt with in their work. With a quick and frequent data 

detection technique at its foundation, they have suggested an intelligent workload factoring 

service for proactive job management. This method aids in factoring requests based on both 

data volume and content. The main design aims of this workload refactoring are load redirection 

to prevent overloading scenarios, workload dynamics smoothening in the base zone application 

platform, and load decomposition to make the flash Cloud zone application platform adaptable. 

Improvements are needed, including managing data security for hybrid platforms, handling data 

replication and consistency in flash crowd zones, and implementing load-balancing techniques 

in two zones. 

 

In 2015, Priti Singh et al. [46] suggested determining the load degree based on turnaround 

time. With this method, load PBs can enhance their load-balancing tactics when using a PC.  

 

In 2015, Stefano Sebastio et al. [47] suggested conducting a preliminary analysis of a Cloud 

partitioning strategy that divides job execution requests among a volunteer Cloud. The Google 

workload data trail is used in a simulation-based statistical analysis for validation. Evaluations 
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of this model are conducted utilizing the same random data set and a comparison of the 

outcomes of a proposed method and an un-partitioned Cloud. This strategy offers room for 

improvement, such as adding additional sophistication by employing a bio-inspired solution. 

Performance can be enhanced by adding portable performance monitors. Workload 

management could be improved with a workload classification system.   

 

In 2015, Amir Nahir et al. [48] attempted to remove the choice from Job's Critical Path to 

increase scheduling decision accuracy. They have employed job duplication in addition to the 

Schedule First and Manage Later methodology. They recommend replicating jobs and 

distributing these replicas across other servers in their suggested model. The server that chooses 

it first notifies any servers with a copy of this job. The main objective of this strategy is to 

simplify job scheduling by removing load-balancing jobs from the selection of VMs. However, 

this method lengthens the processing time by factoring in signal propagation delay.  

 

In 2017, Michael Pantazoglou et al. [49] made an effort to call attention to several issues, 

such as difficulty with scalability, flexibility, energy efficiency, and high operational costs. For 

this, they have developed methods that combine preliminary VM deployment and partial and 

compl ete VM migration. The primary VM placement procedure may create or delete VMs at 

any time, depending on the load that specific VM is bearing. Overloaded compute nodes employ 

the partial VM migration mechanism to transfer a small number of jobs to one or more 

additional compute nodes. If a computing node is underutilized, the whole migration procedure 

is employed to move the entire load. This transfer aims to lower the data center's overall energy 

usage. Table 1 summarizes the static load balancing research that has been done up to this point. 

 

In 2021, Abdullah et al. [50] advised a Deep Neural Networks Energy Cost-Efficient 

Partitioning and Task Scheduling (DNNECTS) algorithm framework, which includes a setup 

of the following elements: task sequencing, scheduling, and application partitioning. The 

suggested methods are demonstrated through experimental findings concerning application 

costs and energy consumption in a dynamic setting.  

 

In 2022, Chi Zhou et al. [51] proposed RLCut, which uses Reinforcement Learning (RL) to 

manage the problem's complexity. In particular, RLCut uses multi-agent learning, which is 

more effective than single-agent RL, and adds a sampling-based optimization to adaptively 
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regulate the training process to fulfill the necessary trade-off between partitioning efficacy and 

efficiency for per under-graph dynamicity. The results of geo-distributed graph analytics are 

improved by RLCut by 10%–100% with equivalent overhead compared to state-of-the-art static 

partitioning approaches, according to experiments employing real Cloud datacenters and real-

world graphs. We can further boost results by up to 43% if users are willing to put up with more 

partitioning overhead. Compared to cutting-edge dynamic partitioning, RLCut can increase 

performance by as much as 60% with different graph shifting frequencies. 

 

In 2022, Xiao et al. [52] proposed a two-stage simulation task partitioning technique that 

calculates resource prediction data. The features of the collected data are analyzed in the initial 

stage to determine the best feature dimensions. The number of resources needed for the shortest 

runtime is determined by ranking the expected results after using a stacking ensemble learning 

approach to forecast the simulation runtime in a given scenario of assigning different computer 

resources. In the subsequent phase, a multi-weight graph structure is created to depict the 

dynamic interaction of simulation elements to minimize the load imbalance on each computer 

node and maximize the number of connections between nodes. Then, the simulated annealing 

optimization process is applied to divide various weight graphs and assign simulation jobs to 

resources. 

 

In 2022, Lan et al. [53] presented a method for partitioning and orchestrating computer vision 

applications on heterogeneous edge computing systems, considering both CPUs and GPUs; 

there is a system framework called EDGE VISION. The program is divided into discrete tasks 

coordinated and distributed onto the many heterogeneous edge nodes using EDGE VISION, 

summarizing the heterogeneous hardware resources and task runtime environments. Aiming to 

reduce processing delay and overall system cost, we recommend two scheduling techniques in 

our framework: smallest latency task scheduling and minimum cost task scheduling. 

The framework is tested by putting the edge-based, 3-D SLAM application into practice on a 

real testbed of ten different edge devices. Evaluations demonstrate that EdgeVision can 

effectively reduce processing latency, system costs, and job processing latency by up to 30% 

and 15% better in terms of cost saving. 
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Table 2.2: Summary of literature survey for PPC. 

Ref. 

No. 

Title Year Published 

In 

Summary Limitations 

[14] A Load 

Balancing 

Model Based on 

Cloud 

Partitioning for 

the Public 

Cloud  

2013 Tsinghua 

Science 

And 

Technology 

The PC's load 

balance model is 

based on Cloud 

partitioning and 

includes a switch 

mechanism to let 

users select various 

strategies 

depending on the 

load status—high, 

low, or normal. 

This model applies 

game theory to the 

load-balancing 

method to boost 

efficiency in a PC 

environment. 

Lacks a thorough 

approach for Cloud 

partition, is ineffective in 

calculating the refresh 

period, 

3. Creating a solid 

algorithm to determine 

the load degree; 4. 

Testing is necessary to 

compare various load-

balancing solutions. 5. 

Various tests must be 

carried out to ensure 

system availability and 

effectiveness. 

[15] A novel 

approach for 

Dynamic Cloud 

Partitioning and 

Load Balancing 

in Cloud 

Computing 

Environment  

 

2014 Journal of 

Theoretical 

and Applied 

Information 

Technology 

The strategic model 

performs load 

balancing and the 

dynamic partition of 

the nodes of 

different Clouds. 

Game theory is used 

to develop load-

balancing strategies 

to improve 

efficiency in the 

Cloud environment. 

 

 

1. We need to increase 

the level of 

transparency. 2. 

Requires effective 

technique in updating 

the status report. 3. 

Time intervals are not 

very well managed; 4. 

Dynamic balancing 

technique could be 

made dynamic, 5. They 

are finding alternatives 

to geographical Cloud 

division methodology.  

 

[44] A Cluster-

Based Load 

Balancing 

Algorithm in 

Cloud 

Computing 

2014 IEEE 

Xplore 

A distributed 

algorithm for load 

balancing in the 

master-slave 

architecture that 

outperforms the 

Closest Datacentre 

algorithm in terms 

of job distribution 

across the system 

To evaluate the 

effectiveness of the 

proposed model in 

scenarios where a node 

belongs to more than 

one cluster, we believe 

that effective load 

balancing could also be 

achieved in this case. 
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and optimal system 

performance 

 

[45] Proactive 

Workload 

Management in 

Hybrid Cloud 

Computing+B1

7 

 

2014 IEEE 

Transaction

s On 

Network 

And Service 

Managemen

t 

One problem is 

addressed: service 

availability and 

reliability. Lack of 

SLA, privacy, and 

security of customer 

data, and 2. 4. 

Requirements for 

government 

compliance with 

regulations 

Two zones have 

established load 

balancing systems, and 

the flash crowd zone 

has effective data 

duplication and 

consistency 

management.  More 

effective security 

administration for a 

mixed platform 

[46] Load Degree 

Calculation for 

the Public 

Cloud based on 

the Cloud 

Partitioning 

Model using 

Turnaround 

Time 

2015 Internationa

l Journal of 

Computer 

Science and 

Information 

Technologi

es 

The method for 

computing a node's 

load degree in a 

computer using 

turn-around time. 

Lacks efficiency in the 

algorithm 

[47] A Workload-

Based 

Approach to 

Partition of the 

Volunteer 

Cloud  

 

2015 IEEE 

Conference 

on 

Collaborati

on and 

Internet 

Computing 

A preliminary 

assessment of a job 

execution request 

distribution strategy 

using Cloud 

partitioning on the 

volunteer Cloud.  

Comparison of the 

suggested model's 

results between a 

Cloud with partition 

and a Cloud without 

partitions that 

employs the same 

random tasks 

Improved workload 

classification 

mechanisms, More 

advanced algorithms, 

such as bio-inspired 

ones, Lightweight 

performance 

monitoring 

[48] Replication-

based Load 

Balancing  

2015 Transaction

s on Parallel 

and 

Distributed 

Systems 

Taking the 

scheduling choice 

off the job's critical 

path will increase 

the precision of the 

scheduling choice. 

The implementation 

of job replication 

Develop a one-attribute 

configuration ideal for 

all systems with signal 

propagation delay. 
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follows the 

Schedule First and 

Manage Later 

strategy. 

 

[49] Decentralized 

and Energy-

Efficient 

Workload 

Management in 

Enterprise 

Clouds  

2017 IEEE 

Transaction

s On Cloud 

Computing 

The four issues 

addressed were 

elasticity, 

scalability, high 

operational costs, 

and efficient energy 

use. The following 

three algorithms are 

presented: Initial 

VM placement, 

partial VM 

migration, and 

complete VM 

migration are the 

three options. 

1. Decentralized 

workload management 

is required inside an 

open-source Cloud 

operating system, like 

OpenStack; 2. can 

incorporate extra 

parameters into load-

balancing formulas,  

[54] Resource 

Allocation 

Issues and 

Challenges in 

Cloud 

Computing  

 

2014 Internationa

l 

Conference 

on Recent 

Trends in 

Information 

Technology 

Issues addressed 

include resource 

provisioning, job 

scheduling, 

overbooking, and 

resource overuse. 

Fourth scalability. 

Costing, Balancing 

the load, tier-two 

applications, 8. 

Accessibility, 

Network I/O 

Workload 

Overheads, and 10. 

QoS Restrictions 

Is not elastic, the need 

to reduce expenses and 

maximize resource use, 

the requirement to 

provide high 

availability for lengthy 

jobs, Improved 

concurrent job 

scheduling, 

[55] Collaborative 

Agents for 

Distributed 

Load 

Management in 

Cloud Data 

Centers using 

Live Migration 

of Virtual 

Machines  

2015 IEEE 

Transaction

s On 

Services 

Computing 

The issues 

addressed are: 1. 

When to migrate the 

VMs, 2. Which VMs 

to be migrated, and 

3. When to migrate, 

4. When to turn 

on/off the hosts 

For these issues, a 

combination of 

CloudSim and 

To help with the 

dynamic placement of 

VMs, it is necessary to 

construct resource 

utilization profiles of 

hosts and VMs using 

statistical forecasting, 

load balancing 

heuristics for initial 

allocation of VMs to 

hosts, designing VM-
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Software Modules is 

used. 

 

centric management 

policies, and 

investigating the 

impacts of resource 

overselling of hosts. 

 

2.4 Dual Broker-based Framework (BBF) for IoT Job Scheduling  

The researchers have used ML algorithms in job scheduling in DS with proven improved 

efficiency and user experience results. The following section discusses a few examples of ML-

based scheduling techniques in DS. 

 

In 2015, Sandhu and Sood [16] Authors proposed a QoS-conscious scheduling algorithm for 

cloud computing. They used global and local schedulers to assign tasks to nodes and 

transformed data centers into virtual clusters to handle specific job categories. The proposed 

strategy improved QoS objective attainment, and the authors suggested applying the same tactic 

in fog conditions to reduce data extraction costs. 

 

In 2016, Deng et al. [17] presented a problem to optimize workload distribution between fog 

and Cloud, balancing power usage and time constraints. They divided the issue into a primary 

issue and three related to different subsystems. In subsystems for FC, generalized benders 

deconstruction at the CC level, the Hungarian method for dispatching communication latency 

minimization, and convex optimization methods were used. They demonstrated how FC may 

improve CC performance by making minor resource sacrifices via simulations and numerical 

implementation. The authors' attention has only been on centralized optimization. It included 

communication and information exchange costs. The proposed system comprised local and 

global schedulers to accommodate centralized and decentralized scheduling strategies. 

Moreover, these scheduling mechanisms helped lower the amount of communication overhead. 

 

In 2017, Thapa et al. [56] The team used Bayesian learning automata to assign jobs to the FE 

more accurately and efficiently. They applied a game-theoretic strategy to regulate clients' 

energy usage within power usage limitations set by energy providers. The proposed technique 

utilized learning automata to meet the power budget specified by the subnet while staying 

within the Nash Equilibrium (NE) point. The system categorized nodes based on available 

resources and job requirements to schedule resources more fairly. 
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2017 Azimi et al. [57] proposed a hierarchical computer architecture based on an IoT-based 

healthcare monitoring system that solves Cloud and Fog computing challenges. It uses closed-

loop management to modify the platform based on an individual's health and ML-based data 

analytics. Despite a drawback with specific learning algorithms, the HICH model can use 

alternate algorithms.      

 

In 2018, Mahmud et al. [58] presented a latency-sensitive policy to control the applications in 

FEs. Using this approach, they hoped to assure the best possible resource utilization in a foggy 

environment while increasing service delivery deadline QoS. For management and forwarding, 

they each defined two algorithms. They demonstrated the performance enhancement compared 

to other counterpart solutions using simulated findings. The authors' solution did not support 

non-deterministic latency-aware applications and run-time adjustments. Clusters built on a 

resource orientation can tackle this problem in their suggested structure. 

  

In 2018, Wan et al. [59] built an energy-efficient load balancing and scheduling Fog-based 

model for an intelligent factory. The authors devised an energy consumption model to 

accomplish their purpose. For the best outcomes, they applied the enhanced particle swarm 

optimization algorithm. Finally, distributed scheduling of manufacturing clusters was 

accomplished using a multi-agent system. Simulation results in the targeted area demonstrated 

the best scheduling and load balancing. 

 

2018 Soualhia et al. [60] offered a Hadoop scheduling framework that used data from a Cloud 

environment to organize tasks dynamically. The framework relies on policies generated by the 

Markovian decision-making process and the predictions provided by machine learning 

algorithms. Unlike the traditional static heartbeat-based fault diagnosis Hadoop uses, this 

framework uses an adaptive failure-aware Hadoop scheduler named ATLAS+. This scheduler 

can dynamically identify job tracker faults. The results of the experiments demonstrate that 

ATLAS+ significantly reduced the number of failed jobs, JET, CPU, and memory utilization. 

The supervised training process for the prediction models was the only area on which the 

authors of this study concentrated. 

