

BROKER-BASED FRAMEWORK FOR SERVICE

ORCHESTRATION IN CLOUD AND FOG

COMPUTING ENVIRONMENTS

Thesis submitted in fulfillment of the requirements for the Degree of

DOCTOR OF PHILOSOPHY

By

 MANDEEP KAUR

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY,

WAKNAGHAT, H.P.

MARCH 2024

@Copyright JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY

WAKNAGHAT

MARCH, 2024

ALL RIGHTS RESERVED

i

 Table of Contents

Table of Contents Page Number

TABLE OF CONTENTS i

DECLARATION BY THE SCHOLAR iv

SUPERVISOR'S CERTIFICATE v

ACKNOWLEDGEMENT vi

ABSTRACT vii

LIST OF ACRONYMS AND ABBREVIATIONS viii

LIST OF FIGURES x

LIST OF TABLES xii

CHAPTER-1 INTRODUCTION 1-9

1.1 Orchestration 1

1.2 Distributed Systems 2

1.3 High Performance Distributed Systems 3

1.4 Load, Load Balancing, and Job Scheduling 4

1.5 Brokers 4

1.6 Open Issues 5-7

1.7 Motivation 7

1.8 Research Gap 7

1.9 Objectives 8

1.10 Organization of thesis 9

CHAPTER-2 LITERATURE REVIEW 11-38

2.1 Introduction 11

2.2 Broker-based Systems and Orchestrations 11-18

2.3 Load Balancing in Particular Public Cloud using S/W Agents 18-25

2.4 Dual Broker-based Framework (BBF) for IoT Job Scheduling 25-31

2.5 Multilevel Broker-Based Framework (BBF) For Better Geographic

Coverage of Resources 31-37

2.6 Summary 37-38

CHAPTER-3 PARTITIONED PUBLIC CLOUD 39-48

ii

3.1 Introduction 39

3.2 Background 39-41

3.2.1 Public Cloud 39

3.2.2 Partitioning a Public Cloud 39-40

3.2.3 Software Agents 41

3.3 Proposed Framework 41-45

3.3.1 Architecture 41-42

3.3.2 Application job distribution across cloud and fog Layer 42-43

3.3.3 Assessing the load status of FEs and FNs 43-45

3.3.4 Job Assignment 45

3.3.5 Complexity Analysis 45

3.4 Experimental Results and Discussion 46-48

3.5 Summary 48

 CHAPTER-4 DUAL BROKER-BASED JOB SCHEDULING 49-64

4.1 Introduction 49

4.2 Background 49-50

4.2.1 Fog Computing 49-50

4.2.2 Naïve Bayes 50

4.2.3 Self Organizing Map (SOM) 50

4.3 Proposed Framework 51-57

4.3.1 Architecture 51-53

4.3.2 Naïve Bayes Algorithm for the Proposed Framework 53-54

4.3.3 Modified Self Organizing Maps (MSOM) 54-57

4.4 Experimental Results and Discussion 57-63

4.5 Summary 63-64

CHAPTER-5 MULTILEVEL BROKER-BASED JOB SCHEDULING 65-80

5.1 Introduction 65

5.2 Background 65-66

 5.2.1 Coverage of Geographic Region 65

 5.2.2 Hexagonal Fog Environment Organization 65-66

5.3 Proposed Framework 66-73

5.3.1 Architecture 66-67

5.3.2 The process for the selection of a FE 67-73

iii

5.4 Experimental Results and Discussion 73-80

5.5 Summary 80

CHAPTER-6 CONCLUSION AND FUTURE 81-86

6.1 Thesis Summary 81

6.2 Concluding Remarks 81-82

6.3 Contribution 82-84

6.4 Future Scope 84

6.5 Summary 84-85

REFERENCES 86-93

LIST OF PUBLICATIONS 94

SYNOPSIS 95-116

iv

DECLARATION BY THE SCHOLAR

I hereby declare that the work reported in the Ph.D. thesis entitled, “BROKER-BASED

FRAMEWORK FOR SERVICE ORCHESTRATION IN CLOUD AND

FOG COMPUTING ENVIRONMENTS,” submitted at Jaypee University of

Information Technology, Waknaghat, Solan (HP), India is an authentic record

of my work carried out under the supervision Dr. Rajinder Sandhu, Jaypee University

of Information Technology, Solan, (HP) India and Dr. Rajni Mohana, Jaypee University

of Information Technology, Solan, (HP) India. I have not submitted this work elsewhere for

any other degree or diploma. I am fully responsible for the contents of my Ph.D. thesis.

Mandeep Kaur

Enrolment No.: 166201

Computer Science and Engineering

Jaypee University of Information Technology,

Waknaghat, Solan (HP), India.

March 2024

v

SUPERVISOR’S CERTIFICATE

This is to certify that the work reported in the Ph.D. thesis entitled “BROKER-BASED

FRAMEWORK FOR SERVICE ORCHESTRATION IN CLOUD AND

FOG COMPUTING ENVIRONMENTS” submitted by Mandeep Kaur at Jaypee

University of Information Technology, Waknaghat, Solan (HP), India, is a bonafide

record of her original work carried out under my supervision. This work has not been

submitted elsewhere for any other degree or diploma.

Dr. Rajinder Sandhu

Computer Science and Engineering

Jaypee University of Information

Technology, Waknaghat,

Solan, (HP), India

March 2024

 Dr. Rajni Mohana

Computer Science and Engineering

Jaypee University of Information

Technology, Waknaghat,

Solan, (HP), India

March 2024

vi

ACKNOWLEDGEMENT

First, I would like to thank my guide, Dr. Rajinder Sandhu, and co-guide, Dr. Rajni Mohana, in

the Department of Computer Science and Engineering and Information Technology, for their

support throughout this research work. I am thankful to them for sharing their knowledge and

experience in the Distributed Systems (DS) field and allowing me to work under them. I could

not finish this thesis without their advice and assistance. I owe them for their constant

motivation and priceless advice in every aspect of this journey. I indeed consider myself

fortunate to have had the chance to work with such wonderful people.

I want to thank our Honorable Vice Chancellor, Prof. (Dr.) Rajinder Kumar Sharma and

Director & Academic Head Prof. (Dr.) Ashok Kumar Gupta to promote the research and

facilitate resources in the institution. I would also like to thank Prof. Dr. Vivek Kumar Sehgal,

Head Department of CSE&IT, for constant guidance, research facilities, and resources for my

research work. I would also like to thank my doctoral committee members, Dr. Pradeep Kumar

Gupta, Dr. Ruchi Verma, and Dr. Gopal Bisht, for their valuable feedback, critical reviews

during presentations, and time-to-time help.

I am also grateful for the support from the JUIT, Waknaghat; in particular, I thank all staff at

the Department of Computer Science and Engineering and Information Technology, JUIT,

Waknaghat, who have been extremely helpful on numerous occasions. I thank my fellow Ph.D.

friends for their consistent help and valuable discussion.

I am blessed with a lovely family and group of friends. I want to thank my parents, S. Major

Singh and Smt. Surjit Kaur, Brothers Mr. Balwinder Singh and Mr. Javaid Ahmed, Sisters Ms.

Kulwinder Kaur, Ms. Mandeep Kaur and Ms. Tanveera Hassan, my nephews Manpreet Singh,

Gurmeet Singh, Paramjit Singh, and niece Silvi, for supporting me practically, emotionally and

morally throughout this journey. I thank Dr. Pawan Kumar for constantly criticizing the

negativity and motivating me to stay focused, Dr. Komal Singh Gill for his calm, friendly and

in few cases, miracle like support, Dr, Ramandeep Kaur, Dr. Yasir Aafaq and all my amazing

colleagues and friends at my workplace for their unconditional support and motivation during

this period. Above all, I am thankful to the almighty for showering peace, patience, and

positivity upon me, which enabled me to conclude this journey successfully.

vii

ABSTRACT

Distributed Systems have significantly contributed to the evolution of the field of computing by

enabling job distribution and resource sharing. Distributed computing paradigms such as Cloud and

Fog have eased users by making high-end resources available to the user without even possessing

them physically. Users of these computing paradigms can use resources by paying nominal costs

per their usage, scale their subscription, or shift from one set of resources to another as per their

changing computational requirements. In this scenario, efficiently handling the requests and

resources becomes crucial so that the available infrastructure can be utilized optimally. Job

scheduling and load balancing are the formal ways to map the job requests on appropriate resources

in DS appropriately. Both job scheduling and load balancing are prevalent research topics among

researchers, and a considerable volume of literature is available to introduce tools and techniques

for it. These techniques are expected to resolve the challenges faced by distributed computing, such

as imbalanced load, the geographical coverage of resources, over/under utilization of resources,

meeting Service Level Agreement, maintaining Quality of Service, and curbing the number of

denied jobs. This thesis presents three frameworks: the first is a software agent-based broker

framework for load balancing in a Partitioned Public Cloud, an ML classification-based dual broker

framework that integrates QoS parameters for scheduling applications’ jobs in FEs. This framework

categorizes the resources available at the nodes as compute-intensive, memory-intensive, and GPU-

intensive.

The suitable category of the newly submitted job is determined using Naïve Bayes Theorem, and

these jobs are mapped onto the suitable category of the resources using Self-Organizing Maps. In

addition to this, QoS parameters availability, physical distance, latency, and throughput are

integrated into this system. The third framework proposed in this thesis is a multilevel hierarchical

broker for job scheduling in hexagonal FEs for better global geographical coverage of distributed

and ad-hoc Fog services to select the Fog node based upon a newly introduced parameter: QoS

Score. Hexagonal Fog environments are introduced for geographic grouping of the Fog resources

for better coverage of geographical regions of Fog resources. Experiments are performed using

CloudSim, Aneka, and Azure platforms. Results have proved the improved performance of

proposed frameworks in terms of average response time, average wait time, average completion

time, resource availability, and average resource utilization compared to the conventional

methodologies used for job scheduling in Cloud and Fog environments.

viii

List of Acronyms and Abbreviations

ACT Average Completion Time

AET Average Execution Time

ACET Actual Execution Time

ART Average Response Time

ARU Average Resource Utilization

AWT Average Waiting Time

BBF Broker-based Framework

BW Bandwidth

CB Cloud Broker

CCB Central Controller Broker

CC Cloud Computing

DS Distributed Systems

EC Edge Computing

FC Fog Computing

FE Fog Environment

FN Fog Node

GBR Global Broker

GR Geographic Region (GR)

IoT Internet of Things

L1B Level-1 Broker

L2B Level-2 Broker

L3B Level-3 Broker

LBR Local Broker

MET Maximum Execution Time

ML Machine Learning

PB Partition Broker

PC Public Cloud

PP Physical Proximity

PPC Partitioned Public Cloud

QD Quality of Devices

ix

QoS Quality of Service

RoI Region of Interest

RAV Resource Availability

SA Software Agent

SLA Service Level Agreement

SOM Self-Organizing Map

TET Total Execution Time

VM Virtual Machine

x

List of Figures

Figure 1.1 Roles played by the orchestration 1

Figure 1.2 Broker as a service orchestration agent 2

Figure 1.3 Categories of Distributed Systems 3

Figure 1.4 Cloud vs. Fog computing paradigm 3

Figure 1.5 Overview of a broker-based system 4

Figure 3.1 Size-wise comparison of Cloud types 40

Figure 3.2 Geographically partitioned public Cloud 40

Figure 3.3 Architecture: a framework for load balancing in PPC 42

Figure 3.4 Job segregation: Cloud vs Fog 43

Figure 3.5 MET Comparison 46

Figure 3.6 TET Comparison 47

Figure 3.7 AET Comparison 47

Figure 4.1 Positioning the Edge Devices and FNs in FE 49

Figure 4.2 High-level architecture: Dual broker-based framework 51

Figure 4.3 Triplet generation based upon QoS Parameters And Functional

Requirements

54

Figure 4.4 Use of SOM to map the triplet on the resource cluster 55

Figure 4.5 Testbed for the performance evaluation of the proposed framework 58

Figure 4.6 ARU of available computing infrastructure 60

Figure 4.7 RAV comparison of the installed infrastructure 60

Figure 4.8 ART comparison of installed infrastructure 61

Figure 4.9 AWT comparison of installed infrastructure 61

Figure 4.10 ACT comparison of installed infrastructure 62

Figure 5.1 Geographic area partitioned in hexagon GRs for Fog resources 66

Figure 5.2 Interaction between the L2B and L1B 67

Figure 5.3 Interaction between L1B, L2B and L3B 67

Figure 5.4 Increase in the number of FNs with layer count 68

Figure 5.5 Interaction between L2B and L1Bs of a layer 69

Figure 5.6 Assigning the job to a suitable FE 71

Figure 5.7 Testbed for experimental setup and performance analysis 73

xi

Figure 5.8 Setup of FEs for the testbed 75

Figure 5.9 Number of jobs generated by every application at a different time

interval

76

Figure 5.10 ARU Comparison 76

Figure 5.11 RAV Comparison 77

Figure 5.12 ART Comparison 77

Figure 5.13 AWT Comparison 78

Figure 5.14 ACT Comparison 79

Figure 6.1 Thesis Summary 85

xii

List of Tables

Table 1.1 Open Issues in the field of DS 5

Table 2.1 Types and implementation of Brokers on various resources 15

Table 2.2 Summary of literature survey for PPC 22

Table 2.3 Summary of literature survey for dual BBF using ML techniques and

QoS parameters

28

Table 2.4 Summary of literature survey for multilevel BBF for better

geographic coverage of Fog resources

34

Table 3.1 Complexity Analysis 45

Table 3.2 Experimental Setup 46

Table 3.3 Comparison with other approaches 47

Table 4.1 Record kept by LBR 52

Table 4.2 Resource Availability based node types 53

Table 4.3 Details of QoS parameters 55

Table 4.4 Summary of obtained results 62

Table 4.5 Proposed framework vs other solutions 62

Table 5.1 Weightage of QoS parameters to calculate the QoS score 69

Table 5.2 Applications used in Testbed 74

Table 5.3 Number and Configuration of Nodes 74

Table 5.4 Parameters for Time used in the Proposed Framework’s TestBed 74

Table 5.5 Summary of the obtained results 79

Table 5.6 Proposed framework vs other solutions 79

1

CHAPTER 1

INTRODUCTION

This thesis addresses the complexities of orchestrating services in Cloud and Fog computing

environments by proposing Broker-Based Frameworks (BBFs). These frameworks leverage

intelligent brokering strategies to optimize resource management, service orchestration, and

deployment in heterogeneous computing environments. The thesis outlines the architecture and

components of the BBF, emphasizing its potential to enhance responsiveness, resource

efficiency, resource utilization, and resource availability in Distributed Computing Systems.

Overall, the proposed BBFs offer a solution-oriented approach to the challenges associated with

service orchestration in dispersed and dynamic computing ecosystems.

1.1 Orchestration

The term orchestration describes managing and synchronizing services, apps, and resources in

Cloud and Fog Computing (FC) contexts. Cloud orchestration is the process of overseeing

services and resources in a distant, centralized data center. It usually manages storage,

networking, Virtual Machines (VMs), containers, and other Cloud infrastructure resources.

Applications in Cloud settings can be automated, managed, and scaled using orchestration tools

such as OpenStack, Docker Swarm, and Kubernetes. FC involves orchestrating computing,

storage, and networking resources in edge devices, gateways, and local servers. Orchestration

tools such as Cisco IOx, OpenFog, or edge computing (EC) platforms can manage and automate

the services in FC environments. [1]–[3]

Figure 1.1: Roles played by the orchestration.

2

A service orchestration engine plans directs, and automates the interactions between various

services or systems in a network or application environment.

Figure 1.2: Broker as a Service Orchestration Agent

Orchestration is crucial in Cloud Computing (CC) and FC to simplify and automate

application and service deployment, scaling, and management. It ensures reliable, scalable, and

efficient resource utilization in complex and distributed computing environments. [4]–[6]

1.2 Distributed Systems

Distributed Systems (DS) refers to two or more computers working together through a network

to finish a single job, which is distributed over a group of computers, heterogeneous in operating

systems, node characteristics, network design, and communication medium [7]. The generic

quality of DSs in a group of autonomous computer components is that these seem like a single

cohesive system to the users [8]. DS comprises autonomous computing nodes for better

accessibility, transparency, openness, and scalability [9].

To optimize autonomous communication between nodes, a DS's performance can be

measured through execution time, throughput, efficiency, system utilization, turnaround time,

waiting time, response time, overheads, and reliability [9]–[12]. Figure 1.3 demonstrates the

categories and relevant examples of DS.

3

Figure 1.3: Categories of distributed systems.

1.3 High-Performance Distributed Systems

This category includes computing paradigms such as cluster computing, grid computing, and

CC. FC is another paradigm that enables delivering Cloud application services closer to the

Internet of Things (IoT) devices at the edge rather than relying on a distance Cloud. In contrast

to transferring IoT data to the Cloud, which processes and stores it remotely on IoT computers,

Fog provides better latency-sensitive resources. Thus, FC is the ideal choice for enabling the

IoT to provide efficient and trustworthy services to many clients. Figure 1.4 highlights the

fundamental differences between Cloud and FC paradigms.

Figure 1.4: Cloud vs Fog computing paradigms.

4

1.4 Load, Load Balancing and Job Scheduling

In the context of CC, load refers to the volume of work or demand on a server, network, or

system at a specific time. It mainly concerns how much resource is used or consumed in a

Cloud-based infrastructure. Compute, network and storage loads are just a few examples of the

components that comprise the term load in distributed systems [13]. Load balancing in DS

evenly distributes network traffic or computational workload across multiple servers that

optimize resources, scalability, fault tolerance, performance enhancement, and cost efficiency

[14] [15]. On the other hand, job scheduling in cloud and fog computing efficiently allocates

computing resources and manages task execution to manage resource utilization, prioritization,

fairness, adaptability, flexibility, and latency [16]–[18].

1.5 Brokers

In Cloud and FC environments, Cloud Brokers (CBs) and Fog Brokers are significant for

resource management, communication facilitation, and operational optimization. To help

choose and handle Cloud services, Cloud brokerage involves mediators who link consumers or

businesses with Cloud service providers. Cloud service brokers (CSBs), such as Right Scale

and Gravitant, are instances of CBs. They offer platforms for managing Cloud services from

various vendors. Figure 1.5 demonstrates the positioning and contribution of the brokers in DS.

Figure 1.5: Overview of a broker-based system.

5

Companies that work with FC concepts include Cisco, IBM, and Microsoft. Some of these

companies may also develop or offer Fog brokerage services. The brokerage model inevitably

changes as technology develops and the demand for effective resource management in various

computing environments increases.

1.6 Open Issues

Table 1.1 discusses some of the most commonly researched issues in the field of DS:

Table 1.1: Open Issues in the field of DS.

Open Issue Description

The complex and dynamically

changing Fog computing environment

[19]–[22]

Heterogeneous Fog computing equipment leads to

uneven resource distribution, causing latency

issues and hindering overall system performance.

Strategies like load balancing and resource

optimization are needed to address these

challenges.

The volume of requests and prolonged

task queues [19], [22], [23]

Vital Fog Nodes (FNs) may be unable to process

all of the service's input data because they have

limited computational, storage, and other resource

capabilities.

Mobility causes dynamic changes [19],

[21], [23]

Mobile FNs dynamically influence Fog computing

resources, necessitating adaptable resource

allocation systems to manage the server shifting

seamlessly.

Dynamically changing resource

requirements [19]

Diverse application behaviors, time variations, and

environmental conditions impact computing

aspects like resource sharing, job scheduling, and

task offloading, which shape the resource

allocation in FC.

6

Load Balancing [19], [21], [23] Load balancing techniques aid in optimizing task

transfer between Fog and Cloud systems to

minimize overload and processing time. However,

exploratory strategies often favor more robust Fog

resources, impacting workload balance.

Task Scheduling [19], [21], [23] Task scheduling complexity arises from the

substantial difference in capacity between FNs and

Cloud servers, compounded by network

heterogeneity and the uncertain wireless

environment.

Real-Time Responsiveness [19], [21]–

[24]

Managing real-time, delay-sensitive IoT

applications alongside multidimensional

complexities poses a key challenge for Fog

computing networks.

Big Data Analysis [19], [23], [25] Effectively distributing vast high-dimensional data

from end-user devices and the IoT among resource-

limited FNs poses a challenge for learning

algorithms in big data analytics to yield reliable

findings.

Load Prediction [19]–[21], [25]

Dynamic resource auto-scaling in Fog

Environments (FEs) is crucial for efficiently

distributing resources to varied workloads,

preventing "Over-Provisioning" due to scarcity and

"Under-Provisioning" from excess requests.

All the issues discussed in this section are generic. However, there are domain-specific

variations of these issues, such as reinforcement learning [19], fuzzy logic [20], offloading

7

mechanism [21], bandit learning [22], and digital twin perspective [25]. All these domains have

different perspectives to view these issues and research their solutions in different dimensions.

1.7 Motivation

The rapid and effective placement of application jobs on available FNs for latency-sensitive

Internet of Things (IoT) jobs improves the performance of a DS. If nodes are selected correctly

and effectively, the probability of achieving low latency increases automatically [26], [27].

This thesis proposes job scheduling and load-balancing solutions for high-performance

systems. These problems, being highly significant to the DSs, are widely researched by

researchers, resulting in various techniques in this field. As per our knowledge, the existing

solution could not address the following issues which our work is intended to resolve:

 Lack of autonomous behavior in scheduling and balancing components,

 Classification of available resources and mapping jobs to appropriate classes,

 Single point of load scheduling and balancing,

 Geographic coverage of Fog resources.

1.8 Research Gaps

To the best of our knowledge, some of the existing gaps in the field of study are presented in

this section:

1. PC has a large search space due to the accommodation of a massive number of Cloud

or Fog resources which needs mechanism to introduce autonomous behaviour in and

across the partitions.

2. Considering FN as a single bulk of resources and allocating jobs without segregation

and QoS parameter consideration is not optimal for resource allocation in the Fog

Environments.

3. Load increases on scheduling brokers with expansion in the geographic areas, and there

are chances that the scheduling entities overlap some of the resources left unattended.

8

1.9 Objectives

As a result of our work, we suggest three progressive frameworks, which are:

 To design a software agent (SA)-based broker framework for load balancing in a Partitioned

Public Cloud (PPC)

To reduce the search space in the Public Cloud (PC), to reduce the congestion at a single job

scheduler, and to insert autonomous behavior in the load balancing technique, an SA-based

broker framework is introduced for a single Cloud, which resulted in a reduced number of

detained jobs, improved makespan, better average execution time (AET), maximum execution

time (MET) and total execution time (TET). This method yielded good outcomes, but it can be

enhanced by incorporating machine learning (ML) classification methods for automated

decision-making and considering Quality of Service (QoS) parameters when evaluating system

performance.

 To develop an ML-based dual broker framework by integrating QoS parameters for

scheduling applications’ jobs in FEs

An ML classification-based dual broker framework is proposed by integrating QoS parameters.

Two brokers are used: Global Broker (GBR) deployed at the centralized level and Local

Brokers (LBRs) deployed at each FE. This framework considers three QoS parameters:

Physical Proximity (PP), Bandwidth (BW), and Device Quality (QD). A combination of Naïve

Bayes Theorem and Self-Organizing Map (SOM) is used in this approach to classify and map

jobs on a suitable set of resources (Generic, Compute Intensive, GPU Intensive, and Memory

Intensive). This approach improves average resource utilization (ARU), resource availability

(RAV), average response time (ART), average waiting time (AWT), and average completion

time (ACT). However, this approach does not address geographical resource coverage, so some

pervasively scattered nodes may be left unattended or overlapped. Congestion issues may still

arise at dual-level hierarchical brokers when considering globally scattered Fog resources.

 To develop a multilevel hierarchical broker for job scheduling in hexagonal FEs for better

global geographical coverage of distributed and ad-hoc Fog services

The third approach is a multilevel hierarchical broker-based framework for job scheduling in

hexagonal FEs for better global geographical coverage of distributed and ad-hoc Fog services.

The RoI (Region of Interest) in this chapter is divided into hexagonal regions due to the equal

distance between their centers and ensuring complete coverage of FNs. This approach considers

9

global-level Fog resources across the Geographical Regions (GRs) and is flexible enough to

add multiple hierarchical brokers to manage the increased congestion along with the expansion

to multiple GRs. As an output of this approach, we could achieve higher RAV, ARU, ART,

AWT, and ACT.

1.10 Organization of the Thesis

The thesis has been organized into 6 chapters as described below:

Chapter 1: This chapter introduces the basic concepts of DS and narrows their scope while

discussing the work's background concepts, open issues, motivation, and objectives.

