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ABSTRACT 

 
 

In medical imaging, machine learning (ML) and deep learning (DL) play a significant role to 

predict symptoms of early diseases. DL is one of the growing trends in general data analysis 

since 2013. It is an improvement of artificial neural networks (ANN) as it consists of many 

hidden layers to permit high level of abstraction from data. In particular, convolutional neural 

networks (CNNs) have proven to be a potential tool for computer vision tasks. Deep CNNs 

have a capability to automatically learn raw data especially images. 

The accurate assessment or identification of disease depends on image interpretation as well as 

acquisition. Due to the improvement in last decade in image acquisition, devices acquire data 

at high rate with increased resolution. However, the interpretation of images has recently begun 

to benefit from computer technology. Mostly these are made by the radiologist, physicians and 

senior doctors but limited due to its subjectivity and high skilled physicians/ doctors. 

Computerized tools in the medical imaging field are the key enablers to improve diagnosis by 

facilitating the findings. 

Analysis of thyroid ultrasonography (USG) images via visual inspection and manual 

examination for early identification and classification of thyroid nodule has always been 

cumbersome. This manual examination of thyroid USG images in order to identify benign and 

malignant thyroid nodule can be tedious and time-consuming. Various deep learning models 

have emerged in medical field especially in thyroid nodule classification with the rapid 

advancement in technology and increase in computational resources. Early identification of 

such nodules can improve the effectiveness of clinical interventions and treatments. Therefore, 

many researchers now advocate the use of computer diagnostic system (CDS) to objectively 

and quantitatively analyze the USG images of thyroid nodules. This helps the radiologists to 

solve the differences in interpretation of results. 

Incidents of thyroid tumor have dramatically increased in recent years. However, early 

ultrasound diagnosis can reduce morbidity and mortality. The work in clinical situations relies 

heavily on the subjective experience of the sonographer. Thus, developing of a reliable thyroid 

nodule identification model based on ultrasound images is needed to ensure the accuracy and 

efficiency of thyroid nodule diagnosis. The key motive of this thesis is to develop efficient 

models using ML and DL techniques for thyroid nodule identification and classification. The 

first phase of this thesis proposes two hybrid models namely ANN-SVM and CNN-SVM. These 

models work in four stages namely data collection, preprocessing, classification using 
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hybridization of ML and DL classifiers and analysis of results. The second phase of this thesis 

proposes an optimized CNN based model using segmentation and boundary detection 

techniques. In this work, Alex-Net, visual geometry group (VGG-16), deep neural network 

(DNN) and Res-Net-50 models are optimized using grid search optimization (GSO) technique. 

The third phase of this thesis proposes a deep-generative adversial network (Deep-GAN) model 

to improve the accuracy of the VGG and Alex-Net models. VGG-GAN and Alex-GAN. The 

proposed model will be useful to physicians, researchers, practitioner and small hospitals 

having limited resources can benefit from using this model to assist with thyroid ultrasound 

examination diagnosis.  
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CHAPTER 1 

INTRODUCTION 

 
Disease prediction is important for medical institution as well as for the patients to make 

possible medical care decisions. Sometimes, incorrect decision might lead to serious 

consequences. Hence, early identification and classification of disease is important. According 

to the latest report of American Thyroid Association (ATA), more than 12 percent of the U.S. 

population will develop a thyroid condition during their lifetime [1]. Thyroid dysfunction is the 

most prevalent endocrine disorder worldwide having an epidemiology of 4.6% in the United 

Kingdom, 11% in India and 2% in the U.S among the overall population [2]. Thyroid gland is 

a small butterfly shaped endocrine gland located in neck region below Adam’s apple [3]. It 

produces three types of hormones namely thyroxine(T4), calcitonin and triiodothyronine (T3) 

to maintain the metabolism of the body. The function of these hormones depends on the right 

amount of supply of iodine in diet [4]. The ductless gland located at the bottom of our brain 

sends signals to secret hormones called as Thyroid Stimulating Hormone (TSH). It informs the 

thyroid gland to secret the hormones as per the requirement [5]. Thyroid Nodules (TNDs) are 

solid or fluid filled lumps formed within the thyroid region/gland. Figure 1.1 shows an image 

of thyroid gland. There are various imaging processes like Ultrasonography (USG) and 

Computed Tomography (CT) used for the identification of diseases [6]. USG is highly 

recommended for the identification of TNDs as it is cost friendly, radiation free, real-time and 

painless. 

 

Figure 1.1: Thyroid gland [7] 
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When there is an excess production of TSH in the body, it is said to be hyperthyroidism. Some 

of the common hypothyroid signs noticed are abundance weight, dry skin, fatigue of body 

quality and tiredness [8]. Hypothyroid is a condition when there is less production of TSH in 

the body. Some of common sign noticed signs are tremors, weight loss and loose bowels. 

Thyroid problems are common among people as its symptoms are mild. There are two categories 

of TNDs namely benign (BTND) and malignant (MTND) [9]. MTND are considered as one of 

the top 10 MTND and account for 1.1% of all the malignant tumors [10]. There are certain 

distinctive features of TNDs which can be found in TI-RADS system [11]. Table 1.1 shows the 

TI-RADS score. 

 

Table 1.1: TI-RADS Score 
 

TI-RADS Type 

Score 

Category 

1 Benign  
BENIGN 2 Not Suspicious 

3 Mildly Suspicious 

4 Moderately suspicious  
MALIGNANT 5 Highly suspicious 

 
In last few decades, success of Machine Learning (ML) and Deep Learning (DL) techniques in 

image identification/diagnosis tasks leads to solve challenges in diagnostic imaging. ML 

techniques have a great potential to deal problems in the field of medicine, drug discovery and 

decision making. Medical images are mostly analyzed by the radiologists who are highly 

experienced and have knowledge in the respective domain. A delayed or erroneous diagnosis 

causes harm to the patients [12]. In ML, learning new features are well described by the patterns 

in images. The sparse representation (i.e., feature extraction/selection) in ML techniques finds 

informative patterns from a shallow architecture but they lack in its representational power [13]. 

DL techniques use the feature engineering (FE) step into a learning step [14]. It works by 

discovering informative representation in a self-taught manner with some pre-processing steps 

without extracting features manually [15]. Thus, the manual feature engineering has been 

shifted to computers thereby allowing the non-experts of ML to use DL techniques efficiently 

especially in the medical diagnosis filed. Some of the popular reasons lead to success of DL 

techniques are: (1) development of advance algorithms [16], (2) availability of large amount of 

data [17], (3) easy derivation of hierarchical features from low-level to high-level [18], (4) 

improvement in the traditional Artificial Neural Networks (ANN) i.e., increase in multiple layer 

[19] and (5) advancement in high-tech processing units [20]. 
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1.1 Thyroid Nodule Datasets 

This section focuses on the datasets used for the identification and classification of TNDs in 

this thesis. The dataset plays significant role while conducting any experiment. It contains 

information that helps the model to have a high level of understanding. In this thesis, two 

datasets are considered: 

 
1.1.1 Thyroid Digital Imaging Database (TDID) 

This dataset is collected from Instituto de Diagnostico Medico (IDIME) ultrasound department, 

Colombia. The dataset has 295 thyroid USG images, having 107 BTND and 188 MTND images 

[21]. The images were captured with Toshiba Nemio 30, MX Ultrasound devices and Toshiba 

Nemio with 12MHz convex and linear transductors. 

 
1.1.2 Collected Dataset 

This dataset is collected from Kriti Scanning Center, Prayagraj, Uttar Pradesh (U.P.), India duly 

approved by National Accreditation Board for Hospitals (NABH) and Healthcare Providers 

[22]. The collected sample size was 654 images, out of which 428 and 226 were BTND and 

MTND images. The duration of dataset collection was from July 2020 to March 2021. The 

images were captured with SIEMENS Healthier, Mindray-Resona 7 and Voluson E- 10 

Ultrasound devices with 3 to 11MHz convex and linear transductors. In both cases, Thyroid 

Imaging Reporting and Data system (TI-RADS) scores is used to pre-classify the TNDs images. 

 
The criteria for the inclusion and exclusion of thyroid USG images are as follows: 

Inclusion- 

• Images having clear boundary of the nodules. 

• Images having one or multiple nodules. 

• Patients having age greater than 16 years. 

• Patients with the confirmed thyroid nodules problem. 

Exclusion – 

• Excluded the images which were zoomed in or zoomed out. 

• Patients having age less than 16 years. 

• Patients without confirmed thyroid nodules problem. 
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1.2 Performance Parameters 

 

There are four different parameters considered for evaluation of proposed models in this thesis: 

 
 

• Accuracy: It is defined as the ratio of correctly classified TNDs to the total number of 

examples and computed using equation 1.1: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 
𝑇𝑃+𝑇𝑁

 
𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁 

∗ 100 (1.1) 

 

 

• Specificity: It is defined as the percentage (%) of people who test negative for a specific 

disease among a group of people who do not have the disease and calculated using equation  

1.2:

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 = 
𝑇𝑁

 
𝑇𝑁+𝐹𝑃 

∗ 100                                                                                                       (1.2) 

 
 

• Sensitivity: It is defined as the percentage (%) of people who test positive for a disease 

that have disease and calculated using equation 1.3: 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 
𝑇𝑃

 
𝑇𝑃+𝐹𝑃 

∗ 100                                                                                                        (1.3) 

 

• F-measure: It measures the test accuracy of the model and calculated using equation 1.4: 
 

𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 = 
2𝑇𝑃

 
2𝑇𝑃+𝐹𝑁+𝐹𝑃 

∗ 100                                                                                         (1.4) 

 
 

1.3 Research Objectives 

 
The objectives of this thesis are highlighted below: 

 
1. To design a hybrid model for the identification and classification of TNDs. 

a. To propose a hybrid model using hybridization of ML classifiers. 

b. To propose a hybrid model using hybridization of ML and DL classifiers. 

2. To propose an optimized DL model the identification and classification of TNDs 

3. To design an improved DL model for the identification and classification of TNDs. 
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1.4 Organization of Thesis 

 
The thesis consists of seven chapters as per the details below: 

 
Chapter 1: This chapter provides the introduction about thyroid nodule problem along with 

its types, datasets used, and performance parameters for the identification and classification 

of TNDs. 

Chapter 2: This chapter discusses the literature review of different ML and DL techniques 

for identification and classification of TNDs. 

Chapter 3: This chapter discusses the first part of objective one of the thesis i.e. design of a 

hybrid model using hybridization of ML classifiers for the identification and classification 

of TNDs. 

Chapter 4: This chapter discusses the second part of objective one of the thesis i.e. design 

of a hybrid model using hybridization of ML and DL classifier for the identification and 

classification of TNDs. 

Chapter 5: This chapter elaborates the second objective of the thesis i.e. design of an 

optimized DL model for the identification and classification of TNDs. 

Chapter 6: This chapter focuses on the third objective of the thesis i.e. design of an improved 

DL model using Generative Adversial Network (GAN) for the identification and 

classification of TNDs. 

Chapter 7: This chapter concludes the thesis and throws light on future perspectives. 
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CHAPTER 2 

 
LITERATURE REVIEW 

 
This chapter describes literature review related to thyroid disorder. The method of 

categorization of work is based on techniques related to identification, classification and feature 

selection for thyroid identification and detection. For this study, the selected articles are 

assorted into three categories namely simple, improved and hybrid techniques. Figure 2.1 

shows the assortment of literature review. 

 

Figure 2.1: The assortment of literature review 

2.1 Simple Techniques 

Simple techniques are mainly ML techniques. It is a subset of Artificial Intelligence (AI) that 

builds a mathematical model based on sample examples to predict without itself being 

explicitly involved [23]. Simple techniques are widely used in medical diagnosis to detect 

patterns of diseases from Electronic Health Record (EHR) and inform clinicians of any acute 

problem [24]. It works in four phases namely (1) data collection, (2) data processing 

(preparation of data, model selection), (3) train the model and (4) analysis of results. Figure 

2.2 shows the framework of simple techniques. 
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Figure 2.2: Framework of simple techniques [23] 

Zhu et al. proposed ML-based CAD system [25]. Sonographic features are extracted from the 

USG images and ANN is used for discriminating USG images. The model has achieved 

specificity of 81.80%, accuracy of 83.10% and sensitivity of 83.80%. 

 
Naryan et al. presented a multi-organ segmentation algorithm that is successful to perform 

volumetric analysis and US-guided interventions [26]. The model was evaluated on two 

datasets having 34 and 18 USG images. The model is yet to be evaluated on a large dataset. 

 
Song et al. proposed a Grey Level Co-Occurrence Matrix (GLCM) method for feature 

extraction and different ML classifiers for classification [27]. The logistic regression has 

achieved a good result from the rest of the classifiers on 155 USG images. 

 
Ardakani et al. evaluated the CAD system with Texture Analysis (TA), Linear Discrimant 

Analysis, Principal Component Analysis, (PCA+LDA) for the classification of TNDs [28]. 