 

In 2018, Zhu et al. [61] proposed a Q-learning-based transmission scheduling system that can 

perform best when broadcasting packets across multiple channels. They used a Markov decision 
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process to create a model that depicted the evolution of the system's states. The relay was 

assisted in choosing the optimum course of action by applying the q-learning algorithm, a 

reinforcement learning technique. The authors used multilayer auto-encoder deep learning 

algorithms to map states and related activities. Studies showed that this proposed model could 

transport packets while consuming less power than competing methods. Although the 

scheduling approach in this case is straightforward, it serves only one relay.   

 

In 2018, Wei et al. [62] proposed a job scheduling framework that considers QoS. A vital 

feature of this approach is its job scheduler, which uses deep reinforcement learning to select 

the job-VM mapping for online requests. The job scheduler used their expertise to make 

decisions; no prior information was required. Testing showed that the recommended framework 

handled different load scenarios assured QoS achievement, and decreased the average job 

response time. The approach proposed by the authors must be altered to handle the complex 

Cloud environments. Additional factors like VM failures, elastic resource supply, and inter-job 

interactions had to be considered using this technique. Through the division of scheduling into 

two layers, the proposed approach increases flexibility. 

 

In 2019, Chen et al. [63] evaluated the effectiveness of road safety apps using perception-

action time (PRT) in a study conducted by the authors of PRT. They used a virtualization 

strategy called Fog and networking technology based on information to reduce the PRT. A deep 

reinforcement learning approach was utilized to develop an online work scheduling system with 

the most efficient resource allocation. The experimental results were compared to traditional 

methods, and it was demonstrated that there was a significant reduction in PRT. 

 

In 2019, Zhu et al. [64] implemented a design for Quality of Service (QoS) assurance that 

considered high data transfer rates, extensive connectivity, and exceptionally low latency. 

Standard programming techniques were found to be inadequate for making scheduling 

decisions due to increased complexity, dynamic network behavior, and a lack of quantifiable 

correlations between network events. They used the decision tree method to test the proposed 

architecture and found that it could accurately and independently predict upcoming QoS-related 

abnormalities. 
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In 2019, Henri and Lu [65] utilized random forests, support vector machines, and neural 

networks for scheduling and predicting logistic regression. This framework was developed for 

integrated PV and battery energy storage systems that model-based controllers controlled. The 

research suggested using supervised ML to plan and predict real-time processes. ML techniques 

enhanced the efficiency of model-based control mechanisms while lowering the computational 

cost, as shown by simulation results. Enhancing the deterioration model and considering the 

non-linear charging and discharging patterns is essential. 

 

In 2019, Zhao et al. [66] conducted a survey that combined software-defined networking 

(SDN) architecture, machine learning (ML), and artificial intelligence (AI). They discussed 

potential advancements in ML algorithms and SDN architecture to create more intelligent, 

active, and personalized networking models. 

  

In 2019, Amiri and Gündüz [67] discussed assigning duties to various workers through a 

master. Their research sought to illustrate how computing load affected overall completion 

time. Utilizing the jobs assigned to each worker and their execution schedule, they suggested 

two execution scheduling systems. Compared to existing systems, experimental findings 

obtained on an Amazon EC2 cluster have demonstrated a discernible reduction in overall 

completion time and improved efficiency. 

 

Table 2.3: Summary of literature survey for dual BBF using ML techniques and QoS parameters. 

Ref. 

No. 

Title Year Published 

In 

Summary Limitations 

[16] Scheduling of 

big data 

applications on 

distributed 

Cloud based on 

QoS parameters 

2015 Schedulin

g of big 

data 

applicatio

ns on 

distributed 

Cloud 

based on 

QoS 

parameter

s 

A two-layer 

scheduling 

structure and a 

QoS-conscious 

scheduling method. 

They employed two 

schedulers: a global 

scheduler and a 

local scheduler. 

1. Missing brokering, 2. 

Missing hierarchical 

distribution of load 

balancing jobs, 3.No 

ML technique is used, 

4.No clustering of jobs 

and resources   
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[17] Optimal 

Workload 

Allocation in 

Fog-Cloud 

Computing 

Toward 

Balanced Delay 

and Power 

Consumption 

2018 IEEE 

Internet of 

Things 

Maintaining a 

trade-off between 

power and time 

consumption is 

challenging while 

optimally 

distributing the 

workload across 

Fog and Cloud. 

1. Missing brokering, 2. 

Missing hierarchical 

distribution of load 

balancing jobs, 3. QoS 

parameters not 

considered, 4.No ML 

technique is used, 5.No 

clustering of jobs and 

resources   

[56] A Learning 

Automaton-

Based Scheme 

for Scheduling 

Domestic 

Shiftable Loads 

in Smart Grids 

2018 IEEE 

Access 

A game-theoretic 

method increases 

the efficiency and 

precision of job 

requests sent to the 

FE for a Smart Grid 

subnet on a local 

area network with a 

single power source 

and numerous 

users. 

1. Missing brokering, 2. 

Missing hierarchical 

distribution of load 

balancing jobs, 3. QoS 

parameters not 

considered, 4.No ML 

technique is used, 5.No 

clustering of jobs and 

resources   

[57] HiCH: 

Hierarchical 

Fog-Assisted 

Computing 

Architecture for 

Healthcare IoT  

2018 ACM 

Transactio

ns on 

Embedded 

Computin

g Systems 

A computational 

architecture for 

dealing with many 

operational 

problems 

connected to 

Clouds and Fog, 

such as 

accessibility, 

promptness, 

dependability, 

accuracy, and 

adaptability 

1. Missing brokering, 2. 

Missing hierarchical 

distribution of load 

balancing jobs, 3. No 

ML technique is used, 

4.No clustering of jobs 

and resources   

[58] Latency-Aware 

Application 

Module 

Management for 

Fog Computing 

Environments 

2018 ACM 

Transactio

ns on 

Internet 

Technolog

y 

FEs must follow a 

latency-sensitive 

policy when 

managing the 

application 

modules. 

1. Missing brokering, 2. 

Missing hierarchical 

distribution of load 

balancing jobs, 3. QoS 

parameters not 

considered, 4.No ML 

technique is used, 5.No 

clustering of jobs and 

resources   

[59] Fog Computing 

for Energy-

Aware Load 

Balancing and 

2018 IEEE 

Transactio

ns On 

Industrial 

An energy-efficient 

load balancing as 

well as scheduling 

Fog-based 

1. Missing brokering, 2. 

Missing hierarchical 

distribution of load 

balancing jobs, 3. QoS 
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Scheduling in 

Smart Factory 

Informatic

s 

approach for a 

smart factory 

parameters not 

considered, 4.No ML 

technique is used, 5.No 

clustering of jobs and 

resources   

[60] A Dynamic and 

Failure-Aware 

Task Scheduling 

Framework for 

Hadoop  

2018 IEEE 

Transactio

ns on 

Cloud 

Computin

g 

A system that is 

associated with 

both the Hadoop 

scheduler and uses 

the information 

gathered to 

organize the jobs 

for a Cloud 

environment 

dynamically 

1. Missing brokering, 2. 

Missing hierarchical 

distribution of load 

balancing tasks, 3.QoS 

parameters not 

considered, 4.No 

clustering of jobs and 

resources   

[61] A New Deep-Q-

Learning-Based 

Transmission 

Scheduling 

Mechanism for 

the Cognitive 

Internet of 

Things  

2018 IEEE 

Internet of 

Things 

Journal 

A technique for 

scheduling 

transmissions 

based on Q learning 

ensured the highest 

throughput when 

sending packets via 

several channels. 

1. Missing brokering, 2. 

Missing hierarchical 

distribution of load 

balancing tasks, 3. QoS 

parameters not 

considered, 4. No 

clustering of jobs and 

resources   

[62] DRL-

Scheduling: 

An Intelligent 

QoS-Aware 

Job 

Scheduling 

Framework for 

Applications in 

Clouds  

2018 IEEE 

Access 

A framework for 

managing jobs 

using QoS. The 

framework's main 

component was an 

algorithm for 

scheduling jobs 

based on deep 

reinforcement 

learning. 

1. Missing brokering, 2. 

Missing hierarchical 

distribution of load 

balancing tasks, 3. No 

clustering of jobs and 

resources   

[63] A machine-

learning-based 

time-

constrained 

resource 

allocation 

scheme for 

vehicular Fog 

computing  

2018 China 

Communi

cations 

A metric to assess 

the effectiveness of 

apps for improving 

road safety that 

combines 

information-based 

networking 

technologies with a 

Fog virtualization 

strategy to cut 

down on PRT 

authors. 

1. Missing brokering, 2. 

Missing hierarchical 

distribution of load 

balancing tasks, 3. QoS 

parameters not 

considered, 4.No ML 

technique is used, 5.No 

clustering of jobs and 

resources   
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[64] A Supervised 

Learning Based 

QoS Assurance 

Architecture for 

5G Networks  

2018 IEEE 

Access 

A QoS assurance 

structure that takes 

into account 

widespread 

connectivity, 

extremely low 

latency, and high-

speed data transfer 

rates as QoS 

parameters 

1. Missing brokering, 2. 

Missing hierarchical 

distribution of load 

balancing tasks, 3. No 

ML technique is used, 

5.No clustering of jobs 

and resources   

[65] A Supervised 

Machine 

Learning 

Approach to 

Control Energy 

Storage Devices  

2019 IEEE 

Transactio

ns on 

Smart 

Grid 

A methodology 

utilizing logistic 

regression, support 

vector machines, 

neural networks, 

and random forest 

algorithms for 

forecasting and 

scheduling 

1. Missing brokering, 2. 

Missing hierarchical 

distribution of load 

balancing tasks, 3. QoS 

parameters not 

considered, 4. No 

clustering of jobs and 

resources   

[66] A Survey of 

Networking 

Applications 

Applying the 

Software-

Defined 

Networking 

Concept Based 

on Machine 

Learning 

2019 IEEE 

Access 

A study combining 

software-defined 

networking (SDN) 

architecture, 

machine learning, 

and artificial 

intelligence 

1. Missing brokering, 2. 

Missing hierarchical 

distribution of load 

balancing tasks, 3. QoS 

parameters not 

considered, 4. No 

clustering of jobs and 

resources   

[67] Computation 

Scheduling for 

Distributed 

Machine 

Learning With 

Straggling 

Workers  

2019 IEEE 

Transactio

ns on 

Signal 

Processing 

Showed the 

cumulative 

completion time as 

a function of 

computational load 

through the master-

controlled 

allocation of tasks 

among numerous 

workers. 

1. Missing brokering, 2. 

Missing hierarchical 

distribution of load 

balancing tasks, 3. QoS 

parameters not 

considered, 4.No ML 

technique is used, 5.No 

clustering of jobs and 

resources   

 

2.5 Multilevel Broker-based Framework for Improved Geographic 

Coverage of Fog Resources 

This section discusses the existing solutions proposed by the researchers for job scheduling in 

FC environments using ML techniques and geographic coverage.  
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In 2016, Zeng et al. [68] created a non-linear, mixed-integer programming problem to increase 

work scheduling and resource management effectiveness, focusing on reducing job completion 

time. They concentrated on balancing the workload, I/O interruptions, and putting job images 

on the storage servers as their three main concerns in this context. The authors provided a 

computation-efficient solution to this problem's high level of complexity and carried out 

comprehensive simulation-based research to confirm it. 

 

In 2017, Sthapit et al. [69] discovered ways to offload the computationally demanding 

algorithms without Clouds or Fog. They suggested a different approach using a network of 

queues and linear programming to make scheduling decisions. Their suggested algorithm might 

increase the system's efficiency but at an additional expense. They suggested a revolutionary 

algorithm that, while consuming a little more energy, would increase the system's overall 

effectiveness. Whenever the job request flow is high, the proactive centralized strategy provides 

the optimum performance and energy compromise, whereas the reactive scattered approach 

generates successful outcomes whenever the job request flow is low. 

 

In 2017, Rahbari et al. [70] developed a hyper-heuristic, security-aware technique based on 

data mining to schedule jobs on FNs. The authors have considered three factors, including 

authentication, integrity, and confidentiality, to preserve the security of Fog devices. They 

created an objective function considering BW, CPU, and security overheads. The results of the 

experiments revealed a considerable reduction in cost and average energy consumption 

compared to counterpart heuristic algorithms like Particle Swarm Optimization, Ant Colony 

Optimization, and Simulated Annealing. 

 

In 2017, Chen et al. [71] devised an architecture for task classification and resource scheduling 

for information-centric IoT applications in 2017. The architecture enabled optimal dispatching 

of distributed resources at the least expensive rate, facilitating the achievement of the 

application's QoS in a Cloud-FC context. The proposed solution also effectively reduced the 

load on CC by distributing it between FEs and the Cloud. 

 

In 2018, Yang et al. [72] developed the Delay and Energy-Balanced Task Scheduling (DEBTS) 

algorithm to balance performance indicators efficiently. They recommended an effective 
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control parameter to explain the tradeoff connection during the runtime procedure of task 

scheduling. Simulations have shown that DEBTS may produce task scheduling outcomes with 

significantly better delay-energy performance. 

 

In 2018, Yin et al. [73] created a reallocation technique and a task scheduling model that 

considered containers' roles, ensuring FNs would have fewer delays and better concurrency. 

The authors created an algorithm to accomplish the goals using container properties. Through 

simulated trials, they showed improved results regarding the reduced delay and better 

concurrency. 

 

In 2019, Casquero et al. [74] proposed a multi-agent system (MAS) and an application 

orchestrator to create a solution for Fog-in-the-loop applications. The authors devised a bespoke 

scheduler built on the MAS to divide the scheduling duties among the available FNs. The 

authors found during the experiment that the performance of the proposed method compared to 

that of the K8s default scheduler. 

 

In 2019, Zhang et al. [75] devised a broad analytics-based task scheduling model that 

categorizes FNs into two groups: task nodes (TN) and voluntary nodes (VN). They suggested 

an offloading approach that would enable VNs to assist in completing duties at their 

neighboring TNs with the most minor delay. The simulation results demonstrated that the 

suggested technique can effectively provide the ideal set of helper nodes to neighboring nodes, 

minimizing the overall job processing delay.  VN produced better results in voluntary mode 

than offloading in command mode. 

 

In 2019, Zhu et al. [76] proposed a novel approach for task distribution in vehicle fuel cells 

using binary particle swarm optimization and optimization based on linear programming. Their 

method suggested a dynamic, event-triggered paradigm to minimize quality loss and reduce 

average latency. As per the results, the proposed plan reduced quality loss by up to 56% and 

average latency by up to 27%, making it a latency-sensitive and quality-optimized scheduling 

solution for vehicle fuel cells. 

 

In 2019, Abedin et al. [77] solved a load balancing issue for narrowband IoT (NB-IoT) in Fog 

computing (FC) networks using a network of queues and a bankruptcy game model. They 
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scheduled uplinks with a Shapley value-based policy and introduced a less complex method, 

GITS. They balanced the load using the Hitchcock-Koopman transportation problem. 