Chapter 2 presents the existing state-of-the-art approaches proposed by other researchers. The

literature review is divided into four sections: first, basic concepts and the three sections contain

a literature review corresponding to each objective.

Chapter 3: This chapter discusses partitioning the public Cloud (PC) and applying software

agents, in the form of brokers, for load balancing.

Chapter 4: This chapter discusses an application’s job allocation to suitable resources using

ML classification techniques in a dual broker-based system. Two ML techniques are used in

the proposed framework: the Naïve Bayes approach and the SOM.

Chapter 5: This chapter presents a multilevel broker-based approach considering the global

geographical coverage of the Fog resources using hexagonal FEs. The proposed framework

introduces a parameter QoS score to rank the available resources based on this score.

Chapter 6: This chapter summarizes and concludes the thesis and presents the potential future

directions.

The thesis ends with a list of references and synopsis. This thesis aims to propose and

implement the frameworks for efficiently scheduling applications’ jobs on DS, such as Cloud

and FC environments. Though CC and FC paradigms have resolved the issues of resource

scarcity to a noticeable level, carefully allocating available resources to the jobs ensures optimal

10

resource utilization. This thesis resolves job scheduling at three different levels by introducing

job scheduling frameworks for each.

11

CHAPTER 2

LITERATURE SURVEY

2.1 Introduction

This chapter presents the systematic literature review for all three objectives in this thesis. The

following sections of the chapter present the literature studied for each proposed framework.

Section 2.2 contains the set of papers relevant to broker-based systems and orchestration. The

literature referred to in Section 2.3 is related to basic CC concepts, partitioning, load-balancing

techniques, SAs, and PCs. The literature in Section 2.4 is related to the FC, ML techniques, IoT

applications’ job scheduling techniques, and QoS parameters. Section 2.5 contains the literature

surveyed for IoT applications’ job scheduling techniques, Geographic Region (GR) coverage,

QoS parameters, and hexagonal structures.

2.2 Broker-based Systems and Orchestration

In DS, brokers can be used on various resources, including BW, Cloud, information, IoT, QoS,

resource, and service brokers. Each one of these plays a particular role in the systems in which

they are used. The jobs carried out by brokers in a DS can vary from application to application,

even though their overall role remains constant [28]. In DS, brokers can serve a variety of roles

in message queueing systems, content delivery networks, collaborative content distribution

networks, and the security industry [28] [10] [29] [30].

In 2016, Suomalainen et al. [31] designed an improved architecture based on an information

brokering system's privacy and security requirements. They suggested an adaptive pseudo-

optimization architecture that made privacy attacks more difficult and offered real-time updates

on how reliable the platforms' privacy protection mechanisms were. The authors developed this

architecture to enhance infrastructure utilization in smart cities through real-time information

sharing at the district level. They focused on measuring energy consumption and found their

framework to be helpful.

In 2016, López et al. [32] developed a scheduler using the assistance calculations Deferrable

Server and Earliest Deadline First (EDF) (DS). The self-reconfiguration of the manufacturing

framework was quite enticing because setbacks could occur on any one of the specifics of the

12

assembling framework. The article proposed a method to tackle this issue. The approach

involved analyzing the time taken by the system to produce an item and adjusting the rate of

plant components of the specific operation accordingly. This helped identify the deficiencies of

the system and address them effectively.

In 2018, Ferdosian et al. [33] presented a two-level downlink scheduling system that resolved

significant difficulties by attempting to deliver all sorts of traffic while striving to meet the

performance constraints of the LTE. A cogent resource allocation method was created for the

higher-level algorithms using a game theory model to guarantee per-class fairness. The greedy-

knapsack method was improved at a lower level for improved QoS and throughput to distribute

resources to the best possible bearers. The suggested method's effectiveness was assessed under

normal and overload network conditions. According to simulation results, the suggested

scheduling algorithm performed better than reference scheduling strategies based on

throughput, fairness, and QoS performance as measured by the rate of packet loss and latency

for various service classes.

In 2019, Hwang et al. [34] introduced and outlined the U-mosquitto protocol, an improvement

to the popular MQTT Mosquitto broker. They tried to expedite the delivery of crucial signals

by sending them out more quickly than other system messages. Studies have demonstrated that

as the number of publishers rises, so does the difference in delivery time between routine

communications and urgent messages.

In 2020, Mei et al. [35] introduced a new function for CB, which acts as a mediator between

Cloud providers and short-term Cloud users to reduce costs. Short-term customers often pay

more than their usage due to hourly billing cycles, even when not using Cloud Resources (CRs)

for long periods. Long-term users receive discounted CRs, while short-term users do not. To

address this issue, the CB rents reserved VMs at a lower cost and then distributes these

resources to users at a lower cost on demand. The authors of a recent study focused on CB

configuration and calculating a fee that ensured maximum profit for the broker while lowering

the cost for Cloud consumers. They modeled a profit maximization problem as an ideal multi-

server setup price problem and suggested a heuristic strategy that used partial derivative and

bisection search methods to optimize the problem. The authors also analyzed the factors

13

influencing the broker's profit, such as user demand, VM buy price, and VM sale price. A linear

price-demand function is used to find the best options.

In 2020, Oh et al. [36] investigated the subject of user cost minimization in MCC networks.

Different brokers assign CRs to mobile users in an MCC model, which was considered. A

competitive approach and a compete-then-cooperate method were examined as performance

bounds for Cloud reservation strategies. Cooperation can lead to significant gains over

competition in markets with fewer brokers. However, in markets with many brokers, the

benefits of cooperation are negligible, indicating no clear advantage to working together.

In 2020, Zhang et al. [37] focused on researching the price and selection of services for IoT

applications in a multi-MEC (Multi Edge Computing) system with multiple Edge Cloud Service

Providers (ESPs). The researchers specifically paid attention to the distribution of workload.

They modeled the situation as a Stackelberg game, where the Cloud Service Broker (CSB)

determines the Cloud service price and load balancing strategies to maximize revenue. Next,

IoT users can select which ESP service they want. The backward induction method is used to

find the best solutions. The proposed strategy is validated using simulation data.

In 2020, Mishra et al. [38] studied the progress made in M2M (Machine-to-Machine) protocol

research, specifically focusing on MQTT, AMQP, and CoAP, over the past two decades. They

found that MQTT research has outpaced the others. To assist academics and end-users in

selecting a broker or client collection that best suits their needs, they have provided a

classification to compare the features and characteristics of several MQTT solutions, including

brokers and libraries, currently available in the public domain. Lastly, they highlighted some

significant findings from my comparison and identified a few topics that require further

investigation.

In 2021, Akanksha et al. [39] proposed a method to increase profit by optimizing the CB's

setup. The maximization technique used by the CB is influenced by several factors, such as the

customer's request, the selling price of the resource, the purchasing price, and the intensity of

the request. The proposed approach seeks to optimize the profit of the CB by providing cloud

infrastructure from an infrastructure vendor at a lower cost while meeting clients' demands.

14

Finally, the Hill-Climbing method is used to assign resources dynamically. The suggested

solution used QoS and service price as determining variables to maximize the CB's net profit.

In 2021, Razian et al. [40] proposed a scalable anomaly-aware approach (SAIoT). The process

has two main parts. The first part uses a machine learning-based anomaly detection technique

to identify any pre-existing abnormal QoS records. The second part employs a reliable and

efficient metaheuristic algorithm to discover an optimal composition close to ideal. The

experimental findings derived from real-world data sets showed that their methodology

achieved a composite plan's average QoS value enhancement by 30.64 percent for the same or

less cost as earlier efforts, like information theory- and declared QoS-based methodologies.

In 2021, Gruener et al. [41] developed a resilience testing tool for MQTT brokers called

MAYHEM 2021. This tool helps IoT practitioners, researchers, and broker suppliers make

better architecture, design, and implementation improvement decisions. The researchers used

MAYHEM for resiliency experiments on several MQTT brokers, including VerneMQ,

Mosquitto, HiveMQ, and EMQ X. Their experiments yielded some interesting findings, such

as: 1. MQTT QoS Level 0 is already robust against minor packet loss, 2. Most clustered MQTT

brokers prioritize performance and availability over communication integrity; 3. Message loss

may occur due to selected broker message persistency solutions.

In 2021, Gruner et al. [42] Self-Sovereign Identity (SSItrust-enhancing) attribute aggregation

capability is proposed to be used by an Attribute Trust-enhancing Identity Broker (ATIB) to

provide standard protocols and abstract SSI solutions. Although the brokered integration

strategy, ATIB upholds a high level of security for users and does not violate any of the ten

fundamental SSI requirements. The authors assessed ATIB's authentication process after

connecting it to uPort, Jolocom, and HL Aries/Indy. These assessments included attributes used

for authorization, performance measures, and SSI compliance review.

In 2021, Abhishek et al. [43] Offered the design and development of a Cloud service

orchestrator that could assist the providers of application and network services in smoothly

deploying their services on the required Cloud (Private or Public).

15

Table 2.1: Types and Implementation of Brokers on various resources

Ref.

No.

Title Year Published

In

Summary Limitations

[31] Enforcing

secure and

privacy-

preserving

information

brokering in

distributed

information

sharing

2016 IEEE

transactio

ns on

informatio

n forensics

and

security

Broker Type: Information

Broker

Issue Addressed: An

enhancing architecture

based upon the security

and privacy needs of an

information brokering

system

1. Single-level

brokering, 2.

QoS is not

considered, 3. A

single parameter

is considered,

which is cost, 4.

Global coverage

is not

considered; 5.

No clustering of

resources and

jobs.

[32] ReconFigureura

tion Distributed

Objects in an

Intelligent

Manufacturing

Cell

2016 IEEE

Latin

America

Transactio

ns

Broker Type: Object

Request Broker

Issue Addressed: a

scheduler utilizing the

calculation

EarliestDeadline First

(EDF) and the help

calculation Deferrable

Server (DS)

1. Single-level

brokering, 2.

QoS is not

considered, 3. A

single parameter

is considered,

which is cost, 4.

Global coverage

is not

considered; 5.

No clustering of

resources and

jobs.

[33] Fair-QoS Broker

Algorithm for

Overload-State

Downlink

Resource

Scheduling in

LTE Networks

2018 IEEE

Systems

Journal

Broker Type: QoS Broker

Issue Addressed:

A two-level scheduling

system that supplies all

types of traffic while

attempting to fulfill LTE

performance criteria

solved the important

issues.

1. Single-level

brokering, 2.

QoS is not

considered, 3. A

single parameter

is considered,

which is cost, 4.

Global coverage

is not

considered; 5.

No clustering of

resources and

jobs.

16

[34] Modification of

Mosquitto

Broker for

Delivery of

Urgent MQTT

Message

2019 IEEE

Eurasia

Conferenc

e on IoT,

Communi

cation, and

Engineeri

ng

(ECICE)

Broker Type: MQTT

Broker

Issue Addressed:

Introduced the U-

mosquitto protocol, which

is an enhancement to the

widely used MQTT

Mosquitto broker

1. Single-level

brokering, 2.

QoS is not

considered, 3. A

single parameter

is considered,

which is cost, 4.

Global coverage

is not

considered, 5.

No clustering of

resources and

jobs.

[35] Profit

Maximization

for Cloud

Brokers in

Cloud

Computing

2020 IEEE

Transactio

ns on

Parallel

and

Distribute

d Systems

Broker Type: Cloud

Broker

Issue Addressed: A new

function of a Cloud broker,

which operates as an

intermediary between the

Cloud provider and the

Cloud user to lower the

cost of Cloud usage for

short-term customers, who

often pay more than their

usage

1. Single-level

brokering, 2.

QoS is not

considered, 3. A

single parameter

is considered,

which is cost, 4.

Global coverage

is not

considered, 5.

No clustering of

resources and

jobs.

[36] Competitive

Data Trading

Model With

Privacy

Valuation for

Multiple

Stakeholders in

IoT Data

Markets

2020 IEEE

Internet of

Things

Journal

Broker Type: IoT Broker

Issue Addressed: An

investigation of the subject

of user cost minimization

in MCC networks

1. Single-level

brokering, 2.

QoS is not

considered, 3. A

single parameter

is considered,

which is cost, 4.

Global coverage

is not

considered, 5.

No clustering of

resources and

jobs.

[37] Service Pricing

and Selection for

IoT

Applications

Offloading in

the Multi-

Mobile Edge

2020 IEEE

Access

Broker Type: IoT Broker

Issue Addressed: An

investigated service price

and selection for IoT

applications unloading a

multi-MEC system

1. Single-level

brokering, 2.

QoS is not

considered, 3. A

single parameter

is considered,

which is cost, 4.

17

Computing

Systems

Global coverage

is not

considered, 5.

No clustering of

resources and

jobs.

[38] The Use of

MQTT in M2M

and IoT

Systems: A

Survey

2020 IEEE

Access

Broker Type: IoT Broker

Issue Addressed:

Examination of the

evolution of M2M protocol

research (Message Queue

Telemetry Transport

(MQTT), CoAP, and

AMQP) over the previous

20 years and discovered

that MQTT research has

surpassed the others

1. Single-level

brokering, 2.

QoS is not

considered, 3. A

single parameter

is considered,

which is cost, 4.

Global coverage

is not

considered, 5.

No clustering of

resources and

jobs.

[39] Advanced

Mechanism to

Achieve QoS

and Profit

Maximization of

Brokers in

Cloud

Computing

2021 EAI

Endorsed

Transactio

ns on

Cloud

Systems

Broker Type: Cloud

Broker

Issue Addressed: A

method centered on

increasing profit by

optimizing the Cloud

broker’s setup

1. Single-level

brokering, 2.

QoS is not

considered, 3. A

single parameter

is considered,

which is cost, 4.

Global coverage

is not

considered, 5.

No clustering of

resources and

jobs.

[40] SAIoT: Scalable

Anomaly-

Aware Services

Composition in

Cloud IoT

Environments

2021 IEEE

Internet of

Things

Journal

Broker Type: QoS Broker

Issue Addressed: a

scalable anomaly-aware

approach (SAIoT) with

two primary parts: initially

uses an ML anomaly

detection method to

eliminate any current

anomalous QoS records,

and the second employs a

powerful and efficient

metaheuristic algorithm to

locate a close to ideal

composition.

1. Single-level

brokering, 2.

QoS is not

considered, 3. A

single parameter

is considered,

that is, cost, 4.

Global coverage

is not

considered, 5.

No clustering of

resources and

jobs.

18

[41] Towards

Resilient IoT

Messaging: An

Experience

Report

Analyzing

MQTT Brokers

2021 2021 IEEE

18th

Internatio

nal

Conferenc

e on

Software

Architectu

re (ICSA)

Broker Type: MQTT

Broker

Issue Addressed:

developed MAYHEM, a

tool to test the resilience of

MQTT brokers, that aids

IoT practitioners,

researchers, and broker

suppliers in architectural

decisions and design and

implementation

improvement

1. Single-level

brokering, 2.

QoS is not

considered, 3. A

single parameter

is considered,

which is cost, 4.

Global coverage

is not

considered, 5.

No clustering of

resources and

jobs.

[42] ATIB: Design

and Evaluation

of an

Architecture for

Brokered Self-

Sovereign

Identity

Integration and

Trust-

Enhancing

Attribute

Aggregation for

Service Provider

2021 IEEE

Access

Broker Type: Identity

Broker

Issue Addressed: An

Attribute Trust-enhancing

Identity Broker (ATIB)

uses Self-Sovereign

Identity (SSItrust-

enhancing) attribute

aggregation capacity to

provide standard protocols

and abstract dedicated SSI

solutions

1. Single-level

brokering, 2.

QoS is not

considered, 3. A

single parameter

is considered,

which is cost, 4.

Global coverage

is not

considered, 5.

No clustering of

resources and

jobs.

2.3 Load Balancing in Partitioned Public Cloud using S/W Agents

Managing a large number of heterogeneous nodes in a public cloud is a challenging job. The

geographic partitioning of the public cloud is a well-discussed solution to this challenge. The

section below discusses a few load-balancing techniques for partitioned public clouds available

in the literature:

In 2013, Gaochao Xu et al. [14] suggested a Cloud partitioning-based load-balancing method

for PCs. They suggested changing the load balancing technology depending on the load at any

given time. This technique manages the partitions with high load status by using game theory.

However, this technique required more testing to establish an effective refresh rate and load

degree calculation method. The compromise was that extensive testing was needed to ensure

system availability and effectiveness.

19

In 2014, Suguna et al. [15] suggested a solution to handle dynamic Cloud partitioning and load

balancing. The Partition Manager, which assigns a job to a partition, and the Job Distributor,

which selects the node to which this job might be distributed, are crucial elements of this

strategy. Partitions are built dynamically to provide adequate load distribution. The honey bee

algorithm is used to do this. Beyond geographical boundaries, this paper left room for

improvement in the transparency and Cloud division. To increase efficiency in the cloud

environment, they employ game theory.

In 2014, Sanjay et al. [44] suggested a distributed algorithm that performs better for load

balancing in a master-slave structure than the Closest Datacenter strategy regarding task

distribution all through the system and optimized system performance... According to the study,

a clustering method divides the network into clusters. A cluster is made up of all nodes. Inter-

cluster communication (ICC) nodes are present in each cluster. Clustering occurs during

network initialization.

In 2014, Hui Zhang et al. [45] the difficulties of service availability and dependability, a lack

of Service Level Agreement (SLA), customer data security and privacy, and government

compliance regulation requirements all dealt with in their work. With a quick and frequent data

detection technique at its foundation, they have suggested an intelligent workload factoring

service for proactive job management. This method aids in factoring requests based on both

data volume and content. The main design aims of this workload refactoring are load redirection

to prevent overloading scenarios, workload dynamics smoothening in the base zone application

platform, and load decomposition to make the flash Cloud zone application platform adaptable.

Improvements are needed, including managing data security for hybrid platforms, handling data

replication and consistency in flash crowd zones, and implementing load-balancing techniques

in two zones.

In 2015, Priti Singh et al. [46] suggested determining the load degree based on turnaround

time. With this method, load PBs can enhance their load-balancing tactics when using a PC.

In 2015, Stefano Sebastio et al. [47] suggested conducting a preliminary analysis of a Cloud

partitioning strategy that divides job execution requests among a volunteer Cloud. The Google

workload data trail is used in a simulation-based statistical analysis for validation. Evaluations

20

of this model are conducted utilizing the same random data set and a comparison of the

outcomes of a proposed method and an un-partitioned Cloud. This strategy offers room for

improvement, such as adding additional sophistication by employing a bio-inspired solution.

Performance can be enhanced by adding portable performance monitors. Workload

management could be improved with a workload classification system.

In 2015, Amir Nahir et al. [48] attempted to remove the choice from Job's Critical Path to

increase scheduling decision accuracy. They have employed job duplication in addition to the

Schedule First and Manage Later methodology. They recommend replicating jobs and

distributing these replicas across other servers in their suggested model. The server that chooses

it first notifies any servers with a copy of this job. The main objective of this strategy is to

simplify job scheduling by removing load-balancing jobs from the selection of VMs. However,

this method lengthens the processing time by factoring in signal propagation delay.

In 2017, Michael Pantazoglou et al. [49] made an effort to call attention to several issues,

such as difficulty with scalability, flexibility, energy efficiency, and high operational costs. For

this, they have developed methods that combine preliminary VM deployment and partial and

compl ete VM migration. The primary VM placement procedure may create or delete VMs at

any time, depending on the load that specific VM is bearing. Overloaded compute nodes employ

the partial VM migration mechanism to transfer a small number of jobs to one or more

additional compute nodes. If a computing node is underutilized, the whole migration procedure

is employed to move the entire load. This transfer aims to lower the data center's overall energy

usage. Table 1 summarizes the static load balancing research that has been done up to this point.

In 2021, Abdullah et al. [50] advised a Deep Neural Networks Energy Cost-Efficient

Partitioning and Task Scheduling (DNNECTS) algorithm framework, which includes a setup

of the following elements: task sequencing, scheduling, and application partitioning. The

suggested methods are demonstrated through experimental findings concerning application

costs and energy consumption in a dynamic setting.

In 2022, Chi Zhou et al. [51] proposed RLCut, which uses Reinforcement Learning (RL) to

manage the problem's complexity. In particular, RLCut uses multi-agent learning, which is

more effective than single-agent RL, and adds a sampling-based optimization to adaptively

21

regulate the training process to fulfill the necessary trade-off between partitioning efficacy and

efficiency for per under-graph dynamicity. The results of geo-distributed graph analytics are

improved by RLCut by 10%–100% with equivalent overhead compared to state-of-the-art static

partitioning approaches, according to experiments employing real Cloud datacenters and real-

world graphs. We can further boost results by up to 43% if users are willing to put up with more

partitioning overhead. Compared to cutting-edge dynamic partitioning, RLCut can increase

performance by as much as 60% with different graph shifting frequencies.

In 2022, Xiao et al. [52] proposed a two-stage simulation task partitioning technique that

calculates resource prediction data. The features of the collected data are analyzed in the initial

stage to determine the best feature dimensions. The number of resources needed for the shortest

runtime is determined by ranking the expected results after using a stacking ensemble learning

approach to forecast the simulation runtime in a given scenario of assigning different computer

resources. In the subsequent phase, a multi-weight graph structure is created to depict the

dynamic interaction of simulation elements to minimize the load imbalance on each computer

node and maximize the number of connections between nodes. Then, the simulated annealing

optimization process is applied to divide various weight graphs and assign simulation jobs to

resources.

In 2022, Lan et al. [53] presented a method for partitioning and orchestrating computer vision

applications on heterogeneous edge computing systems, considering both CPUs and GPUs;

there is a system framework called EDGE VISION. The program is divided into discrete tasks

coordinated and distributed onto the many heterogeneous edge nodes using EDGE VISION,

summarizing the heterogeneous hardware resources and task runtime environments. Aiming to

reduce processing delay and overall system cost, we recommend two scheduling techniques in

our framework: smallest latency task scheduling and minimum cost task scheduling.

The framework is tested by putting the edge-based, 3-D SLAM application into practice on a

real testbed of ten different edge devices. Evaluations demonstrate that EdgeVision can

effectively reduce processing latency, system costs, and job processing latency by up to 30%

and 15% better in terms of cost saving.

22

Table 2.2: Summary of literature survey for PPC.

Ref.

No.

Title Year Published

In

Summary Limitations

[14] A Load

Balancing

Model Based on

Cloud

Partitioning for

the Public

Cloud

2013 Tsinghua

Science

And

Technology

The PC's load

balance model is

based on Cloud

partitioning and

includes a switch

mechanism to let

users select various

strategies

depending on the

load status—high,

low, or normal.

This model applies

game theory to the

load-balancing

method to boost

efficiency in a PC

environment.

Lacks a thorough

approach for Cloud

partition, is ineffective in

calculating the refresh

period,

3. Creating a solid

algorithm to determine

the load degree; 4.

Testing is necessary to

compare various load-

balancing solutions. 5.

Various tests must be

carried out to ensure

system availability and

effectiveness.

[15] A novel

approach for

Dynamic Cloud

Partitioning and

Load Balancing

in Cloud

Computing

Environment

2014 Journal of

Theoretical

and Applied

Information

Technology

The strategic model

performs load

balancing and the

dynamic partition of

the nodes of

different Clouds.

Game theory is used

to develop load-

balancing strategies

to improve

efficiency in the

Cloud environment.

1. We need to increase

the level of

transparency. 2.

Requires effective

technique in updating

the status report. 3.

Time intervals are not

very well managed; 4.

Dynamic balancing

technique could be

made dynamic, 5. They

are finding alternatives

to geographical Cloud

division methodology.

[44] A Cluster-

Based Load

Balancing

Algorithm in

Cloud

Computing

2014 IEEE

Xplore

A distributed

algorithm for load

balancing in the

master-slave

architecture that

outperforms the

Closest Datacentre

algorithm in terms

of job distribution

across the system

To evaluate the

effectiveness of the

proposed model in

scenarios where a node

belongs to more than

one cluster, we believe

that effective load

balancing could also be

achieved in this case.

23

and optimal system

performance

[45] Proactive

Workload

Management in

Hybrid Cloud

Computing+B1

7

2014 IEEE

Transaction

s On

Network

And Service

Managemen

t

One problem is

addressed: service

availability and

reliability. Lack of

SLA, privacy, and

security of customer

data, and 2. 4.

Requirements for

government

compliance with

regulations

Two zones have

established load

balancing systems, and

the flash crowd zone

has effective data

duplication and

consistency

management. More

effective security

administration for a

mixed platform

[46] Load Degree

Calculation for

the Public

Cloud based on

the Cloud

Partitioning

Model using

Turnaround

Time

2015 Internationa

l Journal of

Computer

Science and

Information

Technologi

es

The method for

computing a node's

load degree in a

computer using

turn-around time.