 
Nugroho et al. used bilateral filters for the pre-processing step results in smoothen images and 

also preserves the boundaries of the object followed by Active Contour Without Edges 

(ACWE) for the segmentation of the thyroid nodules [29]. The result shows not only 

improvement in the accuracy of the segmentation of active contours (AC) but also makes 

localization of the TNDs clear. 

 
Song et al. proposed a GLCM based texture feature model using different ML algorithms for 

classification [30]. The model was evaluated on 147 USG images. The best accuracy result is 

achieved by Support Vector Machine (SVM) with 76.6%, Random Forest (RF) with 74.1%, 

ANN with 72.8% and Decision Tree (DT) with 67.1% accuracy. 

 
Pan et al. proposed Principal Component Analysis (PCA) ensemble method for feature 
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reduction and found that it performs better than Bagging and AdaBoost [31]. 

 
 

Alrubaidi et al. proposed an interactive segmentation method evaluated on 27 USG images of 

public datasets [32]. 

 
Vanithamani et al. proposed CAD system using GLCM for feature extraction, segmentation 

using fuzzy c- means clustering and classification using SVM on TDID dataset [33]. 

 
Nugroho et al. proposed a texture feature extraction using Gray Level Run Length Matrix 

(GLRLM), histogram and GLCM. Multi-Level Perceptron (MLP) classifier was considered for 

classification [34]. Model is evaluated on small public dataset. 

 
Mustafa et al. proposed the Farthest-Distance--Based-Synthetic-Minority-Oversampling 

Technique (FD-SMOTE) system and evaluated it on University of California, Irivine (UCI) 

repository thyroid dataset [35]. 

 
Pasha et al. proposed Ensemble Gain Ratio Feature Selection (EGFS) model [36]. The model 

ensemble RF & gain ratio algorithm to find the most efficient features followed by its alignment 

with LR, K-Nearest Neighbor (KNN) and Naive Bayes. 

 
Jothi et al. proposed a novel SVM linear+ SVM Quadratic+ Closest-matching CAD system i.e. 

(SVM-L+SVM-Q+ CMR) [37]. The proposed CAD system has achieved a good result by 

combining the advantages of SVM and CMR classifiers. 

 
Jiang et al. proposed an intelligent model using ML-based techniques [38]. All ML-based 

classifiers have achieved 84% accuracy except DT classifier. 

 
Shankar et al. proposed a Multi-Kernel-Based SVM (MKSVM) system for thyroid disease 

classification using the UCI and private datasets [39]. 

 
Ma et al. proposed a ML-based model (center clustering, deep neural network, SVM, KNN and 

LR) for thyroid nodule classification [40]. A total of 508 USG images are used in the 

experiment. The highest accuracy achieved is 87%. 
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Zheng et al. proposed the serum Raman spectroscopy technique combined with Artificial Fish 

Coupled with Uniform Design (AFUD) –SVM discriminant model capable for the detection of 

thyroid dysfunction [41]. 

 
Dandan et al. proposed CAD system using Wavelet Multi-Sub-Bands Co-Occurrence Matrix 

(WMCM) and other feature extraction techniques [42]. The model is evaluated on 180 USG 

images. 

 
Poudel et al. proposed an autoregressive feature for thyroid ultrasound images without 

modeling the images [43]. 

 
Prochazka et al. proposed a 2-threshold binary decomposition CAD system that uses direction 

independent feature set [44]. Authors addressed the problem of direction-independent features 

problem. Model was evaluated on 40 USG images and used histogram and segmentation for 

classification. The results show that SVM gives good results in comparison with RF. 

 
Wu et al. proposed texture analysis system using Local Binary Pattern (LBP) and Histogram 

of Oriented Gradients (HOG) feature extraction techniques [45]. The model was evaluated on 

4,574 USG images. 

 
Colakoglu et al. proposed ML-based model to differentiate between BTND and MTND via 

extracting 306 features from 235 USG images [46]. Among ML-based algorithms, the RF 

classifier gives a good result with an accuracy of 86.8%. 

 
Zhang et al. proposed ML-based thyroid nodule detection using sonographic features and Real- 

Time Elastography (RTE) [47]. Nine different ML algorithms like RF, LR, SVM, Neural Net, 

Adaptive Boosting, Naive Bayes and Convolutional Neural Network (CNN) were considered 

but RF shows the best result with an accuracy of 84.1 % in comparison with other classifiers. 

 
Kesarkar et al. proposed an ANN based CAD system [48]. The ACWE based segmentation 

method and MLP for the classification of TNDs images. 

 
Zhao et al. compared various ML classifiers for thyroid nodule detection using sonographic 

features [49]. The model shows that the application of ML-based classifiers like DT, SVM, 
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KNN, RF, LR, MLP, Xgboost, Gradient Boosting Tree and Naive Bayes on sonographic 

features has achieved the best result. The model was evaluated on 849 USG images. 

Table 2.1 shows summarization of literature review using simple techniques. 
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Table 2.1: Summarization of literature review using simple techniques 
 

Article 

[Ref.] 

Proposed Model Feature extraction/ 

Detection 

techniques 

Classification Dataset Findings Limitations 

Zhu et 

(2013) 

al. CAD System Sonographic features ANN Public dataset (i)It has achieved 83.10 % 

accuracy, 83.80% 

sensitivity and 81.80% 

specificity 

(i)The result can further be 

improved by using hybridization 

of two or more classifiers. 

Narayan 

al. (2015) 

et Speckle Patch 

Similarity model 

----  Department of 

Radiology, Sardjito 

Hospital, Yogyakart 

(i)It has achieved 92.1% 

accuracy. 

(i)The model is yet to 

evaluated on large dataset. 

be 

Song et 

(2015) 

al. Texture based 

thyroid detection 
model 

GLCM SVM, RF, DT, 

LR, ANN 

Shandong Provincial 

Qianfoshan Hospital 

(i)LR has achieved 84% 

accuracy, 78.5% specificity 
and 78.5% sensitivity. 

(i)Other different texture feature 

extraction can be used to achieve 
better result. 

Nugroho 

al. (2015) 

et Active Contour 

Bilateral Filtering 

model 

  Department of 

Radiology, Sardjito 

Hospital, Yogyakart 

(i)It is insensitive to noise. (i)Manual parameter tuning and 

initial contour is required. 

Song et 

(2015) 

al. ML based CAD 

System 

GLCM SVM, RF, DT, 

ANN 

Public dataset (i)SVM achieved the best 
result among rest of the 

classifier. 

(i)The model is evaluated on 147 

thyroid USG images. 

Ardakani 

al. (2015) 

et CAD System Statistical features ------ Radiology Department 

Imam Khomeini 

hospital, Urmia, Iran 

(i) No operator dependency. 

(ii)It takes additional cost 

and time loss. 

(ii) It has achieved accuracy 

97.14% specificity 100% 
and sensitivity 94.45%. 

(i)Model can further be 

improved by using other type of 

feature extraction method. 

Vanithamani 

et al. (2016) 

CAD System GLCM Fuzzy C- 

means 

clustering, SVM 

TDID (i) It has achieved accuracy 

86.6% specificity 85.7% 
and sensitivity 87.5%. 

(ii) It achieves good results 

in less numbers of features 

extracted. 

(i)The size of the dataset is very 

less. 

Nugroho 

al. (2016) 

et CAD System GLRM, 

Histogram 

GLCM, MLP ------ (i)It can be used as 2nd 

opinion by clinicians. 

(ii)Model has achieved 

accuracy   89.74% 
specificity 91.67% and 

(i)The size of the dataset is very 

less. 
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     sensitivity 88.89%.  

Koundal et 

al. (2016) 

Automated 

delineation of 

thyroid nodules 

---- Spatial 

neutrosophic 

distance 

regularized level 
set 

Public dataset (i) It is insensitive to nodule 

echogenicity. 

(ii) It has achieved 95.45% 

sensitivity. 

(i)It has strong resistance to 

noise. 

Pasha et al. 

(2017) 

EGFS model EGFS LR, Naive 

Bayes, KNN 

UCI repository and local 

dataset 

(i) It has achieved 96.45% 

accuracy. 

(ii) The model has achieved 

good result with a few 

numbers of features. 

(i) It has strong resistance to 

noise. 

(ii) Complex data pre-processing 

is used. 

Mustafa et 

al. (2017) 

FD-SMOTE 

Technique 
Minimum 

Description Length 

Method, PCA 

Genetic 

algorithm 

UCI repository (i) The model works good 

on less dataset. 

(ii) It has achieved 84.12% 

accuracy. 

(i)Work can be extended on 

rough theory problem. 

Jothi et al. 

(2017) 

SVM-L+SVM- 

Q+CMR CAD 

System 

PSO SVM Public dataset (i) The proposed CAD 

system differentiate PT C 

and NT H&E- stained 

thyroid histo-pathology 

images. 

(ii) It has achieved accuracy 

99.54% sensitivity 100% 
and specificity 98.57%. 

(i)Size of dataset is less. 

Jiang et al. 

(2017) 

ML based CAD 

system 

Sonographic features SVM, KNN, LR, 

DT, RF 

Public dataset (i)The model has achieved 

84% accuracy. 

(i) Other feature extraction 

techniques can be explored. 
(ii) Size of the dataset is less. 

Zheng et al. 

(2018) 

AFUD System Wavelet Multi-sub- 

bands Co-occurrence 

matrix 

SVM First Affiliated Hospital (i) It has achieved 82.74% 

accuracy. 

(ii) The proposed technique 

can be used to develop a 

portable device for 
detecting TNDs function. 

(i)Size of the dataset used is less. 

Dandan et al. 

(2018) 

ML based CAD 

system 

WMCM SVM Public dataset (i)he model has achieved 

87% accuracy. 

(i) Work can be extended on 

other different types of feature 

extraction methods. 
(ii) Size of the dataset is less. 

Shankar et 

al. (2019) 

MKSVM method Auto-regressive 

features 

SVM Public and UCI (i)It has achieved accuracy 

97.49%, specificity 94.5% 

(i)High computation time. 
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     and sensitivity 99.05%. 

(ii)The model has achieved 
good result with a few 

numbers of features. 

 

Ma et al. 

(2020) 

ML based CAD 

System 

Sonographic features KNN, LR, SVM Public dataset (i)The model has achieved 

87% accuracy. 

(i) Work can be extended on 

other different types of feature 

extraction methods. 
(ii) Size of the dataset is less. 

Poudel et al. 

(2019) 

Autoregressive 

Feature based 

CAD model 

Histogram features, 

SFTA 

SVM, RF SurgicEye GmbH, 

University Clinic of 

Magdeburg, Germany 

(i) The proposed approach 

outperforms from DSC and 

had similar SE and SP. 
(ii) It has achieved 90% 

accuracy. 

(i)Bi-Spectral model can be used 

in future work. 

Prochazka et 

al. (2019) 

CAD System HOG, LBP SVM, RF Our clinic (i) It uses direction- 

independent features. 

(ii) It has achieve-d 94.64% 

accuracy. 

(i)Work can be extended on 

large dataset. 

Wu et al. 

(2019) 

CAD System LBP, GTF, HOG, 

FOS, GLCM, HWF, 

Autoregressive 

model, GRLM 

 Second Affiliated 

Hospital of Fujan 

Medical University 

(i) Can be used as 2nd 

opinion for diagnosis of 

TNDs. 

(ii) It has achieved 88.58% 

accuracy. 

(i)High computation time. 

Colakoglu et 

al. (2019) 

ML based CAD 

system 

Ultrasonography, 

shear wavelet texture 

ML classifiers --- (i)It has achieved accuracy 

86.8%, sensitivity 85.2% 
and specificity 87.9%. 

(i)Work can be extended on 

large dataset. 

Zhang et al. 

(2019) 

ML based CAD 

system 

----- RF, LR, SVM, 

Neural  net, 

adaptive 

boosting, naive 

bayes and CNN 

First Affiliated Hospital (i)The model has achieved 

84.6% accuracy, 84.2% 

specificity and 88.1% 

sensitivity. 

(i)Different other feature 

selection techniques can be used 

for better result. 

Kesarkar et 

al. (2021) 

ANN model for 

thyroid nodule 

diagnosis 

Sonographic features MLP ----- (i)It has achieved 93.84% 

accuracy, 97.82% 
sensitivity and 93.75% 

specificity. 

(i)Size of the dataset is less. 

Zhao et al. 

(2021) 

ML based 

techniques for 

classification of 

thyroid USG 

EGFS DT, SVM, KNN, 

RF, LR, MLP, 

Xgboost, 

gradient 

------- (i)It has achieved 88.8% 

accuracy, 92.9% specificity 

and 81.7% sensitivity. 

(i)Work can be extended to other 

feature extraction methods. 
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 images  boosting tree and 

Naive baye 
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2.2 Improved Techniques 

Improved techniques are the DL techniques based on ANN with representation learning. It 

uses various layers to progressively extract a higher level of features from the user input [50]. 