 

In 2019, Sthapit et al. [78] offered a method for mobile app offloading in the absence of Cloud 

or Fog. Their approach utilizes a network of queues and linear programming to facilitate 

scheduling decisions. After conducting simulated experiments on various centralized and 

distributed algorithms, it was discovered that the system's overall effectiveness may be 

improved by increasing energy consumption. 

 

In 2019, Stavrinides and Karatza [79] suggested a method for scheduling that focuses on the 

efficient use of Cloud resources for real-time applications in FEs. The authors studied many 

aspects influencing these parameters to develop the suggested approach based on the 

compromise between performance and cost. They compared their job scheduling heuristic to a 

baseline strategy utilizing Fog resources under various amounts of workflow input data. 

 

In 2019, Benblidia et al. [80] introduced a linguistic and fuzzy quantified approach for ranking 

FNs based on their level of satisfaction. The research team collected user preferences and FN 

features and utilized two parameters, namely the least satisfactory proportion (LSP) and the 

most significant satisfactory proportion (GSP), to differentiate the similarities in their proposed 

method. Through the results of their experiments, they demonstrated higher user preference 

satisfaction. Additionally, their method has produced a compromise between the execution 

delay of the parameter, average user satisfaction, and energy usage.  

 

Table 2.4: Summary of literature survey for multilevel BBF for better geographic coverage of Fog resources. 

Ref

No. 

Title Year Published 

In 

Summary Limitations 

[68] Joint 

Optimization of 

Task Scheduling 

and Image 

Placement in 

Fog Computing 

Supported 

Software-

Defined 

2016 IEEE 

Transaction

s on 

Computers 

An issue with 

mixed-integer non-

linear 

programming to 

increase job 

scheduling and 

resource 

management 

effectiveness while 

1. Missing brokering, 

2. Missing hierarchical 

distribution of load 

balancing tasks, 3. 

QoS parameters not 

considered, 4.No ML 

technique is used, 

5.No clustering of jobs 

and resources   
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Embedded 

System  

reducing task 

completion time 

[69] Distributed 

computational 

load balancing 

for real-time 

applications  

2017 2017 25th 

European 

Signal 

Processing 

Conference 

(EUSIPCO) 

A solution in which 

scheduling 

decisions are made 

by linear 

programming and a 

network of queues 

1. Missing brokering, 

2. Missing hierarchical 

distribution of load 

balancing tasks, 3. 

QoS parameters not 

considered, 4. No 

clustering of jobs and 

resources   

[70] Security-aware 

scheduling in 

Fog computing 

by the hyper-

heuristic 

algorithm  

2017 2017 3rd 

Iranian 

Conference 

on 

Intelligent 

Systems 

and Signal 

Processing 

(ICSPIS) 

A data mining-

based security-

aware hyper-

heuristic algorithm 

to schedule the jobs 

on Fog devices 

1. Missing brokering, 

2.  Missing 

hierarchical 

distribution of load 

balancing tasks, 3. 

QoS parameters not 

considered, 4.No ML 

technique is used, 

5.No clustering of jobs 

and resources   

[71] Cloud-Fog 

computing for 

information-

centric Internet-

of-Things 

applications  

2017 2017 

Internationa

l 

Conference 

on Applied 

System 

Innovation 

(ICASI) 

Using task 

categorization and 

resource 

scheduling 

features, a 

scheduling 

structure for 

information-centric 

IoT applications 

1. Missing brokering, 

2. Missing hierarchical 

distribution of load 

balancing tasks, 3. 

QoS parameters not 

considered, 4.No ML 

technique is used 

[72] DEBTS: Delay 

Energy 

Balanced Task 

Scheduling in 

Homogeneous 

Fog Networks  

2018 IEEE 

Internet of 

Things 

Journal 

An energy and 

delay-neutral task 

scheduling 

(DEBTS) method 

balances the 

performance 

indicators 

efficiently. 

1. Missing brokering, 

2. Missing hierarchical 

distribution of load 

balancing tasks, 3. 

QoS parameters not 

considered, 4.No ML 

technique is used, 

5.No clustering of jobs 

and resources   

[73] Tasks 

Scheduling and 

Resource 

Allocation in 

Fog Computing 

Based on 

2018 IEEE 

Transaction

s on 

Industrial 

Informatics 

A task scheduling 

model and a 

reallocation 

mechanism that 

considered the role 

of containers 

1. Missing brokering, 

2. Missing hierarchical 

distribution of load 

balancing tasks, 3. No 

ML technique is used, 
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Containers for 

Smart 

Manufacturing  

ensured reduced 

delays as well as 

improved 

concurrency for 

FNs 

4.No clustering of jobs 

and resources   

[74] Distributed 

scheduling in 

Kubernetes 

based on MAS 

for Fog-in-the-

loop 

applications 

2019 IEEE 

Internationa

l 

Conference 

on 

Emerging 

Technologi

es and 

Factory 

Automation 

(ETFA) 

A system for Fog-

in-the-loop 

applications by 

integrating a model 

multi-agent system 

(MAS) with a 

containerized 

application 

orchestrator 

1. Missing brokering, 

2. Missing hierarchical 

distribution of load 

balancing tasks, 3. 

QoS parameters not 

considered, 4.No ML 

technique is used, 

5.No clustering of jobs 

and resources   

[75] DOTS: Delay-

Optimal Task 

Scheduling 

Among 

Voluntary 

Nodes in Fog 

Networks  

2019 IEEE 

Internet of 

Things 

Journal 

A general 

analytical model of 

task scheduling that 

divides FNs into 

two categories, 

which are voluntary 

nodes (VN) and 

task nodes (TN) 

1. Missing brokering, 

2. Missing hierarchical 

distribution of load 

balancing tasks, 3. 

QoS parameters not 

considered, 4.No ML 

technique is used  

[76] Folo: Latency 

and Quality 

Optimized Task 

Allocation in 

Vehicular Fog 

Computing  

2019 IEEE 

Internet of 

Things 

Journal 

A dynamic, event-

triggered 

framework for task 

allocation using 

linear 

programming-

based optimization 

and binary particle 

swarm 

optimization 

1. Missing brokering, 

2. Missing hierarchical 

distribution of load 

balancing tasks, 3. 

QoS parameters not 

considered, 4.No ML 

technique is used, 

5.No clustering of jobs 

and resources   

[77] Fog Load 

Balancing for 

Massive 

Machine Type 

Communication

s: A Game and 

Transport 

Theoretic 

Approach 

2019 IEEE 

Access 

A Fog load 

balancing problem 

for narrowband IoT 

(NB-IoT) 

technology, aiming 

to minimize the 

cost of load 

balancing in Fog 

computing 

networks 

1. Missing brokering, 

2. Missing hierarchical 

distribution of load 

balancing tasks, 3. No 

ML technique is used, 

4.No clustering of jobs 

and resources   
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[78] Computational 

Load Balancing 

on the Edge in 

Absence of 

Cloud and Fog  

2019 IEEE 

Transaction

s on Mobile 

Computing 

A solution to 

offload the 

applications from 

mobile devices 

when Cloud or Fog 

was not available 

1. Missing brokering, 

2. Missing hierarchical 

distribution of load 

balancing tasks, 3. 

QoS parameters not 

considered, 4.No ML 

technique is used, 

5.No clustering of jobs 

and resources   

[79] Cost-Effective 

Utilization of 

Complementary 

Cloud 

Resources for 

the Scheduling 

of Real-Time 

Workflow 

Applications in a 

Fog 

Environment 

2019 2019 7th 

Internationa

l 

Conference 

on Future 

Internet of 

Things and 

Cloud 

(FiCloud) 

A scheduling 

approach for real-

time workflow 

applications in FEs, 

which focused on 

the utilization of 

complementary 

Cloud resources at 

reduced costs 

1. Missing brokering, 

2.   Missing 

hierarchical 

distribution of load 

balancing tasks, 3. No 

ML technique is used, 

4.No clustering of jobs 

and resources   

[80] Ranking Fog 

Nodes for Tasks 

Scheduling in 

Fog-Cloud 

Environments: 

A Fuzzy Logic 

Approach  

2019 2019 15th 

Internationa

l Wireless 

Communica

tions & 

Mobile 

Computing 

Conference 

(IWCMC) 

A linguistic and 

fuzzy quantified 

proposition for 

ranking the FNs 

from most 

satisfactory to least 

satisfactory ranking 

1. Missing brokering, 

2. Missing hierarchical 

distribution of load 

balancing tasks, 3. 

QoS parameters not 

considered, 4. No 

clustering of jobs and 

resources   

 

2.6 Summary 

As seen in this chapter, job scheduling is being researched extensively. It is crucial to 

thoughtfully, effectively, and promptly assign jobs to the appropriate FNs to obtain the optimal 

benefits of FC. Our work mainly focuses on improving the performance of CC and FC 

environments by efficient load balancing and job scheduling.  

 

This thesis recommends combining centralized and decentralized load control mechanisms 

with the autonomous behavior of load-balancing entities using SAs. The aim is to obtain the 

advantages of PC resources while reducing the challenges of managing large volumes of 
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computing nodes. After going through the existing literature, to our knowledge, none of the 

researchers have combined the concept of SAs and hierarchical brokers.  

 

Further segregating the Fog resources as available and mapping the jobs to the most suitable 

set of resources further improves their performance and user satisfaction. To our knowledge, 

none of the researchers have proposed the concept of resource segregation and the 

implementation of brokers in a Fog environment. A combination of methodologies such as 

Naïve Bayes and SOM for selecting an FE and FN through a hierarchical arrangement of 

brokers is another novelty of our work.    

 

This thesis takes care of the following points while implementing the proposed solutions:  

1. Reduced search space in PC 

2. Utilizing the concept of brokers-based service orchestration 

3. Autonomous behavior of the load balancing and job scheduling components 

4. ML-based classification of resources and mapping of IoT application jobs 

5. Reduce the congestion on Job scheduling components 

6. Global geographical coverage of Fog resources  

 

To our knowledge, none of the existing job scheduling solutions address all these problems 

together. The novelty of our solutions is the selection of performance parameters, the 

combination of multiple technologies, and their sequencing in the implemented experimental 

setups to achieve the desired results.  
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CHAPTER 3 

PARTITIONED PUBLIC CLOUD 

 

3.1 Introduction 

CC empowers resource flexibility with minimal upfront costs, facilitating scalability and cost-

effectiveness [48] [81]. According to CISCO, Cloud traffic will reach 14.1 ZB annually soon 

[82]. The PC is a shared space for users to outsource their jobs [83], where Load-balancing 

approaches are required to handle under loaded and overloaded resources at the available 

servers [84]–[87].  Cloud Partitioning is one of the commonly used methods for load balancing 

in the PC [46], [49], [53]. This chapter discusses a software agent-based load-balancing 

framework for partitioned public Cloud. 

 

3.2 Background 

The following sections introduce the concepts of PC, PPC, and SA, which are used later in this 

chapter to implement the software agent-based load-balancing framework for partitioned public 

Cloud. 

 

3.2.1 Public Cloud (PC) 

PC describes a category of online computer services provided by independent vendors, offering 

the feature of pay-as-you-go to access computing resources, including VNs, storage, processing 

power, cutting-edge technologies like artificial intelligence and ML, and hosting websites and 

applications for individuals and businesses. Well-known PC providers are Google Cloud 

Platform (GCP), Microsoft Azure, and Amazon Web Services (AWS). Key features of a PC are 

its accessibility, scalability, multi-tenancy, cost benefits, and well-managed services [14], [15].   

 

3.2.2 Partitioned of Public Cloud (PPC) 

A PC has nodes spread across various geographic locations [14], causing challenges such as 

complex management, resource allocation, optimization, cost management, data management, 

and latency management. Figure 3.1 compares various Cloud types and justifies the existence 

of these issues in the PC environment.   
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      Private Cloud         Hybrid Cloud          Public Cloud  

 

 

 

 

 

 

 

 

Figure 3.1: Size-wise comparison of Cloud types.  

 

To simplify it, a PC is geographically partitioned to manage its massive size, where each 

partition is handled separately in the load-balancing process . Additionally, the partitions are 

dynamic; that is, partitions can be added or removed depending on the status report maintained 

by the Partition Manager and Controller Broker [15].  

 

Figure 3.2: Geographically partitioned public Cloud. 

 

A Cloud can be divided into n number of partitions, each with a set of m number of nodes, 

containing the physical resources covered under that partition. Once the framework has 

partitioned the PC geographically, each partition manages its resources, clients, and requests 

separately and independently, reducing search space and resolving PC management issues.    

 

 

• Small Scale 

• Limited Resources 

and Services  

• Dedicated to a single 

organization 

• On-Premises or 

private data center 

• Medium Scale 

• Combination of 

public and private 

Cloud environments  

• Flexible, offers 

resource allocation 

and scalability 

• On-Premises or 

private data center 

 

• Large Scale 

• Vast Resources and 

Services  

• Shared by multiple 

users globally 

• Scalable, pay-as-

you-go model 
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3.2.3 Software Agents (SA) 

Intelligent agents, or SAs, are self-governing, goal-oriented entities that can act on behalf of 

entities like users or other systems. These agents work in a given environment, collecting data, 

coming to conclusions, and acting to accomplish their goals [88]. An SA's behavior is 

contingent upon its mental state and the conditions of its surroundings [89]. SAs can 

communicate with other agents by sending and receiving messages [88]. Primarily, the self-

adaptive behavior of SAs makes them usable in load balancing. An SA-based system can 

manage changes dynamically while maintaining reliability [90]–[92].  

 

The use of SAs in load balancing framework adds the following capabilities to it:  

• the capacity to detect, diagnose, and assess shifts in the operating environment  

• the capacity to evaluate its behavior based on environmental shifts;  

• the capacity to modify its behavior in response to new shifts and  

• the capacity to change its internal and external behavior intentionally and automatically 

 

3.3 Proposed Load Balancing Framework in Partitioned Public Cloud 

This section proposes a software-agent-based framework to perform the load balancing within 

and across the geographically partitioned public Cloud, intended to improve the MET, TET, 

and AET. Compared to traditional, primary load-balancing methodologies such as FCFS and 

SJF [93], [94]. The proposed framework determines if applying SAs as brokers can improve 

the performance parameters in a PPC. The framework accepts the client requests as input and 

allocates them to the suitable node, which can optimally improve the performance parameters.  

  

3.3.1 Architecture  

The brokers in this architecture are practical representations of the SAs: 

• Client Agent    =>  Client  

• Partition Agent   =>  Partition Broker (PB)  

• Controller Agent  =>  Controller Broker (CCB) 

 

The major components in the architecture are: 

• Client: The primary duty of the client is to submit requests, along with the required set 

of resources, to a Partition Broker (PB).  
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• PB: Each partition has a local PB to receive the client requests. PB records the load status 

of all the nodes inside its partition and shares these details with the Central Controller 

Broker (CCB) whenever required.   