Lacks efficiency in the

algorithm

[47] A Workload-

Based

Approach to

Partition of the

Volunteer

Cloud

2015 IEEE

Conference

on

Collaborati

on and

Internet

Computing

A preliminary

assessment of a job

execution request

distribution strategy

using Cloud

partitioning on the

volunteer Cloud.

Comparison of the

suggested model's

results between a

Cloud with partition

and a Cloud without

partitions that

employs the same

random tasks

Improved workload

classification

mechanisms, More

advanced algorithms,

such as bio-inspired

ones, Lightweight

performance

monitoring

[48] Replication-

based Load

Balancing

2015 Transaction

s on Parallel

and

Distributed

Systems

Taking the

scheduling choice

off the job's critical

path will increase

the precision of the

scheduling choice.

The implementation

of job replication

Develop a one-attribute

configuration ideal for

all systems with signal

propagation delay.

24

follows the

Schedule First and

Manage Later

strategy.

[49] Decentralized

and Energy-

Efficient

Workload

Management in

Enterprise

Clouds

2017 IEEE

Transaction

s On Cloud

Computing

The four issues

addressed were

elasticity,

scalability, high

operational costs,

and efficient energy

use. The following

three algorithms are

presented: Initial

VM placement,

partial VM

migration, and

complete VM

migration are the

three options.

1. Decentralized

workload management

is required inside an

open-source Cloud

operating system, like

OpenStack; 2. can

incorporate extra

parameters into load-

balancing formulas,

[54] Resource

Allocation

Issues and

Challenges in

Cloud

Computing

2014 Internationa

l

Conference

on Recent

Trends in

Information

Technology

Issues addressed

include resource

provisioning, job

scheduling,

overbooking, and

resource overuse.

Fourth scalability.

Costing, Balancing

the load, tier-two

applications, 8.

Accessibility,

Network I/O

Workload

Overheads, and 10.

QoS Restrictions

Is not elastic, the need

to reduce expenses and

maximize resource use,

the requirement to

provide high

availability for lengthy

jobs, Improved

concurrent job

scheduling,

[55] Collaborative

Agents for

Distributed

Load

Management in

Cloud Data

Centers using

Live Migration

of Virtual

Machines

2015 IEEE

Transaction

s On

Services

Computing

The issues

addressed are: 1.

When to migrate the

VMs, 2. Which VMs

to be migrated, and

3. When to migrate,

4. When to turn

on/off the hosts

For these issues, a

combination of

CloudSim and

To help with the

dynamic placement of

VMs, it is necessary to

construct resource

utilization profiles of

hosts and VMs using

statistical forecasting,

load balancing

heuristics for initial

allocation of VMs to

hosts, designing VM-

25

Software Modules is

used.

centric management

policies, and

investigating the

impacts of resource

overselling of hosts.

2.4 Dual Broker-based Framework (BBF) for IoT Job Scheduling

The researchers have used ML algorithms in job scheduling in DS with proven improved

efficiency and user experience results. The following section discusses a few examples of ML-

based scheduling techniques in DS.

In 2015, Sandhu and Sood [16] Authors proposed a QoS-conscious scheduling algorithm for

cloud computing. They used global and local schedulers to assign tasks to nodes and

transformed data centers into virtual clusters to handle specific job categories. The proposed

strategy improved QoS objective attainment, and the authors suggested applying the same tactic

in fog conditions to reduce data extraction costs.

In 2016, Deng et al. [17] presented a problem to optimize workload distribution between fog

and Cloud, balancing power usage and time constraints. They divided the issue into a primary

issue and three related to different subsystems. In subsystems for FC, generalized benders

deconstruction at the CC level, the Hungarian method for dispatching communication latency

minimization, and convex optimization methods were used. They demonstrated how FC may

improve CC performance by making minor resource sacrifices via simulations and numerical

implementation. The authors' attention has only been on centralized optimization. It included

communication and information exchange costs. The proposed system comprised local and

global schedulers to accommodate centralized and decentralized scheduling strategies.

Moreover, these scheduling mechanisms helped lower the amount of communication overhead.

In 2017, Thapa et al. [56] The team used Bayesian learning automata to assign jobs to the FE

more accurately and efficiently. They applied a game-theoretic strategy to regulate clients'

energy usage within power usage limitations set by energy providers. The proposed technique

utilized learning automata to meet the power budget specified by the subnet while staying

within the Nash Equilibrium (NE) point. The system categorized nodes based on available

resources and job requirements to schedule resources more fairly.

26

2017 Azimi et al. [57] proposed a hierarchical computer architecture based on an IoT-based

healthcare monitoring system that solves Cloud and Fog computing challenges. It uses closed-

loop management to modify the platform based on an individual's health and ML-based data

analytics. Despite a drawback with specific learning algorithms, the HICH model can use

alternate algorithms.

In 2018, Mahmud et al. [58] presented a latency-sensitive policy to control the applications in

FEs. Using this approach, they hoped to assure the best possible resource utilization in a foggy

environment while increasing service delivery deadline QoS. For management and forwarding,

they each defined two algorithms. They demonstrated the performance enhancement compared

to other counterpart solutions using simulated findings. The authors' solution did not support

non-deterministic latency-aware applications and run-time adjustments. Clusters built on a

resource orientation can tackle this problem in their suggested structure.

In 2018, Wan et al. [59] built an energy-efficient load balancing and scheduling Fog-based

model for an intelligent factory. The authors devised an energy consumption model to

accomplish their purpose. For the best outcomes, they applied the enhanced particle swarm

optimization algorithm. Finally, distributed scheduling of manufacturing clusters was

accomplished using a multi-agent system. Simulation results in the targeted area demonstrated

the best scheduling and load balancing.

2018 Soualhia et al. [60] offered a Hadoop scheduling framework that used data from a Cloud

environment to organize tasks dynamically. The framework relies on policies generated by the

Markovian decision-making process and the predictions provided by machine learning

algorithms. Unlike the traditional static heartbeat-based fault diagnosis Hadoop uses, this

framework uses an adaptive failure-aware Hadoop scheduler named ATLAS+. This scheduler

can dynamically identify job tracker faults. The results of the experiments demonstrate that

ATLAS+ significantly reduced the number of failed jobs, JET, CPU, and memory utilization.

The supervised training process for the prediction models was the only area on which the

authors of this study concentrated.

In 2018, Zhu et al. [61] proposed a Q-learning-based transmission scheduling system that can

perform best when broadcasting packets across multiple channels. They used a Markov decision

27

process to create a model that depicted the evolution of the system's states. The relay was

assisted in choosing the optimum course of action by applying the q-learning algorithm, a

reinforcement learning technique. The authors used multilayer auto-encoder deep learning

algorithms to map states and related activities. Studies showed that this proposed model could

transport packets while consuming less power than competing methods. Although the

scheduling approach in this case is straightforward, it serves only one relay.

In 2018, Wei et al. [62] proposed a job scheduling framework that considers QoS. A vital

feature of this approach is its job scheduler, which uses deep reinforcement learning to select

the job-VM mapping for online requests. The job scheduler used their expertise to make

decisions; no prior information was required. Testing showed that the recommended framework

handled different load scenarios assured QoS achievement, and decreased the average job

response time. The approach proposed by the authors must be altered to handle the complex

Cloud environments. Additional factors like VM failures, elastic resource supply, and inter-job

interactions had to be considered using this technique. Through the division of scheduling into

two layers, the proposed approach increases flexibility.

In 2019, Chen et al. [63] evaluated the effectiveness of road safety apps using perception-

action time (PRT) in a study conducted by the authors of PRT. They used a virtualization

strategy called Fog and networking technology based on information to reduce the PRT. A deep

reinforcement learning approach was utilized to develop an online work scheduling system with

the most efficient resource allocation. The experimental results were compared to traditional

methods, and it was demonstrated that there was a significant reduction in PRT.

In 2019, Zhu et al. [64] implemented a design for Quality of Service (QoS) assurance that

considered high data transfer rates, extensive connectivity, and exceptionally low latency.

Standard programming techniques were found to be inadequate for making scheduling

decisions due to increased complexity, dynamic network behavior, and a lack of quantifiable

correlations between network events. They used the decision tree method to test the proposed

architecture and found that it could accurately and independently predict upcoming QoS-related

abnormalities.

28

In 2019, Henri and Lu [65] utilized random forests, support vector machines, and neural

networks for scheduling and predicting logistic regression. This framework was developed for

integrated PV and battery energy storage systems that model-based controllers controlled. The

research suggested using supervised ML to plan and predict real-time processes. ML techniques

enhanced the efficiency of model-based control mechanisms while lowering the computational

cost, as shown by simulation results. Enhancing the deterioration model and considering the

non-linear charging and discharging patterns is essential.

In 2019, Zhao et al. [66] conducted a survey that combined software-defined networking

(SDN) architecture, machine learning (ML), and artificial intelligence (AI). They discussed

potential advancements in ML algorithms and SDN architecture to create more intelligent,

active, and personalized networking models.

In 2019, Amiri and Gündüz [67] discussed assigning duties to various workers through a

master. Their research sought to illustrate how computing load affected overall completion

time. Utilizing the jobs assigned to each worker and their execution schedule, they suggested

two execution scheduling systems. Compared to existing systems, experimental findings

obtained on an Amazon EC2 cluster have demonstrated a discernible reduction in overall

completion time and improved efficiency.

Table 2.3: Summary of literature survey for dual BBF using ML techniques and QoS parameters.

Ref.

No.

Title Year Published

In

Summary Limitations

[16] Scheduling of

big data

applications on

distributed

Cloud based on

QoS parameters

2015 Schedulin

g of big

data

applicatio

ns on

distributed

Cloud

based on

QoS

parameter

s

A two-layer

scheduling

structure and a

QoS-conscious

scheduling method.

They employed two

schedulers: a global

scheduler and a

local scheduler.

1. Missing brokering, 2.

Missing hierarchical

distribution of load

balancing jobs, 3.No

ML technique is used,

4.No clustering of jobs

and resources

29

[17] Optimal

Workload

Allocation in

Fog-Cloud

Computing

Toward

Balanced Delay

and Power

Consumption

2018 IEEE

Internet of

Things

Maintaining a

trade-off between

power and time

consumption is

challenging while

optimally

distributing the

workload across

Fog and Cloud.

1. Missing brokering, 2.

Missing hierarchical

distribution of load

balancing jobs, 3. QoS

parameters not

considered, 4.No ML

technique is used, 5.No

clustering of jobs and

resources

[56] A Learning

Automaton-

Based Scheme

for Scheduling

Domestic

Shiftable Loads

in Smart Grids

2018 IEEE

Access

A game-theoretic

method increases

the efficiency and

precision of job

requests sent to the

FE for a Smart Grid

subnet on a local

area network with a

single power source

and numerous

users.

1. Missing brokering, 2.

Missing hierarchical

distribution of load

balancing jobs, 3. QoS

parameters not

considered, 4.No ML

technique is used, 5.No

clustering of jobs and

resources

[57] HiCH:

Hierarchical

Fog-Assisted

Computing

Architecture for

Healthcare IoT

2018 ACM

Transactio

ns on

Embedded

Computin

g Systems

A computational

architecture for

dealing with many

operational

problems

connected to

Clouds and Fog,

such as

accessibility,

promptness,

dependability,

accuracy, and

adaptability

1. Missing brokering, 2.

Missing hierarchical

distribution of load

balancing jobs, 3. No

ML technique is used,

4.No clustering of jobs

and resources

[58] Latency-Aware

Application

Module

Management for

Fog Computing

Environments

2018 ACM

Transactio

ns on

Internet

Technolog

y

FEs must follow a

latency-sensitive

policy when

managing the

application

modules.

1. Missing brokering, 2.

Missing hierarchical

distribution of load

balancing jobs, 3. QoS

parameters not

considered, 4.No ML

technique is used, 5.No

clustering of jobs and

resources

[59] Fog Computing

for Energy-

Aware Load

Balancing and

2018 IEEE

Transactio

ns On

Industrial

An energy-efficient

load balancing as

well as scheduling

Fog-based

1. Missing brokering, 2.

Missing hierarchical

distribution of load

balancing jobs, 3. QoS

30

Scheduling in

Smart Factory

Informatic

s

approach for a

smart factory

parameters not

considered, 4.No ML

technique is used, 5.No

clustering of jobs and

resources

[60] A Dynamic and

Failure-Aware

Task Scheduling

Framework for

Hadoop

2018 IEEE

Transactio

ns on

Cloud

Computin

g

A system that is

associated with

both the Hadoop

scheduler and uses

the information

gathered to

organize the jobs

for a Cloud

environment

dynamically

1. Missing brokering, 2.

Missing hierarchical

distribution of load

balancing tasks, 3.QoS

parameters not

considered, 4.No

clustering of jobs and

resources

[61] A New Deep-Q-

Learning-Based

Transmission

Scheduling

Mechanism for

the Cognitive

Internet of

Things

2018 IEEE

Internet of

Things

Journal

A technique for

scheduling

transmissions

based on Q learning

ensured the highest

throughput when

sending packets via

several channels.

1. Missing brokering, 2.

Missing hierarchical

distribution of load

balancing tasks, 3. QoS

parameters not

considered, 4. No

clustering of jobs and

resources

[62] DRL-

Scheduling:

An Intelligent

QoS-Aware

Job

Scheduling

Framework for

Applications in

Clouds

2018 IEEE

Access

A framework for

managing jobs

using QoS. The

framework's main

component was an

algorithm for

scheduling jobs

based on deep

reinforcement

learning.

1. Missing brokering, 2.

Missing hierarchical

distribution of load

balancing tasks, 3. No

clustering of jobs and

resources

[63] A machine-

learning-based

time-

constrained

resource

allocation

scheme for

vehicular Fog

computing

2018 China

Communi

cations

A metric to assess

the effectiveness of

apps for improving

road safety that

combines

information-based

networking

technologies with a

Fog virtualization

strategy to cut

down on PRT

authors.

1. Missing brokering, 2.

Missing hierarchical

distribution of load

balancing tasks, 3. QoS

parameters not

considered, 4.No ML

technique is used, 5.No

clustering of jobs and

resources

31

[64] A Supervised

Learning Based

QoS Assurance

Architecture for

5G Networks

2018 IEEE

Access

A QoS assurance

structure that takes

into account

widespread

connectivity,

extremely low

latency, and high-

speed data transfer

rates as QoS

parameters

1. Missing brokering, 2.

Missing hierarchical

distribution of load

balancing tasks, 3. No

ML technique is used,

5.No clustering of jobs

and resources

[65] A Supervised

Machine

Learning

Approach to

Control Energy

Storage Devices

2019 IEEE

Transactio

ns on

Smart

Grid

A methodology

utilizing logistic

regression, support

vector machines,

neural networks,

and random forest

algorithms for

forecasting and

scheduling

1. Missing brokering, 2.

Missing hierarchical

distribution of load

balancing tasks, 3. QoS

parameters not

considered, 4. No

clustering of jobs and

resources

[66] A Survey of

Networking

Applications

Applying the

Software-

Defined

Networking

Concept Based

on Machine

Learning

2019 IEEE

Access

A study combining

software-defined

networking (SDN)

architecture,

machine learning,

and artificial

intelligence

1. Missing brokering, 2.

Missing hierarchical

distribution of load

balancing tasks, 3. QoS

parameters not

considered, 4. No

clustering of jobs and

resources

[67] Computation

Scheduling for

Distributed

Machine

Learning With

Straggling

Workers

2019 IEEE

Transactio

ns on

Signal

Processing

Showed the

cumulative

completion time as

a function of

computational load

through the master-

controlled

allocation of tasks

among numerous

workers.

1. Missing brokering, 2.

Missing hierarchical

distribution of load

balancing tasks, 3. QoS

parameters not

considered, 4.No ML

technique is used, 5.No

clustering of jobs and

resources

2.5 Multilevel Broker-based Framework for Improved Geographic

Coverage of Fog Resources

This section discusses the existing solutions proposed by the researchers for job scheduling in

FC environments using ML techniques and geographic coverage.

32

In 2016, Zeng et al. [68] created a non-linear, mixed-integer programming problem to increase

work scheduling and resource management effectiveness, focusing on reducing job completion

time. They concentrated on balancing the workload, I/O interruptions, and putting job images

on the storage servers as their three main concerns in this context. The authors provided a

computation-efficient solution to this problem's high level of complexity and carried out

comprehensive simulation-based research to confirm it.

In 2017, Sthapit et al. [69] discovered ways to offload the computationally demanding

algorithms without Clouds or Fog. They suggested a different approach using a network of

queues and linear programming to make scheduling decisions. Their suggested algorithm might

increase the system's efficiency but at an additional expense. They suggested a revolutionary

algorithm that, while consuming a little more energy, would increase the system's overall

effectiveness. Whenever the job request flow is high, the proactive centralized strategy provides

the optimum performance and energy compromise, whereas the reactive scattered approach

generates successful outcomes whenever the job request flow is low.

In 2017, Rahbari et al. [70] developed a hyper-heuristic, security-aware technique based on

data mining to schedule jobs on FNs. The authors have considered three factors, including

authentication, integrity, and confidentiality, to preserve the security of Fog devices. They

created an objective function considering BW, CPU, and security overheads. The results of the

experiments revealed a considerable reduction in cost and average energy consumption

compared to counterpart heuristic algorithms like Particle Swarm Optimization, Ant Colony

Optimization, and Simulated Annealing.

In 2017, Chen et al. [71] devised an architecture for task classification and resource scheduling

for information-centric IoT applications in 2017. The architecture enabled optimal dispatching

of distributed resources at the least expensive rate, facilitating the achievement of the

application's QoS in a Cloud-FC context. The proposed solution also effectively reduced the

load on CC by distributing it between FEs and the Cloud.

In 2018, Yang et al. [72] developed the Delay and Energy-Balanced Task Scheduling (DEBTS)

algorithm to balance performance indicators efficiently. They recommended an effective

33

control parameter to explain the tradeoff connection during the runtime procedure of task

scheduling. Simulations have shown that DEBTS may produce task scheduling outcomes with

significantly better delay-energy performance.

In 2018, Yin et al. [73] created a reallocation technique and a task scheduling model that

considered containers' roles, ensuring FNs would have fewer delays and better concurrency.

The authors created an algorithm to accomplish the goals using container properties. Through

simulated trials, they showed improved results regarding the reduced delay and better

concurrency.

In 2019, Casquero et al. [74] proposed a multi-agent system (MAS) and an application

orchestrator to create a solution for Fog-in-the-loop applications. The authors devised a bespoke

scheduler built on the MAS to divide the scheduling duties among the available FNs. The

authors found during the experiment that the performance of the proposed method compared to

that of the K8s default scheduler.

In 2019, Zhang et al. [75] devised a broad analytics-based task scheduling model that

categorizes FNs into two groups: task nodes (TN) and voluntary nodes (VN). They suggested

an offloading approach that would enable VNs to assist in completing duties at their

neighboring TNs with the most minor delay. The simulation results demonstrated that the

suggested technique can effectively provide the ideal set of helper nodes to neighboring nodes,

minimizing the overall job processing delay. VN produced better results in voluntary mode

than offloading in command mode.

In 2019, Zhu et al. [76] proposed a novel approach for task distribution in vehicle fuel cells

using binary particle swarm optimization and optimization based on linear programming. Their

method suggested a dynamic, event-triggered paradigm to minimize quality loss and reduce

average latency. As per the results, the proposed plan reduced quality loss by up to 56% and

average latency by up to 27%, making it a latency-sensitive and quality-optimized scheduling

solution for vehicle fuel cells.

In 2019, Abedin et al. [77] solved a load balancing issue for narrowband IoT (NB-IoT) in Fog

computing (FC) networks using a network of queues and a bankruptcy game model. They

34

scheduled uplinks with a Shapley value-based policy and introduced a less complex method,

GITS. They balanced the load using the Hitchcock-Koopman transportation problem.

In 2019, Sthapit et al. [78] offered a method for mobile app offloading in the absence of Cloud

or Fog. Their approach utilizes a network of queues and linear programming to facilitate

scheduling decisions. After conducting simulated experiments on various centralized and

distributed algorithms, it was discovered that the system's overall effectiveness may be

improved by increasing energy consumption.

In 2019, Stavrinides and Karatza [79] suggested a method for scheduling that focuses on the

efficient use of Cloud resources for real-time applications in FEs. The authors studied many

aspects influencing these parameters to develop the suggested approach based on the

compromise between performance and cost. They compared their job scheduling heuristic to a

baseline strategy utilizing Fog resources under various amounts of workflow input data.

In 2019, Benblidia et al. [80] introduced a linguistic and fuzzy quantified approach for ranking

FNs based on their level of satisfaction. The research team collected user preferences and FN

features and utilized two parameters, namely the least satisfactory proportion (LSP) and the

most significant satisfactory proportion (GSP), to differentiate the similarities in their proposed

method. Through the results of their experiments, they demonstrated higher user preference

satisfaction. Additionally, their method has produced a compromise between the execution

delay of the parameter, average user satisfaction, and energy usage.

Table 2.4: Summary of literature survey for multilevel BBF for better geographic coverage of Fog resources.

Ref

No.

Title Year Published

In

Summary Limitations

[68] Joint

Optimization of

Task Scheduling

and Image

Placement in

Fog Computing

Supported

Software-

Defined

2016 IEEE

Transaction

s on

Computers

An issue with

mixed-integer non-

linear

programming to

increase job

scheduling and

resource

management

effectiveness while

1. Missing brokering,

2. Missing hierarchical

distribution of load

balancing tasks, 3.

QoS parameters not

considered, 4.No ML

technique is used,

5.No clustering of jobs

and resources

35

Embedded

System

reducing task

completion time

[69] Distributed

computational

load balancing

for real-time

applications

2017 2017 25th

European

Signal

Processing

Conference

(EUSIPCO)

A solution in which

scheduling

decisions are made

by linear

programming and a

network of queues

1. Missing brokering,

2. Missing hierarchical

distribution of load

balancing tasks, 3.

QoS parameters not

considered, 4. No

clustering of jobs and

resources

[70] Security-aware

scheduling in

Fog computing

by the hyper-

heuristic

algorithm

2017 2017 3rd

Iranian

Conference

on

Intelligent

Systems

and Signal

Processing

(ICSPIS)

A data mining-

based security-

aware hyper-

heuristic algorithm

to schedule the jobs

on Fog devices

1. Missing brokering,

2. Missing

hierarchical

distribution of load

balancing tasks, 3.

QoS parameters not

considered, 4.No ML

technique is used,

5.No clustering of jobs

and resources

[71] Cloud-Fog

computing for

information-

centric Internet-

of-Things

applications

2017 2017

Internationa

l

Conference

on Applied

System

Innovation

(ICASI)

Using task

categorization and

resource

scheduling

features, a

scheduling

structure for

information-centric

IoT applications

1. Missing brokering,

2. Missing hierarchical

distribution of load

balancing tasks, 3.

QoS parameters not

considered, 4.No ML

technique is used

[72] DEBTS: Delay

Energy

Balanced Task

Scheduling in

Homogeneous

Fog Networks

2018 IEEE

Internet of

Things

Journal

An energy and

delay-neutral task

scheduling

(DEBTS) method

balances the

performance

indicators

efficiently.

1. Missing brokering,

2. Missing hierarchical

distribution of load

balancing tasks, 3.

QoS parameters not

considered, 4.No ML

technique is used,

5.No clustering of jobs

and resources

[73] Tasks

Scheduling and

Resource

Allocation in

Fog Computing

Based on

2018 IEEE

Transaction

s on

Industrial

Informatics

A task scheduling

model and a

reallocation

mechanism that

considered the role

of containers

1. Missing brokering,

2. Missing hierarchical

distribution of load

balancing tasks, 3. No

ML technique is used,

36

Containers for

Smart

Manufacturing

ensured reduced

delays as well as

improved

concurrency for

FNs

4.No clustering of jobs

and resources

[74] Distributed

scheduling in

Kubernetes

based on MAS

for Fog-in-the-

loop

applications

2019 IEEE

Internationa

l

Conference

on

Emerging

Technologi

es and

Factory

Automation

(ETFA)

A system for Fog-

in-the-loop

applications by

integrating a model

multi-agent system

(MAS) with a

containerized

application

orchestrator

1. Missing brokering,

2. Missing hierarchical

distribution of load

balancing tasks, 3.

QoS parameters not

considered, 4.No ML

technique is used,

5.No clustering of jobs

and resources

[75] DOTS: Delay-

Optimal Task

Scheduling

Among

Voluntary

Nodes in Fog

Networks

2019 IEEE

Internet of

Things

Journal

A general

analytical model of

task scheduling that

divides FNs into

two categories,

which are voluntary

nodes (VN) and

task nodes (TN)

1. Missing brokering,

2. Missing hierarchical

distribution of load

balancing tasks, 3.