DL techniques applications include audio recognition, medical image analysis, speech 

recognition, bioinformatics and Natural Language Processing (NLP) [51]. The term “deep” 

means large number of features to be extracted from raw image as input. E.g., lower layers and 

higher layers identify edges and letters [52]. DL reduces the cost of feature engineering and 

retrieves a lot of information that helps the model to achieve better results [53]. One of the 

major differences between ML and DL is that ML cannot extract features automatically; it 

requires labelled parameters whereas in the case of DL, it extracts features automatically 

without human intervention [54]. Figure 2.3 shows the working of the improved techniques. It 

also works in three steps: (1) input, (2) feature extraction and classification and (3) 

prediction. 

 

Figure 2.3: Working of improved techniques [54] 

 
 

Du and Sang et al. proposed an improved Distance-Regularized-Level-Set-Evolution (DRLSE) 

method for the segmentation of 2D TNDs USG images [55]. It consists of three steps namely 

image processing, extracting boundaries and image post-processing. It does not perform well 

to automatically segment the TNDs USG images. 

 
Archarya et al. proposed Gabor transform features from high-resolution TNDs images [56]. 

The model was evaluated on 240 USG images. 

 
Peng et al. show the first order features selection in TNDs ultrasound image recognition as 

image biomarkers [57]. 

 
Zhu et al. proposed an image augmentation CAD system using transfer learning technique as 

Generative Adversarial Network (GAN) [58]. 
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Song et al. proposed a multi-scale DL single-shot detection network method guided by nodule 

with the help of a CNN [59]. 

 
Zhang et al. proposed a multi-scale single-shot detection network guided by nodule [60]. The 

model was evaluated on 45 USG images. 

 
Sundar et al. explored different DL techniques like CNN, VGG-16 model and Inception-V3 

model for the diagnosis of TNDSs [61]. 

 
Wang et al. proposed a novel EM-based model to train Alex-Net for the diagnosis of the TNDs 

[62]. Authors addressed the problem of labeled data and evaluation was done on public and 

private datasets. 

 
Chen et.al proposed 2- Level Attention-Based Bi-Directional LSTM (Ab-LSTM) for TNDs 

classification [63]. 

 
Li et al. proposed a Deep Convolutional Neural Network (DCNN) model for the detection of 

TNDs [64]. The result shows good improvement in sensitivity, accuracy and specificity in 

comparison with a group of skilled radiologists. 

 
Ko et al. proposed a DCNN for TNDs diagnosis [65]. The model was evaluated on 589 USG 

images dully approved by the radiologist and used 3 layers of CNN for the classification of 

TNDs. 

 
Wang et al. proposed a DL-based CAD system using YOLOv2 NN [66]. The proposed method 

achieved a real-time and synchronous diagnosis CAD system for TNDs diagnosis. 

 
Liu et al. proposed clinical-knowledge-guided CNN model for the TNDs classification [67]. 

 
 

Aboudi et al. proposed a CAD system combining different attributes after optimization to 

achieve good accuracy [68]. 

 
Guo et al. proposed an improved DL technique for TNDs identification [69]. A new CNN 
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model is proposed which integrates Squeeze and Excitation (SE) and Maximum Retention of 

Inter-Pixel Relations Module (CNN-SE-MPR). The model was evaluated on 407 USG images. 

 
Ajilisa et al. used various pre-trained CNN network [70]. K-means clustering is employed to 

deal with imbalanced datasets. 

 
Nguyen et al. used a fusion of spatial and Fourier based methods for feature extraction and also 

used two CNN models together to improve the accuracy [71]. 

 
Vasile et al. proposed an intelligent diagnosis model using ensemble DL methods [72]. Model 

was designed with 5 CNN layers and then ensemble with pre-trained VGG-19 model. The 

model was evaluated on 230 USG images. 

 
Zhu et al. proposed an automatic DCNN CAD system [73]. The model was evaluated on 719 

USG images. 

 
Yang et al. proposed a Multi-Task Cascade DL (MCDLM) model [74]. It works in three steps 

namely pre-processing, U-Net model for segmentation of nodules and semi-supervised method 

for feature extraction and classification. The model has achieved good result on small dataset. 

Table 2.2 shows summarization of literature review using improved techniques. 



18 
 

 

Table 2.2: Summarization of literature review using improved techniques 
Article 

[Ref.] 

Proposed 

Model 

Feature 

extraction/ 

Detection 

techniques 

Classification Dataset Findings Limitations 

Du et al. 

(2015) 

CAD System -- DLRSE Wuhan Tongji 

Hospital, China 

(i) It is insensitive to noise and 

nodule echogenicity. 
(ii) Achieved 85% sensitivity. 

(i)It requires manual initial contour. 

Acharya 

et al. 
(2016) 

CAD System Gabor 

Transform 

MLP, SVM, 

KNN 

Chiang Mai 

University Hospital, 

Thailand 

(i)It has achieved 94.3%. (i)Work can be extended to non-linear feature 

extraction algorithms. 

Peng et 
al. 

(2017) 

CAD System FOS SVM Ruian People 
Hospital, Zhejiang, 

China 

(i)It has achieved specificity 

93.3%, accuracy 88% and 
sensitivity 82.1%. 

(i)Work can also extend on large thyroid USG 

dataset. 

Zhu et. al 

(2017) 

DL based 

CAD system 

--- CNN TDID (i) It can be used as a 2nd opinion 

by the radiologist. 

(ii) It has achieved 93.75% 

accuracy. 

(i)Handcrafted and DL model can be used for 

better result. 

Song et. 

al (2019) 

MC-CNN 

Framework 

---- VGG-16 TDID (i) It has achieved accuracy 

92.1%, sensitivity 94.1% and 
specificity 96.2%. 

(ii) Embedded spatial pyramid 

module into traditional CNNs. 

(i)Sample size is less 

Zhang et 

al. 

(2018) 

FAFL Model Multi- 

channel 
feature 

association 

--- Local hospital (i) New feature association model 

is proposed. 

(ii) It has achieved 83% accuracy. 

(i) Improvement can be done by fusion of two 

or more classifiers. 

(ii) The dataset size is very small. 

Sundar 

et al. 

(2018) 

DL CAD 

System 

VGG-16 and 

Inception- 

V3 model 

- Public and private (i) Achieved good result on a 

smaller number of datasets. 

(ii) It has achieved accuracy 93% 

with Inception-v3 + CNN and 

with VGG-16 with 89%. 

(i)The dataset size is very small. 

Wang et 

al. 

(2018) 

Semi- 

supervised 

method 

VGG-16 ---- TDID (i)The model solves multi- 

instance problems and also 

improves the classification 
accuracy. 

(i)The dataset size is very small. 
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     (ii)It has achieved accuracy 

80.91%, sensitivity 81.82% and 
specificity 80%. 

 

Chen et 

al. 
(2018) 

Ab-LSTM 

Memory 

method 

-- CNN Ruijin Hospital, 

Shanghai 

(i) Model perform good. 

(ii) It has achieved 86.18% 

accuracy. 

(i)The dataset size is very small. 

Li et al. 

(2019) 

DCNN ---- CNN Traditional Chinese 

Weihai Municipal 

Hospital, Shandong, 

Tianjin Cancer 

Hospital and Western 

Medicine Hospital, 
Jilin 

(i) It can be used as 2nd opinion 

for diagnosis. 

(ii) It has achieved sensitivity 

93.4% and specificity 86.1%. 

(i)The dataset size is very small. 

Ko et al. 

(2019) 

DCNN --- CNN ----- (i)The model has achieved 86% 

accuracy. 

(i)Sample size is less 

Wang et 

al. 

(2019) 

DL- CAD 

System 

---- CNN Tertiary class A 

hospital 

(i) Can be used as 2nd opinion for 

the diagnosis. 

(ii) It has achieved sensitivity 

90.5% and accuracy 90.31%. 

(i)Work can be extended on large database. 

Liu et al. 

(2019) 

DL- CAD 

System 
--- CNN Cancer Hospital of the 

Chinese Academy of 

Medical Sciences 

(i) The pixel annotation used in 

this work is coarse. 

(ii) It has achieved accuracy on 

dataset-I 97.5% and 
accuracy on dataset-II 97.1%. 

(i)Work can be extended on large database. 

Aboudi 

et al. 
(2020) 

CAD system Statistical, 

GLCM 

CNN CIM Laboratory of 

the National 

University  of 
Columbia 

(i) Fusion of (intensity + textural 

features + shape) is used. 

(ii) It has achieved 96.13% 

accuracy. 

(i)Work can be extended on large database. 

Guo et 

al. 

(2020) 

CNN-SE- 

MPR System 

--- CNN Co-operate hospitals (i) With the help of MPR module, 

loss of inter pixel relation is 

solved. 

(ii) It has achieved accuracy 

90.17%, specificity 92.35% and 
sensitivity 86.99%. 

(i)Work can be extended on big database. 

Ajilisa et 

al. 

(2020) 

CAD System ---- Alexnet, DNN, 

Inception v-3, 

Googlenet, 

VGG-19, 

TDID (i) DNN performs best. (i) Work can be experiment on large database. 

(ii) Failed to address the problem of noise. 
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   Xception, 

Resnet-10, 

VGG-16, 
Resnet-50, 

   

Nguyen 

et al. 

(2021) 

DL based 

CAD system 

FFT CNN TDID (i) Fusion of Res-Net50 and 

Inception Model is considered for 

classification. 

(ii) It has achieved 92.05% 

accuracy. 

(i)Work can be extended on large database. 

Vasile et 

al. 

(2021) 

Ensemble 

model 

---- CNN Public dataset (i)Ensemble CNN and VGG-19. 

(ii)It has achieved sensitivity 

95.75%, accuracy 97.35% and 
specificity 98.43%. 

(iii)It can be used as 2nd opinion 

by the physician. 

(i)Work can be extended on large database. 

Zhu et al. 

(2021) 

DL based 

model 

--- CNN Ethics committee 

Hospital of Shanghai 

(i) It has achieved 86.5% avg. 

accuracy, 87.1% specificity and 

86.6% sensitivity. 
(ii) It can be used as 2nd opinion 

by the physician. 

(i)Hand-crafted feature extraction methods 

can also be used to improve accuracy. 

Yang et 

al. 

(2021) 

DL CAD 

system 

Sonographic 

features 

CNN Partner hospitals (i)Used augmentation technique. 

(ii)It has achieved 90.01% 

accuracy, 92.15% specificity and 

87.47% sensitivity. 

(i)Size of the dataset is less. 
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2.3 Hybrid Techniques 

Hybrid techniques are the combination of two or more classifiers to improve performance of 

model [75]. It works in three steps namely, (1) data pre-processing, (2) model selection and 

(3) prediction. Figure 2.4 shows the working of hybrid techniques. 
 
 

Figure 2.4: Working of hybrid techniques [75] 
 

Liu. et al. proposed a combination of hand-crafted feature and DL feature-based extraction 

technique for the thyroid image classification i.e., VGG-F model with Scale Invariant Feature 

Transform (SIFT) + Vector of Locally Aggregated Descriptor (VLAD) and GLCM [76]. 

 
Xia et al. proposed a hybrid Extreme learning machines (ELM) based approach for TNDs 

diagnosis [77]. The model was evaluated on 230 USG images. 

 
Nguyen et al. proposed a model based on fusion of spatial and frequency domain for feature 

extraction from USG images and achieved an accuracy of 90.88% [78]. 

 
Qin et al. proposed (conventional ultrasound+ elasticity imaging) model for the classification 

of TNDs [79]. 

 
Xie et al. proposed a (DL +handcrafted features) model and achieved an accuracy of 85% [80]. 

The model was evaluated on 623 USG images. 

 
Sun et al. proposed a (DL-based technique + statistical) features together for classification of 

TNDs [81]. The model was evaluated on 490 USG images. 

 
Hang et al. suggested a Res-GAN model [82]. In this work, authors have compared ResNet- 

18 with Res-GAN model and Speeded Up Robust Features (SURF) with deep features along 
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with RF as classifier. The proposed Resnet-Generative Adversial Neural Network (Res-GAN) 

model has achieved an accuracy of 95%. 

 
Srivastava R., et al. proposed a hybrid model using ANN and SVM for the classification of 

TNDs [83]. The model shows that when two classifiers hybrid together, the accuracy is 

increased. Table 2.3 shows summarization of literature review using hybrid techniques. 
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Table 2.3: Summarization of literature review using hybrid techniques 
 

Article [Ref.] Proposed Model Feature extraction/ 

Detection 

techniques 

Classification Dataset Findings Limitations 

Liu et al. (2017) Hybrid method SIFT, HOG, VLAD, 

LBP 

CNN Cancer Hospital of 

the Chinese 

Academy 

(i) The feature used 

shows that both hand- 

crafted features and DL 

features contribute to the 

thyroid image 

classification. 

(ii) It has achieved 

specificity 94.1%, 
accuracy     92.9%     and 
sensitivity 90.8%. 