 

• CCB: CCB interacts with all the PBs to collect the nodes' load status. CCB is invoked 

for load balancing across the partitions. 

 

• Node: Nodes contain the physical resources, such as storage, computing capacity, 

graphical resources, memory, and other such resources, to be utilized for processing user 

requests. Each partition is assumed to have m nodes (n1, n2, n3… nm).  

  

 

Figure 3.3: Architecture: Framework for load balancing in PPC. 

 

3.3.2 Application job distribution across Cloud and Fog Layer 

Fog offers various data services in an IoT setup, including filtering, segregating, aggregating, 

data encryption, and caching [95]–[99]. An FE keeps all job requests that are latency-sensitive. 

However, a Cloud system can manage infrequent, time-consuming, and resource-intensive jobs. 

The proposed framework performs load balancing on a Cloud. 
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Figure 3.4: Job Segregation: Cloud vs Fog.  

 

3.3.3 Assessing the Load Status of Partitions and Nodes 

The number of jobs allocated to a node at a given time is known as its workload. The load status 

of the Cloud includes the load status of partitions and their nodes and is used to determine the 

availability of resources for job allocation. The system needs to assess the availability at two 

levels listed below: 

a) Choosing the Pi partition in which a node can be searched. 

b) Finding a node Nj to which a job can be allocated.  

 

The proposed framework defines four load states, which are:  

 idle,  

 normal,  

 overloaded and  

 full  

 

These states are determined based on the static threshold values pre-defined for the partitions 

by the CCB and the nodes by the PBs. At any given instance of time, the load state of the 

partition depends upon the load state of its nodes. Assuming that there are i number of partitions, 

j number of nodes, given below is the formulation of these load states: 

1. Load State=’idle’  

a) Node State: 

A jth node Nj is considered to be in an idle state if resources available with jth node 

Rn,j are beyond a predefined threshold tn,idle. i.e. 

Nj=’idle’   IF   Rn, j > tn,idle      Eq. 3.1 
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b) Partition State: 

An ith partition Pi is considered to be in idle state if the number of idle nodes in that 

partition are beyond a predefined threshold tp,idle, i.e.,   

Pi= ‘idle’ IF Ci>tp,idle      Eq. 3.2 

where Ci is no. of idle nodes in a partition.  

 

2. Load State=’normal’  

a) Node State: 

A jth node Nj is considered to be in a normal state, if resources available with jth node 

Rn,j are beyond a predefined threshold tn,normal. i.e. 

Nj=’normal’   IF   Rn, j > tn,normal     Eq. 3.3 

b) Partition State: 

An ith partition Pi is considered to be in a normal state if the number of normal nodes 

in that partition are beyond a predefined threshold tp,normal, i.e.   

   Pi= ‘normal’  IF  Ci>tp,normal     Eq. 3.4 

where Ci is no. of normal nodes in a partition.  

 

3. Load State=’overload’ 

a) Node State: 

A jth node Nj is considered to be in an overloaded state, if resources available with jth 

node Rn,j are beyond a predefined threshold tn,ovld. i.e. 

Nj=’overloaded’   IF   Rn, j > tn,ovld     Eq. 3.5 

 

b) Partition State: 

An ith partition Pi is considered to be in an overloaded state if the number of 

overloaded nodes in that partition are beyond a predefined threshold tp,ovld i.e.   

   Pi= ‘overloaded’  IF  Ci>tp,ovld     Eq. 3.6 

where Ci is the number of ovld nodes in a partition.  

 

4. Load State=’full’ 

An ith partition Pi is considered to be in full load state if the number of overloaded 

nodes Ci in that partition is equal to j, i.e.,       

Pi=’full’ IF Ci=j      Eq. 3.7 
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where j is the total number of nodes in that partition.   

 

3.3.4 Job Assignment 

Following this load status review, three outcomes are possible:  

• Case 1: If a single node Nj is available with an idle or normal state, then allocate the job 

to Nj and update the load status of the partition ‘Sp, i’ and the resources at node Rn, j  

• Case 2: If more than one node is available with an idle or normal state, then make a list 

of all these nodes as Ncapable[]  

• Case 3: If No node is available with sufficient resources, PB transfers the request to the 

CCB to search for a node in other partitions.  

 

The CCB calls all other partition's PBs and adds the partition's ID to a list of Pcapable[], capable 

partitions whenever it discovers a Pnormal or Pidle load state. A similar process is followed to 

search a node Nj in all the partitions in Pcapable[]. 

 

3.3.5 Complexity Analysis  

Time complexity varies according to the stages of the process. When the job was initially 

submitted, just one node's availability status was assessed. Consequently, the complexity of this 

phase O (1). The complexity class O (N) is applicable in all other scenarios, and the value of N 

varies according to the number of nodes in a partition and their RAV.  Table 3.1 compiles the 

complexity for different possible scenarios. P denotes a Partition, and N is a Node in Table 3.1. 

The number of partitions and nodes within each partition impacts the overall complexity.  

 

Table 3.1:  Complexity Analysis  
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3.4 Experimental Results and Discussion 

This section presents experimental results and their discussion. This technique is implemented 

in CloudSim.  

 

The AET, MET, and TET are compared with FCFS and SJF algorithms within the same 

setup to assess the performance of the proposed framework. Each algorithm is run five times as 

part of the experiment. Table 3.3 details the experimental setup with the heterogeneous sizes of 

VMs and jobs.  

Table 3.2: Experimental setup 

 
 

All these parameters are considered to be the basic evaluation parameters because the users 

of DS, such as Cloud or Fog, are very particular towards the time-based parameters. The 

execution and response time of the application jobs are significant and helpful in assessing a 

site's performance. Other parameters, such as accuracy, reliability, and QoSs, are considered to 

be taken care of by default. However, time-oriented parameters require experimentation to 

devise and follow load-balancing schemes that offer better results in terms of such parameters. 

According to the results, the proposed framework performs better than the FCFS algorithm, 

while the SJF algorithm performs well overall. Figure 3.5 compares MET  [100] and [101]. 

 

 

Figure 3.5: MET Comparison 
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Figures 3.6 and 3.7 compare AET and TET.  

 

 

Figure 3.6: TET Comparison 

 

 

Figure 3.7: AET Comparison 

 

Table 3.3: Comparison with other approaches. 

Sr. 

No. 

Title Goal Parameters 

1  [93] Optimal Scheduling Approach Cost, degree of imbalance, 

makespan, and throughput 

2 [94] Comparison between space-shared 

scheduling policy and time-shared 

scheduling policy to find the difference 

between the actual execution time of tasks  

The ratio of actual and estimated 

execution time 

3 Proposed 

Framework  

Load balancing in PPC using SAs AET, MET, and TET 
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3.5    Summary 

The proposed framework implements a Software Agent-based load-balancing framework for 

partitioned public Cloud. Experimental results show a significant decline in the time-based 

performance parameters such as AET, MET, and TET of the workload at a given time. The 

proposed framework suggests the preliminary segregation of the jobs between the CC and FC 

by serving all the latency-sensitive and frequent jobs at the Fog and all the resource-demanding, 

infrequent, and large-sized job requests at the Cloud, reducing the load at the Cloud end. All 

the jobs chosen for execution in the Cloud are allocated to the nodes based on those nodes' 

existing load status. An overloaded state significantly reduces the number of unserved jobs by 

searching the available Nodes, even in overloaded partitions.  

 

The next Chapter presents the implementation of a combination of Naïve Bayes and SOM 

ML techniques in a dual-broker-based job scheduling framework that integrates the QoS 

parameters to improve the performance of an FC environment.  
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CHAPTER 4 

DUAL BROKER-BASED JOB SCHEDULING 

 

4.1 Introduction 

As seen in the previous chapter, efficient resource allocation to the requested jobs significantly 

improves the performance of DSs.  Modern domains are being researched and implemented in 

job scheduling, including classification techniques in ML. ML classification is a versatile and 

powerful tool that enables automation, pattern recognition, and predictive modeling across 

various applications and industries. It helps extract valuable insights from data, improve 

decision-making processes, and enhance efficiency. The current chapter discusses an ML-based 

dual broker framework integrating QoS parameters for scheduling applications’ jobs. 

 

4.2 Background 

This section introduces the key terms Naïve Byes and SOM combined to implement the 

proposed framework. Section 4.1.1 differentiates the CC and FC, which is significant for 

understanding both paradigms' behavior and expectations.  

 

4.2.1 Fog Computing (FC) 

The FC paradigm is frequently called "Cloud, close to the application" [98], [102]. To reduce 

the latency, FC infrastructure enables applications to run as close to the source of a request as 

possible. Figure 4.1 demonstrates the relationship between the FE, FN, and edge devices. 

 

 

Figure 4.1: Positioning the Edge Devices and FNs in an FE 
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FC represents a global network of interconnected items that can each be addressed 

differently based on established communication protocols [103]. These items act as the IoT 

devices' physical representations, the origin of data collection, and they can be measured, 

comprehended, and analyzed [102]. FC has become popular among latency-sensitive IoT 

application jobs due to all these capabilities. These devices linked on FC are multiplying daily, 

and it is estimated that by 2025, there will be around 75.44 billion connected devices worldwide 

[104]. The chances of achieving low latency automatically increase when the right FNs are 

selected correctly [80], [105]. 

 

4.2.2 Naive Bayes 

The Naive Bayes algorithm relies on the assumption of predictor independence and is based on 

the Bayes theorem. The Naive Bayes algorithm for classification assumes that a feature's 

presence in a class is independent of the existence of any other feature. Naive Bayes 

classification aims to forecast the class label C for a specific instance X, depending upon its 

features or attributes x1, x2, x3, ….., xn. Using the Bayes theorem, Naive Bayes determines the 

likelihood that an instance belongs to each class and then places the class with the greatest 

likelihood to the input. 

  

4.2.3 Self-Organizing Maps (SOMs) 

In ML, SOMs are a kind of artificial neural network utilized for unsupervised learning. SOMs 

are used for dimensionality reduction, clustering, and data visualization. Some significant 

features of SOM are: 

 Labeled data is not necessary for SOMs.  

 SOMs preserve the input data's topological characteristics.  

 They simplify complex data by reducing its dimensions to a lower-dimensional map. 

 They work exceptionally well for exploratory data visualization and analysis. 

 

SOM helps identify connections or trends in the dataset and for exploratory data analysis. They 

reveal patterns or groupings within the data, offering perceptions of the underlying frameworks. 
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4.3  Proposed Framework 

In this framework, FC is approached using one of the methods already used in another 

paradigm. The proposed framework is inspired by the scheduling mechanism proposed by 

Sandhu and Sood [16]. They presented a scheduling architecture considering quality of service 

(QoS) for large data applications. Their architecture utilizes K Nearest Neighbors (KNN), the 

Naive Bayes algorithm, and the Self-Organizing Map (SOM). Modifying well-established 

scheduling algorithms and switching to the other DS paradigms reduces the computational 

effort significantly. 

 

The entire set of characteristics under consideration is altered when the focus is switched 

from the Cloud to the Fog. In Fog, latency is the most critical factor when choosing a job 

allocation node. Both methodologies use completely distinct implementation setups, datasets, 

and applications for experimentation. By extending the dual scheduler approach to FEs with 

specific parameters and real-time experimental setups, the proposed framework aims to broaden 

its scope. The proposed framework aims to reduce the job's execution time and increase 

efficiency by moving it from Cloud to Fog. 

 

4.3.1 Architecture 

Figure 4.2 depicts components of the proposed framework for scheduling IoT application jobs 

in FEs. 

 

Figure 4.2: High-Level Architecture: Dual Broker-Based Framework 

 

The proposed framework consists of three primary components discussed below: 
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• LBR: Every FE has an independent LBR responsible for record-keeping the resources on 

the FNs in an FE.    

• GBR: Global Broker is a centralized component that receives the load status from the 

Global Register and makes the necessary decisions for job scheduling based on these 

status details. 

• Global Register: A global register is a component that stores the status data of each 

available FE in the network. 

 

Conceptually, there are n number of FEs (FE1, FE2, FE3, ….., FEn) and m number of FNs 

inside an FE. The client part of the framework includes the IoT devices and the Smart 

Application Job. LBRs have direct access to the FNs' resource status, as depicted in Figure 4.2, 

and the GBR is directly linked to the applications that need specific resources for their jobs.  

 

Table 4.1: Record kept by an LBR 

 

 

The entire job scheduling process in the proposed framework can be summarized in the 

following eight steps. Inputs from IoT application’s job requests or SLAs are used as the 

process's QoS and operational needs. Two scheduling sub-algorithms are used in the process, 

and the process ends by returning an ID of the FN or group of nodes to which the present job 

may be assigned. If none of the available nodes can execute the job, it is dispatched to the Cloud 

and returns a null value.    
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4.3.2 Naïve Bayes Algorithm for the Proposed Framework  

The Naive Bayes classification method is used here to group the applications. For this, the 

Bayes algorithm is employed. 

P(categoryi/tuple)=P(tuple/categoryi)P(categoryi)/p(tuple) 

          Eq. 4.1 

Assuming that every job request has its operational and QoS requirements, the Naïve Bayes 

Algorithm is provided with both sets of requirements, and as an output, it generates a tuple 

(Comp., Mem, GPU) for each job request. This tuple determines the probability of a job falling 

into a specific category: Generic, Compute Intensive, GPU Intensive, and Memory Intensive. 

Table 4.2 displays the node types and their resource.  

 

 Table 4.2: Resource availability based node types  

 

  

The default choice for a request is the general-purpose (generic) category. One application 

job may fall under multiple categories. Figure 4.3 demonstrates the process of tuple generation.  
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Figure 4.3: Triplet Generation based upon QoS Parameters and Functional Requirement  

 

This exercise ensures that every request receives enough resources to handle it efficiently. 

The operation of LBRs located inside each FE is represented by Algorithm 4.1. 

 

Algorithm 4.1: LBR Algorithm 

Inputs: All the operational parameters 

Outputs: An identifier. 

Step 1: Calculate the prior probability for given class labels. 

Step 2: Find the probability of likelihood with each attribute for each class 

Step 3: Utilize the resultant values in the Bayes Formula and calculate posterior probability. 

Step 4: Select the class with the highest probability, given that the input belongs to the highest 

probability class. 

 

4.3.3 Modified Self Organizing Maps (MSOM) 

SOM creates topological ordering through a competitive learning mechanism. The degree of 

their relationship is shown by how closely the FNs are spaced in topological ordering. 

 

The proposed framework using a Self-Organizing Map (SOM) builds four types of virtual 

nodes. These nodes are computing-intensive, memory-intensive, GPU-intensive, and generic. 

Figure 4.4 shows the mapping of the generated triplet onto the resource cluster. 
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Figure 4.4: Use of SOM to map the triplet on the resource cluster  

 

Each virtual node's specifications and Quality of Service (QoS) values are stored in an LBR. 