QoS parameters not

considered, 4.No ML

technique is used

[76] Folo: Latency

and Quality

Optimized Task

Allocation in

Vehicular Fog

Computing

2019 IEEE

Internet of

Things

Journal

A dynamic, event-

triggered

framework for task

allocation using

linear

programming-

based optimization

and binary particle

swarm

optimization

1. Missing brokering,

2. Missing hierarchical

distribution of load

balancing tasks, 3.

QoS parameters not

considered, 4.No ML

technique is used,

5.No clustering of jobs

and resources

[77] Fog Load

Balancing for

Massive

Machine Type

Communication

s: A Game and

Transport

Theoretic

Approach

2019 IEEE

Access

A Fog load

balancing problem

for narrowband IoT

(NB-IoT)

technology, aiming

to minimize the

cost of load

balancing in Fog

computing

networks

1. Missing brokering,

2. Missing hierarchical

distribution of load

balancing tasks, 3. No

ML technique is used,

4.No clustering of jobs

and resources

37

[78] Computational

Load Balancing

on the Edge in

Absence of

Cloud and Fog

2019 IEEE

Transaction

s on Mobile

Computing

A solution to

offload the

applications from

mobile devices

when Cloud or Fog

was not available

1. Missing brokering,

2. Missing hierarchical

distribution of load

balancing tasks, 3.

QoS parameters not

considered, 4.No ML

technique is used,

5.No clustering of jobs

and resources

[79] Cost-Effective

Utilization of

Complementary

Cloud

Resources for

the Scheduling

of Real-Time

Workflow

Applications in a

Fog

Environment

2019 2019 7th

Internationa

l

Conference

on Future

Internet of

Things and

Cloud

(FiCloud)

A scheduling

approach for real-

time workflow

applications in FEs,

which focused on

the utilization of

complementary

Cloud resources at

reduced costs

1. Missing brokering,

2. Missing

hierarchical

distribution of load

balancing tasks, 3. No

ML technique is used,

4.No clustering of jobs

and resources

[80] Ranking Fog

Nodes for Tasks

Scheduling in

Fog-Cloud

Environments:

A Fuzzy Logic

Approach

2019 2019 15th

Internationa

l Wireless

Communica

tions &

Mobile

Computing

Conference

(IWCMC)

A linguistic and

fuzzy quantified

proposition for

ranking the FNs

from most

satisfactory to least

satisfactory ranking

1. Missing brokering,

2. Missing hierarchical

distribution of load

balancing tasks, 3.

QoS parameters not

considered, 4. No

clustering of jobs and

resources

2.6 Summary

As seen in this chapter, job scheduling is being researched extensively. It is crucial to

thoughtfully, effectively, and promptly assign jobs to the appropriate FNs to obtain the optimal

benefits of FC. Our work mainly focuses on improving the performance of CC and FC

environments by efficient load balancing and job scheduling.

This thesis recommends combining centralized and decentralized load control mechanisms

with the autonomous behavior of load-balancing entities using SAs. The aim is to obtain the

advantages of PC resources while reducing the challenges of managing large volumes of

38

computing nodes. After going through the existing literature, to our knowledge, none of the

researchers have combined the concept of SAs and hierarchical brokers.

Further segregating the Fog resources as available and mapping the jobs to the most suitable

set of resources further improves their performance and user satisfaction. To our knowledge,

none of the researchers have proposed the concept of resource segregation and the

implementation of brokers in a Fog environment. A combination of methodologies such as

Naïve Bayes and SOM for selecting an FE and FN through a hierarchical arrangement of

brokers is another novelty of our work.

This thesis takes care of the following points while implementing the proposed solutions:

1. Reduced search space in PC

2. Utilizing the concept of brokers-based service orchestration

3. Autonomous behavior of the load balancing and job scheduling components

4. ML-based classification of resources and mapping of IoT application jobs

5. Reduce the congestion on Job scheduling components

6. Global geographical coverage of Fog resources

To our knowledge, none of the existing job scheduling solutions address all these problems

together. The novelty of our solutions is the selection of performance parameters, the

combination of multiple technologies, and their sequencing in the implemented experimental

setups to achieve the desired results.

39

CHAPTER 3

PARTITIONED PUBLIC CLOUD

3.1 Introduction

CC empowers resource flexibility with minimal upfront costs, facilitating scalability and cost-

effectiveness [48] [81]. According to CISCO, Cloud traffic will reach 14.1 ZB annually soon

[82]. The PC is a shared space for users to outsource their jobs [83], where Load-balancing

approaches are required to handle under loaded and overloaded resources at the available

servers [84]–[87]. Cloud Partitioning is one of the commonly used methods for load balancing

in the PC [46], [49], [53]. This chapter discusses a software agent-based load-balancing

framework for partitioned public Cloud.

3.2 Background

The following sections introduce the concepts of PC, PPC, and SA, which are used later in this

chapter to implement the software agent-based load-balancing framework for partitioned public

Cloud.

3.2.1 Public Cloud (PC)

PC describes a category of online computer services provided by independent vendors, offering

the feature of pay-as-you-go to access computing resources, including VNs, storage, processing

power, cutting-edge technologies like artificial intelligence and ML, and hosting websites and

applications for individuals and businesses. Well-known PC providers are Google Cloud

Platform (GCP), Microsoft Azure, and Amazon Web Services (AWS). Key features of a PC are

its accessibility, scalability, multi-tenancy, cost benefits, and well-managed services [14], [15].

3.2.2 Partitioned of Public Cloud (PPC)

A PC has nodes spread across various geographic locations [14], causing challenges such as

complex management, resource allocation, optimization, cost management, data management,

and latency management. Figure 3.1 compares various Cloud types and justifies the existence

of these issues in the PC environment.

40

 Private Cloud Hybrid Cloud Public Cloud

Figure 3.1: Size-wise comparison of Cloud types.

To simplify it, a PC is geographically partitioned to manage its massive size, where each

partition is handled separately in the load-balancing process . Additionally, the partitions are

dynamic; that is, partitions can be added or removed depending on the status report maintained

by the Partition Manager and Controller Broker [15].

Figure 3.2: Geographically partitioned public Cloud.

A Cloud can be divided into n number of partitions, each with a set of m number of nodes,

containing the physical resources covered under that partition. Once the framework has

partitioned the PC geographically, each partition manages its resources, clients, and requests

separately and independently, reducing search space and resolving PC management issues.

• Small Scale

• Limited Resources

and Services

• Dedicated to a single

organization

• On-Premises or

private data center

• Medium Scale

• Combination of

public and private

Cloud environments

• Flexible, offers

resource allocation

and scalability

• On-Premises or

private data center

• Large Scale

• Vast Resources and

Services

• Shared by multiple

users globally

• Scalable, pay-as-

you-go model

41

3.2.3 Software Agents (SA)

Intelligent agents, or SAs, are self-governing, goal-oriented entities that can act on behalf of

entities like users or other systems. These agents work in a given environment, collecting data,

coming to conclusions, and acting to accomplish their goals [88]. An SA's behavior is

contingent upon its mental state and the conditions of its surroundings [89]. SAs can

communicate with other agents by sending and receiving messages [88]. Primarily, the self-

adaptive behavior of SAs makes them usable in load balancing. An SA-based system can

manage changes dynamically while maintaining reliability [90]–[92].

The use of SAs in load balancing framework adds the following capabilities to it:

• the capacity to detect, diagnose, and assess shifts in the operating environment

• the capacity to evaluate its behavior based on environmental shifts;

• the capacity to modify its behavior in response to new shifts and

• the capacity to change its internal and external behavior intentionally and automatically

3.3 Proposed Load Balancing Framework in Partitioned Public Cloud

This section proposes a software-agent-based framework to perform the load balancing within

and across the geographically partitioned public Cloud, intended to improve the MET, TET,

and AET. Compared to traditional, primary load-balancing methodologies such as FCFS and

SJF [93], [94]. The proposed framework determines if applying SAs as brokers can improve

the performance parameters in a PPC. The framework accepts the client requests as input and

allocates them to the suitable node, which can optimally improve the performance parameters.

3.3.1 Architecture

The brokers in this architecture are practical representations of the SAs:

• Client Agent => Client

• Partition Agent => Partition Broker (PB)

• Controller Agent => Controller Broker (CCB)

The major components in the architecture are:

• Client: The primary duty of the client is to submit requests, along with the required set

of resources, to a Partition Broker (PB).

42

• PB: Each partition has a local PB to receive the client requests. PB records the load status

of all the nodes inside its partition and shares these details with the Central Controller

Broker (CCB) whenever required.

• CCB: CCB interacts with all the PBs to collect the nodes' load status. CCB is invoked

for load balancing across the partitions.

• Node: Nodes contain the physical resources, such as storage, computing capacity,

graphical resources, memory, and other such resources, to be utilized for processing user

requests. Each partition is assumed to have m nodes (n1, n2, n3… nm).

Figure 3.3: Architecture: Framework for load balancing in PPC.

3.3.2 Application job distribution across Cloud and Fog Layer

Fog offers various data services in an IoT setup, including filtering, segregating, aggregating,

data encryption, and caching [95]–[99]. An FE keeps all job requests that are latency-sensitive.

However, a Cloud system can manage infrequent, time-consuming, and resource-intensive jobs.

The proposed framework performs load balancing on a Cloud.

43

Figure 3.4: Job Segregation: Cloud vs Fog.

3.3.3 Assessing the Load Status of Partitions and Nodes

The number of jobs allocated to a node at a given time is known as its workload. The load status

of the Cloud includes the load status of partitions and their nodes and is used to determine the

availability of resources for job allocation. The system needs to assess the availability at two

levels listed below:

a) Choosing the Pi partition in which a node can be searched.

b) Finding a node Nj to which a job can be allocated.

The proposed framework defines four load states, which are:

 idle,

 normal,

 overloaded and

 full

These states are determined based on the static threshold values pre-defined for the partitions

by the CCB and the nodes by the PBs. At any given instance of time, the load state of the

partition depends upon the load state of its nodes. Assuming that there are i number of partitions,

j number of nodes, given below is the formulation of these load states:

1. Load State=’idle’

a) Node State:

A jth node Nj is considered to be in an idle state if resources available with jth node

Rn,j are beyond a predefined threshold tn,idle. i.e.

Nj=’idle’ IF Rn, j > tn,idle Eq. 3.1

44

b) Partition State:

An ith partition Pi is considered to be in idle state if the number of idle nodes in that

partition are beyond a predefined threshold tp,idle, i.e.,

Pi= ‘idle’ IF Ci>tp,idle Eq. 3.2

where Ci is no. of idle nodes in a partition.

2. Load State=’normal’

a) Node State:

A jth node Nj is considered to be in a normal state, if resources available with jth node

Rn,j are beyond a predefined threshold tn,normal. i.e.

Nj=’normal’ IF Rn, j > tn,normal Eq. 3.3

b) Partition State:

An ith partition Pi is considered to be in a normal state if the number of normal nodes

in that partition are beyond a predefined threshold tp,normal, i.e.

 Pi= ‘normal’ IF Ci>tp,normal Eq. 3.4

where Ci is no. of normal nodes in a partition.

3. Load State=’overload’

a) Node State:

A jth node Nj is considered to be in an overloaded state, if resources available with jth

node Rn,j are beyond a predefined threshold tn,ovld. i.e.

Nj=’overloaded’ IF Rn, j > tn,ovld Eq. 3.5

b) Partition State:

An ith partition Pi is considered to be in an overloaded state if the number of

overloaded nodes in that partition are beyond a predefined threshold tp,ovld i.e.

 Pi= ‘overloaded’ IF Ci>tp,ovld Eq. 3.6

where Ci is the number of ovld nodes in a partition.

4. Load State=’full’

An ith partition Pi is considered to be in full load state if the number of overloaded

nodes Ci in that partition is equal to j, i.e.,

Pi=’full’ IF Ci=j Eq. 3.7

45

where j is the total number of nodes in that partition.

3.3.4 Job Assignment

Following this load status review, three outcomes are possible:

• Case 1: If a single node Nj is available with an idle or normal state, then allocate the job

to Nj and update the load status of the partition ‘Sp, i’ and the resources at node Rn, j

• Case 2: If more than one node is available with an idle or normal state, then make a list

of all these nodes as Ncapable[]

• Case 3: If No node is available with sufficient resources, PB transfers the request to the

CCB to search for a node in other partitions.

The CCB calls all other partition's PBs and adds the partition's ID to a list of Pcapable[], capable

partitions whenever it discovers a Pnormal or Pidle load state. A similar process is followed to

search a node Nj in all the partitions in Pcapable[].

3.3.5 Complexity Analysis

Time complexity varies according to the stages of the process. When the job was initially

submitted, just one node's availability status was assessed. Consequently, the complexity of this

phase O (1). The complexity class O (N) is applicable in all other scenarios, and the value of N

varies according to the number of nodes in a partition and their RAV. Table 3.1 compiles the

complexity for different possible scenarios. P denotes a Partition, and N is a Node in Table 3.1.

The number of partitions and nodes within each partition impacts the overall complexity.

Table 3.1: Complexity Analysis

46

3.4 Experimental Results and Discussion

This section presents experimental results and their discussion. This technique is implemented

in CloudSim.

The AET, MET, and TET are compared with FCFS and SJF algorithms within the same

setup to assess the performance of the proposed framework. Each algorithm is run five times as

part of the experiment. Table 3.3 details the experimental setup with the heterogeneous sizes of

VMs and jobs.

Table 3.2: Experimental setup

All these parameters are considered to be the basic evaluation parameters because the users

of DS, such as Cloud or Fog, are very particular towards the time-based parameters. The

execution and response time of the application jobs are significant and helpful in assessing a

site's performance. Other parameters, such as accuracy, reliability, and QoSs, are considered to

be taken care of by default. However, time-oriented parameters require experimentation to

devise and follow load-balancing schemes that offer better results in terms of such parameters.

According to the results, the proposed framework performs better than the FCFS algorithm,

while the SJF algorithm performs well overall. Figure 3.5 compares MET [100] and [101].

Figure 3.5: MET Comparison

47

Figures 3.6 and 3.7 compare AET and TET.

Figure 3.6: TET Comparison

Figure 3.7: AET Comparison

Table 3.3: Comparison with other approaches.

Sr.

No.

Title Goal Parameters

1 [93] Optimal Scheduling Approach Cost, degree of imbalance,

makespan, and throughput

2 [94] Comparison between space-shared

scheduling policy and time-shared

scheduling policy to find the difference

between the actual execution time of tasks

The ratio of actual and estimated

execution time

3 Proposed

Framework

Load balancing in PPC using SAs AET, MET, and TET

48

3.5 Summary

The proposed framework implements a Software Agent-based load-balancing framework for

partitioned public Cloud. Experimental results show a significant decline in the time-based

performance parameters such as AET, MET, and TET of the workload at a given time. The

proposed framework suggests the preliminary segregation of the jobs between the CC and FC

by serving all the latency-sensitive and frequent jobs at the Fog and all the resource-demanding,

infrequent, and large-sized job requests at the Cloud, reducing the load at the Cloud end. All

the jobs chosen for execution in the Cloud are allocated to the nodes based on those nodes'

existing load status. An overloaded state significantly reduces the number of unserved jobs by

searching the available Nodes, even in overloaded partitions.

The next Chapter presents the implementation of a combination of Naïve Bayes and SOM

ML techniques in a dual-broker-based job scheduling framework that integrates the QoS

parameters to improve the performance of an FC environment.

49

CHAPTER 4

DUAL BROKER-BASED JOB SCHEDULING

4.1 Introduction

As seen in the previous chapter, efficient resource allocation to the requested jobs significantly

improves the performance of DSs. Modern domains are being researched and implemented in

job scheduling, including classification techniques in ML. ML classification is a versatile and

powerful tool that enables automation, pattern recognition, and predictive modeling across

various applications and industries. It helps extract valuable insights from data, improve

decision-making processes, and enhance efficiency. The current chapter discusses an ML-based

dual broker framework integrating QoS parameters for scheduling applications’ jobs.

4.2 Background

This section introduces the key terms Naïve Byes and SOM combined to implement the

proposed framework. Section 4.1.1 differentiates the CC and FC, which is significant for

understanding both paradigms' behavior and expectations.

4.2.1 Fog Computing (FC)

The FC paradigm is frequently called "Cloud, close to the application" [98], [102]. To reduce

the latency, FC infrastructure enables applications to run as close to the source of a request as

possible. Figure 4.1 demonstrates the relationship between the FE, FN, and edge devices.

Figure 4.1: Positioning the Edge Devices and FNs in an FE

50

FC represents a global network of interconnected items that can each be addressed

differently based on established communication protocols [103]. These items act as the IoT

devices' physical representations, the origin of data collection, and they can be measured,

comprehended, and analyzed [102]. FC has become popular among latency-sensitive IoT

application jobs due to all these capabilities. These devices linked on FC are multiplying daily,

and it is estimated that by 2025, there will be around 75.44 billion connected devices worldwide

[104]. The chances of achieving low latency automatically increase when the right FNs are

selected correctly [80], [105].

4.2.2 Naive Bayes

The Naive Bayes algorithm relies on the assumption of predictor independence and is based on

the Bayes theorem. The Naive Bayes algorithm for classification assumes that a feature's

presence in a class is independent of the existence of any other feature. Naive Bayes

classification aims to forecast the class label C for a specific instance X, depending upon its

features or attributes x1, x2, x3, ….., xn. Using the Bayes theorem, Naive Bayes determines the

likelihood that an instance belongs to each class and then places the class with the greatest

likelihood to the input.

4.2.3 Self-Organizing Maps (SOMs)

In ML, SOMs are a kind of artificial neural network utilized for unsupervised learning. SOMs

are used for dimensionality reduction, clustering, and data visualization. Some significant

features of SOM are:

 Labeled data is not necessary for SOMs.

 SOMs preserve the input data's topological characteristics.

 They simplify complex data by reducing its dimensions to a lower-dimensional map.

 They work exceptionally well for exploratory data visualization and analysis.

SOM helps identify connections or trends in the dataset and for exploratory data analysis. They

reveal patterns or groupings within the data, offering perceptions of the underlying frameworks.

51

4.3 Proposed Framework

In this framework, FC is approached using one of the methods already used in another

paradigm. The proposed framework is inspired by the scheduling mechanism proposed by

Sandhu and Sood [16]. They presented a scheduling architecture considering quality of service

(QoS) for large data applications. Their architecture utilizes K Nearest Neighbors (KNN), the

Naive Bayes algorithm, and the Self-Organizing Map (SOM). Modifying well-established

scheduling algorithms and switching to the other DS paradigms reduces the computational

effort significantly.

The entire set of characteristics under consideration is altered when the focus is switched

from the Cloud to the Fog. In Fog, latency is the most critical factor when choosing a job

allocation node. Both methodologies use completely distinct implementation setups, datasets,

and applications for experimentation. By extending the dual scheduler approach to FEs with

specific parameters and real-time experimental setups, the proposed framework aims to broaden

its scope. The proposed framework aims to reduce the job's execution time and increase

efficiency by moving it from Cloud to Fog.

4.3.1 Architecture

Figure 4.2 depicts components of the proposed framework for scheduling IoT application jobs

in FEs.

Figure 4.2: High-Level Architecture: Dual Broker-Based Framework

The proposed framework consists of three primary components discussed below:

52

• LBR: Every FE has an independent LBR responsible for record-keeping the resources on

the FNs in an FE.

• GBR: Global Broker is a centralized component that receives the load status from the

Global Register and makes the necessary decisions for job scheduling based on these

status details.

• Global Register: A global register is a component that stores the status data of each

available FE in the network.

Conceptually, there are n number of FEs (FE1, FE2, FE3, ….., FEn) and m number of FNs

inside an FE. The client part of the framework includes the IoT devices and the Smart

Application Job. LBRs have direct access to the FNs' resource status, as depicted in Figure 4.2,

and the GBR is directly linked to the applications that need specific resources for their jobs.

Table 4.1: Record kept by an LBR

The entire job scheduling process in the proposed framework can be summarized in the

following eight steps. Inputs from IoT application’s job requests or SLAs are used as the

process's QoS and operational needs. Two scheduling sub-algorithms are used in the process,

and the process ends by returning an ID of the FN or group of nodes to which the present job

may be assigned. If none of the available nodes can execute the job, it is dispatched to the Cloud

and returns a null value.

53

4.3.2 Naïve Bayes Algorithm for the Proposed Framework

The Naive Bayes classification method is used here to group the applications. For this, the

Bayes algorithm is employed.

P(categoryi/tuple)=P(tuple/categoryi)P(categoryi)/p(tuple)

 Eq. 4.1

Assuming that every job request has its operational and QoS requirements, the Naïve Bayes

Algorithm is provided with both sets of requirements, and as an output, it generates a tuple

(Comp., Mem, GPU) for each job request. This tuple determines the probability of a job falling

into a specific category: Generic, Compute Intensive, GPU Intensive, and Memory Intensive.

Table 4.2 displays the node types and their resource.

 Table 4.2: Resource availability based node types

The default choice for a request is the general-purpose (generic) category. One application

job may fall under multiple categories. Figure 4.3 demonstrates the process of tuple generation.

54

Figure 4.3: Triplet Generation based upon QoS Parameters and Functional Requirement

This exercise ensures that every request receives enough resources to handle it efficiently.

The operation of LBRs located inside each FE is represented by Algorithm 4.1.

Algorithm 4.1: LBR Algorithm

Inputs: All the operational parameters

Outputs: An identifier.

Step 1: Calculate the prior probability for given class labels.

Step 2: Find the probability of likelihood with each attribute for each class

Step 3: Utilize the resultant values in the Bayes Formula and calculate posterior probability.

Step 4: Select the class with the highest probability, given that the input belongs to the highest

probability class.

4.3.3 Modified Self Organizing Maps (MSOM)

SOM creates topological ordering through a competitive learning mechanism. The degree of

their relationship is shown by how closely the FNs are spaced in topological ordering.

The proposed framework using a Self-Organizing Map (SOM) builds four types of virtual

nodes. These nodes are computing-intensive, memory-intensive, GPU-intensive, and generic.

Figure 4.4 shows the mapping of the generated triplet onto the resource cluster.

55

Figure 4.4: Use of SOM to map the triplet on the resource cluster

Each virtual node's specifications and Quality of Service (QoS) values are stored in an LBR.

Table 4.3 displays the information that was recorded for each QoS parameter.

Table 4.3: Details of QoS parameters

Job requests are routed to specific virtual FN based on the probability tuple generated by the

Naive Bayes algorithm. If a particular FN has surpassed its capacity, it can use the topological

ordering of Algorithm 4.2 to access resources from nearby free virtual nodes. This technique is

highly effective; it minimizes the wait time for IoT application job requests and ensures

compliance with QoS standards.

56

Algorithm 4.2: Creating Virtual Cluster using MSOM Technique

Input: category_list [], server_list [] []

Output: virtual FN

Step 1: Set p=0

Step 2: For all elements in category_list []

 Step 2.1: Set q=0

 Step 2.2: for all machines in server_list [] []

Step 2.2.1: Determine the closed reference vector for server_list [q] []

 based on category_list [p].

 Step 2.2.2: Update the close reference vectors using

 mj (t+1) = mj(t)+yj(t) (z(t)-mj(t))

 Step 2.2.3: set q=q+1

 Step 2.3: set p=p+1

Step 3: Assign each server machine to its closest reference vector

Step 4: Return reference vectors and create a virtual node

In Algorithm-4.2,

• category_list [] represents the list of IoT application’s job categories generated based on

functionality and QoS requirements.

• server_list [][] contains the machines installed in FEs and their specifications.

• z (t) represents the server machine currently considered at time t.

• m j (t) represents the value of the nearest reference vector to z(t) at time t.

• y j (t) represents the neighborhood effect between mj and y for creating topological

ordering at time t.

It is now time to assign jobs to these job nodes after creating the virtual nodes. Algorithm-4.3

depicts how a virtual node is assigned a job:

“

57

Algorithm 4.3: Job Assignment to Virtual Node

Inputs: Resource Utilization table, current node, new job request, p[].

Step 1: Set i=0.

Step 2: Select node from p [i].

Step 3: if the node is over-utilized

 Step 3.1: Find a virtual node close in topological ordering with free resources.

 Step 3.2: if (node_free! = null)

 Step 3.2.1: Shift desired resources from node_free to the selected node.

 Step 3.2.2: Update the resource utilization table

 Step 3.3: Else

 Step 3.3.1: Set i=i+1

Step 4: END

Algorithm 4.3 includes a resource utilization table that tracks the current and past resource

utilization of an FN in the FE. The LBR keeps this table updated. Node_free is an FN with

enough resources to complete a new job and is closer to the present FN in topological ordering.