(i)There is no 

comparison with the 

other models. 

Xia et al. (2017) Hybrid method Relief method SVM Wenzhou Central 

Hospital 

(i) It can be used as 2nd 

opinion for TNDs 

diagnosis. 

(ii) It has achieved 

accuracy 87.72%, 
sensitivity 78.89% and 

specificity 94.55%. 

(i)Small dataset. 

Nguyen et al. (2019) DL-CAD System --- CNN TDID (i) Used the combination 

of spatial and frequency 

domain problem. 

(ii) It has achieved 

90.88% accuracy. 

(i)Work can be 

extended on other 

different type of 

feature extraction 

method. 

Qin et al. (2019) Hybrid method ----- VGG-16 Huiying Medical 

Technology 

(Beijing) Co.Ltd 

(i)Use  of end-to-end 

implementation leads to 

good efficiency result. 

(ii)It has  achieved 

accuracy    94.70%, 

specificity 92.7%   and 

sensitivity 97.96%. 

(i)The model is yet 

to be evaluated on 

large dataset. 
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Xie et al. (2020) Hybrid deep 

learning based 

feature method 

LBP CNN Shanghai Tenth 

People’s hospital 

(i) Can be used as 2nd 

opinion for the diagnosis. 
(ii) It has achieved 85% 

accuracy. 

(i)Different other 

feature methods can 

be explored. 

Sun et al. (2020) Hybrid method Statistical features CNN First Affiliated 

Hospital of Nanjing 

Medical University 

(i) A voting system is 

used. 

(ii) The model has 

achieved 86.5% 

accuracy. 

(i) Different other 

feature methods can 

be explored. 

(ii) The model is yet 

to be evaluated on 
large dataset. 

Hang et al. (2021) Res-GAN model Statistical features ResNet-18, Random 

Forest, AdaBoost 

TDID (i) The model has 

performed well in less 

sample size. 

(ii) The Res-GAN model 

performs well in 

comparison with ResNet- 

18. 

(iii) In this work, fusion 

of SURF + deep 

features+ RF is used for 

classifier. 

(iv) Accuracy: 95% 

(i) Different other 

feature methods can 

be explored. 

(ii) Different other 

DL techniques can 

be explored for the 

identification of 

TNDs. 

Srivastava, R et al. 

(2021) 

Hybrid model GLCM ANN, SVM, DT, 

KNN, RF 

TDID, collected (i) The model has 

performed well in less 

sample size. 

(ii) The issue of noise in 

images is addressed. 

(iii) Model shows that 

accuracy of the model is 

increased in comparison 

with standalone classifier 

when it is hybrid. 

(iv) The model is 

evaluated on 2 datasets. 

(i) Different other 

feature methods can 

be explored. 

(ii) DL models can 

be explored. 
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2.4 Inferences Drawn from Literature Review 

The literature review shows significant research carried out for the identification and 

classification of TNDs. However, there are many gaps which are partially unexplored and needs 

immediate attention. The following are the inferences drawn from the detailed review: 

1. Most of the existing study relies on either ML or DL classifier for the identification and 

classification of TNDs. Thus, there is a scope to build hybrid model. 

2. This review sheds light on the possible use of segmentation, clustering, boundary and 

edge detection techniques to enhance the performance of improved techniques. 

3. It is inferred from that improved techniques model require continuous training and 

adjustment of hyper parameters. It is still an unresolved issue as it requires complete 

domain knowledge. 

4. It is evident that less attention has been paid by the researchers for noise removal in 

thyroid USG images. 

5. This review sheds light on the importance of TNDs disorder. Such thyroid disorder has 

also attracted a large number of health care experts subject to availability of USG images 

with advancement in medical imaging. Hence, such images are a good inspiration for 

the healthcare analysts to identify and detect TNDs disorder. 

 

2.5 Summary 

 
This chapter described the literature review conducted for TNDs identification and 

classification. The inferences drawn are inked from the detailed literature review carried out in 

this chapter. The coming chapters in the thesis will present effective and efficient models for 

the identification and classification of TNDs. 
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CHAPTER 3 

 
ANN-SVM HYBRID MODEL FOR THE IDENTIFICATION 

AND CLASSIFICATION OF THYROID NODULE 

 
ML and DL techniques have been widely used in recent years in medical imaging. USG is one 

of the suggested diagnostic methods for accurately differentiating BTND and MTND images. 

In this chapter, ANN-SVM hybrid model is proposed for the identification and classification of 

TNDs USG images. 

 
3.1 Proposed Methodology 

It consists of five steps namely (1) data collection phase, (2) pre-processing, (3) feature 

extraction phase, (4) classification and (5) result analysis. Figure 3.1 shows the framework of 

ANN-SVM hybrid model. 

 

Figure 3.1: Framework of ANN-SVM hybrid model 
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3.1.1 Data Collection 

Two datasets are considered namely public TDID and collected dataset. The public dataset has 

188 malignant and 107 benign images i.e., a total of 295 USG images whereas collected dataset 

has 226 malignant and 428 benign i.e., a total of 654 USG images. The complete detail of dataset 

has given in under subsection 1.1.1. 

3.1.2 Pre-processing 

 
It is an important phase for the development of any model. In this phase, image resizing, noise 

removal using median filter and RGB to gray scale conversion are performed to maintain the 

uniformity of the dataset. All these steps are computed using equation 3.5-3.7: 

𝑟𝑒𝑠𝑖𝑧𝑒 = 𝑡𝑓. 𝑘𝑒𝑟𝑎𝑠. 𝑆𝑒𝑞𝑢𝑒𝑛𝑡𝑖𝑎𝑙([𝑙𝑎𝑦𝑒𝑟𝑠. 𝑅𝑒𝑠𝑖𝑧𝑖𝑛𝑔(𝐼𝑀𝐺 _𝑆𝐼𝑍𝐸, 𝐼𝑀𝐺 _𝑆𝐼𝑍𝐸)])              (3.5) 

where IMG_SIZE: size of the image 

𝑡𝑓. 𝑖𝑚𝑎𝑔𝑒. 𝑔𝑟𝑎𝑦𝑠𝑐𝑎𝑙𝑒_𝑡𝑜_𝑟𝑔𝑏(𝑖𝑚𝑎𝑔𝑒𝑠, 𝑛𝑎𝑚𝑒 = 𝑁𝑜𝑛𝑒)                                                        (3.6) 

where images: the RGB tensor to convert the images, name: name of the operation 

𝑦[𝑚, 𝑛] = 𝑚𝑒𝑑𝑖𝑎𝑛{𝑥|𝑖, 𝑗|, (𝑖, 𝑗)𝜖 𝑣}                                                                                              (3.7) 

 
where ѡ is a neighborhood, [m, n] pixel is location in the image 

 
The main reason for using median filter is that it removes the noise and also preserves the 

edges of the images for the accurate prediction [84]. Benign images are labelled as “0” and 

malignant images as “1”. 

3.1.3 Feature extraction 

GLCM texture analysis is used in this work to find underlying characteristics of textures and 

represent them in unique manner to have accurate classification of an image [85]. It works by 

calculating how often the pairs of pixels with a specific value and in a specified spatial 

relationship occur in input image [86]. Let there be a square matrix of size “N x N”, where N is 

considered as the number of levels specified and f (a, b) is the pixel value at the point (a, b) of 

an image size N x N. A total of 4 features are extracted using GLCM technique. The description 

is given as: 
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𝑎,𝑏=0 

3.1.3.1 Contrast: It measures the local variance in GLCM and can be computed by using 

equation 3.8: 

 

𝐶𝑜𝑛𝑡𝑟𝑎𝑠𝑡 = ∑ 𝑘2  ∑  
𝑁−1

𝑎,𝑏=0

𝑁−1

𝑘=0

(𝑓(𝑎, 𝑏))                                                                          (3.8)

         where k: is range [0 to (size (GLCM)-1))2] 

 
3.1.3.2 Correlation: It computes the combined probability rate of the particular pixel pairs and 

can be computed by using equation 3.9: 

 

𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 = ∑𝑁−1 (𝑎 − 𝜇)2𝑓(𝑎, 𝑏) (3.9) 

𝑎,𝑏=1 

 

where µ is mean 

 
3.1.3.3 Homogeneity: It measures the closeness of the distribution of the elements in the 

GLCM to the GLCM diagonal using equation 3.10: 

 

𝐻𝑜𝑚𝑜𝑔𝑒𝑛𝑒𝑖𝑡𝑦 = ∑𝑁−1 {𝑓(𝑎, 𝑏)}2 (3.10) 

𝑎,𝑏=0 

 

3.1.3.4 Energy: It computes the total number of squared elements in the GLCM and can be 

computed by equation 3.11: 

 

𝐸𝑛𝑒𝑟𝑔𝑦 = ∑𝑁−1 𝑓(𝑎, 𝑏)2 (3.11)

 

3.1.4 Classification 

 
Four different types of ML classifiers are considered namely ANN, SVM, DT, KNN and RF. 

These are discussed below: 

3.1.4.1 SVM 

 
It is one of the frequently used supervised ML classifiers, widely used in image processing 

and pattern recognition [87]. In SVM, an optimal hyperplane decides the separation between 

individual classes of patterns. It must be maximum so that the problem of underfitting and 

overfitting can be reduced [88-89]. Figure 3.2 shows the optimal hyperplane of SVM, 
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C1(diamonds) and C2(circles). Here, SVM tries to fit a linear boundary known as a hyperplane 

between two different classes and tries to maximize the distance between the boundary and its 

nearest point of each class. 

 

 

 

Figure 3.2: Optimal hyperplane in SVM [89] 

3.1.4.2 KNN 

It is one of supervised classifier that can be used for classification and regression. In both the 

conditions, the training part consists of k closest training examples while testing part computes 

the distance between the samples and then gives output based on classification or regression 

[90]. 

 
3.1.4.3 DT 

Its structure is like a tree where the top most nodes is called as “root node”, leaf node as the 

“class label”, branches as result on the test, decision node represent the test of an attribute. One 

of the advantages of using DT classifier is its ability to give good classification result but it may 

lead to the problem of overfitting [91]. 

 
3.1.4.4 ANN 

It is inspired by the “nervous system” where nodes act as an artificial neuron and the directed 

edges between neurons are defined by weights [92]. Figure 3.3 shows structure of ANN. In this 

work, we have used three layered ANN. 
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Figure 3.3: Architecture of ANN [92] 

 

3.1.4.5 RF 

It is a kind of ensemble learning technique involving a large number of individual DT. It works 

by first selecting the random samples from a given dataset and then constructs DT for each 

sample. Thereafter, it performs prediction based on maximum voting. RF does not suffer from 

the problem of overfitting and is used for both regression problems and classification [93]. 

3.1.4.6 Hybridization 

 
An ANN- based 3-layer Feed Forward Neural Network (FFNN) is used along with 

hybridization of SVM classifier for the classification of TNDs. A simple ANN having one 

hidden layer with 4 neurons in the input layer was created. The neurons present in MLP 

network are trained consequently on backpropagation algorithm until an output value is 

obtained at each of the output neurons. ANN was trained with the extracted features and the 

output of the hidden layer was used to train the SVM classifier. Figure 3.4 shows the ANN- 

SVM hybrid model. 
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Figure 3.4 : The ANN-SVM hyrbid model 

3.1.5 Result Analysis 
 

This section summarizes the results of the ANN-SVM hybrid model for classification of TNDs. 

The work is done on MATLAB 2016b software using intel core i5 8th generation computer. 

The k-fold cross validation technique is used to validate the results of the ANN-SVM model. 

In this work, 5 cross validation is considered i.e., D= [c1, c2,.……c5], where 4-fold is used for 

training and 1-fold is used for testing. Once, the pre-processing phase is over and features are 

extracted using GLCM method, various ML algorithms like RF, SVM, KNN, DT and ANN are 

employed for the classification. For better representation, public dataset is named as: Dset- 1 

and collected dataset is named as: Dset-2. Figure 3.5 shows the parameter setting for ANN-

SVM hybrid model. The various parameters considered are batch size, optimizer, etc.  Table 

3.1 shows the standalone ML classifiers comparison on Dset-1. The ANN classifier has 

achieved an accuracy of 79.28%, specificity of 82%, F-measure of 80.9% and sensitivity of 

77.16% and SVM has achieved an accuracy of 78.4%, specificity of 80.4%, sensitivity of 

76.3% and F-measure of 79%. Table 3.2 shows the performance of the standalone ML 

classifiers on Dset-2. The ANN classifier has achieved an accuracy of 84.96%, specificity of 

85.88%, F-measure of 85.4% and sensitivity of 81.56% and SVM has achieved an accuracy of 

82.65%, specificity of 83.50%, sensitivity of 80.12% and F- measure of 84%. From the table 3.2 

and table 3.3, it can be seen that ANN performs better in comparison with the rest of the other 

classifiers i.e., DT, KNN, RF followed by SVM classifier. Table 3.3 show classification results 

of the best two classifiers and the proposed hybrid model on Dset-1 and Dset-2. It can be 

analyzed from the table that when ANN and SVM classifiers are hybrid together then the 

performance of the model is increased. 
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Thus, it can be said that the proposed ANN-SVM performs better in comparison with the 

standalone ANN and SVM classifier. Table 3.4 shows comparison of the ANN-SVM hybrid 

model with existing models. An improvement of 2% to 4% is reported with ANN-SVM hybrid 

model in comparison with reported literature. The ANN-SVM hybrid model has achieved an 

accuracy of 84.12%, specificity of 82.95%, F-measure of 85.23% and sensitivity of 85.14% on 

Dset-1 and an accuracy of 90%, specificity of 87.5%, F-measure of 91.67% and sensitivity of 

91.66% on Dset-2. 