Table 4.3 displays the information that was recorded for each QoS parameter. 

 

Table 4.3: Details of QoS parameters 

 

 

Job requests are routed to specific virtual FN based on the probability tuple generated by the 

Naive Bayes algorithm. If a particular FN has surpassed its capacity, it can use the topological 

ordering of Algorithm 4.2 to access resources from nearby free virtual nodes. This technique is 

highly effective; it minimizes the wait time for IoT application job requests and ensures 

compliance with QoS standards. 
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Algorithm 4.2: Creating Virtual Cluster using MSOM Technique 

Input: category_list [], server_list [] [] 

Output: virtual FN 

Step 1: Set p=0 

Step 2: For all elements in category_list [] 

 Step 2.1: Set q=0 

 Step 2.2: for all machines in server_list [] [] 

Step 2.2.1: Determine the closed reference vector for server_list [q] []  

          based on category_list [p]. 

  Step 2.2.2: Update the close reference vectors using  

   mj (t+1) = mj(t)+yj(t) (z(t)-mj(t)) 

  Step 2.2.3: set q=q+1 

 Step 2.3: set p=p+1 

Step 3: Assign each server machine to its closest reference vector 

Step 4: Return reference vectors and create a virtual node  

 

In Algorithm-4.2,  

• category_list [] represents the list of IoT application’s job categories generated based on 

functionality and QoS requirements.  

• server_list [][] contains the machines installed in FEs and their specifications.  

• z (t) represents the server machine currently considered at time t.  

• m j (t) represents the value of the nearest reference vector to z(t) at time t.  

• y j (t) represents the neighborhood effect between mj and y for creating topological 

ordering at time t.  

 

It is now time to assign jobs to these job nodes after creating the virtual nodes. Algorithm-4.3 

depicts how a virtual node is assigned a job: 

 

 

 

 

“ 
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Algorithm 4.3: Job Assignment to Virtual Node 

Inputs: Resource Utilization table, current node, new job request, p[]. 

Step 1: Set i=0. 

Step 2: Select node from p [i]. 

Step 3: if the node is over-utilized 

 Step 3.1: Find a virtual node close in topological ordering with free resources. 

 Step 3.2: if (node_free! = null)  

  Step 3.2.1: Shift desired resources from node_free to the selected node. 

  Step 3.2.2: Update the resource utilization table 

 Step 3.3: Else 

  Step 3.3.1: Set i=i+1  

Step 4: END 

 

Algorithm 4.3 includes a resource utilization table that tracks the current and past resource 

utilization of an FN in the FE. The LBR keeps this table updated. Node_free is an FN with 

enough resources to complete a new job and is closer to the present FN in topological ordering. 

The top three IoT application job categories are listed in p[] based on conditional probabilities 

generated by the Naive Bayes method. 

 

4.4 Experimental Results and Discussion 

The framework has been tested on Microsoft Azure and Aneka resources for organizing 

platforms and applications. Aneka, a .NET-based service-oriented grid computing platform, is 

used for workload discovery, scheduling, and balancing [106]. Four ready-made Aneka-based 

applications are employed in testing. Microcomputing resources used as FC nodes and grouped 

to form FC environments have been created using Azure. The proposed testbed consists of four 

settings, each running on an Av2, Ev3, or Dv3 computer tailored for a particular job. The 

proposed framework has been put to the test using four applications:  

• Blast: a parameter sweep application;  

• Convolution: an image processing application;  

• Mandelbort: a standard thread application;  

• Data Search: an algorithmic search application.  
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Figure 4.5: Testbed for the Performance Evaluation of Proposed Framework 

 

The experiment lasted for 100 minutes and involved generating time-varying loads. These 

loads were sent to server computers operating within the same Azure network as other 

machines. The server used the proposed framework to choose the most suitable computer to 

send requests.  

 

A saturation was seen after this period; thus, the experiment was continued for an additional 

100 minutes. In the experiment, we tracked five metrics for three installed pieces of 

infrastructure:  

 resource utilization,  

 availability,  

 response time,  

 waiting time,  

 completion time.  

 

Two computing infrastructures are employed, and they are briefly detailed below: 

 

a) CC infrastructure: Microsoft Azure's Australia Region has provisioned a computer with 

an elastic configuration. An application request was sent from India to consider network 

latency. When the demand for the application increases, an auto scaler on the machine 

purchased from Azure automatically changes the configuration. 

 

b) FC infrastructure: As seen in Figure 4.5, a set of machines connected to the same 

network where the apps were causing the load were set up to reduce latency. 
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The performance evaluation of three computing models is compared as described below. 

a) Conventional CC: this computing paradigm directs all jobs straight to CC resources. In 

this model, FC is not used. [16] 

 

b) Traditional FC: This computing model treats all jobs equally without segregation and 

assigns a job to any available FC resource [107]. 

 

c) Proposed FC: This framework uses an ML-based computing model to allocate jobs to 

best-suited FNs. Requests for Image Convolution, an image processing application, were 

routed to computers with GPU power via FNs created for them. 

 

The proposed framework is evaluated on five parameters: ARU, RAV, ART, AWT, and 

ACT. Many other parameters can be evaluated, but the selected set of evaluation parameters is 

considered specifically significant because DS is in demand for providing high-end, low-cost 

resources to its users. A system is successful if it utilizes the resources without waste and keeps 

them available when requested. Except these, other parameters such as ART, AWT, and ACT 

are to be taken care of so that requests can be completed within agreed-upon timelines.  

 

The resource consumption for all three schemes is shown in Figure 4.6, where the ARU for 

standard FC infrastructure was close to 92 percent. However, with maximum usage of 80%, 

CC and the proposed framework were operating at the same level. High usage has a negative 

impact on the application and infrastructure's overall performance. The average resource 

consumption for plotting the graph was calculated every five minutes. Compared to CC and the 

proposed framework, the conventional Fog technique was the least accessible to the submitted 

jobs because it was heavily used. Even the proposed framework performed superior to the CC 

setup.  
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Figure 4.6: ARU of Available Computing Infrastructure 

 

Figure 4.7 depicts the RAV for each of the three computing models used in the experiment. 

In the beginning, all models had an RAV of almost 90%. However, the proposed FC framework 

offered better resource scheduling than the conventional FE, which resulted in greater 

availability. The proposed framework improved availability and resource use.  

 

As visible in the results, the response time is increasing. The system has enough resources 

to execute the requests and behaves as expected. The response time is increasing because new 

requests are being added without waiting for the existing requests to end [106]. The framework 

is not intended to evaluate the system's performance; instead, it is an attempt to verify if a 

distributed broker can be applied to this approach and if it produces better results than its 

counterparts. 

 

 

Figure 4.7: RAV Comparison at the installed infrastructure 
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The typical ART of various infrastructures is shown in Figure 4.8. Response time is 

measured when an application sends a job to a Cloud-based machine and receives a response 

in return. 

 

 

Figure 4.8: ART comparison of the Installed Infrastructure  

 

The proposed framework had the quickest reaction time. The AWT for a job posted by the 

application is shown in Figure 4.9. Traditional FC initially saw shorter waiting times than CC 

due to lower network latency. However, fewer resources were available after five minutes, 

which caused the waiting time to lengthen. However, the proposed framework outperformed 

all others due to its efficient resource utilization. Job sent to the infrastructure would take longer 

to complete depending on the response and waiting times. The same pattern was evident, with 

the proposed framework outperforming the other two.  

 

 

Figure 4.9: AWT comparison of Installed Infrastructure 



 

62 
 

The average job completion time for each of the three computing models is shown in Figure 

4.10. The proposed framework has the best average job completion time because of its effective 

ML job scheduling and usage of an FC infrastructure to reduce latency. 

 

 

Figure 4.10: ACT comparison of the Installed Infrastructure 

 

Table 4.4 summarizes the discussion on the experimental results, comparing all three 

approaches discussed in this section.  

 

Table 4.4: Summary of obtained results.  

  ARU RAV ART AWT ACT 

Traditional Cloud [16] 75% 78% 20 sec 15 sec 48 sec 

Traditional Fog [80] 90% 65% 35 sec 20 sec 66 sec 

Proposed Framework 80% 75% 13 sec 10 sec 37 sec 

Improvement  
Cloud 5% 3% 7 sec 5 sec 11 sec 

Fog -10% -10% 22 sec 10 sec 29 sec 

 
      

Table 4.5: Proposed Framework vs Other Solutions 

Ref. 

No. 

Title Goal Limitations 

[58] Latency-Aware 

Application Module 

Management for Fog 

FEs must follow a 

latency-sensitive 

policy when managing 

1. Missing brokering, 2. Missing 

hierarchical distribution of load 

balancing jobs, 3. QoS parameters 

not considered, 4.No ML 
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Computing 

Environments 

the application 

modules. 

technique is used, 5.No clustering 

of jobs and resources   

[62] DRL-Scheduling: An 

Intelligent QoS-

Aware Job 

Scheduling Framework 

for Applications in 

Clouds  

A framework for 

managing jobs using 

QoS. The framework's 

main component was 

an algorithm for 

scheduling jobs based 

on deep reinforcement 

learning. 

1. Missing brokering, 2. Missing 

hierarchical distribution of load 

balancing tasks, 3. No clustering 

of jobs and resources   

[63] A machine-learning-

based time-constrained 

resource allocation 

scheme for vehicular 

Fog computing  

A metric to assess the 

effectiveness of apps 

for improving road 

safety that combines 

information-based 

networking 

technologies with a 

Fog virtualization 

strategy to cut down 

on PRT authors. 

1. Missing brokering, 2. Missing 

hierarchical distribution of load 

balancing tasks, 3. QoS parameters 

not considered, 4.No ML 

technique is used, 5.No clustering 

of jobs and resources   

[64] A Supervised Learning 

Based QoS Assurance 

Architecture for 5G 

Networks  

A QoS assurance 

structure that takes 

into account 

widespread 

connectivity, 

extremely low latency, 

and high-speed data 

transfer rates as QoS 

parameters 

1. Missing brokering, 2. Missing 

hierarchical distribution of load 

balancing tasks, 3. No ML 

technique is used, 5.No clustering 

of jobs and resources   

[67] Computation 

Scheduling for 

Distributed Machine 

Learning With 

Straggling Workers  

Showed the 

cumulative 

completion time as a 

function of 

computational load 

through the master-

controlled allocation 

of tasks among 

numerous workers. 

1. Missing brokering, 2. Missing 

hierarchical distribution of load 

balancing tasks, 3. QoS parameters 

not considered, 4.No ML 

technique is used, 5.No clustering 

of jobs and resources   

 

4.5 Summary 

A proposed framework aims to allocate IoT application jobs to FNs in diverse FEs, using ML 

classification and integrating the Quality of Service (QoS) parameters. The framework's 

performance is evaluated using QoS parameters: throughput, availability, latency, and physical 
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proximity. It offers 6% better resource utilization, 4% greater RAV than traditional Cloud [16], 

1.8 times faster response times, and 2.7 times better resource consumption than traditional 

Cloud [16]. Last but not least, the ACT was 1.6 times faster than traditional Fog [80] and 1.3 

times faster than traditional Cloud [16]. By scheduling the jobs to FNs, where it is possible to 

produce better outcomes in terms of timely execution and high-quality output, the proposed 

framework improved resource utilization, reduced completion time, and decreased latency.  

 

The next chapter discusses an approach to develop a multilevel hierarchical broker for job 

scheduling in hexagonal FEs for better global geographical coverage of distributed and ad-hoc 

Fog services. 
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CHAPTER 5 

MULTILEVEL BROKER-BASED JOB SCHEDULING 

 

5.1 Introduction 

 The previous Chapter elaborates on a dual-broker implementation in FC. That solution refers 

to a single FE. This chapter presents a hierarchical broker-based technique for job scheduling 

in hexagonal FEs for better global geographical coverage of distributed and ad-hoc Fog 

services.   

 

5.2 Background 

Traditional CC infrastructures cannot meet the rigid latency requirements of IoT applications 

[105]. To cater to the demands of latency-sensitive applications, various computing paradigms, 

such as mobile EC [108], FC [109], and sensor Clouds [110], are being employed. Among 

these, Fog is a highly effective and popular computing platform.  Various operational and QoS 

aspects influence job scheduling decisions, including energy consumption, waiting times, and 

operating expenses.  The framework discussed in this chapter aims to enhance five QoS 

parameters: RAV, ARU, ART, AWT, and ACT.   

 

5.2.1 Coverage of Geographic Regions (GR) 

IoT applications involve managing an extensive network of sensor nodes randomly placed in a 

RoI to serve a job’s immediate processing needs on behalf of the Cloud [111]. These nodes are 

responsible for sensing the environment and carrying out specific tasks. However, it is possible 

that some of these nodes may be left unattended or may make their own decisions while 

performing their tasks [19]. The RoI in this chapter is divided into hexagonal regions due to the 

equal distance between their centers, ensuring complete coverage of FNs [112]. However, the 

radius of a hexagon may change from case to case. 

 

5.2.2 Hexagonal FE Organization 

The hexagonal FE grid structure is chosen for its efficiency in geographical classification, 

optimal placement of IoT devices, energy-saving capabilities, and spatial consistency [112]—

any IoT application job generated within a particular FE (FE1). In case FE does not have 

sufficient resources, another suitable FN is searched, prioritizing the nearby nodes (FE2 to FE7) 
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at an assumed distance d1. The next set of FEs (FE8 to FE19) is situated at a distance of d2. 

Preferably, an alternative FE is searched at distance d1, as long as the job's latency deadline 

does not exceed it. The job is sent to a Cloud data center if all available FEs exceed the latency 

deadline. Figure 5.1 demonstrates the hexagonal arrangement of the FEs. 

 

 

Figure 5.1: Geographic area partitioned in hexagonal GRs for Fog resources 

 

5.3  Proposed Framework 

This section elaborates on a hierarchical broker-based technique for job scheduling in 

hexagonal FEs for better global geographical coverage of distributed and ad-hoc Fog services. 

The proposed framework verifies if the congestion at the job scheduling entities can be reduced 

by adding multiple hierarchical scheduling brokers and providing better geographical resource 

coverage.   

 

5.3.1 Architecture  

Each hexagonal region in the proposed framework corresponds to an FE, accommodating a 

specific number of FNs. Three brokers, known as Level-1 Broker (L1B), Level-2 Broker (L2B), 

and Level-3 Broker (L3B), are used to schedule the jobs:  

 L1B: Each FE has an L1B deployed inside it. In the proposed framework, it is the 

responsibility of the L1B to keep track of the resources available within a specific FE.  

 L2B: An L2B broker serves as a mediator between the L1Bs and L3B.  

 L3B: The L3B is a centralized broker that interacts with all L2Bs of every GR. 
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Figure 5.2 shows the placement and communication of the FE, L1B, L2B, and L3B in the 

proposed scheduling framework.  