The top three IoT application job categories are listed in p[] based on conditional probabilities

generated by the Naive Bayes method.

4.4 Experimental Results and Discussion

The framework has been tested on Microsoft Azure and Aneka resources for organizing

platforms and applications. Aneka, a .NET-based service-oriented grid computing platform, is

used for workload discovery, scheduling, and balancing [106]. Four ready-made Aneka-based

applications are employed in testing. Microcomputing resources used as FC nodes and grouped

to form FC environments have been created using Azure. The proposed testbed consists of four

settings, each running on an Av2, Ev3, or Dv3 computer tailored for a particular job. The

proposed framework has been put to the test using four applications:

• Blast: a parameter sweep application;

• Convolution: an image processing application;

• Mandelbort: a standard thread application;

• Data Search: an algorithmic search application.

58

Figure 4.5: Testbed for the Performance Evaluation of Proposed Framework

The experiment lasted for 100 minutes and involved generating time-varying loads. These

loads were sent to server computers operating within the same Azure network as other

machines. The server used the proposed framework to choose the most suitable computer to

send requests.

A saturation was seen after this period; thus, the experiment was continued for an additional

100 minutes. In the experiment, we tracked five metrics for three installed pieces of

infrastructure:

 resource utilization,

 availability,

 response time,

 waiting time,

 completion time.

Two computing infrastructures are employed, and they are briefly detailed below:

a) CC infrastructure: Microsoft Azure's Australia Region has provisioned a computer with

an elastic configuration. An application request was sent from India to consider network

latency. When the demand for the application increases, an auto scaler on the machine

purchased from Azure automatically changes the configuration.

b) FC infrastructure: As seen in Figure 4.5, a set of machines connected to the same

network where the apps were causing the load were set up to reduce latency.

59

The performance evaluation of three computing models is compared as described below.

a) Conventional CC: this computing paradigm directs all jobs straight to CC resources. In

this model, FC is not used. [16]

b) Traditional FC: This computing model treats all jobs equally without segregation and

assigns a job to any available FC resource [107].

c) Proposed FC: This framework uses an ML-based computing model to allocate jobs to

best-suited FNs. Requests for Image Convolution, an image processing application, were

routed to computers with GPU power via FNs created for them.

The proposed framework is evaluated on five parameters: ARU, RAV, ART, AWT, and

ACT. Many other parameters can be evaluated, but the selected set of evaluation parameters is

considered specifically significant because DS is in demand for providing high-end, low-cost

resources to its users. A system is successful if it utilizes the resources without waste and keeps

them available when requested. Except these, other parameters such as ART, AWT, and ACT

are to be taken care of so that requests can be completed within agreed-upon timelines.

The resource consumption for all three schemes is shown in Figure 4.6, where the ARU for

standard FC infrastructure was close to 92 percent. However, with maximum usage of 80%,

CC and the proposed framework were operating at the same level. High usage has a negative

impact on the application and infrastructure's overall performance. The average resource

consumption for plotting the graph was calculated every five minutes. Compared to CC and the

proposed framework, the conventional Fog technique was the least accessible to the submitted

jobs because it was heavily used. Even the proposed framework performed superior to the CC

setup.

60

Figure 4.6: ARU of Available Computing Infrastructure

Figure 4.7 depicts the RAV for each of the three computing models used in the experiment.

In the beginning, all models had an RAV of almost 90%. However, the proposed FC framework

offered better resource scheduling than the conventional FE, which resulted in greater

availability. The proposed framework improved availability and resource use.

As visible in the results, the response time is increasing. The system has enough resources

to execute the requests and behaves as expected. The response time is increasing because new

requests are being added without waiting for the existing requests to end [106]. The framework

is not intended to evaluate the system's performance; instead, it is an attempt to verify if a

distributed broker can be applied to this approach and if it produces better results than its

counterparts.

Figure 4.7: RAV Comparison at the installed infrastructure

61

The typical ART of various infrastructures is shown in Figure 4.8. Response time is

measured when an application sends a job to a Cloud-based machine and receives a response

in return.

Figure 4.8: ART comparison of the Installed Infrastructure

The proposed framework had the quickest reaction time. The AWT for a job posted by the

application is shown in Figure 4.9. Traditional FC initially saw shorter waiting times than CC

due to lower network latency. However, fewer resources were available after five minutes,

which caused the waiting time to lengthen. However, the proposed framework outperformed

all others due to its efficient resource utilization. Job sent to the infrastructure would take longer

to complete depending on the response and waiting times. The same pattern was evident, with

the proposed framework outperforming the other two.

Figure 4.9: AWT comparison of Installed Infrastructure

62

The average job completion time for each of the three computing models is shown in Figure

4.10. The proposed framework has the best average job completion time because of its effective

ML job scheduling and usage of an FC infrastructure to reduce latency.

Figure 4.10: ACT comparison of the Installed Infrastructure

Table 4.4 summarizes the discussion on the experimental results, comparing all three

approaches discussed in this section.

Table 4.4: Summary of obtained results.

 ARU RAV ART AWT ACT

Traditional Cloud [16] 75% 78% 20 sec 15 sec 48 sec

Traditional Fog [80] 90% 65% 35 sec 20 sec 66 sec

Proposed Framework 80% 75% 13 sec 10 sec 37 sec

Improvement
Cloud 5% 3% 7 sec 5 sec 11 sec

Fog -10% -10% 22 sec 10 sec 29 sec

Table 4.5: Proposed Framework vs Other Solutions

Ref.

No.

Title Goal Limitations

[58] Latency-Aware

Application Module

Management for Fog

FEs must follow a

latency-sensitive

policy when managing

1. Missing brokering, 2. Missing

hierarchical distribution of load

balancing jobs, 3. QoS parameters

not considered, 4.No ML

63

Computing

Environments

the application

modules.

technique is used, 5.No clustering

of jobs and resources

[62] DRL-Scheduling: An

Intelligent QoS-

Aware Job

Scheduling Framework

for Applications in

Clouds

A framework for

managing jobs using

QoS. The framework's

main component was

an algorithm for

scheduling jobs based

on deep reinforcement

learning.

1. Missing brokering, 2. Missing

hierarchical distribution of load

balancing tasks, 3. No clustering

of jobs and resources

[63] A machine-learning-

based time-constrained

resource allocation

scheme for vehicular

Fog computing

A metric to assess the

effectiveness of apps

for improving road

safety that combines

information-based

networking

technologies with a

Fog virtualization

strategy to cut down

on PRT authors.

1. Missing brokering, 2. Missing

hierarchical distribution of load

balancing tasks, 3. QoS parameters

not considered, 4.No ML

technique is used, 5.No clustering

of jobs and resources

[64] A Supervised Learning

Based QoS Assurance

Architecture for 5G

Networks

A QoS assurance

structure that takes

into account

widespread

connectivity,

extremely low latency,

and high-speed data

transfer rates as QoS

parameters

1. Missing brokering, 2. Missing

hierarchical distribution of load

balancing tasks, 3. No ML

technique is used, 5.No clustering

of jobs and resources

[67] Computation

Scheduling for

Distributed Machine

Learning With

Straggling Workers

Showed the

cumulative

completion time as a

function of

computational load

through the master-

controlled allocation

of tasks among

numerous workers.

1. Missing brokering, 2. Missing

hierarchical distribution of load

balancing tasks, 3. QoS parameters

not considered, 4.No ML

technique is used, 5.No clustering

of jobs and resources

4.5 Summary

A proposed framework aims to allocate IoT application jobs to FNs in diverse FEs, using ML

classification and integrating the Quality of Service (QoS) parameters. The framework's

performance is evaluated using QoS parameters: throughput, availability, latency, and physical

64

proximity. It offers 6% better resource utilization, 4% greater RAV than traditional Cloud [16],

1.8 times faster response times, and 2.7 times better resource consumption than traditional

Cloud [16]. Last but not least, the ACT was 1.6 times faster than traditional Fog [80] and 1.3

times faster than traditional Cloud [16]. By scheduling the jobs to FNs, where it is possible to

produce better outcomes in terms of timely execution and high-quality output, the proposed

framework improved resource utilization, reduced completion time, and decreased latency.

The next chapter discusses an approach to develop a multilevel hierarchical broker for job

scheduling in hexagonal FEs for better global geographical coverage of distributed and ad-hoc

Fog services.

65

CHAPTER 5

MULTILEVEL BROKER-BASED JOB SCHEDULING

5.1 Introduction

 The previous Chapter elaborates on a dual-broker implementation in FC. That solution refers

to a single FE. This chapter presents a hierarchical broker-based technique for job scheduling

in hexagonal FEs for better global geographical coverage of distributed and ad-hoc Fog

services.

5.2 Background

Traditional CC infrastructures cannot meet the rigid latency requirements of IoT applications

[105]. To cater to the demands of latency-sensitive applications, various computing paradigms,

such as mobile EC [108], FC [109], and sensor Clouds [110], are being employed. Among

these, Fog is a highly effective and popular computing platform. Various operational and QoS

aspects influence job scheduling decisions, including energy consumption, waiting times, and

operating expenses. The framework discussed in this chapter aims to enhance five QoS

parameters: RAV, ARU, ART, AWT, and ACT.

5.2.1 Coverage of Geographic Regions (GR)

IoT applications involve managing an extensive network of sensor nodes randomly placed in a

RoI to serve a job’s immediate processing needs on behalf of the Cloud [111]. These nodes are

responsible for sensing the environment and carrying out specific tasks. However, it is possible

that some of these nodes may be left unattended or may make their own decisions while

performing their tasks [19]. The RoI in this chapter is divided into hexagonal regions due to the

equal distance between their centers, ensuring complete coverage of FNs [112]. However, the

radius of a hexagon may change from case to case.

5.2.2 Hexagonal FE Organization

The hexagonal FE grid structure is chosen for its efficiency in geographical classification,

optimal placement of IoT devices, energy-saving capabilities, and spatial consistency [112]—

any IoT application job generated within a particular FE (FE1). In case FE does not have

sufficient resources, another suitable FN is searched, prioritizing the nearby nodes (FE2 to FE7)

66

at an assumed distance d1. The next set of FEs (FE8 to FE19) is situated at a distance of d2.

Preferably, an alternative FE is searched at distance d1, as long as the job's latency deadline

does not exceed it. The job is sent to a Cloud data center if all available FEs exceed the latency

deadline. Figure 5.1 demonstrates the hexagonal arrangement of the FEs.

Figure 5.1: Geographic area partitioned in hexagonal GRs for Fog resources

5.3 Proposed Framework

This section elaborates on a hierarchical broker-based technique for job scheduling in

hexagonal FEs for better global geographical coverage of distributed and ad-hoc Fog services.

The proposed framework verifies if the congestion at the job scheduling entities can be reduced

by adding multiple hierarchical scheduling brokers and providing better geographical resource

coverage.

5.3.1 Architecture

Each hexagonal region in the proposed framework corresponds to an FE, accommodating a

specific number of FNs. Three brokers, known as Level-1 Broker (L1B), Level-2 Broker (L2B),

and Level-3 Broker (L3B), are used to schedule the jobs:

 L1B: Each FE has an L1B deployed inside it. In the proposed framework, it is the

responsibility of the L1B to keep track of the resources available within a specific FE.

 L2B: An L2B broker serves as a mediator between the L1Bs and L3B.

 L3B: The L3B is a centralized broker that interacts with all L2Bs of every GR.

67

Figure 5.2 shows the placement and communication of the FE, L1B, L2B, and L3B in the

proposed scheduling framework.

Figure 5.2: Interaction between the L2B and L1B

There is a single instance of L3B communicating with all the L2Bs. L3B is provoked only

in extreme cases when no suitable FE and FN are located in the current GR. Figure 5.3 shows

the interaction between the multiple GRs with the help of all three brokers.

Figure 5.3: Interaction between L1B, L2B and L3B.

5.3.2 The process of selection of an FE

• Estimation of the layer count

The layer count changes with every request and affects the potential wait time for any response

from the FEs.

68

Figure 5.4: Increase in the number of FNs with Layer Count

The job is preferably sent to the nearest FE to manage the latency and deadline parameters.

Layer count is crucial for traversing all of the FEs in a layer because there are different numbers

of FEs in every layer. Using the number provided by the L1Bs, the layer count is calculated as

follows:

Layer count= ((FE_Count%6)>0)? FE/6+1: FE/6;

Eq. 5.1

Navigating between nodes and ascertaining their PP once the layer count is known is simpler.

• To determine the availability of resources

 After collecting the job resource requirements, the L1B of the FE collects data from FNs

regarding their available resources and compares it with the resources required. The L2B

receives a positive response if the free resources are sufficient for the job. L2B compiles a list

of all the available hexagonal regions by adding the FE IDs of all the FEs that respond positively

to an available [].

• Calculation of QoS Score

The QoS score in the proposed framework depends upon three parameters which are:

• Physical Proximity (PP): Determined by L2B

• Bandwidth (BW): Recorded by L1B

• Quality of the Devices (QD): Recorded by the L1B

69

These parameters were chosen because of their noticeable contribution to job latency. QoS

score is calculated based on the weightage assigned to all the above parameters, i.e., PPw, BWw,

and QDw. The weightage values of these parameters are shown in Table 5.3.

QoS Score=PP*PPw+BW*BWw+QD*QDw

Eq. 5.2

Table 5.1: Weightage of QoS parameters to calculate the QoS score

Figure 5.5: Interaction between L2B and L1Bs of a layer

• Ranking the FEs

The current layer's FEs are evaluated according to their Quality of Service (QoS) score. The

best solutions are prioritized first in this ranking to execute the job swiftly and effectively. As

a result, processing starts with the FE having the highest QoS rating.

70

• Calculation of New_Deadline

The proposed framework chooses an FN by comparing the actual time the FN needs to finish

the application job with the deadlines specified in the SLA. To obtain the New_Deadline, the

total time invested in tlayer, tavail, tscore, and ttransfer is subtracted from the SLA deadline.

New_Deadline=deadline-(tlayer + tavail+ tscore+ ttransfer)

Eq. 5.3

In Eq. 5.1

• tscore: time taken to calculate the QoS score

• tavail: time taken to find the available FEs

• tlayer: time taken to count the layers

• ttransfer: and transferring data

If none of the FEs in the current layer satisfy the deadline criteria, then the system approaches

the FEs in the next layer. The job is routed to the Cloud if the system cannot find a suitable FE

in any layers.

• Assigning the job to an FE

For assigning a job to an FE, its New_Deadline is compared to the actual execution time

(ACET) to determine if the current FE meets the latency and efficiency requirements.

 FEselected=FEcurrent, IF ACETcurrent < New_Deadline

Eq. 5.4

If not, the next available FE is assessed using the same criteria. If none of the existing FEs meet

the latency requirement, the search process restarts in the next hexagonal layer that contains

FEs. Figure 5.5 illustrates how the L2B and each L1B work together to select the best FE in a

GR.

71

Figure 5.6: Assigning the job to a suitable FE.

• Finalizing an FN

The same set of steps that are used for selecting an FE is performed to select an FN within the

selected FE, i.e.,

• enlisting the nodes with available resources,

• figuring out their QoS scores,

• ranking each node based on those scores,

• figuring out an FN's New_Deadline,

• assigning the job to an FN

The L1B performs all these steps. The status of free nodes was calculated during the process of

FE selection, which is reused here. Algorithm 5.1 outlines the step-by-step procedure.

Algorithm 5.1: Load scheduling in an FE.

Inputs: Execution deadline, ACET, time to calculate layer count, PP, BW, and device quality,

layer_count=0

Output: FN

Step 1: Start

72

Step 2: The IoT app submits the request

Step 3: FE denies due to lack of resources

Step 4: Increment the layer count k

Step 5: Set time taken to count the layers tlayer= tlayer+new_tlayer

Step 6: Collect RAV at all FEs by broadcasting a request to all the FEs at layer k

Step 6.1: for each FEi in layer k

 send a request containing the requirements to FEi to provide available

if(required<free)

 set cnt=cnt+1

 add FEi to available [cnt]

Step 6.2: collect available []

Step 6.3: Set tavail=tavail+new_tavail time taken to collect the availability

Step 7: Set j=0

Step 8: Calculate the QoS score of FE at available [j]

 Step 8.1: Collect pp, bw, and qual of FE

Step 8.2: Set QoS_score=pp*ppw+bw*bww+qual*qualw

Step 8.3: Set tscore = time spent in the calculation of QoS score

Step 9: Collect the QoS_score from FEs at layer k and rank them

Step 10: Calculate the New_Deadline.

 newdeadline=deadline-(tlayer+tavail+tscore)

Step 11: Compare ACET with a New_Deadline

if (ACET>newdeadline)

Set j=j+1 and go to step 8

else

Search appropriate FN in the current FE

Step 12: Use the free resource status of all FNs in FEj

Step 12.1: for each FN n at FEj

 Compare required resources with the free resources at FNn

if (required<free)

 set cnt=cnt+1

 Add FNn to available [cnt]

Step 12.2: collect available []

Step 12.3: Set tavail=tavail+new_tavail time taken to collect the availability

73

Step 13: Calculate the QoS score of FNn

 Step 13.1: Collect pp, bw, and qual of FNn

Step 13.2: Set QoS_score=pp*ppw+bw*bww+qual*qualw

Step 13.3: Set tscore = time spent in the calculation of QoS score

Step 14: Collect the QoS_score from FNs at FEj and rank them

Step 15: Calculate the New_Deadline.

 newdeadline=deadline-(tlayer+tavail+tscore)

Step 16: Compare ACET with New_Deadline

if (ACET>newdeadline)

 Set n=n+1 and go to step 13

else

 Allocate job requests to FNn

Step 17: If no more FE is available []

 Go to step 4

Step 18: If there are no more layers, then send the job to the Cloud

Step 19: END

5.4 Experimental Results and Discussion

The proposed framework is tested by an emulator, which schedules Fog applications

using hexagonal FE and a broker-based strategy. Figure 5.7 displays the emulator's testbed. The

proposed testbed and its performance assessment are covered in-depth in this section.

Figure 5.7: Testbed for Experimental Setup and Performance Analysis

74

5.4.1 Testbed

The testbed uses four Aneka platform-built applications. As a result, these programs produce

several independent jobs that can be assigned to any of the FEs shown in Table 5.5. Number of

nodes in an FE and their configuration is as per the Table 5.6. Table 5.7 shows various

parameters showing the time spent on the specified operations.

Table 5.2: Applications Used in Testbed

Table 5.3: Number and configuration of the Nodes

Table 5.4: Parameters for the time used in the proposed framework’s testbed.

In the proposed testbed, the L2B is a Windows 10 machine with Intel(R) Core (TM) i7-

10,700 CPU 2.90 GHz processor, 16.0 GB (15.7 GB usable) RAM, and a 64-bit operating

system. It operates a master Aneka container that controls the job scheduling on the desired

FEs. The Aneka PaaS program was used to implement the proposed framework, which controls

various scheduling aspects in distributed computing systems.

75

Figure 5.8: Setup of FEs for the Testbed

5.4.2 Performance Analysis and Comparison

The suitability of the proposed framework to schedule jobs in an FC environment using L1B

and L2Bs is evaluated through comparison with its variant.

• Variation 1: In Variation-1, no jobs are moved to the nearby FE with available resources.

A job is kept waiting for the resources in its FE.

• Variation 2: Layering and hexagonal structure are not performed, but the testbed

described in Section 4.1 is used, and a job can be transferred to another FE. Jobs change

at random.

“

The proposed framework is evaluated for five parameters: RAV, ARU, ART, AWT, and

ACT. These parameters are preferred in Fog computing because they measure a system's

performance and check if it provides accessible and efficiently utilized resources. Metrics like

response time, wait time, and completion time are also helpful in evaluating responsiveness and

efficiency and providing valuable insights for improving the user experience.

Figure 5.9 shows the count of jobs produced by these four Aneka applications. Compared to

the Blast program, the image convolution application produced many jobs. The magnitude and

time required to finish each job varies, as shown in Table 5.5. To effectively populate the

framework, a sufficient number of jobs have been generated and checked to verify scalability

and dependability.

76

Figure 5.9: Number of Jobs Generated by Every Application at Different Time Intervals

The proposed framework’s ARU is shown in Figure 5.10. After 50 minutes of testing, all of

the variations employed in the experiment reached saturation regarding resource utilization.

The proposed framework had the highest resource consumption because it dispatches jobs to

front-end servers other than the one where they were initiated. Although the resources are

distributed equally across all FEs in the proposed framework, there are certain deviations where

some FEs are overused while others are underused.

Figure 5.10: ARU Comparison

Figure 5.11 depicts the FE’s typical RAV, which is lower for the proposed framework than

for other alternatives. The proposed framework has a slightly lower average RAV than

Variation-1, which has the highest average RAV. In this experimental setup, RAV reveals the

underutilization of resources. While some jobs can be moved to accessible resources, Variation-

77

1 does not permit this, leaving those resources underutilized. On the contrary, Variation-2 with

the proposed framework makes it possible to identify more suitable resources and assign jobs

to them, ensuring a fair workload distribution. In the first 60 minutes of the experiment, the

proposed framework experiences a 20% lower average RAV. The difference is roughly 15% -

10 % after 60 minutes. The proposed framework can keep resources engaged longer than other

alternatives.

Figure 5.12 shows the ART of application jobs. The proposed architecture has a much better

response time than other variations. In the beginning, there's little difference in response times

for the three approaches, but Variation-1's response time suddenly increases and keeps rising

throughout the experiment. Variation-2 has a lower response time than Variation-1 but is still

over 45 seconds higher than the proposed framework. By the end of the experiment, Variation-

1's response time is 3.5 times higher than that of the proposed framework.

Figure 5.11: RAV Comparison

f

Figure 5.12: ART Comparison

78

Figure 5.13 shows the AWT for application processes. The proposed framework has

significantly reduced waiting times compared to alternative variations. By the end of the trial,

Variation-1's waiting time was 370 seconds, Variation-2's was 150 seconds, and the

recommended framework's was 50 seconds. Variation-2 had a slower response time than

Variation-1, but both exceeded the required framework time of 100 seconds. By the end of the

trial, Variation-1's response time was 6.5 times longer than the proposed framework.

Figure 5.13: AWT Comparison

The experimental testbed for Fog scheduling considered all significant factors, with

fascinating outcomes. Figure 5.9 shows that Image and Mandlebort generate more jobs than

other applications. The proposed framework consumes more resources than alternatives but is

more efficient. Resource utilization remains consistent after an initial increase. The proposed

framework is 20% better than variant 1 and 5-10% better than variant 2 during the trial.

Figure 15.14 shows that the proposed framework performs significantly faster than other

versions. Variation-1 shows a sharp rise in completion time, which continues throughout the

experiment. Variation-2 has a slower response time than Variation-1, but still slower than the

proposed framework. At the end of the trial, Variation-1's response time was 5.5 times longer

than that of the proposed framework, whose ACT was 100 seconds.

79

Figure 5.14: ACT Comparison

Table 4.4 summarizes the discussion on the experimental results, comparing all three

approaches discussed in this section.

Table 5.5: Summary of obtained results.

 ARU RAV ART AWT ACT

Variation-1 70% 30% 145 sec 370 sec 530 sec

Variation-2 75% 20% 96 sec 148 sec 240 sec

Proposed Framework 84% 18% 48 sec 50 sec 100 sec

Improvement
Variation-1 14% 12% 97 sec 320 sec 430 sec

Variation-2 9% 2% 48 sec 98 sec 29 sec

Table 5.6: Proposed Framework vs Other Solutions

Ref

No.

Title Goal Limitations

[69] Distributed

computational load

balancing for real-time

applications

A solution in which

scheduling decisions are

made by linear

programming and a

network of queues

1. Missing brokering, 2. Missing

hierarchical distribution of load

balancing tasks, 3. QoS

parameters not considered, 4. No

clustering of jobs and resources

[75] DOTS: Delay-Optimal

Task Scheduling

Among Voluntary

Nodes in Fog Networks

A general analytical

model of task scheduling

that divides FNs into two

categories, which are

1. Missing brokering, 2. Missing

hierarchical distribution of load

balancing tasks, 3. QoS

parameters not considered, 4.No

ML technique is used

80

voluntary nodes (VN)

and task nodes (TN)

[76] Folo: Latency and

Quality Optimized Task

Allocation in Vehicular

Fog Computing

A dynamic, event-

triggered framework for

task allocation using

linear programming-

based optimization and

binary particle swarm

optimization

1. Missing brokering, 2. Missing

hierarchical distribution of load

balancing tasks, 3. QoS

parameters not considered, 4.No

ML technique is used, 5.No

clustering of jobs and resources

[80] Ranking Fog Nodes for

Tasks Scheduling in

Fog-Cloud

Environments: A Fuzzy

Logic Approach

A linguistic and fuzzy

quantified proposition for

ranking the FNs from

most satisfactory to least

satisfactory ranking

1. Missing brokering, 2. Missing

hierarchical distribution of load

balancing tasks, 3. QoS

parameters not considered, 4. No

clustering of jobs and resources

5.5 Summary

The proposed framework offers an efficient QoS-based scheduling approach for IoT application

jobs on reachable FNs. Hexagonal FEs cover all potential FNs in the network, and every

hexagonal GR has a predetermined number of resources. The PP, BW, and QD in a particular

FN are the variables used to calculate each FN's QoS score. Additionally, an ALTERNATE

node is given the job only if it satisfies the deadline for execution and has the necessary

resources. A job can only be successfully finished if it is purposefully assigned to the most

advantageous combination of processing resources, so Fog is mainly employed to fulfill time-

sensitive tasks.