                                  Figure 3.5: Parameter setting of ANN-SVM hybrid model [83] 

 

Table 3.1: Performance comparison of ML classifiers on Dset-1 
 

Models Accuracy 

(%) 

Sensitivity 

(%) 

F- 

measure 

(%) 

Specificity 

(%) 

DT 74.5 73.26 75 79 

SVM 78.4 76.3 79 80.4 

KNN 71.4 68.69 72 74.59 

RF 74.5 72.60 76 77.99 

ANN 79.28 77.16 80.9 82 

 

 

Table 3.2: Performance comparison of ML classifiers on Dset-2 
 

Models Accuracy 

(%) 

Sensitivity 

(%) 

F- 

measure 

(%) 

Specificity 

(%) 

DT 75.90 73.55 77.1 80.68 

SVM 82.65 80.12 84 83.50 

KNN 70.1 68.11 71.6 75.55 

RF 80.60 77.79 81.11 81.41 

ANN 84.96 81.56 85.4 85.88 
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Table 3.3: Classification results of the best two classifiers and the proposed ANN-SVM hybrid 

model on Dset-1 and Dset-2 

Datasets Classifiers/ 

Models 

Accuracy 

(%) 

Specificity 

(%) 

F-measure 

(%) 

Sensitivity 

(%) 

 

Dset-1 

ANN 79.28 77.16 80.9 82 

SVM 78.4 76.3 79 80.4 

ANN+SVM 
(Hybrid model) 

84.12 82.95 85.23 85.14 

 

Dset-2 

ANN 84.96 81.56 85.4 85.88 

SVM 82.65 80.12 84 83.50 

ANN+SVM 
(Hybrid model) 

90 87.5 91.67 91.66 

 

 

Table 3.4: Comparison of the ANN-SVM hybrid model with existing models 
 

Model Feature 

Extraction 

Technique 

Classifier Accuracy 

(%) 

Specificity 

(%) 

Sensitivity 

(%) 

F-measure 

(%) 

(Zhu et. al 

(2013)) 

Sonographic 

features 

ANN 83.10 81.80 83.80 - 

(Song et. al 

(2015)) 

GLCM SVM, ANN,   RF, 

LR, logistic 

84 78.5 78.9 78.4 

(Jiang et. al 

(2017)) 

Sonographic 

features 

SVM, KNN, LR, 

DT, RF 

84 - - - 

(Dandan et. al 

(2018)) 

WMCM SVM 87 - - - 

(Zhang et. al 

(2019)) 

Sonographic 

features 

RF, logistic 

regression, SVM, 

Neural net, adaptive 
boosting, naïve 

bayes, CNN 

84.6 84.2 88.1 - 

(Colakoglu et. 

al (2019)) 

Texture 

features 

RF 86.8 87.95 85.2 - 

(Ma et. al 

(2020)) 

Sonographic 

features 

KNN, LR, SVM 87 - - - 

Proposed 

model 

GLCM Hybrid of ANN- 

SVM 

Dset-1: 

84.12; 

Dset-2: 

90 

Dset-1: 

82.95; 

Dset-2: 

87.5 

Dset-1: 

85.14; 

Dset-2: 

91.66 

Dset-1: 

85.23; 

Dset-2: 

91.67 
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3.2 Summary 

This chapter presents a hybrid model using hybridization of two ML classifiers for 

identification and classification of TNDs. The proposed ANN-SVM model is compared with 

standalone classifiers as well with hybrid model. From the experiments, it can be inferred that 

the performance of the proposed model is competitive when the two ML classifiers are hybrid 

together. 
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CHAPTER 4 

 
CNN-SVM HYBRID MODEL FOR THE IDENTIFICATION 

AND CLASSIFICATION OF THYROID NODULE 

 
 

CNN and its variants are one of the most famous and commonly employed algorithms in the 

field of medical imaging [94]. Some of the popular reasons include automatic identification of 

relevant features from the images without any human supervision. Its structure is inspired from 

neurons processing in human brains [95]. This chapter gives an elaborative explanation on the 

hybridization of CNN with SVM for the identification and classification of TNDs. The 

efficiency of the CNN-SVM hybrid model is tested on collected and TDID datasets. 

4.1 Proposed Methodology 

 
The working of CNN-SVM model for the identification and classification of TNDs is discussed 

in this section. The model works in four stages namely: (1) data collection, (2) pre-processing, 

(3) classification and (4) result analysis. Figure 4.1 shows the systematic flow of the CNN- 

SVM model. 

 

Figure 4.1: Systematic flow of CNN-SVM hybrid model 
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4.1.1 Data Collection Phase 

 

In this work, public TDID dataset and collected dataset are considered. The public dataset has 

188 malignant and 107 benign images i.e., a total of 295 thyroid USG images whereas collected 

dataset has 226 malignant and 428 benign i.e., a total of 654 thyroid USG images. Figure 4.2 

shows the sample of benign and collected dataset. 

 
 

Figure 4.2: Sample of benign and malignant TNDs 

 
4.1.2 Pre-processing 

 

It is defined as a way of converting raw data into a desired form [96-97]. This derived 

information will be fed into the training model for the successful diagnosis [98]. The various 

steps involve in pre-processing are image resizing, noise removal using gaussian blur function, 

RGB to grayscale conversion and data augmentation respectively. Initially the size of image 

was 560 X 360 pixels, for the uniformity it’s being resized to 256 X 256 pixels. In this work, 

four types of data augmentation techniques are used namely like rescale, zoom, shear and 

horizontal flip respectively. All these steps are computed using equation [4.12-4.15]: 

𝑟𝑒𝑠𝑖𝑧𝑒 = 𝑡𝑓. 𝑘𝑒𝑟𝑎𝑠. 𝑆𝑒𝑞𝑢𝑒𝑛𝑡𝑖𝑎𝑙([𝑙𝑎𝑦𝑒𝑟𝑠. 𝑅𝑒𝑠𝑖𝑧𝑖𝑛𝑔(𝐼𝑀𝐺 _𝑆𝐼𝑍𝐸, 𝐼𝑀𝐺 _𝑆𝐼𝑍𝐸)])             (4.12) 

where IMG_SIZE: size of the image 

𝑡𝑓. 𝑖𝑚𝑎𝑔𝑒. 𝑔𝑟𝑎𝑦𝑠𝑐𝑎𝑙𝑒_𝑡𝑜_𝑟𝑔𝑏(𝑖𝑚𝑎𝑔𝑒𝑠, 𝑛𝑎𝑚𝑒 = 𝑁𝑜𝑛𝑒)                                                      (4.13) 

 
where images: the RGB tensor to convert the images, name: name of the operation 

 
𝑔𝑎𝑢𝑠𝑠𝑖𝑎𝑛 = 𝑛𝑝. 𝑟𝑎𝑛𝑑𝑜𝑚. 𝑛𝑜𝑟𝑚𝑎𝑙(𝑚𝑒𝑎𝑛, 𝑠𝑖𝑔𝑚𝑎, 𝑖𝑚𝑎𝑔𝑒. 𝑠ℎ𝑎𝑝𝑒)                                    (4.14) 

where sigma: standard deviation 
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𝑡𝑟𝑎𝑖𝑛_𝑑𝑎𝑡𝑎𝑔𝑒𝑛 = 𝐼𝑚𝑎𝑔𝑒𝐷𝑎𝑡𝑎𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟(𝑁𝑎𝑚𝑒, 𝑉𝑎𝑙𝑢𝑒)                                                  (4.15) 

 
where Value: values assigned to techniques, Name: name of the techniques 

4.1.3 Classification using Hybridization of CNN and SVM Classifiers 

 

4.1.3.1 CNN 

The CNN architecture consists of four parts namely: (1): input layer, (2): convolutional layer, 

(3): max-pooling layer, (4): fully connected layer and (5): output layer [99]. Figure 4.3 shows 

the workflow of CNN. 

 
Figure 4.3: Workflow of convolutional neural network [100] 

 

1. Input Layer 

It specifies a complete description of an image (Nh x Nw x Nc) were h: height, w: width and c: 

channel size of an image [101]. 

 
2. Convolutional Layer 

In this layer, 2-D kernels are learned during the initial phase. The coefficients(coeff.) of all 

these kernels encodes the important information from the input image [102]. There are some 

hyper-parameters like number of kernels, padding, size of kernels and stride to improve the 

performance [103]. Convolution works by finding the sum of the dot(.) products between the 

input image and the kernel [104]. The output of the convolution becomes the input of the next 

layer. It works as the spatial filtering [105]. Here, the size of kernel (k) is defined by equation 

16: 

𝑊 𝑥 𝐻                                                                                                                                                   (4.16) 

where W: width and W=2a+1, a and b: positive integer, H: height of the image pixel and 

H=2b+1 



38 
 

During the entire convolutional operation, the size of the image and the kernel are same. 

Padding is one of the techniques of the convolution process to introduce zeros (0s) around the 

border of the image to maintain the aspect ratio of the resultant image after convolution [106]. 

This can be computed using equation 4.17: 

[𝑁, 𝑁, 𝑍] ∗ [𝑊, 𝑊, 𝑁 ] = ([
𝑁+2𝜌−𝑤 

+ 1] , [
𝑁+2𝜌−𝑤 

+ 1] , 𝑁 )                                               (4.17) 
  

𝐶 𝑠 𝑠 𝑓 

 

where [N, N, Z]: Size of an image, [W, W, N_C]: Size of a kernel, p: no. of padding, s: stride 

length, N: filter depth, Z: image depth, Nf: filters of the kernel 

 
Figure 4.4(a-e) explains the illustration of a convolutional operation with 3X3 kernel size. In 

this case, the input to the image is 5X5 matrix with stride 1. After the 9th convolution operation, 

3X3 feature map is obtained. This shows the size of the input image is reduced extracting some 

useful global and local features. 

 

Figure 4.4(a-e): The illustration of a convolutional operation with 3X3 kernel size [106] 

 

3. Max-pooling Layer 

The output of the convolutional layer becomes the input of the max-pooling layer [107]. It 
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𝑖 

𝑖 

extracts the most essential features from each feature map, thereby giving the best feature 

output. The major benefits of using this layer are as follows: (1) it prevents overfitting, (2) 

feature invariance and (3) dimensionality reduction of the features [108]. It can be computed 

using equation 4.18 and 4.19: 

𝑦𝑖 = max 𝑅𝑥 𝑅{𝑦𝑟𝑥𝑟}𝑓(𝑟, 𝑟)                                                                                                           (4.18) 

𝑓(𝑟, 𝑟) = 𝜀. 𝑦𝑘−1 𝑥 𝑣𝑘   + 𝑒𝑘                                                                                                                                                                   (419) 
𝑖 𝑖,𝑗 𝑗 

where max RxR: max-pooling in RxR, 𝑦𝑟𝑥𝑟: i-th output of rxr window, ϵ: trainable variant 

 
 

Figure 4.5(a-b) explains the illustration of max-pooling operation. The complete operation 

works from left(L) to right(R), the first picture is the input, next is the max-pooling and so on. 

Figure 4.5(a-b): Illustration of max-pooling operation [107] 

 
 

4. Fully Connected Layer 

This layer combines all the features extracted from the input images learned by the previous 

layers to classify the images [109]. Here flattening function is performed to convert a 2D matrix 

to the 1D array which helps in reducing dimension and computation complexity [110]. In this, 

each node of neuron has some weight and bias associated with it to help the input image to gain 

information [111]. Figure 4.6 shows the flattening operation performed in fully connected layer. 
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𝛴 𝑒 

 

 
 

Figure 4.6: The flattening operation performed in fully connected layer [109] 

 
 

5. Output Layer 

In this layer we have the classified result which is mostly followed by softmax function (i.e., 

the normalized exponential function) which gives the output mapped into the range of [0,1] 

[112]. It can be computed using equation 4.20: 

𝜎(𝑧 ) = 
𝑒𝑧𝑖

 
 

(4.20) 
𝑖 𝑛 𝑧𝑖 

𝑖=1 

 

where n: maximum no. of classes, zi : input 

 
 

4.1.3.2 SVM 

It is a class of ML algorithms works by finding (n-1) dimensional hyper-plane. It finds a plane 

by maximizing the dist. between the data points available or given in the classes with the help 

of support vectors [113]. SVM employs the use of kernels like sigmoid, radial basis function 

(rbf), linear, polynomial and non-linear which takes the data as the input and gives output 

accordingly [114-115]. 