 

Figure 5.2: Interaction between the L2B and L1B 

 

There is a single instance of L3B communicating with all the L2Bs. L3B is provoked only 

in extreme cases when no suitable FE and FN are located in the current GR. Figure 5.3 shows 

the interaction between the multiple GRs with the help of all three brokers.  

 

 

Figure 5.3: Interaction between L1B, L2B and L3B. 

 

5.3.2 The process of selection of an FE 

• Estimation of the layer count 

The layer count changes with every request and affects the potential wait time for any response 

from the FEs.  
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Figure 5.4: Increase in the number of FNs with Layer Count 

 

The job is preferably sent to the nearest FE to manage the latency and deadline parameters. 

Layer count is crucial for traversing all of the FEs in a layer because there are different numbers 

of FEs in every layer. Using the number provided by the L1Bs, the layer count is calculated as 

follows: 

Layer count= ((FE_Count%6)>0)? FE/6+1: FE/6;                                                

Eq. 5.1 

Navigating between nodes and ascertaining their PP once the layer count is known is simpler. 

 

• To determine the availability of resources  

 After collecting the job resource requirements, the L1B of the FE collects data from FNs 

regarding their available resources and compares it with the resources required. The L2B 

receives a positive response if the free resources are sufficient for the job. L2B compiles a list 

of all the available hexagonal regions by adding the FE IDs of all the FEs that respond positively 

to an available [].  

 

• Calculation of QoS Score 

The QoS score in the proposed framework depends upon three parameters which are: 

• Physical Proximity (PP): Determined by L2B 

• Bandwidth (BW): Recorded by L1B 

• Quality of the Devices (QD): Recorded by the L1B  
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These parameters were chosen because of their noticeable contribution to job latency. QoS 

score is calculated based on the weightage assigned to all the above parameters, i.e., PPw, BWw, 

and QDw. The weightage values of these parameters are shown in Table 5.3.  

 

QoS Score=PP*PPw+BW*BWw+QD*QDw 

Eq. 5.2 

Table 5.1: Weightage of QoS parameters to calculate the QoS score 

 

 

 

Figure 5.5: Interaction between L2B and L1Bs of a layer 

 

• Ranking the FEs 

The current layer's FEs are evaluated according to their Quality of Service (QoS) score. The 

best solutions are prioritized first in this ranking to execute the job swiftly and effectively. As 

a result, processing starts with the FE having the highest QoS rating. 
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• Calculation of New_Deadline 

The proposed framework chooses an FN by comparing the actual time the FN needs to finish 

the application job with the deadlines specified in the SLA.  To obtain the New_Deadline, the 

total time invested in tlayer,  tavail, tscore, and ttransfer is subtracted from the SLA deadline.  

 

New_Deadline=deadline-(tlayer + tavail+ tscore+ ttransfer) 

Eq. 5.3 

In Eq. 5.1 

• tscore: time taken to calculate the QoS score  

• tavail: time taken to find the available FEs  

• tlayer: time taken to count the layers  

• ttransfer: and transferring data  

 

If none of the FEs in the current layer satisfy the deadline criteria, then the system approaches 

the FEs in the next layer. The job is routed to the Cloud if the system cannot find a suitable FE 

in any layers. 

 

• Assigning the job to an FE 

For assigning a job to an FE, its New_Deadline is compared to the actual execution time 

(ACET) to determine if the current FE meets the latency and efficiency requirements.  

 

  FEselected=FEcurrent, IF ACETcurrent < New_Deadline 

Eq. 5.4 

If not, the next available FE is assessed using the same criteria. If none of the existing FEs meet 

the latency requirement, the search process restarts in the next hexagonal layer that contains 

FEs. Figure 5.5 illustrates how the L2B and each L1B work together to select the best FE in a 

GR. 
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Figure 5.6: Assigning the job to a suitable FE. 

 

• Finalizing an FN 

The same set of steps that are used for selecting an FE is performed to select an FN within the 

selected FE, i.e., 

• enlisting the nodes with available resources,  

• figuring out their QoS scores,  

• ranking each node based on those scores,  

• figuring out an FN's New_Deadline,  

• assigning the job to an FN  

 

The L1B performs all these steps. The status of free nodes was calculated during the process of 

FE selection, which is reused here. Algorithm 5.1 outlines the step-by-step procedure.  

 

Algorithm 5.1: Load scheduling in an FE.  

Inputs: Execution deadline, ACET, time to calculate layer count, PP, BW, and device quality, 

layer_count=0 

Output: FN 

Step 1: Start 
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Step 2: The IoT app submits the request 

Step 3: FE denies due to lack of resources 

Step 4:  Increment the layer count k  

Step 5: Set time taken to count the layers tlayer= tlayer+new_tlayer 

Step 6: Collect RAV at all FEs by broadcasting a request to all the FEs at layer k 

Step 6.1:  for each FEi in layer k 

  send a request containing the requirements to FEi to provide available 

if(required<free) 

   set cnt=cnt+1 

   add FEi to available [cnt] 

Step 6.2:  collect available [] 

Step 6.3: Set tavail=tavail+new_tavail time taken to collect the availability 

Step 7: Set j=0 

Step 8: Calculate the QoS score of FE at available [j]  

 Step 8.1: Collect pp, bw, and qual of FE 

Step 8.2: Set QoS_score=pp*ppw+bw*bww+qual*qualw  

Step 8.3: Set tscore = time spent in the calculation of QoS score 

Step 9: Collect the QoS_score from FEs at layer k and rank them 

Step 10: Calculate the New_Deadline.  

 newdeadline=deadline-(tlayer+tavail+tscore) 

Step 11: Compare ACET with a New_Deadline  

if (ACET>newdeadline) 

Set j=j+1 and go to step 8 

else 

Search appropriate FN in the current FE 

Step 12: Use the free resource status of all FNs in FEj 

Step 12.1:  for each FN n at FEj 

            Compare required resources with the free resources at FNn  

if (required<free) 

   set cnt=cnt+1 

   Add FNn to available [cnt] 

Step 12.2:  collect available [] 

Step 12.3: Set tavail=tavail+new_tavail time taken to collect the availability 
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Step 13: Calculate the QoS score of FNn  

 Step 13.1: Collect pp, bw, and qual of FNn 

Step 13.2: Set QoS_score=pp*ppw+bw*bww+qual*qualw  

Step 13.3: Set tscore = time spent in the calculation of QoS score 

Step 14: Collect the QoS_score from FNs at FEj and rank them 

Step 15: Calculate the New_Deadline.  

  newdeadline=deadline-(tlayer+tavail+tscore) 

Step 16: Compare ACET with New_Deadline  

if (ACET>newdeadline) 

         Set n=n+1 and go to step 13 

else 

         Allocate job requests to FNn 

Step 17: If no more FE is available []  

             Go to step 4 

Step 18: If there are no more layers, then send the job to the Cloud 

Step 19: END 

 

5.4 Experimental Results and Discussion 

The proposed framework is tested by an emulator, which schedules Fog applications 

using hexagonal FE and a broker-based strategy. Figure 5.7 displays the emulator's testbed. The 

proposed testbed and its performance assessment are covered in-depth in this section. 

 

 

Figure 5.7: Testbed for Experimental Setup and Performance Analysis 
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5.4.1 Testbed  

The testbed uses four Aneka platform-built applications. As a result, these programs produce 

several independent jobs that can be assigned to any of the FEs shown in Table 5.5. Number of 

nodes in an FE and their configuration is as per the Table 5.6. Table 5.7 shows various 

parameters showing the time spent on the specified operations.  

 

Table 5.2: Applications Used in Testbed 

 

 

Table 5.3: Number and configuration of the Nodes 

 

 

Table 5.4: Parameters for the time used in the proposed framework’s testbed. 

 

 

In the proposed testbed, the L2B is a Windows 10 machine with Intel(R) Core (TM) i7-

10,700 CPU 2.90 GHz processor, 16.0 GB (15.7 GB usable) RAM, and a 64-bit operating 

system. It operates a master Aneka container that controls the job scheduling on the desired 

FEs. The Aneka PaaS program was used to implement the proposed framework, which controls 

various scheduling aspects in distributed computing systems. 
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Figure 5.8: Setup of FEs for the Testbed 

 

5.4.2 Performance Analysis and Comparison 

The suitability of the proposed framework to schedule jobs in an FC environment using L1B 

and L2Bs is evaluated through comparison with its variant. 

• Variation 1: In Variation-1, no jobs are moved to the nearby FE with available resources. 

A job is kept waiting for the resources in its FE. 

• Variation 2: Layering and hexagonal structure are not performed, but the testbed 

described in Section 4.1 is used, and a job can be transferred to another FE. Jobs change 

at random. 

“ 

The proposed framework is evaluated for five parameters: RAV, ARU, ART, AWT, and 

ACT. These parameters are preferred in Fog computing because they measure a system's 

performance and check if it provides accessible and efficiently utilized resources. Metrics like 

response time, wait time, and completion time are also helpful in evaluating responsiveness and 

efficiency and providing valuable insights for improving the user experience. 

 

Figure 5.9 shows the count of jobs produced by these four Aneka applications. Compared to 

the Blast program, the image convolution application produced many jobs. The magnitude and 

time required to finish each job varies, as shown in Table 5.5. To effectively populate the 

framework, a sufficient number of jobs have been generated and checked to verify scalability 

and dependability.  
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Figure 5.9: Number of Jobs Generated by Every Application at Different Time Intervals 

 

The proposed framework’s ARU is shown in Figure 5.10. After 50 minutes of testing, all of 

the variations employed in the experiment reached saturation regarding resource utilization. 

The proposed framework had the highest resource consumption because it dispatches jobs to 

front-end servers other than the one where they were initiated. Although the resources are 

distributed equally across all FEs in the proposed framework, there are certain deviations where 

some FEs are overused while others are underused. 

 

 

Figure 5.10: ARU Comparison 

 

Figure 5.11 depicts the FE’s typical RAV, which is lower for the proposed framework than 

for other alternatives. The proposed framework has a slightly lower average RAV than 

Variation-1, which has the highest average RAV. In this experimental setup, RAV reveals the 

underutilization of resources. While some jobs can be moved to accessible resources, Variation-
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1 does not permit this, leaving those resources underutilized. On the contrary, Variation-2 with 

the proposed framework makes it possible to identify more suitable resources and assign jobs 

to them, ensuring a fair workload distribution. In the first 60 minutes of the experiment, the 

proposed framework experiences a 20% lower average RAV. The difference is roughly 15% -

10 % after 60 minutes. The proposed framework can keep resources engaged longer than other 

alternatives. 

 

Figure 5.12 shows the ART of application jobs. The proposed architecture has a much better 

response time than other variations. In the beginning, there's little difference in response times 

for the three approaches, but Variation-1's response time suddenly increases and keeps rising 

throughout the experiment. Variation-2 has a lower response time than Variation-1 but is still 

over 45 seconds higher than the proposed framework. By the end of the experiment, Variation-

1's response time is 3.5 times higher than that of the proposed framework. 

 

Figure 5.11: RAV Comparison 

f  

Figure 5.12:  ART Comparison  
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Figure 5.13 shows the AWT for application processes. The proposed framework has 

significantly reduced waiting times compared to alternative variations. By the end of the trial, 

Variation-1's waiting time was 370 seconds, Variation-2's was 150 seconds, and the 

recommended framework's was 50 seconds. Variation-2 had a slower response time than 

Variation-1, but both exceeded the required framework time of 100 seconds. By the end of the 

trial, Variation-1's response time was 6.5 times longer than the proposed framework. 

 

 

Figure 5.13: AWT Comparison 

 

The experimental testbed for Fog scheduling considered all significant factors, with 

fascinating outcomes. Figure 5.9 shows that Image and Mandlebort generate more jobs than 

other applications. The proposed framework consumes more resources than alternatives but is 

more efficient. Resource utilization remains consistent after an initial increase. The proposed 

framework is 20% better than variant 1 and 5-10% better than variant 2 during the trial. 

 

Figure 15.14 shows that the proposed framework performs significantly faster than other 

versions. Variation-1 shows a sharp rise in completion time, which continues throughout the 

experiment. Variation-2 has a slower response time than Variation-1, but still slower than the 

proposed framework. At the end of the trial, Variation-1's response time was 5.5 times longer 

than that of the proposed framework, whose ACT was 100 seconds. 
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Figure 5.14: ACT Comparison 

 

Table 4.4 summarizes the discussion on the experimental results, comparing all three 

approaches discussed in this section.  

 

Table 5.5: Summary of obtained results.  

  ARU RAV ART AWT ACT 

Variation-1 70% 30% 145 sec 370 sec 530 sec 

Variation-2 75% 20% 96 sec 148 sec 240 sec 

Proposed Framework 84% 18% 48 sec 50 sec 100 sec 

Improvement  
Variation-1 14% 12% 97 sec 320 sec 430 sec 

Variation-2 9% 2% 48 sec 98 sec 29 sec 

 

Table 5.6: Proposed Framework vs Other Solutions 

Ref

No. 

Title Goal Limitations 

[69] Distributed 

computational load 

balancing for real-time 

applications  

A solution in which 

scheduling decisions are 

made by linear 

programming and a 

network of queues 

1. Missing brokering, 2. Missing 

hierarchical distribution of load 

balancing tasks, 3. QoS 

parameters not considered, 4. No 

clustering of jobs and resources   

[75] DOTS: Delay-Optimal 

Task Scheduling 

Among Voluntary 

Nodes in Fog Networks  

A general analytical 

model of task scheduling 

that divides FNs into two 

categories, which are 

1. Missing brokering, 2. Missing 

hierarchical distribution of load 

balancing tasks, 3. QoS 

parameters not considered, 4.No 

ML technique is used  
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voluntary nodes (VN) 

and task nodes (TN) 

[76] Folo: Latency and 

Quality Optimized Task 

Allocation in Vehicular 

Fog Computing  

A dynamic, event-

triggered framework for 

task allocation using 

linear programming-

based optimization and 

binary particle swarm 

optimization 

1. Missing brokering, 2. Missing 

hierarchical distribution of load 

balancing tasks, 3. QoS 

parameters not considered, 4.No 

ML technique is used, 5.No 

clustering of jobs and resources   

[80] Ranking Fog Nodes for 

Tasks Scheduling in 

Fog-Cloud 

Environments: A Fuzzy 

Logic Approach  

A linguistic and fuzzy 

quantified proposition for 

ranking the FNs from 

most satisfactory to least 

satisfactory ranking 

1. Missing brokering, 2. Missing 

hierarchical distribution of load 

balancing tasks, 3. QoS 

parameters not considered, 4. No 

clustering of jobs and resources   

 

5.5 Summary 

The proposed framework offers an efficient QoS-based scheduling approach for IoT application 

jobs on reachable FNs. Hexagonal FEs cover all potential FNs in the network, and every 

hexagonal GR has a predetermined number of resources. The PP, BW, and QD in a particular 

FN are the variables used to calculate each FN's QoS score. Additionally, an ALTERNATE 

node is given the job only if it satisfies the deadline for execution and has the necessary 

resources. A job can only be successfully finished if it is purposefully assigned to the most 

advantageous combination of processing resources, so Fog is mainly employed to fulfill time-

sensitive tasks.  