Our research focuses on ensuring successful broker communication without involving

networking concepts. Improvements can be made by considering various factors that could

affect the Quality of Service (QoS) during the execution of jobs for Fog applications. One such

improvement could be to utilize a flexible set of QoS criteria that aligns with the type and

specifications of each application job. Additionally, the framework could benefit from

including scalability as another feature.

81

CHAPTER 6

CONCLUSION AND FUTURE SCOPE

This thesis aims to study and propose the usage of broker-based load balancing and job

scheduling techniques in DSs, mainly CC and FC. As a result of this study, three frameworks

are proposed and implemented to achieve efficient resource allocation to the available set of

resources.

6.1 Thesis Summary

Chapter 1 introduces this thesis's concept, background, open issues, and objectives. Chapter 2

presents the existing literature describing the methodologies and techniques proposed by the

authors in load balancing and job scheduling in the fields of CC and FC. This chapter is divided

into multiple sections, each discussing the literature details directly related to one of the

objectives. Chapter 3 discusses an SA-based broker framework for load balancing in a PPC

where SAs are utilized to implement the autonomous behavior in load-balancing brokers.

Chapter 4 discusses an ML classification-based dual broker framework by integrating QoS

parameters for scheduling applications’ jobs in FEs. In this framework, FNs are segregated

based on resource availability, and jobs are mapped on the appropriate set of resources. Chapter

5 discusses a multilevel hierarchical broker for job scheduling in hexagonal FEs for better

global geographical coverage of distributed and ad-hoc Fog services based upon the QoS Score

and average execution time of the FNs.

6.2 Concluding Remarks

This chapter summarizes the results obtained from Chapters 3, 4 and 5. These chapters contain

a detailed description of the proposed frameworks, experimental setup, and results obtained.

6.2.1 A SA-based broker framework for load balancing in a PPC

To reduce the search space in the Public Cloud (PC), to reduce the congestion at a single job

scheduler, and to insert autonomous behavior in the load balancing technique, an SA-based

broker framework is introduced for a single Cloud, which resulted in a reduced number of

detained jobs, improved makespan, better average execution time (AET), maximum execution

time (MET) and total execution time (TET). This method yielded good outcomes, but it can be

82

enhanced by incorporating machine learning (ML) classification methods for automated

decision-making and considering Quality of Service (QoS) parameters when evaluating system

performance.

6.2.2 ML Classification-based dual broker framework with integrating QoS parameters

An ML classification-based dual broker framework is proposed by integrating QoS parameters.

Two brokers are used: Global Broker (GBR) deployed at the centralized level and Local

Brokers (LBRs) deployed at each FE. This framework considers three QoS parameters:

Physical Proximity (PP), Bandwidth (BW), and Device Quality (QD). A combination of Naïve

Bayes Theorem and Self-Organizing Map (SOM) is used in this approach to classify and map

jobs on a suitable set of resources (Generic, Compute Intensive, GPU Intensive, and Memory

Intensive). This approach improves average resource utilization (ARU), resource availability

(RAV), average response time (ART), average waiting time (AWT), and average completion

time (ACT). However, this approach does not address geographical resource coverage, due to

which some of the pervasively scattered nodes may be left unattended or overlapped.

Congestion issues may still arise at dual-level hierarchical brokers when considering globally

scattered Fog resources.

6.2.3 Multilevel hierarchical broker for job scheduling in hexagonal FEs for better global

geographical coverage of distributed and ad-hoc Fog services

The third approach is a multilevel hierarchical broker-based framework for job scheduling in

hexagonal FEs for better global geographical coverage of distributed and ad-hoc Fog services.

The RoI (Region of Interest) in this chapter is divided into hexagonal regions due to the equal

distance between their centers and ensuring complete coverage of FNs. This approach considers

global-level Fog resources across the Geographical Regions (GRs) and is flexible enough to

add multiple hierarchical brokers to manage the increased congestion along with the expansion

to multiple GRs. As an output of this approach, we could achieve higher RAV, ARU, ART,

AWT, and ACT.

83

6.3 Contribution

This section discusses the significant contributions of the research as part of the thesis.

 Reduced Search Space

PC cloud accommodated a large number of resources, which raised manageability

issues. In PPC, the main objective is to reduce the search space for load balancing and

job allocation. Deploying independent brokers can further speed up the load-balancing

tasks.

 Autonomous Behavior

SAs possess a unique property of adapting to the behavior of the environment where

they are deployed. It adds autonomous behavior to the job scheduling entities,

consequently automating the load balancing tasks as per the workload exiting in a DS

at a time.

 Improved Average Resource Utilization

Framework-2 produces 5% and -10 % improved resource utilization compared to [16]

and [80]. Framework-3 produces 14% and 9% improved resource utilization compared

to Variation-1 and Variation-2.

 Improved Average Resource Availability

Framework-2 produces 3% and -10 % resource utilization compared to [16] and [80].

Framework-3 produces 12% and 2% improved resource availability compared to

variation-1 and variation-2, respectively.

 Reduced Average Response Time

Framework-2 responded 7 sec and 22 sec faster than [16] and [80] respectively.

Framework-3 responds 97 sec and 48 sec faster than variation-1 and variation-2,

respectively.

 Reduced Average Waiting Time

Framework-2 reduced average waiting time by 5 sec and 10 sec compared to [16] [80],

respectively. Framework-3 reduced average waiting time by 320 sec and 98 sec

compared to variation-1 and variation-2, respectively.

84

 Reduced Average Completion Time

Framework-2 reduced average completion time by 11 sec and 29 sec compared to [16]

[80], respectively. Framework-3 reduced average completion time by 320 sec and 98

sec compared to variation-1 and variation-2, respectively.

 Better Geographical Coverage of Resources

Hexagonal FE structures are known for better geographic coverage because of their

equal distance from the radius of their neighboring hexagons. Framwork-3 utilizes this

property of hexagonal shape to cover the fog resources better, avoiding overlapping or

chances of left-out nodes.

6.4 Future Scope

This thesis is focused on service orchestration in the Cloud and FC environments and has

proposed frameworks based on chosen parameters only. There is a long list of the network

(number of hops, BW, packet loss, network throughput, network delay, network jitter) and

infrastructure (CPU count, amount of memory, size of disk space, percentage of CPU,

percentage of memory, free disk) related QoS parameters which contribute significantly in

service orchestration. [113]. Experimentation can be performed upon this set of resources to

verify if the proposed frameworks produce significantly improved results in the expanded set

of parameters. More ML techniques can be explored along with expanding the list of

parameters, as the same technique cannot benefit every parameter. Another field of future

research to explore is to scale the hierarchy levels in a multilevel broker platform where

hierarchical levels can be added or removed per the geographical size and resource

requirements of fluctuating request volume. Scaling in terms of hexagonal FEs, including their

size and number of hexagonal GRs, is also a dimension that can be experimented with.

6.5 Summary

In the end, the research attempts to propose and verify different approaches to achieve better

execution timing, better utilization of deployed resources, and reduce load balancing

complexities due to the large search space in the Distributed Systems. Improved operational

and QoS parameters improve the user experience and the service provider’s goodwill. Efficient

85

resource allocation is the major contributor to the evolution of modern computing paradigms,

and this thesis is an attempt to contribute in the same direction.

Figure 6.1: Thesis Summary.

86

REFERENCES

[1] R. Vaithiyanathan and T. A. Govindharajan, “User preference-based automatic

orchestration of web services using a multi-agent,” Computers & Electrical Engineering,

vol. 45, pp. 68–76, Jul. 2015, doi: 10.1016/j.compeleceng.2015.03.021.

[2] R. Sandhu, N. Kaur, S. K. Sood, and R. Buyya, “TDRM: tensor-based data representation

and mining for healthcare data in cloud computing environments,” J Supercomput, vol.

74, no. 2, pp. 592–614, Feb. 2018, doi: 10.1007/s11227-017-2163-y.

[3] C. Carrión, “Kubernetes Scheduling: Taxonomy, Ongoing Issues and Challenges,” ACM

Comput. Surv., vol. 55, no. 7, pp. 1–37, Jul. 2023, doi: 10.1145/3539606.

[4] N. Greneche, T. Menouer, C. Cérin, and O. Richard, “A Methodology to Scale

Containerized HPC Infrastructures in the Cloud,” in Euro-Par 2022: Parallel Processing,

vol. 13440, J. Cano and P. Trinder, Eds., in Lecture Notes in Computer Science, vol.

13440. , Cham: Springer International Publishing, 2022, pp. 203–217. doi: 10.1007/978-

3-031-12597-3_13.

[5] N. Greneche and C. Cerin, “Autoscaling of Containerized HPC Clusters in the Cloud,” in

2022 IEEE/ACM International Workshop on Interoperability of Supercomputing and

Cloud Technologies (SuperCompCloud), Dallas, TX, USA: IEEE, Nov. 2022, pp. 1–7.

doi: 10.1109/SuperCompCloud56703.2022.00006.

[6] B. Sharma, R. Prabhakar, S.-H. Lim, M. T. Kandemir, and C. R. Das, “MROrchestrator:

A Fine-Grained Resource Orchestration Framework for MapReduce Clusters,” in 2012

IEEE Fifth International Conference on Cloud Computing, Honolulu, HI, USA: IEEE,

Jun. 2012, pp. 1–8. doi: 10.1109/CLOUD.2012.37.

[7] M. Firoz Ali, R. Zaman Khan, Distributed Computing: An Overview. Int. J. Advanced

Networking and Applications, 2015.

[8] M. Van Steen and A. S. Tanenbaum, “A brief introduction to distributed systems,”

Computing, vol. 98, no. 10, pp. 967–1009, Oct. 2016, doi: 10.1007/s00607-016-0508-7.

[9] A. D. Kshemkalyani and M. Singhal, Distributed Computing: Principles, Algorithms, and

Systems, 1st ed. Cambridge University Press, 2008. doi: 10.1017/CBO9780511805318.

[10] A. S. Tanenbaum and M. van Steen, Distributed systems: principles and paradigms,

Second edition, Adjusted for digital publishing. The Netherlands? Maarten van Steen,

2016.

[11] I. Ahmad, A. Ghafoor, and G. C. Fox, “Hierarchical Scheduling of Dynamic Parallel

Computations on Hypercube Multicomputers,” Journal of Parallel and Distributed

Computing, vol. 20, no. 3, pp. 317–329, Mar. 1994, doi: 10.1006/jpdc.1994.1030.

[12] A. Grama, Ed., Introduction to parallel computing, 2. ed., [Reprint.]. Harlow: Pearson,

2011.

[13] K. A. Nuaimi, N. Mohamed, M. A. Nuaimi, and J. Al-Jaroodi, “A Survey of Load

Balancing in Cloud Computing: Challenges and Algorithms,” in 2012 Second Symposium

on Network Cloud Computing and Applications, London, United Kingdom: IEEE, Dec.

2012, pp. 137–142. doi: 10.1109/NCCA.2012.29.

[14] Junjie Pang Gaochao Xu and Xiaodong Fu, “A load balancing model based on cloud

partitioning for the public cloud,” TSINGHUA SCIENCE AND TECHNOLOGY, pp. 34–

39, 2013.

[15] D. Mohandass, S. R, and R. R, “A novel approach for dynamic cloud partitioning and load

balancing in cloud computing environment,” Journal of Theoretical and Applied

Information Technology, pp. 662–667, 2014.

87

[16] R. Sandhu and S. K. Sood, “Scheduling of big data applications on distributed cloud based

on QoS parameters,” Cluster Comput, vol. 18, no. 2, pp. 817–828, Jun. 2015, doi:

10.1007/s10586-014-0416-6.

[17] R. Deng, R. Lu, C. Lai, T. H. Luan, and H. Liang, “Optimal Workload Allocation in Fog-

Cloud Computing Towards Balanced Delay and Power Consumption,” IEEE Internet

Things J., pp. 1–1, 2016, doi: 10.1109/JIOT.2016.2565516.

[18] S. Tuli, R. Sandhu, and R. Buyya, “Shared data-aware dynamic resource provisioning and

task scheduling for data intensive applications on hybrid clouds using Aneka,” Future

Generation Computer Systems, vol. 106, pp. 595–606, May 2020, doi:

10.1016/j.future.2020.01.038.

[19] H. Tran-Dang, S. Bhardwaj, T. Rahim, A. Musaddiq, and D.-S. Kim, “Reinforcement

learning based resource management for fog computing environment: Literature review,

challenges, and open issues,” J. Commun. Netw., vol. 24, no. 1, pp. 83–98, Feb. 2022, doi:

10.23919/JCN.2021.000041.

[20] Z. J. Al-Araji, S. S. S. Ahmad, N. Kausar, A. Farhani, E. Ozbilge, and T. Cagin, “Fuzzy

Theory in Fog Computing: Review, Taxonomy, and Open Issues,” IEEE Access, vol. 10,

pp. 126931–126956, 2022, doi: 10.1109/ACCESS.2022.3225462.

[21] D. H. Abdulazeez and S. K. Askar, “Offloading Mechanisms Based on Reinforcement

Learning and Deep Learning Algorithms in the Fog Computing Environment,” IEEE

Access, vol. 11, pp. 12555–12586, 2023, doi: 10.1109/ACCESS.2023.3241881.

[22] H. Tran-Dang, K.-H. Kwon, and D.-S. Kim, “Bandit Learning-Based Distributed

Computation in Fog Computing Networks: A Survey,” IEEE Access, vol. 11, pp. 104763–

104774, 2023, doi: 10.1109/ACCESS.2023.3314889.

[23] T.-A. N. Abdali, R. Hassan, A. H. M. Aman, and Q. N. Nguyen, “Fog Computing

Advancement: Concept, Architecture, Applications, Advantages, and Open Issues,” IEEE

Access, vol. 9, pp. 75961–75980, 2021, doi: 10.1109/ACCESS.2021.3081770.

[24] U. Mir, U. Abbasi, T. Mir, S. Kanwal, and S. Alamri, “Energy Management in Smart

Buildings and Homes: Current Approaches, a Hypothetical Solution, and Open Issues and

Challenges,” IEEE Access, vol. 9, pp. 94132–94148, 2021, doi:

10.1109/ACCESS.2021.3092304.

[25] S. Khan, T. Arslan, and T. Ratnarajah, “Digital Twin Perspective of Fourth Industrial and

Healthcare Revolution,” IEEE Access, vol. 10, pp. 25732–25754, 2022, doi:

10.1109/ACCESS.2022.3156062.

[26] Science and Research Branch, Islamic Azad University, Tehran, Iran, M. Mesbahi, and A.

Masoud Rahmani, “Load Balancing in Cloud Computing: A State of the Art Survey,”

IJMECS, vol. 8, no. 3, pp. 64–78, Mar. 2016, doi: 10.5815/ijmecs.2016.03.08.

[27] Shavan Askar, Kurdistan Ali, and T. A. Rashid, “Fog Computing Based IoT System: A

Review,” Aug. 2021, doi: 10.5281/ZENODO.5222392.

[28] S. D. J. Sunaina, “Service Broker Policy Algorithm for Logistics over Cloud,”

International Journal of Innovations in Engineering and Technology, vol. 7, pp. 2319–

1058.

[29] G. Pierre and M. van Steen, “Globule: a collaborative content delivery network,” IEEE

Commun. Mag., vol. 44, no. 8, pp. 127–133, Aug. 2006, doi:

10.1109/MCOM.2006.1678120.

[30] B. Beverly Yang and H. Garcia-Molina, “Designing a super-peer network,” in

Proceedings 19th International Conference on Data Engineering (Cat. No.03CH37405),

Bangalore, India: IEEE, 2003, pp. 49–60. doi: 10.1109/ICDE.2003.1260781.

88

[31] F. Li, B. Luo, P. Liu, D. Lee, and C.-H. Chu, “Enforcing Secure and Privacy-Preserving

Information Brokering in Distributed Information Sharing,” IEEE Trans.Inform.Forensic

Secur., vol. 8, no. 6, pp. 888–900, Jun. 2013, doi: 10.1109/TIFS.2013.2247398.

[32] H. Benitez Perez, I. Lopez Juarez, P. C. Garza Alanis, R. Rios Cabrera, and A. Duran

Chavesti, “Reconfiguration Distributed Objects in an Intelligent Manufacturing Cell,”

IEEE Latin Am. Trans., vol. 14, no. 1, pp. 136–146, Jan. 2016, doi:

10.1109/TLA.2016.7430073.

[33] N. Ferdosian, M. Othman, B. M. Ali, and K. Y. Lun, “Fair-QoS Broker Algorithm for

Overload-State Downlink Resource Scheduling in LTE Networks,” IEEE Systems

Journal, vol. 12, no. 4, pp. 3238–3249, Dec. 2018, doi: 10.1109/JSYST.2017.2702109.

[34] K. Hwang, J. M. Lee, I. H. Jung, and D.-H. Lee, “Modification of Mosquitto Broker for

Delivery of Urgent MQTT Message,” in 2019 IEEE Eurasia Conference on IOT,

Communication and Engineering (ECICE), Yunlin, Taiwan: IEEE, Oct. 2019, pp. 166–

167. doi: 10.1109/ECICE47484.2019.8942800.

[35] J. Mei, K. Li, Z. Tong, Q. Li, and K. Li, “Profit Maximization for Cloud Brokers in Cloud

Computing,” IEEE Trans. Parallel Distrib. Syst., vol. 30, no. 1, pp. 190–203, Jan. 2019,

doi: 10.1109/TPDS.2018.2851246.

[36] H. Oh, S. Park, G. M. Lee, J. K. Choi, and S. Noh, “Competitive Data Trading Model

With Privacy Valuation for Multiple Stakeholders in IoT Data Markets,” IEEE Internet

Things J., vol. 7, no. 4, pp. 3623–3639, Apr. 2020, doi: 10.1109/JIOT.2020.2973662.

[37] W. Zhang, X. Li, L. Zhao, X. Yang, T. Liu, and W. Yang, “Service Pricing and Selection

for IoT Applications Offloading in the Multi-Mobile Edge Computing Systems,” IEEE

Access, vol. 8, pp. 153862–153871, 2020, doi: 10.1109/ACCESS.2020.3018166.

[38] B. Mishra and A. Kertesz, “The Use of MQTT in M2M and IoT Systems: A Survey,”

IEEE Access, vol. 8, pp. 201071–201086, 2020, doi: 10.1109/ACCESS.2020.3035849.

[39] A. Sathish, D. Dsouza, K. Ballal, A. M, T. Singh, and G. Monteiro, “Advanced

Mechanism to Achieve QoS and Profit Maximization of Brokers in Cloud Computing,”

EAI Endorsed Transactions on Cloud Systems, p. 170244, Jun. 2021, doi: 10.4108/eai.23-

6-2021.170244.

[40] M. Razian, M. Fathian, H. Wu, A. Akbari, and R. Buyya, “SAIoT: Scalable Anomaly-

Aware Services Composition in CloudIoT Environments,” IEEE Internet Things J., vol.

8, no. 5, pp. 3665–3677, Mar. 2021, doi: 10.1109/JIOT.2020.3023938.

[41] S. Gruener, H. Koziolek, and J. Ruckert, “Towards Resilient IoT Messaging: An

Experience Report Analyzing MQTT Brokers,” in 2021 IEEE 18th International

Conference on Software Architecture (ICSA), Stuttgart, Germany: IEEE, Mar. 2021, pp.

69–79. doi: 10.1109/ICSA51549.2021.00015.

[42] A. Gruner, A. Muhle, and C. Meinel, “ATIB: Design and Evaluation of an Architecture

for Brokered Self-Sovereign Identity Integration and Trust-Enhancing Attribute

Aggregation for Service Provider,” IEEE Access, vol. 9, pp. 138553–138570, 2021, doi:

10.1109/ACCESS.2021.3116095.

[43] J. R, A. Urs C J, A. S, D. H M, and S. B K, “Cloud Service Orchestration,” Journal of

Emerging Technologies and Innovative Research, vol. 8, no. 7, pp. 344–349, 2021.

[44] S. K. Dhurandher, M. S. Obaidat, I. Woungang, P. Agarwal, A. Gupta, and P. Gupta, “A

cluster-based load balancing algorithm in cloud computing,” in 2014 IEEE International

Conference on Communications (ICC), Sydney, NSW: IEEE, Jun. 2014, pp. 2921–2925.

doi: 10.1109/ICC.2014.6883768.

[45] H. Zhang, G. Jiang, K. Yoshihira, and H. Chen, “Proactive Workload Management in

Hybrid Cloud Computing,” IEEE Trans. Netw. Serv. Manage., vol. 11, no. 1, pp. 90–100,

Mar. 2014, doi: 10.1109/TNSM.2013.122313.130448.

89

[46] P. Sharma and P. Singh, “Load degree calculation for the public cloud based on cloud

partitioning model using turnaround time,” International Journal of Computer Science

and Information Technologies, 2015.

[47] S. Sebastio and A. Scala, “A Workload-Based Approach to Partition the Volunteer

Cloud,” in 2015 IEEE Conference on Collaboration and Internet Computing (CIC),

Hangzhou, China: IEEE, Oct. 2015, pp. 210–218. doi: 10.1109/CIC.2015.27.

[48] A. Nahir, A. Orda, and D. Raz, “Replication-Based Load Balancing,” IEEE Trans.

Parallel Distrib. Syst., vol. 27, no. 2, pp. 494–507, Feb. 2016, doi:

10.1109/TPDS.2015.2400456.

[49] M. Pantazoglou, G. Tzortzakis, and A. Delis, “Decentralized and Energy-Efficient

Workload Management in Enterprise Clouds,” IEEE Trans. Cloud Comput., vol. 4, no. 2,

pp. 196–209, Apr. 2016, doi: 10.1109/TCC.2015.2464817.

[50] A. Lakhan, Q.-U.-A. Mastoi, M. Elhoseny, M. S. Memon, and M. A. Mohammed, “Deep

neural network-based application partitioning and scheduling for hospitals and medical

enterprises using IoT assisted mobile fog cloud,” Enterprise Information Systems, vol. 16,

no. 7, p. 1883122, Jul. 2022, doi: 10.1080/17517575.2021.1883122.

[51] A. C. Zhou, J. Luo, R. Qiu, H. Tan, B. He, and R. Mao, “Adaptive Partitioning for Large-

Scale Graph Analytics in Geo-Distributed Data Centers,” in 2022 IEEE 38th International

Conference on Data Engineering (ICDE), Kuala Lumpur, Malaysia: IEEE, May 2022, pp.

2818–2830. doi: 10.1109/ICDE53745.2022.00256.

[52] Y. Xiao, Y. Yao, K. Chen, W. Tang, and F. Zhu, “A simulation task partition method

based on cloud computing resource prediction using ensemble learning,” Simulation

Modelling Practice and Theory, vol. 119, p. 102595, Sep. 2022, doi:

10.1016/j.simpat.2022.102595.

[53] D. Lan et al., “Task Partitioning and Orchestration on Heterogeneous Edge Platforms: The

Case of Vision Applications,” IEEE Internet Things J., vol. 9, no. 10, pp. 7418–7432, May

2022, doi: 10.1109/JIOT.2022.3153970.

[54] S. T. Selvi, C. Valliyammai, and V. N. Dhatchayani, “Resource allocation issues and

challenges in cloud computing,” in 2014 International Conference on Recent Trends in

Information Technology, Chennai, India: IEEE, Apr. 2014, pp. 1–6. doi:

10.1109/ICRTIT.2014.6996213.

[55] J. O. Gutierrez-Garcia and A. Ramirez-Nafarrate, “Collaborative Agents for Distributed

Load Management in Cloud Data Centers Using Live Migration of Virtual Machines,”

IEEE Trans. Serv. Comput., vol. 8, no. 6, pp. 916–929, Nov. 2015, doi:

10.1109/TSC.2015.2491280.