Let there be a sample dataset input: {(𝑥1, 𝑦1 ), (𝑥2, 𝑦2), … … (𝑥𝑛, 𝑦𝑛)}, 𝑥𝑖 𝜖 𝑅𝑑, target output: 𝑖 = 1,2, 

… … 𝑁, 𝑦 ∈ {∓1}[116]. The optimal classification hyperplane is defined as given in equation 4.21: 

𝑣𝑇𝑥𝑖 + 𝑏 = 0                                                                                                                                      (4.21) 

where b: bias, 𝑣: weight vector 

Then b and 𝑣 can be determined using equation 4.22: 

𝑦𝑖(𝑤𝑇𝑥𝑖 + 𝑏) ≥ 1 − 𝑥𝜉𝑖                                                                                                                                                                    (422) 
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𝑖=1 

where ξi is the slack variable(var.). 

According to Lagrange multiplier method, the solution to optimal classification hyperplane is 

converted into optimization using equation 4.23: 

𝑄(𝑎) = ∑ 𝑎𝑖

𝑁

𝑖=1

−
1

2
∑ ∑ 𝑎𝑖𝑎𝑗𝑦𝑖𝑦𝑗𝐾

𝑁

𝑗=1

𝑁

𝑖=1

(𝑥𝑖, 𝑥𝑗)                                                           (4.23) 

where {𝑎𝑖}𝑁   is lagrange multiplier, K(xi,xj) is kernel function 

 

4.1.3.3 Hybridization of CNN-SVM Model 

This model works by removing the last output layer of CNN with SVM model. It can be said 

that the output of the last layer will become the input to SVM for better classification of TNDs. 

The CNN model applies different convolutional (conv.) and subsampling technique in 

convolutional layer [117]. These functions speed up the extraction of important data from the 

input given to the model. At the end, SVM trains the feature vectors obtained from fully 

connected layer and take decision in an effective manner. Figure 4.7 shows the CNN-SVM 

model. 

 
Figure 4.7: Proposed CNN-SVM hybrid model 

 

4.1 Algorithm: Proposed CNN-SVM hybrid model 
 

Algorithm 4.1: Proposed algorithm for CNN-SVM hybrid model 

Input: Imd→ Image, AugImd →Augmented Images 
Output: Type of TNDs 

BEGIN 

1. Upload the image dataset on the google drive account 

2. for i→row(Imd) 
for j→column(Imd) 

3. B= tf.keras.Sequential ([Resize(IMG_SIZE,IMG_SIZE)]) 

4. B= tf.image.rgb_to_grayscale(images,name=None) 

5. denoise← Gaussian_blur 

6. Data Augmentation←imageDataGenerator (Name, Value) 
7. Initialize the parameters of CNN 
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 - dropoutfactor 

- maxepoch 

- batchsize 

- learning rate 

- activation function 
- optimizer 

8. Remove the last layer of CNN 

9. Add SVM classifier 

10. Set training and testing ratio 

Train model← Train (Net, Training data) 
Classification result← Train (Net, Training data, test data) 

11. if (Classification result = true) 
 Classify type of TNDs 

END  

END  

 

4.1.4 Result Analysis 

The proposed model is performed on Google Collaboratory, intel core i5 8th Generation, 16GB 

RAM, 1TB SSD, 8 GB NVIDIA GPU. The libraries used in this work are matplotlib, keras, 

sklearn, sys, imageio, PIL and tensorflow. For better representation, public TDID and collected 

datasets are re-named as Dset-1 and Dset-2. Further for comparing the proposed CNN-SVM 

model, those research (Rs.) papers are considered that have used the public TDID dataset. Data 

augmentation technique is used to increase the sample size of the datasets after applying the 

various pre-processing steps. The initial public and collected sample size were 295 and 654 

USG images. After data augmentation, initial and collected sample size are 1180 and 2616 USG 

images. For both the datasets, 8:2 ratios are set for CNN-SVM model training and testing. Table 

4.1 shows the various parameters set for the CNN-SVM hybrid model on Dset-1 & Dset-2. 

Table 4.2 shows the comparison of the CNN-SVM hybrid model on Dset-1 and Dset-2 with the 

existing models used for classifying TNDs. It can be analyzed that the CNN-SVM hybrid model 

has performed well on both the datasets. The model has achieved an accuracy of 94.57%, F-

measure of 95.64%, sensitivity of 96.70% and specificity of 91.89% on Dset-1 and an accuracy 

of 96%, F-measure of 98.33%, sensitivity of 97.80% and specificity of 93.93% on Dset-2. 

Figure 4.8 shows the performance comparison of the accuracy parameter with existing models 

and proposed model on Dset-1 and 2. It can be analyzed from the figure that there is an 

improvement of 3% to 5% in the performance of the proposed model. Figure 4.9 shows 

performance comparison of specificity, F-measure and sensitivity parameters with existing and 

proposed model on Dset-1 and Dest-2. The proposed model has achieved sensitivity of 96.70%, 
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F-measure as 95.64% and specificity of 91.89% on Dset-1 and specificity of 93.93%, F-measure 

of 98.33% and sensitivity of 97.80% on Dset-2. An improvement of 2% to 3% is reported by 

proposed model in figure 4.9. Figure 4.10 shows the epoch-accuracy graph for Dset-1. Figure 

4.11 shows the epoch-accuracy graph for Dset-2. 

 
 

Table 4.1: Parameters set for training CNN-SVM hybrid model for Dset-1 and Dset-2 
 

Parameter Batch 

Size 

Kernel 

Size 

Activation Stride Pooling 

layer 

Activation Optimizer Epoch Regularizer 

l2 

Values 32 3 Relu 2 Max- 

pooling 

layer 

Linear Adam 100 0.01 

 
Table 4.2: The comparison of the CNN-SVM model on Dset-1 and Dset-2 with existing models 

used for classifying TNDs 

Models Accuracy 

(%) 

F- 

measure 

(%) 

Sensitivity 

(%) 

Specificity 

(%) 

(Wang et al. 

(2018)) 

80.91 - 81.82 80 

(Nguyen et al. 

(2019)) 

90.88 - - - 

(Song et al. 

(2019)) 
92.1 - 94.1 96.2 

(Ajilisa et al. 

(2020)) 

89.93 89.43 92.76 - 

(Nguyen et al. 

(2021)) 

92.05 - - - 

(Proposed 

CNN-SVM 

hybrid 

model on 

Dset-1) 

94.57 95.64 96.70 91.89 

(Proposed 

CNN-SVM 

hybrid 

model on 

Dset-2) 

96 98.33 97.80 93.93 
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Figure 4.8: Performance comparison of the accuracy parameter with the existing and CNN- 

SVM model on Dset-1 and Dset- 2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.9: Performance comparison of specificity, f-measure and sensitivity parameters with 

existing and CNN-SVM model on Dset-1 and Dset-2 
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Epoch-accuracy graph for dataset-1 
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Figure 4.10: The epoch-accuracy graph for Dset-1 
 

 

 

 

 

         

         

         

         

         

         

         

         

         

         

 

 
 

Figure 4.11: The epoch-accuracy graph for Dset-2 

 
4.2 Summary 

An effective CNN-SVM hybrid model is proposed for classification of BTND and MTND USG 

images in this chapter. The work has been evaluated on 1180 and 2616 public TDID and 

collected TNDs image datasets on Google Colaboratory. The proposed model is found to 

perform well even when the sample size of the dataset is less. It has shown an improvement of 
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3% to 5% on Dset-1 and 4% to 6% on Dset-2 in comparison with existing models reported in 

literature for the identification and classification of TNDs. 
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CHAPTER 5 

 
AN OPTIMIZED CONVOLUTIONAL NEURAL NETWORK 

MODEL FOR THE IDENTIFICATION AND CLASSIFICATION 

OF THYROID NODULE 

 

 
In DL, hyperparameter (hyp) optimization is problem of choosing a set of optimal parameters 

for a learning algorithm. It chooses the best parameter to control the learning process [118]. In 

this chapter, Grid Search Optimization (GSO) based CNN model is proposed for the 

identification and classification of TNDs. Several DL models like Alex-Net, Deep Neural 

Network (DNN), Res-Net-50 and Visual Geometry Group (VGG-16) are explored along with 

segmentation and boundary detection techniques. The proposed approach is tested on public 

TDID and collected datasets using GSO technique. The result shows that proposed GSO-CNN 

model outperforms from reported literature and improves the accuracy of the model. 

 
5.1 Proposed Methodology 

This section covers various phases involved for the working of the GSO-CNN model. The model 

works in five phases: (1) data collection, (2) pre-processing, (3) morphological, segmentation 

and boundary detection, (4) optimization and classification and (5) result analysis. Figure 5.1 

shows the systematic flow of the proposed GSO-CNN model. 
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Figure 5.1: Systematic flow of the proposed GSO-CNN model 

5.1.1 Data Collection 

Public TDID and collected datasets are considered for the evaluation of the model as discussed 

in section 4.1.1 

 
5.1.2 Pre-processing 

The various pre-processing steps involved in this work are image resizing, noise removal, RGB 

to grayscale conversion as discussed in section 3.2.2. The various data augmentation techniques 

involved in this work are RandRotation, RandXTranslation, RandYTranslation, 

RandXReflection, RandYReflection and Padding. 

 
5.1.3 Morphological Operation, Segmentation and Boundary Detection 

5.1.3.1 Morphological Operation 

Morphological operation is applied on the image to extract out the exact region of TNDs with 

using basic operation [119]. Figure 5.2 shows the morphological operation. 
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Figure 5.2: The morphological operation [120] 
 

In this work, dilation and erosion operation are considered. The structure used in this work is 

“disk”. The dilation and erosion are computed using equation 5.24 and 5.25: 

𝐼(𝑑𝑖𝑙𝑎𝑡𝑒)𝑆 = {𝐼 + 𝑆; 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑝𝑖𝑥𝑒𝑙𝑠 𝑖𝑛 𝐼 ∈ 𝑆}                                                                             (5.24) 

𝐼(𝑒𝑟𝑜𝑑𝑒𝑑)𝑆 = {𝐼(𝑒𝑟𝑟𝑜𝑟𝑒𝑑)𝑆}(𝑒𝑟𝑜𝑑𝑒𝑑)𝑆                                                                                     (5.25) 

 
 

The morphological gradient (G) function is computed using equation 5.26: 

𝐺 = {𝐼(𝑑𝑖𝑙𝑎𝑡𝑒)𝑆 − {𝐼(𝑒𝑟𝑜𝑑𝑒𝑑)𝑆}                                                                                                  (5.26) 

 
 

5.1.3.2 Segmentation 

It is defined as the process of partitioning image into image segments formerly known as image 

objects [121]. It is mostly used to change the representation into more meaningful form for easy 

analysis [122]. Active Contour (AC) segmentation technique was first coined by “Kass” [123]. 

It is basically the curve in the image space whose deformation is based on energy minimization. 

Let x and y be the position of co-ordinates of an 2D image I(x,y), and curve be: 
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0 

0 

𝑉(𝑠) = (𝑥(𝑠), 𝑦(𝑠))                                                                                                                           (5.27) 

where s є [0,1] 

The energy function (E) is defined using equation 5.28 and 5.29: 
1 

𝐸𝑡𝑜𝑡𝑎𝑙 = ∫ 𝐸(𝑉(𝑠))𝑑𝑠 

1 

𝐸𝑡𝑜𝑡𝑎𝑙 = ∫ [𝐸𝑖𝑛𝑡 (𝑉(𝑠)) + 𝐸𝑒𝑥𝑙 (𝑉(𝑠))] 𝑑𝑠 

where Eint: internal & Eext: external energy 

    (5.28) 

 
    (5.29) 

To control the deformation and displacement, Eint and Eext are converted into internal and 

external forces. 

The Eint and Eext energy component can be defined as: 

𝐸𝑖𝑛𝑡(𝑉 (𝑠 )) = [ 
2 

𝛼(𝑠 )|𝑉𝑠 (𝑠 )|2 + 
1 

𝛽 
2 

(𝑠 )|𝑉𝑠𝑠 (𝑠 )|2]   (5.30) 

where α: weight factor, β(s): control factor 

𝐸𝑖𝑛𝑡(𝑉 (𝑠 )) = [ 
2 

𝛼(𝑠 )|𝑉𝑠 (𝑠 )|2 + 
1 

𝛽 
2 

(𝑠 )|𝑉𝑠𝑠 (𝑠 )|2]    (5.31) 

 

where γ: weight factor, G_σ (x,y): 2D gaussian function, *:convolution operator, ∇: gradient 

operator, σ: standard deviation 

At equation 5.32, the Eint and Eext attain the minimum value. Hence goal is achieved. 