 

Our research focuses on ensuring successful broker communication without involving 

networking concepts. Improvements can be made by considering various factors that could 

affect the Quality of Service (QoS) during the execution of jobs for Fog applications. One such 

improvement could be to utilize a flexible set of QoS criteria that aligns with the type and 

specifications of each application job. Additionally, the framework could benefit from 

including scalability as another feature.  
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CHAPTER 6 

CONCLUSION AND FUTURE SCOPE 

 

This thesis aims to study and propose the usage of broker-based load balancing and job 

scheduling techniques in DSs, mainly CC and FC. As a result of this study, three frameworks 

are proposed and implemented to achieve efficient resource allocation to the available set of 

resources.  

 

6.1 Thesis Summary  

Chapter 1 introduces this thesis's concept, background, open issues, and objectives. Chapter 2 

presents the existing literature describing the methodologies and techniques proposed by the 

authors in load balancing and job scheduling in the fields of CC and FC. This chapter is divided 

into multiple sections, each discussing the literature details directly related to one of the 

objectives. Chapter 3 discusses an SA-based broker framework for load balancing in a PPC 

where SAs are utilized to implement the autonomous behavior in load-balancing brokers. 

Chapter 4 discusses an ML classification-based dual broker framework by integrating QoS 

parameters for scheduling applications’ jobs in FEs. In this framework, FNs are segregated 

based on resource availability, and jobs are mapped on the appropriate set of resources. Chapter 

5 discusses a multilevel hierarchical broker for job scheduling in hexagonal FEs for better 

global geographical coverage of distributed and ad-hoc Fog services based upon the QoS Score 

and average execution time of the FNs.  

 

6.2 Concluding Remarks 

This chapter summarizes the results obtained from Chapters 3, 4 and 5. These chapters contain 

a detailed description of the proposed frameworks, experimental setup, and results obtained. 

  

6.2.1 A SA-based broker framework for load balancing in a PPC 

To reduce the search space in the Public Cloud (PC), to reduce the congestion at a single job 

scheduler, and to insert autonomous behavior in the load balancing technique, an SA-based 

broker framework is introduced for a single Cloud, which resulted in a reduced number of 

detained jobs, improved makespan, better average execution time (AET), maximum execution 

time (MET) and total execution time (TET). This method yielded good outcomes, but it can be 
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enhanced by incorporating machine learning (ML) classification methods for automated 

decision-making and considering Quality of Service (QoS) parameters when evaluating system 

performance. 

 

6.2.2 ML Classification-based dual broker framework with integrating QoS parameters  

An ML classification-based dual broker framework is proposed by integrating QoS parameters. 

Two brokers are used: Global Broker (GBR) deployed at the centralized level and Local 

Brokers (LBRs) deployed at each FE. This framework considers three QoS parameters: 

Physical Proximity (PP), Bandwidth (BW), and Device Quality (QD). A combination of Naïve 

Bayes Theorem and Self-Organizing Map (SOM) is used in this approach to classify and map 

jobs on a suitable set of resources (Generic, Compute Intensive, GPU Intensive, and Memory 

Intensive). This approach improves average resource utilization (ARU), resource availability 

(RAV), average response time (ART), average waiting time (AWT), and average completion 

time (ACT). However, this approach does not address geographical resource coverage, due to 

which some of the pervasively scattered nodes may be left unattended or overlapped. 

Congestion issues may still arise at dual-level hierarchical brokers when considering globally 

scattered Fog resources. 

 

6.2.3 Multilevel hierarchical broker for job scheduling in hexagonal FEs for better global 

geographical coverage of distributed and ad-hoc Fog services 

The third approach is a multilevel hierarchical broker-based framework for job scheduling in 

hexagonal FEs for better global geographical coverage of distributed and ad-hoc Fog services. 

The RoI (Region of Interest) in this chapter is divided into hexagonal regions due to the equal 

distance between their centers and ensuring complete coverage of FNs. This approach considers 

global-level Fog resources across the Geographical Regions (GRs) and is flexible enough to 

add multiple hierarchical brokers to manage the increased congestion along with the expansion 

to multiple GRs. As an output of this approach, we could achieve higher RAV, ARU, ART, 

AWT, and ACT.  
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6.3 Contribution 

This section discusses the significant contributions of the research as part of the thesis.  

 Reduced Search Space 

PC cloud accommodated a large number of resources, which raised manageability 

issues. In PPC, the main objective is to reduce the search space for load balancing and 

job allocation. Deploying independent brokers can further speed up the load-balancing 

tasks. 

 

 Autonomous Behavior 

SAs possess a unique property of adapting to the behavior of the environment where 

they are deployed. It adds autonomous behavior to the job scheduling entities, 

consequently automating the load balancing tasks as per the workload exiting in a DS 

at a time.  

 

 Improved Average Resource Utilization 

Framework-2 produces 5% and -10 % improved resource utilization compared to [16] 

and [80]. Framework-3 produces 14% and 9% improved resource utilization compared 

to Variation-1 and Variation-2.  

 

 Improved Average Resource Availability 

Framework-2 produces 3% and -10 % resource utilization compared to [16] and [80]. 

Framework-3 produces 12% and 2% improved resource availability compared to 

variation-1 and variation-2, respectively. 

 

 Reduced Average Response Time 

Framework-2 responded 7 sec and 22 sec faster than [16] and [80] respectively. 

Framework-3 responds 97 sec and 48 sec faster than variation-1 and variation-2, 

respectively. 

 

 Reduced Average Waiting Time 

Framework-2 reduced average waiting time by 5 sec and 10 sec compared to [16] [80], 

respectively. Framework-3 reduced average waiting time by 320 sec and 98 sec 

compared to variation-1 and variation-2, respectively. 
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 Reduced Average Completion Time 

Framework-2 reduced average completion time by 11 sec and 29 sec compared to [16] 

[80], respectively. Framework-3 reduced average completion time by 320 sec and 98 

sec compared to variation-1 and variation-2, respectively. 

 

 Better Geographical Coverage of Resources 

Hexagonal FE structures are known for better geographic coverage because of their 

equal distance from the radius of their neighboring hexagons. Framwork-3 utilizes this 

property of hexagonal shape to cover the fog resources better, avoiding overlapping or 

chances of left-out nodes.  

 

6.4 Future Scope 

This thesis is focused on service orchestration in the Cloud and FC environments and has 

proposed frameworks based on chosen parameters only. There is a long list of the network 

(number of hops, BW, packet loss, network throughput, network delay, network jitter) and 

infrastructure (CPU count, amount of memory, size of disk space, percentage of CPU, 

percentage of memory, free disk) related QoS parameters which contribute significantly in 

service orchestration. [113]. Experimentation can be performed upon this set of resources to 

verify if the proposed frameworks produce significantly improved results in the expanded set 

of parameters. More ML techniques can be explored along with expanding the list of 

parameters, as the same technique cannot benefit every parameter. Another field of future 

research to explore is to scale the hierarchy levels in a multilevel broker platform where 

hierarchical levels can be added or removed per the geographical size and resource 

requirements of fluctuating request volume. Scaling in terms of hexagonal FEs, including their 

size and number of hexagonal GRs, is also a dimension that can be experimented with.  

 

6.5 Summary 

In the end, the research attempts to propose and verify different approaches to achieve better 

execution timing, better utilization of deployed resources, and reduce load balancing 

complexities due to the large search space in the Distributed Systems. Improved operational 

and QoS parameters improve the user experience and the service provider’s goodwill. Efficient 



 

85 
 

resource allocation is the major contributor to the evolution of modern computing paradigms, 

and this thesis is an attempt to contribute in the same direction.  

 

 

Figure 6.1: Thesis Summary. 
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SYNOPSIS 

1. Introduction   

This thesis addresses the complexities of orchestrating services in Cloud and Fog computing 

environments by proposing Broker-Based Frameworks (BBFs). These frameworks leverage 

intelligent brokering strategies to optimize resource management, service orchestration, and 

deployment in heterogeneous computing environments. The thesis outlines the architecture and 

components of the BBF, emphasizing its potential to enhance responsiveness, resource 

efficiency, resource utilization, and resource availability in Distributed Computing Systems. 

Overall, the proposed BBFs offer a solution-oriented approach to the challenges associated with 

service orchestration in dispersed and dynamic computing ecosystems. 

 

1.1 Orchestration  

The term orchestration describes managing and synchronizing services, apps, and resources in 

Cloud and Fog Computing (FC) contexts. Cloud orchestration is the process of overseeing 

services and resources in a distant, centralized data center. It usually manages storage, 

networking, Virtual Machines (VMs), containers, and other Cloud infrastructure resources. 

Applications in Cloud settings can be automated, managed, and scaled using orchestration tools 

such as OpenStack, Docker Swarm, and Kubernetes. FC involves orchestrating computing, 

storage, and networking resources in edge devices, gateways, and local servers. Orchestration 

tools such as Cisco IOx, OpenFog, or edge computing (EC) platforms can manage and automate 

the services in FC environments. [1][2][3] 

 

 

Figure 1: Roles played by the orchestration. 
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A service orchestration engine plans directs, and automates the interactions between various 

services or systems in a network or application environment.  

 

 

Figure 2: Broker as a Service Orchestration Agent 

 

Orchestration is crucial in Cloud Computing (CC) and FC to simplify and automate 

application and service deployment, scaling, and management. It ensures reliable, scalable, and 

efficient resource utilization in complex and distributed computing environments. [4][5][6] 

 

1.2 Distributed Systems 

Distributed Systems (DS) refers to two or more computers working together through a network 

to finish a single job, which is distributed over a group of computers, heterogeneous in operating 

systems, node characteristics, network design, and communication medium [7]. The generic 

quality of DSs in a group of autonomous computer components is that these seem like a single 

cohesive system to the users [8]. DS comprises autonomous computing nodes for better 

accessibility, transparency, openness, and scalability [9].  

 

To optimize autonomous communication between nodes, a DS's performance can be 

measured through execution time, throughput, efficiency, system utilization, turnaround time, 

waiting time, response time, overheads, and reliability [9][10][11][12]. Figure 3 demonstrates 

the categories and relevant examples of DS.
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Figure 3: Categories of distributed systems. 

 

1.3 High-Performance Distributed Systems 

This category includes computing paradigms such as cluster computing, grid computing, and 

CC. FC is another paradigm that enables delivering Cloud application services closer to the 

Internet of Things (IoT) devices at the edge rather than relying on a distance Cloud. In contrast 

to transferring IoT data to the Cloud, which processes and stores it remotely on IoT computers, 

Fog provides better latency-sensitive resources. Thus, FC is the ideal choice for enabling the 

IoT to provide efficient and trustworthy services to many clients. Figure 4 highlights the 

fundamental differences between Cloud and FC paradigms. 

 

 

Figure 4: Cloud vs Fog computing paradigms. 
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1.4 Load, Load Balancing and Job Scheduling 

In the context of CC, load refers to the volume of work or demand on a server, network, or 

system at a specific time. It mainly concerns how much resource is used or consumed in a 

Cloud-based infrastructure. Compute, network and storage loads are just a few examples of the 

components that comprise the term load in distributed systems [13]. Load balancing in DS 

evenly distributes network traffic or computational workload across multiple servers that 

optimize resources, scalability, fault tolerance, performance enhancement, and cost efficiency 

[14] [15]. On the other hand, job scheduling in cloud and fog computing efficiently allocates 

computing resources and manages task execution to manage resource utilization, prioritization, 

fairness, adaptability, flexibility, and latency [16][17][18]. 

 

1.5 Brokers  

In Cloud and FC environments, Cloud Brokers (CBs) and Fog Brokers are significant for 

resource management, communication facilitation, and operational optimization. To help 

choose and handle Cloud services, Cloud brokerage involves mediators who link consumers or 

businesses with Cloud service providers. Cloud service brokers (CSBs), such as Right Scale 

and Gravitant, are instances of CBs. They offer platforms for managing Cloud services from 

various vendors. Figure 5 demonstrates the positioning and contribution of the brokers in DS. 

 

 

Figure 5: Overview of a broker-based system. 
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Companies that work with FC concepts include Cisco, IBM, and Microsoft. Some of these 

companies may also develop or offer Fog brokerage services. The brokerage model inevitably 

changes as technology develops and the demand for effective resource management in various 

computing environments increases. 

 

2. Research Gaps  

To the best of our knowledge, some of the existing gaps in the field of study are presented in 

this section: 

1. Broker-based load balancing technique using software agents for PPC. 

2. ML-based dual broker for selection and allocation of fog services considering QoS 

parameters. 

3. Multilevel hierarchical broker for job scheduling in hexagonal FEs for better global 

geographical coverage of distributed and ad-hoc fog services.  

   

3. Objectives  

Objectives derived from the research gaps are as follows: 

1. To design a software agent-based broker framework for load balancing in PPC. 

2. To develop an ML-based dual broker framework by integrating QoS parameters for 

scheduling applications’ jobs in the FEs.  

3. To develop a multilevel hierarchical broker for job scheduling in hexagonal FEs for 

better global geographical coverage of distributed and ad-hoc fog services. 

           

4. Outline 

Chapter 1 introduces the concept, background, open issues, and objectives of this thesis. 

Chapter 2 presents the existing literature describing the methodologies and techniques proposed 

by the authors in load balancing and job scheduling in the fields of CC and FC. This chapter is 

divided into multiple sections, each discussing the literature details directly related to one of 

the objectives. Chapter 3 discusses an SA-based broker framework for load balancing in a PPC 

where SAs are utilized to implement the autonomous behavior in load-balancing brokers. 

Chapter 4 discusses an ML classification-based dual broker framework by integrating QoS 

parameters for scheduling applications’ jobs in FEs. In this framework, FNs are segregated 

based on resource availability, and jobs are mapped on the appropriate set of resources. Chapter 
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5 discusses a multilevel hierarchical broker for job scheduling in hexagonal FEs for better 

global geographical coverage of distributed and ad-hoc Fog services based upon the QoS Score 

and average execution time of the FNs. 

 

5. Broker-based load balancing technique using software agents for 

partitioned public cloud  

CC empowers resource flexibility with minimal upfront costs, facilitating scalability and cost-

effectiveness [19] [20]. According to CISCO, Cloud traffic will reach 14.1 ZB annually soon 

[21]. The PC is a shared space for users to outsource their jobs [22], where Load-balancing 

approaches are required to handle under loaded and overloaded resources [23][24][25][26].  

Cloud Partitioning is one of the commonly used methods for load balancing in the PC [27] [28] 

[29]. This chapter discusses a software agent-based load-balancing framework for partitioned 

public Cloud. 

 

A PC has nodes spread across various geographic locations [14], causing challenges such as 

complex management, resource allocation, optimization, cost management, data management, 

and latency management.  