[56] R. Thapa, L. Jiao, B. J. Oommen, and A. Yazidi, “A Learning Automaton-Based Scheme

for Scheduling Domestic Shiftable Loads in Smart Grids,” IEEE Access, vol. 6, pp. 5348–

5361, 2018, doi: 10.1109/ACCESS.2017.2788051.

[57] I. Azimi et al., “HiCH: Hierarchical Fog-Assisted Computing Architecture for Healthcare

IoT,” ACM Trans. Embed. Comput. Syst., vol. 16, no. 5s, pp. 1–20, Oct. 2017, doi:

10.1145/3126501.

[58] R. Mahmud, K. Ramamohanarao, and R. Buyya, “Latency-Aware Application Module

Management for Fog Computing Environments,” ACM Trans. Internet Technol., vol. 19,

no. 1, pp. 1–21, Feb. 2019, doi: 10.1145/3186592.

[59] J. Wan, B. Chen, S. Wang, M. Xia, D. Li, and C. Liu, “Fog Computing for Energy-Aware

Load Balancing and Scheduling in Smart Factory,” IEEE Trans. Ind. Inf., vol. 14, no. 10,

pp. 4548–4556, Oct. 2018, doi: 10.1109/TII.2018.2818932.

90

[60] M. Soualhia, F. Khomh, and S. Tahar, “A Dynamic and Failure-Aware Task Scheduling

Framework for Hadoop,” IEEE Trans. Cloud Comput., vol. 8, no. 2, pp. 553–569, Apr.

2020, doi: 10.1109/TCC.2018.2805812.

[61] J. Zhu, Y. Song, D. Jiang, and H. Song, “A New Deep-Q-Learning-Based Transmission

Scheduling Mechanism for the Cognitive Internet of Things,” IEEE Internet Things J.,

vol. 5, no. 4, pp. 2375–2385, Aug. 2018, doi: 10.1109/JIOT.2017.2759728.

[62] Y. Wei, L. Pan, S. Liu, L. Wu, and X. Meng, “DRL-Scheduling: An Intelligent QoS-

Aware Job Scheduling Framework for Applications in Clouds,” IEEE Access, vol. 6, pp.

55112–55125, 2018, doi: 10.1109/ACCESS.2018.2872674.

[63] X. Chen, S. Leng, K. Zhang, and K. Xiong, “A machine-learning based time constrained

resource allocation scheme for vehicular fog computing,” China Commun., vol. 16, no.

11, pp. 29–41, Nov. 2019, doi: 10.23919/JCC.2019.11.003.

[64] G. Zhu, J. Zan, Y. Yang, and X. Qi, “A Supervised Learning Based QoS Assurance

Architecture for 5G Networks,” IEEE Access, vol. 7, pp. 43598–43606, 2019, doi:

10.1109/ACCESS.2019.2907142.

[65] G. Henri and N. Lu, “A Supervised Machine Learning Approach to Control Energy

Storage Devices,” IEEE Trans. Smart Grid, vol. 10, no. 6, pp. 5910–5919, Nov. 2019, doi:

10.1109/TSG.2019.2892586.

[66] Y. Zhao, Y. Li, X. Zhang, G. Geng, W. Zhang, and Y. Sun, “A Survey of Networking

Applications Applying the Software Defined Networking Concept Based on Machine

Learning,” IEEE Access, vol. 7, pp. 95397–95417, 2019, doi:

10.1109/ACCESS.2019.2928564.

[67] M. M. Amiri and D. Gunduz, “Computation Scheduling for Distributed Machine Learning

with Straggling Workers,” in ICASSP 2019 - 2019 IEEE International Conference on

Acoustics, Speech and Signal Processing (ICASSP), Brighton, United Kingdom: IEEE,

May 2019, pp. 8177–8181. doi: 10.1109/ICASSP.2019.8682911.

[68] D. Zeng, L. Gu, S. Guo, Z. Cheng, and S. Yu, “Joint Optimization of Task Scheduling and

Image Placement in Fog Computing Supported Software-Defined Embedded System,”

IEEE Trans. Comput., vol. 65, no. 12, pp. 3702–3712, Dec. 2016, doi:

10.1109/TC.2016.2536019.

[69] S. Sthapit, J. R. Hopgood, and J. Thompson, “Distributed computational load balancing

for real-time applications,” in 2017 25th European Signal Processing Conference

(EUSIPCO), Kos, Greece: IEEE, Aug. 2017, pp. 1385–1189. doi:

10.23919/EUSIPCO.2017.8081436.

[70] D. Rahbari, S. Kabirzadeh, and M. Nickray, “A security aware scheduling in fog

computing by hyper heuristic algorithm,” in 2017 3rd Iranian Conference on Intelligent

Systems and Signal Processing (ICSPIS), Shahrood: IEEE, Dec. 2017, pp. 87–92. doi:

10.1109/ICSPIS.2017.8311595.

[71] Y.-C. Chen, Y.-C. Chang, C.-H. Chen, Y.-S. Lin, J.-L. Chen, and Y.-Y. Chang, “Cloud-

fog computing for information-centric Internet-of-Things applications,” in 2017

International Conference on Applied System Innovation (ICASI), Sapporo, Japan: IEEE,

May 2017, pp. 637–640. doi: 10.1109/ICASI.2017.7988506.

[72] Y. Yang, S. Zhao, W. Zhang, Y. Chen, X. Luo, and J. Wang, “DEBTS: Delay Energy

Balanced Task Scheduling in Homogeneous Fog Networks,” IEEE Internet Things J., vol.

5, no. 3, pp. 2094–2106, Jun. 2018, doi: 10.1109/JIOT.2018.2823000.

[73] L. Yin, J. Luo, and H. Luo, “Tasks Scheduling and Resource Allocation in Fog Computing

Based on Containers for Smart Manufacturing,” IEEE Trans. Ind. Inf., vol. 14, no. 10, pp.

4712–4721, Oct. 2018, doi: 10.1109/TII.2018.2851241.

91

[74] O. Casquero, A. Armentia, I. Sarachaga, F. Perez, D. Orive, and M. Marcos, “Distributed

scheduling in Kubernetes based on MAS for Fog-in-the-loop applications,” in 2019 24th

IEEE International Conference on Emerging Technologies and Factory Automation

(ETFA), Zaragoza, Spain: IEEE, Sep. 2019, pp. 1213–1217. doi:

10.1109/ETFA.2019.8869219.

[75] G. Zhang, F. Shen, N. Chen, P. Zhu, X. Dai, and Y. Yang, “DOTS: Delay-Optimal Task

Scheduling Among Voluntary Nodes in Fog Networks,” IEEE Internet Things J., vol. 6,

no. 2, pp. 3533–3544, Apr. 2019, doi: 10.1109/JIOT.2018.2887264.

[76] C. Zhu et al., “Folo: Latency and Quality Optimized Task Allocation in Vehicular Fog

Computing,” IEEE Internet Things J., vol. 6, no. 3, pp. 4150–4161, Jun. 2019, doi:

10.1109/JIOT.2018.2875520.

[77] S. F. Abedin, A. K. Bairagi, Md. S. Munir, N. H. Tran, and C. S. Hong, “Fog Load

Balancing for Massive Machine Type Communications: A Game and Transport Theoretic

Approach,” IEEE Access, vol. 7, pp. 4204–4218, 2019, doi:

10.1109/ACCESS.2018.2888869.

[78] S. Sthapit, J. Thompson, N. M. Robertson, and J. R. Hopgood, “Computational Load

Balancing on the Edge in Absence of Cloud and Fog,” IEEE Trans. on Mobile Comput.,

vol. 18, no. 7, pp. 1499–1512, Jul. 2019, doi: 10.1109/TMC.2018.2863301.

[79] G. L. Stavrinides and H. D. Karatza, “Cost-Effective Utilization of Complementary Cloud

Resources for the Scheduling of Real-Time Workflow Applications in a Fog

Environment,” in 2019 7th International Conference on Future Internet of Things and

Cloud (FiCloud), Istanbul, Turkey: IEEE, Aug. 2019, pp. 1–8. doi:

10.1109/FiCloud.2019.00009.

[80] M. A. Benblidia, B. Brik, L. Merghem-Boulahia, and M. Esseghir, “Ranking Fog nodes

for Tasks Scheduling in Fog-Cloud Environments: A Fuzzy Logic Approach,” in 2019

15th International Wireless Communications & Mobile Computing Conference (IWCMC),

Tangier, Morocco: IEEE, Jun. 2019, pp. 1451–1457. doi:

10.1109/IWCMC.2019.8766437.

[81] J.-P. Yang, “Elastic Load Balancing Using Self-Adaptive Replication Management,”

IEEE Access, vol. 5, pp. 7495–7504, 2017, doi: 10.1109/ACCESS.2016.2631490.

[82] P. Zhao, W. Yu, S. Yang, X. Yanga, and J. Lin, “On Minimizing Energy Cost in Internet-

scale Systems with Dynamic Data,” IEEE Access, pp. 1–1, 2017, doi:

10.1109/ACCESS.2017.2725939.

[83] Z. Qiu and J. F. Perez, “Evaluating Replication for Parallel Jobs: An Efficient Approach,”

IEEE Trans. Parallel Distrib. Syst., vol. 27, no. 8, pp. 2288–2302, Aug. 2016, doi:

10.1109/TPDS.2015.2496593.

[84] J.-P. Yang, “Intelligent Offload Detection for Achieving Approximately Optimal Load

Balancing,” IEEE Access, vol. 6, pp. 58609–58618, 2018, doi:

10.1109/ACCESS.2018.2873287.

[85] S. Souravlas and A. Sifaleras, “Trends in data replication strategies: a survey,”

International Journal of Parallel, Emergent and Distributed Systems, vol. 34, no. 2, pp.

222–239, Mar. 2019, doi: 10.1080/17445760.2017.1401073.

[86] N. Mostafa, I. Al Ridhawi, and A. Hamza, “An intelligent dynamic replica selection model

within grid systems,” in 2015 IEEE 8th GCC Conference & Exhibition, Muscat, Oman:

IEEE, Feb. 2015, pp. 1–6. doi: 10.1109/IEEEGCC.2015.7060061.

[87] R. Yadav and A. S. Sidhu, “Fault tolerant algorithm for Replication Management in

distributed cloud system,” in 2015 IEEE 3rd International Conference on MOOCs,

Innovation and Technology in Education (MITE), Amritsar, India: IEEE, Oct. 2015, pp.

78–83. doi: 10.1109/MITE.2015.7375292.

92

[88] M. Viana, P. Alencar, E. Guimaraes, E. Cirilo, and C. Lucena, “Creating a Modeling

Language Based on a New Metamodel for Adaptive Normative Software Agents,” IEEE

Access, vol. 10, pp. 13974–13996, 2022, doi: 10.1109/ACCESS.2022.3147144.

[89] A. S. R. M.P. Georgeff, “BDI agents: From theory to practice,” Proc. ICMAS, vol. 95, pp.

312–319, 1995.

[90] N. Huber, A. Van Hoorn, A. Koziolek, F. Brosig, and S. Kounev, “Modeling run-time

adaptation at the system architecture level in dynamic service-oriented environments,”

SOCA, vol. 8, no. 1, pp. 73–89, Mar. 2014, doi: 10.1007/s11761-013-0144-4.

[91] R. De Lemos et al., “Software Engineering for Self-Adaptive Systems: A Second

Research Roadmap,” in Software Engineering for Self-Adaptive Systems II, vol. 7475, R.

De Lemos, H. Giese, H. A. Müller, and M. Shaw, Eds., in Lecture Notes in Computer

Science, vol. 7475. , Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 1–32. doi:

10.1007/978-3-642-35813-5_1.

[92] T. Laroum and B. Tighiouart, “A Multi-agent System for the Modelling of the HIV

Infection,” in Agent and Multi-Agent Systems: Technologies and Applications, vol. 6682,

J. O’Shea, N. T. Nguyen, K. Crockett, R. J. Howlett, and L. C. Jain, Eds., in Lecture Notes

in Computer Science, vol. 6682. , Berlin, Heidelberg: Springer Berlin Heidelberg, 2011,

pp. 94–102. doi: 10.1007/978-3-642-22000-5_11.

[93] S. H. H. Madni, M. S. Abd Latiff, M. Abdullahi, S. M. Abdulhamid, and M. J. Usman,

“Performance comparison of heuristic algorithms for task scheduling in IaaS cloud

computing environment,” PLoS ONE, vol. 12, no. 5, p. e0176321, May 2017, doi:

10.1371/journal.pone.0176321.

[94] T. Islam and M. S. Hasan, “A performance comparison of load balancing algorithms for

cloud computing,” in 2017 International Conference on the Frontiers and Advances in

Data Science (FADS), Xi’an: IEEE, Oct. 2017, pp. 130–135. doi:

10.1109/FADS.2017.8253211.

[95] R. Elavarasi and S. Silas, “Survey on Job Scheduling in Fog Computing,” in 2019 3rd

International Conference on Trends in Electronics and Informatics (ICOEI), Tirunelveli,

India: IEEE, Apr. 2019, pp. 580–583. doi: 10.1109/ICOEI.2019.8862651.

[96] P. Narayana, P. Parvataneni, and K. Keerthi, “A Research on Various Scheduling

Strategies in Fog Computing Environment,” in 2020 International Conference on

Emerging Trends in Information Technology and Engineering (ic-ETITE), Vellore, India:

IEEE, Feb. 2020, pp. 1–6. doi: 10.1109/ic-ETITE47903.2020.261.

[97] Z. Liu, Q. Zheng, L. Xue, and X. Guan, “A distributed energy-efficient clustering

algorithm with improved coverage in wireless sensor networks,” Future Generation

Computer Systems, vol. 28, no. 5, pp. 780–790, May 2012, doi:

10.1016/j.future.2011.04.019.

[98] A. Brahmachari, P. Kanti, P. Dutta, S. Pal, and P. Choudhury, “Processing iot data: From

cloud to fogits time to be down to earth,” Research Gate, pp. 124–148, 2018.

[99] C. Barros, V. Rocio, A. Sousa, and H. Paredes, “Survey on Job Scheduling in Cloud-Fog

Architecture,” in 2020 15th Iberian Conference on Information Systems and Technologies

(CISTI), Sevilla, Spain: IEEE, Jun. 2020, pp. 1–7. doi:

10.23919/CISTI49556.2020.9141156.

[100] P. P. G. Gopinath and S. K. Vasudevan, “An In-depth Analysis and Study of Load

Balancing Techniques in the Cloud Computing Environment,” Procedia Computer

Science, vol. 50, pp. 427–432, 2015, doi: 10.1016/j.procs.2015.04.009.

[101] N. Mohan and J. Kangasharju, “Edge-Fog cloud: A distributed cloud for Internet of

Things computations,” in 2016 Cloudification of the Internet of Things (CIoT), Paris,

France: IEEE, Nov. 2016, pp. 1–6. doi: 10.1109/CIOT.2016.7872914.

93

[102] A. Botta, W. de Donato, V. Persico, and A. Pescapé, “Integration of Cloud computing

and Internet of Things: A survey,” Future Generation Computer Systems, vol. 56, pp.

684–700, Mar. 2016, doi: 10.1016/j.future.2015.09.021.

[103] L. Atzori, A. Iera, and G. Morabito, “The Internet of Things: A survey,” Computer

Networks, vol. 54, no. 15, pp. 2787–2805, Oct. 2010, doi: 10.1016/j.comnet.2010.05.010.

[104] T. Alam, “A reliable communication framework and its use in internet of things (IoT),”

International Journal of Scientific Research in Computer Science, Engineering and

Information Technology, vol. 3, no. 5, pp. 450–456.

[105] X. Masip-Bruin, E. Marín-Tordera, G. Tashakor, A. Jukan, and G.-J. Ren, “Foggy

clouds and cloudy fogs: a real need for coordinated management of fog-to-cloud

computing systems,” IEEE Wireless Commun., vol. 23, no. 5, pp. 120–128, Oct. 2016,

doi: 10.1109/MWC.2016.7721750.

[106] X. Chu, K. Nadiminti, C. Jin, S. Venugopal, and R. Buyya, “Aneka: Next-Generation

Enterprise Grid Platform for e-Science and e-Business Applications,” in Third IEEE

International Conference on e-Science and Grid Computing (e-Science 2007), Bangalore,

India: IEEE, 2007, pp. 151–159. doi: 10.1109/E-SCIENCE.2007.12.

[107] M. A. Benblidia, B. Brik, L. Merghem-Boulahia, and M. Esseghir, “Ranking Fog nodes

for Tasks Scheduling in Fog-Cloud Environments: A Fuzzy Logic Approach,” in 2019

15th International Wireless Communications & Mobile Computing Conference (IWCMC),

Tangier, Morocco: IEEE, Jun. 2019, pp. 1451–1457. doi:

10.1109/IWCMC.2019.8766437.

[108] H. El-Sayed et al., “Edge of Things: The Big Picture on the Integration of Edge, IoT

and the Cloud in a Distributed Computing Environment,” IEEE Access, vol. 6, pp. 1706–

1717, 2018, doi: 10.1109/ACCESS.2017.2780087.

[109] B. Ali, M. Adeel Pasha, S. ul Islam, H. Song, and R. Buyya, “A Volunteer-Supported

Fog Computing Environment for Delay-Sensitive IoT Applications,” IEEE Internet

Things J., vol. 8, no. 5, pp. 3822–3830, Mar. 2021, doi: 10.1109/JIOT.2020.3024823.

[110] S. Misra, S. Chatterjee, and M. S. Obaidat, “On Theoretical Modeling of Sensor Cloud:

A Paradigm Shift From Wireless Sensor Network,” IEEE Systems Journal, vol. 11, no. 2,

pp. 1084–1093, Jun. 2017, doi: 10.1109/JSYST.2014.2362617.

[111] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing and its role in the

internet of things,” in Proceedings of the first edition of the MCC workshop on Mobile

cloud computing - MCC ’12, Helsinki, Finland: ACM Press, 2012, p. 13. doi:

10.1145/2342509.2342513.

[112] S. K. Sood, R. Sandhu, K. Singla, and V. Chang, “IoT, big data and HPC based smart

flood management framework,” Sustainable Computing: Informatics and Systems, vol.

20, pp. 102–117, Dec. 2018, doi: 10.1016/j.suscom.2017.12.001.

[113] S. Taherizadeh, V. Stankovski, and M. Grobelnik, “A Capillary Computing

Architecture for Dynamic Internet of Things: Orchestration of Microservices from Edge

Devices to Fog and Cloud Providers,” Sensors, vol. 18, no. 9, p. 2938, Sep. 2018, doi:

10.3390/s18092938.

94

List of Publications

JOURNAL PUBLICATIONS

[1] M. Kaur and R. Mohana, “Static Load Balancing Technique for Geographically Partitioned

Public Cloud,” SCPE, vol. 20, no. 2, pp. 299–316, May 2019, doi:

10.12694/scpe.v20i2.1520.

[2] M. Kaur, R. Sandhu, and R. Mohana, “A framework for scheduling IoT application jobs

on fog computing infrastructure based on QoS parameters,” IJPCC, Oct. 2021, doi:

10.1108/IJPCC-08-2020-0108.

[3] Kaur, M., Sandhu, R. & Mohana, R. A Framework for QoS Parameters-Based Scheduling

for IoT Applications on Fog Environments. Wireless Pers Commun 132, 2709–2736

(2023). https://doi.org/10.1007/s11277-023-10740-6

CONFERENCE PUBLICATIONS

[4] M. Kaur and Dr. Rajni Mohana, “A Software Agent Based Technique for Load Balancing

in Partitioned Cloud,” IJET, vol. 7, no. 4.12, p. 13, Oct. 2018, doi:

10.14419/ijet.v7i4.12.20984.

[5] M. Kaur, R. Sandhu, and R. Mohana, “Fog Load Balancing Broker (FLBB),” in 2021 Sixth

International Conference on Image Information Processing (ICIIP), Shimla, India: IEEE,

Nov. 2021, pp. 332–337. doi: 10.1109/ICIIP53038.2021.9702669.

95

SYNOPSIS

1. Introduction

This thesis addresses the complexities of orchestrating services in Cloud and Fog computing

environments by proposing Broker-Based Frameworks (BBFs). These frameworks leverage

intelligent brokering strategies to optimize resource management, service orchestration, and

deployment in heterogeneous computing environments. The thesis outlines the architecture and

components of the BBF, emphasizing its potential to enhance responsiveness, resource

efficiency, resource utilization, and resource availability in Distributed Computing Systems.

Overall, the proposed BBFs offer a solution-oriented approach to the challenges associated with

service orchestration in dispersed and dynamic computing ecosystems.

1.1 Orchestration

The term orchestration describes managing and synchronizing services, apps, and resources in

Cloud and Fog Computing (FC) contexts. Cloud orchestration is the process of overseeing

services and resources in a distant, centralized data center. It usually manages storage,

networking, Virtual Machines (VMs), containers, and other Cloud infrastructure resources.

Applications in Cloud settings can be automated, managed, and scaled using orchestration tools

such as OpenStack, Docker Swarm, and Kubernetes. FC involves orchestrating computing,

storage, and networking resources in edge devices, gateways, and local servers. Orchestration

tools such as Cisco IOx, OpenFog, or edge computing (EC) platforms can manage and automate

the services in FC environments. [1][2][3]

Figure 1: Roles played by the orchestration.

96

A service orchestration engine plans directs, and automates the interactions between various

services or systems in a network or application environment.

Figure 2: Broker as a Service Orchestration Agent

Orchestration is crucial in Cloud Computing (CC) and FC to simplify and automate

application and service deployment, scaling, and management. It ensures reliable, scalable, and

efficient resource utilization in complex and distributed computing environments. [4][5][6]

1.2 Distributed Systems

Distributed Systems (DS) refers to two or more computers working together through a network

to finish a single job, which is distributed over a group of computers, heterogeneous in operating

systems, node characteristics, network design, and communication medium [7]. The generic

quality of DSs in a group of autonomous computer components is that these seem like a single

cohesive system to the users [8]. DS comprises autonomous computing nodes for better

accessibility, transparency, openness, and scalability [9].

To optimize autonomous communication between nodes, a DS's performance can be

measured through execution time, throughput, efficiency, system utilization, turnaround time,

waiting time, response time, overheads, and reliability [9][10][11][12]. Figure 3 demonstrates

the categories and relevant examples of DS.

97

Figure 3: Categories of distributed systems.

1.3 High-Performance Distributed Systems

This category includes computing paradigms such as cluster computing, grid computing, and

CC. FC is another paradigm that enables delivering Cloud application services closer to the

Internet of Things (IoT) devices at the edge rather than relying on a distance Cloud. In contrast

to transferring IoT data to the Cloud, which processes and stores it remotely on IoT computers,

Fog provides better latency-sensitive resources. Thus, FC is the ideal choice for enabling the

IoT to provide efficient and trustworthy services to many clients. Figure 4 highlights the

fundamental differences between Cloud and FC paradigms.

Figure 4: Cloud vs Fog computing paradigms.

98

1.4 Load, Load Balancing and Job Scheduling

In the context of CC, load refers to the volume of work or demand on a server, network, or

system at a specific time. It mainly concerns how much resource is used or consumed in a

Cloud-based infrastructure. Compute, network and storage loads are just a few examples of the

components that comprise the term load in distributed systems [13]. Load balancing in DS

evenly distributes network traffic or computational workload across multiple servers that

optimize resources, scalability, fault tolerance, performance enhancement, and cost efficiency

[14] [15]. On the other hand, job scheduling in cloud and fog computing efficiently allocates

computing resources and manages task execution to manage resource utilization, prioritization,

fairness, adaptability, flexibility, and latency [16][17][18].

1.5 Brokers

In Cloud and FC environments, Cloud Brokers (CBs) and Fog Brokers are significant for

resource management, communication facilitation, and operational optimization. To help

choose and handle Cloud services, Cloud brokerage involves mediators who link consumers or

businesses with Cloud service providers. Cloud service brokers (CSBs), such as Right Scale

and Gravitant, are instances of CBs. They offer platforms for managing Cloud services from

various vendors. Figure 5 demonstrates the positioning and contribution of the brokers in DS.

Figure 5: Overview of a broker-based system.

99

Companies that work with FC concepts include Cisco, IBM, and Microsoft. Some of these

companies may also develop or offer Fog brokerage services. The brokerage model inevitably

changes as technology develops and the demand for effective resource management in various

computing environments increases.

2. Research Gaps

To the best of our knowledge, some of the existing gaps in the field of study are presented in

this section:

1. Broker-based load balancing technique using software agents for PPC.

2. ML-based dual broker for selection and allocation of fog services considering QoS

parameters.

3. Multilevel hierarchical broker for job scheduling in hexagonal FEs for better global

geographical coverage of distributed and ad-hoc fog services.