𝐹𝑖𝑛𝑡+ 𝐹𝑒𝑥𝑡  = 0                                                                                                                            (5.32) 

 
5.1.3.3 Boundary Detection 

It works by finding the boundaries between the light and dark pixels in an input image [124]. It 

is computed using equation 5.33: 

𝐵(𝐴) = 𝐴 − (𝐴 ⊝ 𝐵)                                                                                                                     (5.33) 

where A: Matrix of an image M x N, B(A): Boundary detection, ⊝: Erosion function, B: 

Structuring element 

 
5.1.4 Optimization and Classification 

Different variants of the CNN models are considered such as Res-Net-50, Alex-Net, VGG-16 

and DNN for classification of TNDs. The working of CNN has been explained in section 

4.1.3.1. 

1 

1 
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5.1.4.1 Res-Net-50 

Res-Net-50 model is a residual deep learning network having 50 layers developed by He, Zhang 

[125]. Res-Net-50 attempts to address the problem of vanishing gradient problem that occur 

during back-propagation of CNN [126]. The network allows training of networks by 

constructing through modules called as residual model. Figure 5.3 shows the structure of Res- 

Net-50. 

 

Figure 5.3: Structure of Res-Net-50[127] 

 
 

5.1.4.2 Alex-Net 

It was coined in 2012 and employed for generalized image classification for the first time [128]. 

In the Alex-Net, ReLU function is introduced to solve the problem of non-linearity and speed 

up of the network [129]. Alex-Net consists of five convolutional(conv.) layer, three fully 

connected layers and one output layer. There is a Local Response Normalization (LRN) layer 

that follows the first as well as the second convolutional layer [130]. Figure 5.4 shows the 

structure of Alex-Net. 
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Figure 5.4: Structure of Alex-Net [131] 

 
 

5.1.4.3 VGG-16 

The idea was coined from the “University of Oxford” and trained on ImageNet dataset [132]. 

A traditional VGG-16 consists of multiple “3X3 kernel-sized filters” that help the model in 

learning complex features by increasing depth of the network [133]. Figure 5.5 shows the 

architecture of VGG-16. 

 

Figure 5.5: Structure of VGG-16 [134] 
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5.1.4.4 DNN 

It is the improved versions of ANN with multiple layers [135]. The DNN is highly preferred 

over traditional ML algorithms like SVM, KNN and DT. These include extracting high level 

features thereby learning more complex patterns [136-137]. Due to the mentioned reasons, 

DNN is highly preferred image processing, computer vision, machine translation and Natural 

Language Processing (NLP) [138]. Figure 5.6 shows the structure of DNN. 

 

Figure 5.6: Structure of DNN [139] 

 
5.1.4.5 Optimizing Using GSO Technique 

Optimization of drop-out and learning rate factor using GSO technique is discussed in this 

section. Let the hyperparameters be hyp1,……..hypn of the DL model and α1,…..αn be domains. 

The model is trained with hyp (DLtrain) on the training of TNDs images. The main aim behind 

hyp is to find the best parameter hyp1*, hyp2*. Figure 5.7 shows the proposed GSO-CNN model. 
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Figure 5.7: Proposed GSO-CNN model 

 
 

5.1 Algorithm for optimization of CNN model using GSO technique 

 

Algorithm 5.1: Optimization of CNN model using GSO technique 
Input: hyp1* 
Output: hyp1*, hyp2* 

create deeplmodel () 
ml.add(hyp1*, values_of_drop-out _actor, optimization_algo) 

gridsearch= GriddSearchCV(par grid=par, grid,est=ml) 

result=gridsearchd.fit( ) 

Print (“best_drop-out_factor, best_learnin_rate”); 
Return hyp1 *, hyp2 * 

 
 

5.2 Proposed GSO-CNN Algorithm for the identification and classification of TNDs 

 

Algorithm: Classification using GSO-CNN model 

Input: TNDs USG images 
Output: Type of TNDs 

BEGIN 

1. Upload sample images of TNDs. 

2. Use pre-processing step for the uniformity of the TNDs images. 

3. Use active contour segmentation technique. 

4. Apply B(A) to find boundary of the TNDs. 

5. Set the training and testing ratio of the model. 

6. Initialize the parameters of CNN 

-dropoutfactor 

- maxepoch 

- batchsize 

- learning rate 

- activation function 
- optimizer 

7. Use gd_technique to find the best hyp1 * and hyp2 *. 



55 
 

8. Train the model 
 Classify type of TNDs 

END 
 
 

5.1.5 Result Analysis 

This section focuses on the various results obtained for the GSO-CNN model. In this work, 

datasets are renamed as follows: Dset-1: public TDID and Dset-2: collected dataset. Initially, 

the sample size of public and collected datasets were 295 and 654. After considering six 

different augmentation techniques (RandRotation, RandXTranslation, RandYTranslation, 

RandXReflection, RandYReflection and Padding), the new sample size of the datasets are 1770 

and 3924 USG images. 8:2 ratio is set for GSO-CNN model for training and testing purpose. 

Table 5.1 shows the various parameters setting for GSO-CNN model for Dset -1 and Dset-2. 

Table 5.2 shows the comparison of the proposed GSO-CNN model with Alex-Net, Res-Net- 

50, VGG-16 and DNN based on with (CASE-1) and without segmentation and boundary 

detection techniques (CASE-2) on Dset -1 and Dset-2. From the table, it can be observed that 

the results obtained in CASE-2 are better than CASE-1. The proposed GSO-CNN, VGG-16, 

Alex-Net, and Res-Net-50 models have shown an improvement of 1% to 2% in CASE-2 with 

respect to performance parameters. Table 5.3 shows results of GSO obtained on dropout factor 

and learning rate parameters on proposed GSO-CNN, Alex-Net, Res-Net-50, VGG-16 and 

DNN models. The best results are obtained on 0.01 learning rate and 0.2 dropout factor. The 

best results obtained by the models on Dset -1 are 95.30%, 91.01%, 82.84%, 86.01%, 86.66% 

for GSO-CNN, DNN, Alex-Net, Res-Net-50 and VGG-16 models respectively. The models 

achieved 96.02%, 92.30%, 83.08%, 91.76% and 87.16% for GSO-CNN, DNN, Alex-Net, Res- 

Net-50 and VGG-16 models respectively on Dset-2. Table 5.4 shows the comparison of the 

GSO-CNN model and existing models on Dset -1 and Dset-2. From the table, it can be 

analyzed that the proposed GSO-CNN model has achieved better results in comparison with 

the existing models. The proposed GSO-CNN model achieved 95.30%, 96.66%, 97.20%, 

94.87% on Dset -1 and 96.02%, 96.70%, 98.34%, 95% on Dset -2 on accuracy, sensitivity, F- 

measure and specificity parameters. Figure 5.8 shows the comparative analysis of the accuracy 

parameter with the models on Dset -1 and Dset-2. The results obtained on accuracy parameter 

of the GSO-CNN model have shown an increment of 3% to 4% on Dset -1 and Dest-2. The 

model has achieved an accuracy of 95.30% on Dset -1 and 96.02% on Dset -2. Figure 5.9 

shows the comparative analysis of sensitivity, specificity and F-measure parameters with 
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existing models on Dset -1 and Dset-2. The model has achieved sensitivity of 96.66% and 

96.70% on Dset -1 and Dset-2 & F-measure of 97.20% and 98.34% on Dset -1 and Dset-2. 

The GSO-CNN model has shown rise of 4 to 5% on sensitivity and 8% to 9% on F-measure 

parameters. However, the model has not achieved better results on specificity parameter. The 

model has achieved specificity of 94.87% on Dset -1 and 95% on Dset -2 which is lower than 

the results obtained by Song et al. (2019) with 96.2% and higher with Wang et al. (2018) model 

with 80%. Figure 5.10 and figure 5. 11 show the accuracy-epoch graph for Dset -1 and Dset- 

2 respectively. 

 
Table 5.1: Parameter setting for GSO-CNN model for Dset -1 and Dset- 2 

 

Parameters Value 

Batch size 15 

Activation function Softmax 

Max-pooling 2X2 

Drop-out factor 0.2 

Max-epoch 10 

Learning rate 0.01 

Optimizer SGDM 

 

 

 
Table 5.2: Performance comparison of the GSO-CNN model with Alex-Net, Res-Net-50, 

VGG-16 and DNN on Dset -1 and Dset-2 

Dset Techniques Models Accuracy 

(%) 

Specificity 

(%) 

F-measure 

(%) 

Sensitivity 

(%) 
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GSO-CNN     

model 94.11 93.33 96.20 95.65 

DNN 90.90 89.85 89 92.63 

Alex-Net 82.98 80.98 83.96 83.96 

Res-Net-50 86.48 84.52 87.25 87.25 

VGG-16 85.71 83.90 86.40 86.40 

 
D

se
t 

-2
 

GSO-CNN     

model 95.33 95 97.20 96.66 

DNN 91.81 90.78 92.14 92.63 

Alex-Net 82.28 81.92 82.60 83.51 

Res-Net-50 90.11 89.33 93.61 91.66 

VGG-16 86.63 84.88 87.25 87.25 
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GSO-CNN     

model 95.30 94.87 97.20 96.66 

DNN 91.01 90.27 93.54 92.55 

Alex-Net 83.85 81.81 84.76 84.76 

Res-Net-50 87.91 86.58 88.55 89 

VGG-16 86.66 83.95 87.56 87.12 

 
D

se
t 

-2
 

GSO-CNN     

model 96.02 95 98.34 97.02 

DNN 92.30 90.16 93.19 93.68 

Alex-Net 83.08 82.97 85.98 84.76 

Res-Net-50 91.76 90.66 92.14 92.63 

VGG-16 87.16 86.04 87.68 88.11 

 

 

Table 5.3: Results of GSO technique obtained on dropout factor and learning rate parameters 

obtained on GSO-CNN model, Alex-Net, Res-Net-50, VGG-16 and DNN 

 

 

P
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er
s 

Learning 

rate 

0.01 0.04 0.07 0.09 0.1 0.05 0.08 

Dropout 

factor 

0.2 0.02 0.06 0.09 0.1 0.04 0.08 
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(GSO- 

CNN) 

Model 

 
95.30 

 
80.90 

 
85.16 

 
89 

 
76.06 

 
82.32 

 
87.19 

DNN 91.01 69 76.88 82.76 62.3 71.1 81.1 

Alex-Net 82.84 59.99 68.3 77.9 58 64 73.6 

Res-Net- 

50 

86.01 62.7 64 78.41 54 69.6 74.29 

VGG-16 86.66 68.2 78.55 81.27 59 73.3 80.3 
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(GSO- 

CNN) 

Model 

 
96.02 

 
84.96 

 
88.86 

 
92.70 

 
77.39 

 
86.40 

 
90.81 

DNN 92.30 65.2 79.27 88.9 59.5 72.2 85.1 

Alex-Net 83.08 64.44 73.23 78.9 57.11 69.9 75 

Res-Net- 

50 

91.76 76 86 91 72.6 81.49 88.1 

VGG-16 87.16 64.7 75 81.9 60 71.34 79.81 
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Table 5.4: Comparison of the proposed GSO-CNN model and existing models on Dset -1 and 

Dset-2 

Models F-measure 

(%) 

Accuracy 

(%) 

Specificity 

(%) 

Sensitivity 

(%) 

(Wang et. al (2018)) - 80.91 80 81.82 

(Nguyen et. al (2019)) - 90.88 - - 

(Song et. al (2019)) - 92.1 96.2 94.1 

(Ajilisa et. al (2020)) 89.43 89.93 - 92.76 

(Nguyen et. al (2021)) - 92.05 - - 

Proposed (GSO-CNN) 

model on Dset -1 

97.20 95.30 94.87 96.66 

Proposed (GSO-CNN) 

model on Dset -2 

98.34 96.02 95 96.70 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5.8: Comparative analysis of the accuracy parameter with models on Dset -1 and Dset- 

2 
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Figure 5.9: Comparative analysis of models based on sensitivity, f-measure and specificity on 

Dset -1 and Dset-2 
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Figure 5.10: Accuracy-epoch graph for Dset -1 
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5.2 Summary 

Figure 5.11: Accuracy-epoch graph for Dset -2 

 

GSO-CNN model is proposed for the identification and classification of TNDs in this chapter. 

The model is compared with Res-Net-50, DNN, VGG-16, Alex-Net and various reported 

models. It is concluded from the results that the proposed GSO-CNN outperforms when 

compared with and without segmentation and boundary detection techniques. The GSO 

technique is used to optimize the drop-out factor and learning rate parameters to find the best 

results. 
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CHAPTER 6 

 
AN IMPROVED DEEP-GAN MODEL FOR 

IDENTIFICATION AND CLASSIFICATION OF 

THYROID NODULE 

 

 
 

Health care is conventionally regarded as essential determinant in promoting the general mental, 

physical, and social well-being of people around the world [140]. A reliable system for TNDs is 

necessary for early identification and classification of BTND and MTND to save effort, time 

and human life [141-145]. In this chapter, Deep- Generative Adversarial Network (Deep- GAN) 

based model is proposed for the early identification and classification of TNDs. GSO technique 

is used for tunning of the Deep-GAN (i.e., Alex-GAN and VGG-GAN) model by optimizing 

the optimizer, batch size and learning rate parameters. 