 

5.1 Architecture  

The brokers in this architecture are practical representations of the SAs: 

• Client Agent    =>  Client  

• Partition Agent   =>  Partition Broker (PB)  

• Controller Agent  =>  Controller Broker (CCB) 

 

The major components in the architecture are: 

• Client: The primary duty of the client is to submit requests, along with the required set 

of resources, to a Partition Broker (PB).  

 

• PB: Each partition has a local PB to receive the client requests. PB records the load status 

of all the nodes inside its partition and shares these details with the Central Controller 

Broker (CCB) whenever required.   

 

• CCB: CCB interacts with all the PBs to collect the nodes' load status. CCB is invoked 

for load balancing across the partitions. 



 

101 
 

 

• Node: Nodes contain the physical resources, such as storage, computing capacity, 

graphical resources, memory, and other such resources, to be utilized for processing user 

requests. Each partition is assumed to have m nodes (n1, n2, n3… nm).  

 

 
Figure 6: Load Balancing in Partitioned Cloud 

 

5.2 Assessing the Load Status of Partitions and Nodes 

The number of jobs allocated to a node at a given time is known as its workload. The load status 

of the Cloud includes the load status of partitions and their nodes and is used to determine the 

availability of resources for job allocation. The system needs to assess the availability at two 

levels listed below: 

c) Choosing the Pi partition in which a node can be searched. 

d) Finding a node Nj to which a job can be allocated.  

 

The proposed framework defines four load states, which are:  

 idle,  

 normal,  

 overloaded and  

 full  

 

These states are determined based on the static threshold values pre-defined for the partitions 

by the CCB and the nodes by the PBs. At any given instance of time, the load state of the 
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partition depends upon the load state of its nodes. Assuming that there are i number of partitions, 

j number of nodes, given below is the formulation of these load states: 

5. Load State=’idle’  

c) Node State: 

A jth node Nj is considered to be in an idle state if resources available with jth node 

Rn,j are beyond a predefined threshold tn,idle. i.e. 

Nj=’idle’   IF   Rn, j > tn,idle      Eq. 1 

d) Partition State: 

An ith partition Pi is considered to be in idle state if the number of idle nodes in that 

partition are beyond a predefined threshold tp,idle, i.e.,   

Pi= ‘idle’ IF Ci>tp,idle      Eq. 2 

where Ci is no. of idle nodes in a partition.  

 

6. Load State=’normal’  

c) Node State: 

A jth node Nj is considered to be in a normal state, if resources available with jth node 

Rn,j are beyond a predefined threshold tn,normal. i.e. 

Nj=’normal’   IF   Rn, j > tn,normal     Eq. 3 

d) Partition State: 

An ith partition Pi is considered to be in a normal state if the number of normal nodes 

in that partition are beyond a predefined threshold tp,normal, i.e.   

   Pi= ‘normal’  IF  Ci>tp,normal     Eq. 4 

where Ci is no. of normal nodes in a partition.  

 

7. Load State=’overload’ 

c) Node State: 

A jth node Nj is considered to be in an overloaded state, if resources available with jth 

node Rn,j are beyond a predefined threshold tn,ovld. i.e. 

Nj=’overloaded’   IF   Rn, j > tn,ovld     Eq. 5 

 

d) Partition State: 

An ith partition Pi is considered to be in an overloaded state if the number of 

overloaded nodes in that partition are beyond a predefined threshold tp,ovld i.e.   
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   Pi= ‘overloaded’  IF  Ci>tp,ovld     Eq. 6 

where Ci is the number of ovld nodes in a partition.  

 

8. Load State=’full’ 

An ith partition Pi is considered to be in full load state if the number of overloaded 

nodes Ci in that partition is equal to j, i.e.,       

Pi=’full’ IF Ci=j      Eq. 7 

where j is the total number of nodes in that partition.   

 

5.3 Job Assignment 

Following this load status review, three outcomes are possible:  

• Case 1: If a single node Nj is available with an idle or normal state, then allocate the job 

to Nj and update the load status of the partition ‘Sp, i’ and the resources at node Rn, j  

• Case 2: If more than one node is available with an idle or normal state, then make a list 

of all these nodes as Ncapable[]  

• Case 3: If No node is available with sufficient resources, PB transfers the request to the 

CCB to search for a node in other partitions.  

 

The CCB calls all other partition's PBs and adds the partition's ID to a list of Pcapable[], capable 

partitions whenever it discovers a Pnormal or Pidle load state. A similar process is followed to 

search a node Nj in all the partitions in Pcapable[]. 

 

5.4 Complexity Analysis  

Time complexity varies according to the stages of the process. When the job was initially 

submitted, just one node's availability status was assessed. Consequently, the complexity of this 

phase O (1). The complexity class O (N) is applicable in all other scenarios, and the value of N 

varies according to the number of nodes in a partition and their RAV.  Table 3.2 compiles the 

complexity for different possible scenarios. P denotes a Partition, and N is a Node in Table 3.2. 

The number of partitions and nodes within each partition impacts the overall complexity.  

 

 

 

 

 



 

104 
 

Table 1:  Complexity Analysis of Algorithms and its s 

 

 

5.6 Experimental Results and Discussion 

This section presents experimental results and their discussion. This technique is implemented 

in CloudSim.  

 

The AET, MET, and TET are compared with FCFS and SJF algorithms within the same 

setup to assess the performance of the proposed framework. Each algorithm is run five times as 

part of the experiment. Table 3.3 details the experimental setup with the heterogeneous sizes of 

VMs and jobs.  

Table 2: Experimental setup 

 

 

All these parameters are considered to be the basic evaluation parameters because the users 

of DS, such as Cloud or Fog, are very particular towards the time-based parameters. The 

execution and response time of the application jobs are significant and helpful in assessing a 

site's performance. Other parameters, such as accuracy, reliability, and QoSs, are considered to 

be taken care of by default. However, time-oriented parameters require experimentation to 

devise and follow load-balancing schemes that offer better results in terms of such parameters. 

According to the results, the proposed framework performs better than the FCFS algorithm, 

while the SJF algorithm performs well overall.  
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5.6 Experimental Setup and Results 

The algorithm is implemented in CloudSim with the following setup details. Implementation is 

done on this small set of attributes for sampling purposes with certain assumptions.  

 

Table 3: Implementation Setup Parameters 

Sr. No. Parameter Name Parameter  

1. No. of Partitions 2 

2. No. of Brokers 2 

3. No. Of Datacenters 4 (2 Datacenters with each partition) 

4. No. of Hosts 2 Hosts for each Datacenter 

5. No. of VMs 6 VMs in each Datacenter 

6. No. of Cloudlets 40 Cloudlets with each broker 

 

Results are compared for the average finish time of cloudlets, waiting for the time of 

cloudlets, and actual run time. Figure 7 shows the comparison of MET of a cloudlet during 

simulation. In Figure 8, a comparison is made between the average total waiting time, 

average total finish time, and the average maximum actual time of all the cloudlets. Figure 9 

compares the actual run time of the cloudlets. Results show that the proposed framework 

produces better results than FCFS and SJF algorithms. 

 

 

Figure 7: MET Comparison 
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Figure 8: TET Comparison 

 

 

 

Figure 9: AET Comparison 

 

9. Machine learning-based dual broker for selection and allocation of fog 

services considering QoS parameters       

As seen in the previous chapter, efficient resource allocation to the requested jobs significantly 

improves the performance of DSs.  Modern domains are being researched and implemented in 

job scheduling, including classification techniques in ML. ML classification is a versatile and 

powerful tool that enables automation, pattern recognition, and predictive modeling across 

various applications and industries. It helps extract valuable insights from data, improve 

decision-making processes, and enhance efficiency. The current chapter discusses an ML-based 

dual broker framework integrating QoS parameters for scheduling applications’ jobs. 
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Figure 10: High-Level Architecture of the Dual BBF. 

 

       Two ML-based approaches are used in this framework: Naïve Bays Algorithm: At the fine-

grained (node selection) level, a probability triad (C, M, G) is anticipated using the Naïve Bayes 

algorithm, which provides a probability of a newly submitted application’s job to fall in either 

of the categories Compute (C) intensive, Memory (M) intensive and GPU (G) intensive. Self-

Organizing Map: SOM maps the application’s jobs onto the corresponding resource cluster. 

 

 

Figure 11: QoS Parameters and Functional Requirement-Based Triplet Generation. 

 

      Each FN in an environment is virtually clustered, corresponding to these four categories 

using SOM. Any newly submitted request in the proposed framework is allocated to one of 

these.  
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Table 4: Node types and application’s job types. 

Node Type GPU 

Requirement 

Memory 

Requirement 

Compute 

Requirement 

General Purpose Normal Normal Normal 

GPU Intensive High Normal Normal 

Memory Intensive Normal High Normal 

Compute Intensive Normal Normal High 

 

 

Figure 12: Use of SOM for mapping triplets onto the resource clusters. 

 

5.1 Experimental Setup and Results 

The experiment was run for 100 minutes because saturation was observed after this time. Five 

metrics were recorded in the experiment for three installed infrastructures: resource utilization, 

availability, response time, waiting time, and completion time. 

 

 

Figure 13: Testbed for the performance evaluation  
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Figure 14: ARU of Available Computing 

Infrastructure 

 

Figure 15: Comparison of availability of resources 

from installed infrastructure 

 

  
Figure 16: Comparison of average response time 

(ART) in Installed Infrastructure 

Figure 17: AWT of Installed Infrastructure 

 

 
Figure 18: ACT of Installed Infrastructure 

 

After careful analysis of available results, it can be concluded that selecting specific 

resources for each type of application results in better performance. Although the proposed 

framework performed close to the cloud computing platform for utilization and availability, it 

is better in all parameters related to the timely execution of jobs submitted to the application. 

The latency parameter was the same in the case of the traditional FC environment, but it failed 
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to perform because resources were and many applications had to wait for their execution to 

start. The adverse result of traditional FC proved the viability and usage of the proposed 

framework. 

 

10.  Multilevel hierarchical broker for job scheduling in hexagonal fog environments for 

better global geographical coverage of distributed and ad-hoc fog services.   

The previous Chapter elaborates on a dual-broker implementation in FC. That solution refers 

to a single FE. This chapter presents a hierarchical broker-based technique for job scheduling 

in hexagonal FEs for better global geographical coverage of distributed and ad-hoc Fog 

services.   

 

Figure 19: Global geographical coverage using multilevel brokers 

 

     In the proposed framework, every FE has an L1B deployed inside it, which accounts for the 

available resources of all the FNs inside that FE. Are L2Bs deployed at the upper level of the 

hierarchy, representing FEs of a GR, and it is responsible for communicating with the L1Bs of 

all FEs. For global coverage of resources, another level of hierarchy has an L3B, which 

coordinates all the GRs by communicating with all L2 Brokers at the global level. 
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6.1 Experimental Setup and Results 

 

Figure 20: Testbed for experimental setup and performance analysis 

 

Figure 20 shows the overall components of the testbed created to evaluate the proposed 

framework, which contains four different applications, four FEs with a variable number of 

nodes, and a machine that handles the scheduling. Four applications used in the testbed are 

already available in the Aneka platform, and the authors have not created them. These 

applications generate a series of independent tasks that can be allocated to any FE, as listed in 

Table 3. All tasks generated from these applications are submitted to the GBR, which decides 

which task to run on a given FN. In the testbed, the GBR is a Windows 10 machine with Intel(R) 

Core (TM) i7-10700 CPU 2.90 GHz processor, 16.0 GB (15.7 GB usable) RAM, and a 64-bit 

operating system. It runs an Aneka master container that manages the scheduling of jobs on the 

desired FEs. The proposed algorithm, which manages different aspects of scheduling in any 

distributed computing environment, is developed in Aneka PaaS software.  

 

Table 5: Applications used in the testbed 

S. No. Name Tasks per minute TtC Range 

1 Blast Application 1000 5-15 seconds 

2 Image Convolution 3600 1-2 seconds 

3 Mandlebort 2500 1-5 seconds 

4 Data Search 1000 5-15 seconds 
  

Table 6: Node number and configuration of FEs 
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S. No. FE Number of Nodes Node Configuration 

1 FE 1 1 1 Core @ 2.9 GHz, 1 GB RAM, 20 GB HDD 

2 FE 2 6 1 Core @ 2.9 GHz, 1 GB RAM, 20 GB HDD 

3 FE 3 12 1 Core @ 2.9 GHz, 1 GB RAM, 20 GB HDD 

4 FE 4 18 1 Core @ 2.9 GHz, 1 GB RAM, 20 GB HDD 

 

Table 7: Parameters for Time used in the Proposed Framework’s Testbed. 

Parameter Value 

𝑡𝑙𝑎𝑦𝑒𝑟 1-5 seconds (chosen randomly) 

𝑡𝑎𝑣𝑎𝑖𝑙 3-8 seconds (chosen randomly) 

𝑡𝑠𝑐𝑜𝑟𝑒 1-5 seconds (chosen randomly) 

Latency per hexagon 5-15 seconds (Poisson distributed) 

 

  
Figure 21: Number of tasks generated by every 

application at different time intervals  

 

Figure 22: ARU of FEs 

  
Figure 23: Comparison of the average resource 

availability of FEs.  

Figure 24: Comparison of average response time (ART) 

in Application Tasks 
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Figure 25: AWT of Application Tasks.  Figure 26: ACT of application tasks. 

 

 

A comparison of experimental results shows that the proposed framework performs much 

better regarding resource utilization, resource availability, waiting time, response time, and job 

completion. In the future, this model can be expanded by considering a flexible set of QoS 

parameters as per the requirements of the application’s job to be executed. 

 

11. Conclusion             

In the end, the research attempts to propose and verify different approaches to achieve better 

execution timing, better utilization of deployed resources, and reducing the complexities of load 

balancing due to the large search space in the Distributed Systems. Improved operational and 

QoS parameters improve the user experience and the service provider’s goodwill. Efficient 

resource allocation is the major contributor to the evolution of modern computing paradigms, 

and this thesis is an attempt to contribute in the same direction. 

 

12. Future Scope   

This thesis is focused on service orchestration in the Cloud and FC environments and has 

proposed frameworks based on chosen parameters only. There is a long list of the network 

(number of hops, BW, packet loss, network throughput, network delay, network jitter) and 

infrastructure (CPU count, amount of memory, size of disk space, percentage of CPU, 

percentage of memory, free disk) related QoS parameters which contribute significantly in 

service orchestration. [30]. Experimentation can be performed upon this set of resources to 

verify if the proposed frameworks produce significantly improved results in the expanded set 

of parameters. More ML techniques can be explored along with expanding the list of 

parameters, as the same technique cannot benefit every parameter. Another field of future 

research to explore is to scale the hierarchy levels in a multilevel broker platform where 
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hierarchical levels can be added or removed per the geographical size and resource 

requirements of fluctuating request volume. Scaling in terms of hexagonal FEs, including their 

size and number of hexagonal GRs, is also a dimension that can be experimented with.  
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