3. Objectives

Objectives derived from the research gaps are as follows:

1. To design a software agent-based broker framework for load balancing in PPC.

2. To develop an ML-based dual broker framework by integrating QoS parameters for

scheduling applications’ jobs in the FEs.

3. To develop a multilevel hierarchical broker for job scheduling in hexagonal FEs for

better global geographical coverage of distributed and ad-hoc fog services.

4. Outline

Chapter 1 introduces the concept, background, open issues, and objectives of this thesis.

Chapter 2 presents the existing literature describing the methodologies and techniques proposed

by the authors in load balancing and job scheduling in the fields of CC and FC. This chapter is

divided into multiple sections, each discussing the literature details directly related to one of

the objectives. Chapter 3 discusses an SA-based broker framework for load balancing in a PPC

where SAs are utilized to implement the autonomous behavior in load-balancing brokers.

Chapter 4 discusses an ML classification-based dual broker framework by integrating QoS

parameters for scheduling applications’ jobs in FEs. In this framework, FNs are segregated

based on resource availability, and jobs are mapped on the appropriate set of resources. Chapter

100

5 discusses a multilevel hierarchical broker for job scheduling in hexagonal FEs for better

global geographical coverage of distributed and ad-hoc Fog services based upon the QoS Score

and average execution time of the FNs.

5. Broker-based load balancing technique using software agents for

partitioned public cloud

CC empowers resource flexibility with minimal upfront costs, facilitating scalability and cost-

effectiveness [19] [20]. According to CISCO, Cloud traffic will reach 14.1 ZB annually soon

[21]. The PC is a shared space for users to outsource their jobs [22], where Load-balancing

approaches are required to handle under loaded and overloaded resources [23][24][25][26].

Cloud Partitioning is one of the commonly used methods for load balancing in the PC [27] [28]

[29]. This chapter discusses a software agent-based load-balancing framework for partitioned

public Cloud.

A PC has nodes spread across various geographic locations [14], causing challenges such as

complex management, resource allocation, optimization, cost management, data management,

and latency management.

5.1 Architecture

The brokers in this architecture are practical representations of the SAs:

• Client Agent => Client

• Partition Agent => Partition Broker (PB)

• Controller Agent => Controller Broker (CCB)

The major components in the architecture are:

• Client: The primary duty of the client is to submit requests, along with the required set

of resources, to a Partition Broker (PB).

• PB: Each partition has a local PB to receive the client requests. PB records the load status

of all the nodes inside its partition and shares these details with the Central Controller

Broker (CCB) whenever required.

• CCB: CCB interacts with all the PBs to collect the nodes' load status. CCB is invoked

for load balancing across the partitions.

101

• Node: Nodes contain the physical resources, such as storage, computing capacity,

graphical resources, memory, and other such resources, to be utilized for processing user

requests. Each partition is assumed to have m nodes (n1, n2, n3… nm).

Figure 6: Load Balancing in Partitioned Cloud

5.2 Assessing the Load Status of Partitions and Nodes

The number of jobs allocated to a node at a given time is known as its workload. The load status

of the Cloud includes the load status of partitions and their nodes and is used to determine the

availability of resources for job allocation. The system needs to assess the availability at two

levels listed below:

c) Choosing the Pi partition in which a node can be searched.

d) Finding a node Nj to which a job can be allocated.

The proposed framework defines four load states, which are:

 idle,

 normal,

 overloaded and

 full

These states are determined based on the static threshold values pre-defined for the partitions

by the CCB and the nodes by the PBs. At any given instance of time, the load state of the

102

partition depends upon the load state of its nodes. Assuming that there are i number of partitions,

j number of nodes, given below is the formulation of these load states:

5. Load State=’idle’

c) Node State:

A jth node Nj is considered to be in an idle state if resources available with jth node

Rn,j are beyond a predefined threshold tn,idle. i.e.

Nj=’idle’ IF Rn, j > tn,idle Eq. 1

d) Partition State:

An ith partition Pi is considered to be in idle state if the number of idle nodes in that

partition are beyond a predefined threshold tp,idle, i.e.,

Pi= ‘idle’ IF Ci>tp,idle Eq. 2

where Ci is no. of idle nodes in a partition.

6. Load State=’normal’

c) Node State:

A jth node Nj is considered to be in a normal state, if resources available with jth node

Rn,j are beyond a predefined threshold tn,normal. i.e.

Nj=’normal’ IF Rn, j > tn,normal Eq. 3

d) Partition State:

An ith partition Pi is considered to be in a normal state if the number of normal nodes

in that partition are beyond a predefined threshold tp,normal, i.e.

 Pi= ‘normal’ IF Ci>tp,normal Eq. 4

where Ci is no. of normal nodes in a partition.

7. Load State=’overload’

c) Node State:

A jth node Nj is considered to be in an overloaded state, if resources available with jth

node Rn,j are beyond a predefined threshold tn,ovld. i.e.

Nj=’overloaded’ IF Rn, j > tn,ovld Eq. 5

d) Partition State:

An ith partition Pi is considered to be in an overloaded state if the number of

overloaded nodes in that partition are beyond a predefined threshold tp,ovld i.e.

103

 Pi= ‘overloaded’ IF Ci>tp,ovld Eq. 6

where Ci is the number of ovld nodes in a partition.

8. Load State=’full’

An ith partition Pi is considered to be in full load state if the number of overloaded

nodes Ci in that partition is equal to j, i.e.,

Pi=’full’ IF Ci=j Eq. 7

where j is the total number of nodes in that partition.

5.3 Job Assignment

Following this load status review, three outcomes are possible:

• Case 1: If a single node Nj is available with an idle or normal state, then allocate the job

to Nj and update the load status of the partition ‘Sp, i’ and the resources at node Rn, j

• Case 2: If more than one node is available with an idle or normal state, then make a list

of all these nodes as Ncapable[]

• Case 3: If No node is available with sufficient resources, PB transfers the request to the

CCB to search for a node in other partitions.

The CCB calls all other partition's PBs and adds the partition's ID to a list of Pcapable[], capable

partitions whenever it discovers a Pnormal or Pidle load state. A similar process is followed to

search a node Nj in all the partitions in Pcapable[].

5.4 Complexity Analysis

Time complexity varies according to the stages of the process. When the job was initially

submitted, just one node's availability status was assessed. Consequently, the complexity of this

phase O (1). The complexity class O (N) is applicable in all other scenarios, and the value of N

varies according to the number of nodes in a partition and their RAV. Table 3.2 compiles the

complexity for different possible scenarios. P denotes a Partition, and N is a Node in Table 3.2.

The number of partitions and nodes within each partition impacts the overall complexity.

104

Table 1: Complexity Analysis of Algorithms and its s

5.6 Experimental Results and Discussion

This section presents experimental results and their discussion. This technique is implemented

in CloudSim.

The AET, MET, and TET are compared with FCFS and SJF algorithms within the same

setup to assess the performance of the proposed framework. Each algorithm is run five times as

part of the experiment. Table 3.3 details the experimental setup with the heterogeneous sizes of

VMs and jobs.

Table 2: Experimental setup

All these parameters are considered to be the basic evaluation parameters because the users

of DS, such as Cloud or Fog, are very particular towards the time-based parameters. The

execution and response time of the application jobs are significant and helpful in assessing a

site's performance. Other parameters, such as accuracy, reliability, and QoSs, are considered to

be taken care of by default. However, time-oriented parameters require experimentation to

devise and follow load-balancing schemes that offer better results in terms of such parameters.

According to the results, the proposed framework performs better than the FCFS algorithm,

while the SJF algorithm performs well overall.

105

5.6 Experimental Setup and Results

The algorithm is implemented in CloudSim with the following setup details. Implementation is

done on this small set of attributes for sampling purposes with certain assumptions.

Table 3: Implementation Setup Parameters

Sr. No. Parameter Name Parameter

1. No. of Partitions 2

2. No. of Brokers 2

3. No. Of Datacenters 4 (2 Datacenters with each partition)

4. No. of Hosts 2 Hosts for each Datacenter

5. No. of VMs 6 VMs in each Datacenter

6. No. of Cloudlets 40 Cloudlets with each broker

Results are compared for the average finish time of cloudlets, waiting for the time of

cloudlets, and actual run time. Figure 7 shows the comparison of MET of a cloudlet during

simulation. In Figure 8, a comparison is made between the average total waiting time,

average total finish time, and the average maximum actual time of all the cloudlets. Figure 9

compares the actual run time of the cloudlets. Results show that the proposed framework

produces better results than FCFS and SJF algorithms.

Figure 7: MET Comparison

0

1000

2000

3000

4000

5000

6000

Max Finish
Time

(millisec)

Max Waiting
Time

(Millisec)

Max Actual
Run Time
(Millisec)

T
im

e

SJF FCFS Proposed Algorithm

106

Figure 8: TET Comparison

Figure 9: AET Comparison

9. Machine learning-based dual broker for selection and allocation of fog

services considering QoS parameters

As seen in the previous chapter, efficient resource allocation to the requested jobs significantly

improves the performance of DSs. Modern domains are being researched and implemented in

job scheduling, including classification techniques in ML. ML classification is a versatile and

powerful tool that enables automation, pattern recognition, and predictive modeling across

various applications and industries. It helps extract valuable insights from data, improve

decision-making processes, and enhance efficiency. The current chapter discusses an ML-based

dual broker framework integrating QoS parameters for scheduling applications’ jobs.

0
20000
40000
60000
80000

100000
120000
140000
160000
180000

Total Finish
Time

(millisec)

Total Waiting
Time

(Millisec)

Total Actual
Run Time
(Millisec)

T
im

e

SJF FCFS Proposed Algorithm

0

500

1000

1500

2000

2500

T
im

e

SJF FCFS Proposed Algorithm

107

Figure 10: High-Level Architecture of the Dual BBF.

 Two ML-based approaches are used in this framework: Naïve Bays Algorithm: At the fine-

grained (node selection) level, a probability triad (C, M, G) is anticipated using the Naïve Bayes

algorithm, which provides a probability of a newly submitted application’s job to fall in either

of the categories Compute (C) intensive, Memory (M) intensive and GPU (G) intensive. Self-

Organizing Map: SOM maps the application’s jobs onto the corresponding resource cluster.

Figure 11: QoS Parameters and Functional Requirement-Based Triplet Generation.

 Each FN in an environment is virtually clustered, corresponding to these four categories

using SOM. Any newly submitted request in the proposed framework is allocated to one of

these.

108

Table 4: Node types and application’s job types.

Node Type GPU

Requirement

Memory

Requirement

Compute

Requirement

General Purpose Normal Normal Normal

GPU Intensive High Normal Normal

Memory Intensive Normal High Normal

Compute Intensive Normal Normal High

Figure 12: Use of SOM for mapping triplets onto the resource clusters.

5.1 Experimental Setup and Results

The experiment was run for 100 minutes because saturation was observed after this time. Five

metrics were recorded in the experiment for three installed infrastructures: resource utilization,

availability, response time, waiting time, and completion time.

Figure 13: Testbed for the performance evaluation

109

Figure 14: ARU of Available Computing

Infrastructure

Figure 15: Comparison of availability of resources

from installed infrastructure

Figure 16: Comparison of average response time

(ART) in Installed Infrastructure

Figure 17: AWT of Installed Infrastructure

Figure 18: ACT of Installed Infrastructure

After careful analysis of available results, it can be concluded that selecting specific

resources for each type of application results in better performance. Although the proposed

framework performed close to the cloud computing platform for utilization and availability, it

is better in all parameters related to the timely execution of jobs submitted to the application.

The latency parameter was the same in the case of the traditional FC environment, but it failed

110

to perform because resources were and many applications had to wait for their execution to

start. The adverse result of traditional FC proved the viability and usage of the proposed

framework.

10. Multilevel hierarchical broker for job scheduling in hexagonal fog environments for

better global geographical coverage of distributed and ad-hoc fog services.

The previous Chapter elaborates on a dual-broker implementation in FC. That solution refers

to a single FE. This chapter presents a hierarchical broker-based technique for job scheduling

in hexagonal FEs for better global geographical coverage of distributed and ad-hoc Fog

services.

Figure 19: Global geographical coverage using multilevel brokers

 In the proposed framework, every FE has an L1B deployed inside it, which accounts for the

available resources of all the FNs inside that FE. Are L2Bs deployed at the upper level of the

hierarchy, representing FEs of a GR, and it is responsible for communicating with the L1Bs of

all FEs. For global coverage of resources, another level of hierarchy has an L3B, which

coordinates all the GRs by communicating with all L2 Brokers at the global level.

111

6.1 Experimental Setup and Results

Figure 20: Testbed for experimental setup and performance analysis

Figure 20 shows the overall components of the testbed created to evaluate the proposed

framework, which contains four different applications, four FEs with a variable number of

nodes, and a machine that handles the scheduling. Four applications used in the testbed are

already available in the Aneka platform, and the authors have not created them. These

applications generate a series of independent tasks that can be allocated to any FE, as listed in

Table 3. All tasks generated from these applications are submitted to the GBR, which decides

which task to run on a given FN. In the testbed, the GBR is a Windows 10 machine with Intel(R)

Core (TM) i7-10700 CPU 2.90 GHz processor, 16.0 GB (15.7 GB usable) RAM, and a 64-bit

operating system. It runs an Aneka master container that manages the scheduling of jobs on the

desired FEs. The proposed algorithm, which manages different aspects of scheduling in any

distributed computing environment, is developed in Aneka PaaS software.

Table 5: Applications used in the testbed

S. No. Name Tasks per minute TtC Range

1 Blast Application 1000 5-15 seconds

2 Image Convolution 3600 1-2 seconds

3 Mandlebort 2500 1-5 seconds

4 Data Search 1000 5-15 seconds

Table 6: Node number and configuration of FEs

112

S. No. FE Number of Nodes Node Configuration

1 FE 1 1 1 Core @ 2.9 GHz, 1 GB RAM, 20 GB HDD

2 FE 2 6 1 Core @ 2.9 GHz, 1 GB RAM, 20 GB HDD

3 FE 3 12 1 Core @ 2.9 GHz, 1 GB RAM, 20 GB HDD

4 FE 4 18 1 Core @ 2.9 GHz, 1 GB RAM, 20 GB HDD

Table 7: Parameters for Time used in the Proposed Framework’s Testbed.

Parameter Value

𝑡𝑙𝑎𝑦𝑒𝑟 1-5 seconds (chosen randomly)

𝑡𝑎𝑣𝑎𝑖𝑙 3-8 seconds (chosen randomly)

𝑡𝑠𝑐𝑜𝑟𝑒 1-5 seconds (chosen randomly)

Latency per hexagon 5-15 seconds (Poisson distributed)

Figure 21: Number of tasks generated by every

application at different time intervals

Figure 22: ARU of FEs

Figure 23: Comparison of the average resource

availability of FEs.

Figure 24: Comparison of average response time (ART)

in Application Tasks

113

Figure 25: AWT of Application Tasks. Figure 26: ACT of application tasks.

A comparison of experimental results shows that the proposed framework performs much

better regarding resource utilization, resource availability, waiting time, response time, and job

completion. In the future, this model can be expanded by considering a flexible set of QoS

parameters as per the requirements of the application’s job to be executed.

11. Conclusion

In the end, the research attempts to propose and verify different approaches to achieve better

execution timing, better utilization of deployed resources, and reducing the complexities of load

balancing due to the large search space in the Distributed Systems. Improved operational and

QoS parameters improve the user experience and the service provider’s goodwill. Efficient

resource allocation is the major contributor to the evolution of modern computing paradigms,

and this thesis is an attempt to contribute in the same direction.

12. Future Scope

This thesis is focused on service orchestration in the Cloud and FC environments and has

proposed frameworks based on chosen parameters only. There is a long list of the network

(number of hops, BW, packet loss, network throughput, network delay, network jitter) and

infrastructure (CPU count, amount of memory, size of disk space, percentage of CPU,

percentage of memory, free disk) related QoS parameters which contribute significantly in

service orchestration. [30]. Experimentation can be performed upon this set of resources to

verify if the proposed frameworks produce significantly improved results in the expanded set

of parameters. More ML techniques can be explored along with expanding the list of

parameters, as the same technique cannot benefit every parameter. Another field of future

research to explore is to scale the hierarchy levels in a multilevel broker platform where

114

hierarchical levels can be added or removed per the geographical size and resource

requirements of fluctuating request volume. Scaling in terms of hexagonal FEs, including their

size and number of hexagonal GRs, is also a dimension that can be experimented with.

References

[1] R. Vaithiyanathan and T. A. Govindharajan, “User preference-based automatic

orchestration of web services using a multi-agent,” Computers & Electrical Engineering,

vol. 45, pp. 68–76, Jul. 2015, doi: 10.1016/j.compeleceng.2015.03.021.

[2] R. Sandhu, N. Kaur, S. K. Sood, and R. Buyya, “TDRM: tensor-based data representation

and mining for healthcare data in cloud computing environments,” J Supercomput, vol.

74, no. 2, pp. 592–614, Feb. 2018, doi: 10.1007/s11227-017-2163-y.

[3] C. Carrión, “Kubernetes Scheduling: Taxonomy, Ongoing Issues and Challenges,” ACM

Comput. Surv., vol. 55, no. 7, pp. 1–37, Jul. 2023, doi: 10.1145/3539606.

[4] N. Greneche, T. Menouer, C. Cérin, and O. Richard, “A Methodology to Scale

Containerized HPC Infrastructures in the Cloud,” in Euro-Par 2022: Parallel Processing,

vol. 13440, J. Cano and P. Trinder, Eds., in Lecture Notes in Computer Science, vol.

13440. , Cham: Springer International Publishing, 2022, pp. 203–217. doi: 10.1007/978-

3-031-12597-3_13.

[5] N. Greneche and C. Cerin, “Autoscaling of Containerized HPC Clusters in the Cloud,” in

2022 IEEE/ACM International Workshop on Interoperability of Supercomputing and

Cloud Technologies (SuperCompCloud), Dallas, TX, USA: IEEE, Nov. 2022, pp. 1–7.

doi: 10.1109/SuperCompCloud56703.2022.00006.

[6] B. Sharma, R. Prabhakar, S.-H. Lim, M. T. Kandemir, and C. R. Das, “MROrchestrator:

A Fine-Grained Resource Orchestration Framework for MapReduce Clusters,” in 2012

IEEE Fifth International Conference on Cloud Computing, Honolulu, HI, USA: IEEE,

Jun. 2012, pp. 1–8. doi: 10.1109/CLOUD.2012.37.

[7] M. Firoz Ali, R. Zaman Khan, Distributed Computing: An Overview. Int. J. Advanced

Networking and Applications, 2015.

[8] M. Van Steen and A. S. Tanenbaum, “A brief introduction to distributed systems,”

Computing, vol. 98, no. 10, pp. 967–1009, Oct. 2016, doi: 10.1007/s00607-016-0508-7.

[9] A. D. Kshemkalyani and M. Singhal, Distributed Computing: Principles, Algorithms, and

Systems, 1st ed. Cambridge University Press, 2008. doi: 10.1017/CBO9780511805318.

[10] A. S. Tanenbaum and M. van Steen, Distributed systems: principles and paradigms,

Second edition, Adjusted for digital publishing. The Netherlands? Maarten van Steen,

2016.

[11] I. Ahmad, A. Ghafoor, and G. C. Fox, “Hierarchical Scheduling of Dynamic Parallel

Computations on Hypercube Multicomputers,” Journal of Parallel and Distributed

Computing, vol. 20, no. 3, pp. 317–329, Mar. 1994, doi: 10.1006/jpdc.1994.1030.

[12] A. Grama, Ed., Introduction to parallel computing, 2. ed., [Reprint.]. Harlow: Pearson,

2011.

115

[13] K. A. Nuaimi, N. Mohamed, M. A. Nuaimi, and J. Al-Jaroodi, “A Survey of Load

Balancing in Cloud Computing: Challenges and Algorithms,” in 2012 Second Symposium

on Network Cloud Computing and Applications, London, United Kingdom: IEEE, Dec.

2012, pp. 137–142. doi: 10.1109/NCCA.2012.29.

[14] Junjie Pang Gaochao Xu and Xiaodong Fu, “A load balancing model based on cloud

partitioning for the public cloud,” TSINGHUA SCIENCE AND TECHNOLOGY, pp. 34–

39, 2013.

[15] D. Mohandass, S. R, and R. R, “A novel approach for dynamic cloud partitioning and

load balancing in cloud computing environment,” Journal of Theoretical and Applied

Information Technology, pp. 662–667, 2014.

[16] R. Sandhu and S. K. Sood, “Scheduling of big data applications on distributed cloud based

on QoS parameters,” Cluster Comput, vol. 18, no. 2, pp. 817–828, Jun. 2015, doi:

10.1007/s10586-014-0416-6.

[17] R. Deng, R. Lu, C. Lai, T. H. Luan, and H. Liang, “Optimal Workload Allocation in Fog-

Cloud Computing Towards Balanced Delay and Power Consumption,” IEEE Internet

Things J., pp. 1–1, 2016, doi: 10.1109/JIOT.2016.2565516.

[18] S. Tuli, R. Sandhu, and R. Buyya, “Shared data-aware dynamic resource provisioning

and task scheduling for data intensive applications on hybrid clouds using Aneka,” Future

Generation Computer Systems, vol. 106, pp. 595–606, May 2020, doi:

10.1016/j.future.2020.01.038.

[19] A. Nahir, A. Orda, and D. Raz, “Replication-Based Load Balancing,” IEEE Trans.

Parallel Distrib. Syst., vol. 27, no. 2, pp. 494–507, Feb. 2016, doi:

10.1109/TPDS.2015.2400456.

[20] J.-P. Yang, “Elastic Load Balancing Using Self-Adaptive Replication Management,”

IEEE Access, vol. 5, pp. 7495–7504, 2017, doi: 10.1109/ACCESS.2016.2631490.

[21] P. Zhao, W. Yu, S. Yang, X. Yanga, and J. Lin, “On Minimizing Energy Cost in Internet-

scale Systems with Dynamic Data,” IEEE Access, pp. 1–1, 2017, doi:

10.1109/ACCESS.2017.2725939.

[22] Z. Qiu and J. F. Perez, “Evaluating Replication for Parallel Jobs: An Efficient Approach,”

IEEE Trans. Parallel Distrib. Syst., vol. 27, no. 8, pp. 2288–2302, Aug. 2016, doi:

10.1109/TPDS.2015.2496593.

[23] J.-P. Yang, “Intelligent Offload Detection for Achieving Approximately Optimal Load

Balancing,” IEEE Access, vol. 6, pp. 58609–58618, 2018, doi:

10.1109/ACCESS.2018.2873287.

[24] S. Souravlas and A. Sifaleras, “Trends in data replication strategies: a survey,”

International Journal of Parallel, Emergent and Distributed Systems, vol. 34, no. 2, pp.

222–239, Mar. 2019, doi: 10.1080/17445760.2017.1401073.

[25] N. Mostafa, I. Al Ridhawi, and A. Hamza, “An intelligent dynamic replica selection

model within grid systems,” in 2015 IEEE 8th GCC Conference & Exhibition, Muscat,

Oman: IEEE, Feb. 2015, pp. 1–6. doi: 10.1109/IEEEGCC.2015.7060061.

[26] R. Yadav and A. S. Sidhu, “Fault tolerant algorithm for Replication Management in

distributed cloud system,” in 2015 IEEE 3rd International Conference on MOOCs,

116

Innovation and Technology in Education (MITE), Amritsar, India: IEEE, Oct. 2015, pp.

78–83. doi: 10.1109/MITE.2015.7375292.

 [27] P. Sharma and P. Singh, “Load degree calculation for the public cloud based on cloud

partitioning model using turnaround time,” International Journal of Computer Science

and Information Technologies, 2015.

[28] M. Pantazoglou, G. Tzortzakis, and A. Delis, “Decentralized and Energy-Efficient

Workload Management in Enterprise Clouds,” IEEE Trans. Cloud Comput., vol. 4, no. 2,

pp. 196–209, Apr. 2016, doi: 10.1109/TCC.2015.2464817.

 [29] D. Lan et al., “Task Partitioning and Orchestration on Heterogeneous Edge Platforms:

The Case of Vision Applications,” IEEE Internet Things J., vol. 9, no. 10, pp. 7418–7432,

May 2022, doi: 10.1109/JIOT.2022.3153970.

[30] S. Taherizadeh, V. Stankovski, and M. Grobelnik, “A Capillary Computing Architecture

for Dynamic Internet of Things: Orchestration of Microservices from Edge Devices to

Fog and Cloud Providers,” Sensors, vol. 18, no. 9, p. 2938, Sep. 2018, doi:

10.3390/s18092938.