 
6.1 Proposed Methodology 

This section presents the proposed methodology adopted for Deep-GAN model. It works in four 

phases namely: (1) data collection and pre-processing, (2) data augmentation, (3) classification 

using Deep-GAN model and (4) result analysis. Figure 6.1 shows the systematic flow of the 

proposed Deep-GAN model. 
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Figure 6.1: The systematic flow of Deep-GAN model 

 

6.1.1 Data Collection and Pre-processing 

This phase has been discussed in section 4.1.1 

 
 

6.1.2 Data Augmentation 

Data Augmentation (DA) plays an important role in medical image analysis for synthetically 

increasing the sample size by generating new data points from existing data. [146]. Here, GAN 

based DA technique is used to increase the sample size.[147]. In 2014, Ian Goodfellow 

introduced the adversial process to learn Generative Models (GM) [148]. The core idea of 

GANs is inspired by a two-player zero-sum minimax game between the Discriminator (D) and 

the Generator (G) [149]. Here, there are two players namely (G) and (D) who participates in 

this game and tries to win by defeating the other and vice-versa. The D tries to determine 

whether the sample belongs to fake or real distribution whereas G aims to deceive D by 

generating fake sample distribution. The D tries to produce probability that the sample is real 

sample. The value close to zero interpret that the sample is fake sample whereas the probability 
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(P) near to 0.5 indicates D is unable to differentiate fake or real sample [150]. Figure 6.2 shows 

the architecture of GAN. 

 

Figure 6.2 : Architecture of GAN[151] 

 
 

6.1.3 Classification Using Deep-GAN 

In this chapter, VGG-16 and Alex-Net model are considered for classification of TNDs. Some 

of the popular reasons for considering Alex-Net and VGG-16 are: (i) ReLU function is used in 

pre trained architectures as it has a proven record of increasing the training speed of the models 

in literature [152], (ii) Such pertained architectures reduce the over fitting problem by using 

drop-out factor, (iii) Alex-Net allows multi-GPU training, (iv) Alex-Net shows good accuracy 

on different proposed models despite having 8 layers[153], (v) VGG-16 network introduced the 

concept of grouping multiple convolutional layers with smaller kernel size to increases the 

performance of the model [154], and (vi) VGG-16 is a deeper model having 16 layers with 

increased capability to extract features from images[155]. Its architecture explanation is 

discussed in chapter 5 under subsection 5.1.4.2 and 5.1.4.3. Figure 6.3 shows the proposed 

Alex-GAN model and Figure 6.4 shows the proposed VGG-GAN model. 
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Figure 6.3: Proposed Alex-GAN model 
 

 

Figure 6.4: Proposed VGG-GAN model 

 
 

6.1Algorithm for classification of TNDs using Deep-GAN 
 

Algorithm 6.1: Classification of TNDs using Deep-GAN 

Input: Image dataset 
Output: Type of TNDs 

BEGIN  

1. Upload dataset. 

2. Perform pre-processing steps. 
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3. Use GAN for data augmentation 

4. Divide train and test part of TNDs images 

5. Initialize the parameters of Deep-GAN model 

-dropoutfactor 

- maxepoch 

- batchsize 

- learning rate 

- activation function 
- optimizer 

6. Use GSO technique for optimization of Deep-GAN. 

7. Train the model 

 Classify type of TNDs 

END  

 

6.1.4 Result Analysis 

The section will focus on the results of the Deep-GAN model. GAN model is used to increase 

the sample size of the datasets for building and evaluating the Deep-GAN model. The public 

and collected datasets are divided into 8:2 ratio. The public dataset and collected datasets are 

renamed as Dset-1 and Dset-2. Table 6.1 shows the parameter settings of Deep-GAN on Dset- 

1 and Dset-2. Table 6.2 shows the grid search results over different values of hyperparameters 

set for the proposed Alex-GAN and VGG-GAN models. The hyper tuning of the following 

parameters like optimizer, batch size and learning rate is optimized using GSO technique. It can 

be concluded from table 6.2 that the proposed models perform best on Adam optimizer with 

learning rate of 0.001 and batch size of 35 on both datasets. Table 6.3 shows comparative 

performance comparison of VGG-16, Alex-Net, VGG-GAN and Alex-GAN models. 

Experiments are performed on Alex-Net and VGG-16 architectures CASE-1: without data 

augmentation and CASE 2: with GAN as augmentation i.e., Alex-GAN and VGG-GAN. Table 

6.3 shows the results of VGG-16, Alex-Net, VGG-GAN and Alex-GAN models. The result 

obtained in CASE-1 shows that the obtained results were not good. Hence, CASE-2 is carried 

out with GAN to achieve better results. In CASE-1, Alex-Net has achieved (96%, 94.91%, 

96.70%, 96.65%) and VGG-16 has achieved (93.60%, 90.32%,95.18%, 96.73%) in terms of 

accuracy, specificity, sensitivity and F-measure parameters. While in CASE-2, Alex-GAN 

model has achieved (97.03%, 95.83%, 97.70%, 98.26%) and VGG-GAN achieved (94.28%, 

96.73%,90.32%, 96.7%) on both datasets in terms of considered parameters. Table 6.4 shows 

the performance comparison of the Deep- GAN model (i.e., Alex-GAN and VGG-GAN) with 

reported models used for classification of TNDs. The Alex-GAN model has shown performance 
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improvement of 2% to 4% with VGG-GAN and existing models. Figure 6.5 shows the generator 

network and figure 6.6 shows the discriminator network. Figure 6.7(a-b) shows the training of 

Alex-Net architecture whereas figure 6.8(a-d) shows the training of VGG-16 architecture. 

Figure 6.9 and 6.10 show the accuracy epoch graph of Alex-GAN model on Dset-1 and Dset- 

2. Figure 6.11 and 6.12 show the accuracy epoch graph of VGG-GAN model on Dset-1 and 

Dset-2. 

 
Table 6.1: Parameter setting of Deep-GAN model on Dset-1 and Dset-2 

 

Parameter Epoch Optimizer Learning 

rate 

Batch size Stride Pooling layer Kernel size 

Values 80 Adam 0.001 35 2 Max-pooling 3 

 
Table 6.2: The grid search results over different values of hyperparameters set for Alex-GAN 

and VGG-GAN models 

Results 

 

Parameters 

 
Alex-GAN 

 
VGG-GAN 

Dset-1 Dset-2 Dset-1 Dset-2 

Sr. 

No 

Epochs Batch 

size 

Optimizer Learning 

rate 

Accuracy Accuracy Accuracy Accuracy 

1 80 55 SGD 0.1 79.64 75.9 70.1 72.9 

2 80 55 Adam 0.1 80.1 77.7 74.89 78.23 

3 80 45 SGD 0.01 84.7 83.55 85.27 81.46 

4 80 45 Adam 0.01 87.89 88.6 86 87.34 

5 80 35 SGD 0.001 93.6 94.89 91.88 92.12 

6 80 35 Adam 0.001 96 97.03 93.60 94.28 

7 80 25 SGD 0.0001 91.3 92.6 92 93.4 

8 80 25 Adam 0.0001 92.5 93.22 90.43 92 

9 80 15 SGD 0.00001 86.20 88.89 84.5 85.7 

10 80 15 Adam 0.00001 87.45 91.12 88.99 82 

 
Table 6.3: Comparative performance comparison of VGG-16, Alex-Net, VGG-GAN and 

Alex-GAN models 

Models Dsets Accuracy 

(%) 

Sensitivity 

(%) 

Specificity 

(%) 

F-measure 

(%) 

Alex-Net without 

data augmentation 

technique 

(CASE-1) 

Dset-1 92.16 93.68 91.42 95.18 

Dset-2 94.89 95.69 91.11 95.69 

VGG-16 without 

data augmentation 

technique 
(CASE-1) 

Dset-1 92.40 94.68 91.35 93.19 

Dset-2 93.37 94.62 91.37 94.11 



67 
 

Alex-GAN (CASE- 

2) 

Dset-1 96 96.70 94.91 95.65 

Dset-2 97.03 97.70 95.83 98.26 

VGG-GAN 

(CASE-2) 

Dset-1 93.60 96.73 90.32 95.18 

Dset-2 94.28 95.98 91.48 96.7 

 

 

 

Table 6.4: Performance comparison of the Deep- GAN model (i.e., Alex-GAN and VGG-GAN) with 

existing models for classification of TNDs 

Models F-measure 

(%) 

Accuracy 

(%) 

Sensitivity 

(%) 

Specificity 

(%) 

(Wang et al. (2018)) - 80.91 81.82 80 

(Nguyen et al. (2019)) - 90.88 - - 

(Song et al. (2019)) - 92.1 94.1 96.2 

(Ajilisa et al. (2020)) 89.43 89.93 92.76 - 

(Hang et al. (2021)) - 95 - - 

(Nguyen et al. (2021)) - 92.05 - - 

Proposed model 

(Alex-GAN) on 

Dset-1 

95.65 96 96.70 94.91 

Proposed model 

(Alex-GAN) on 

Dset-2 

98.26 97.03 97.70 95.83 

Proposed model 

(VGG-GAN) on 

Dset-1 

95.18 93.60 96.73 90.32 

Proposed model 

(VGG-GAN) on 
Dset-2 

96.7 94.28 95.98 91.48 
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Figure 6.5: Generator network Figure 6.6: Discriminator network 
 

Figure 6.7a: part-1 Figure 6.7b:part-2 

Figure 6.7(a-b): Training of Alex-Net architecture 
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Figure 6.8a: Generator network Figure 6.8b: Discriminator network 

 

Figure 6.8c: part-1 Figure 6.8d: part-2 

Figure 6.8(a-d): Training for VGG-16 architecture 
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Figure 6.9: The accuracy-epoch graph of Alex-GAN model on Dset-1 
 

 

 

 
 

       

       

       

       

       

 

 
 

Figure 6.10: The accuracy-epoch graph of Alex-GAN model on Dset-2 
 

 

 

 
 

       

       

       

       

       

       

       

 

 
 

Figure 6.11: The accuracy-epoch graph of VGG-GAN model on Dset-1 
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Accuracy-epoch graph for dataset-2 
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Figure 6.12: The accuracy-epoch graph of VGG-GAN model on Dset-2 

 

6.2 Summary 

The proposed Deep-GAN model has achieved promising results for the early identification and 

classification of TNDs. GSO technique is used for tunning of the Deep-GAN (i.e. Alex-GAN 

and VGG-GAN) model. The experimental results demonstrate that the proposed Alex-GAN 

performs better in comparison with VGG-GAN and other DL models reported in literature with 

an improvement of 2% to 4%. The developed models have been evaluated on TDID and 

findings are generalized by evaluating such models on collected dataset. The proposed model 

will help the radiologists for early identification and classification of TNDs in USG images. 
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CHAPTER 7 

CONCLUSION AND FUTURE WORK 

 
 

This chapter concludes research work written in the thesis. The major research contributions and 

future research directions are discussed as follows. 

7.1 Major Research Contributions 
 

The following are the major contributions of this research work. 

 

▪ The proposed model has been evaluated on public TDID and collected dataset taken from 

Kriti Scanning Center, Prayagraj, Uttar Pradesh, India duly approved by NABH and 

Healthcare Providers. The duration of dataset collection was from July 2020 to March 

2021.The goal behind using collected dataset is to generalize the results of the proposed 

models for the identification and classification of benign and malignant TNDs. 

▪ Two hybrid models are proposed: (1) hybridization of two ML classifiers i.e., ANN-SVM 

hybrid model and (2) hybridization of DL and ML classifier i.e., CNN-SVM hybrid model. 

The experimental results for these models show that hybridization of DL and ML classifier 

outperforms in comparison with hybridization of two ML classifiers. The findings 

demonstrate that the proposed CNN-SVM hybrid model performs better as compared to the 

standalone classifier. 

▪ A GSO-CNN model is proposed for the classification of TNDs in medical USG images. The 

variants of CNN models like Res-Net-50, DNN, Alex-Net and VGG-16 are explored for the 

classification of TNDs. The proposed model is optimized using GSO technique in terms of 

hyperparameters like optimizer, batch size and learning rate. The proposed GSO-CNN model 

experimental results are compared with Res-Net, DNN, Alex-Net, VGG-16 and other state- 

of-the-art models. The results shows that the proposed GSO-CNN model is competitive in 

comparison with the reported models in literature. 

▪ Deep-GAN model is proposed to improve the accuracy for the identification and classification 

of TNDs. GSO technique is used for tunning of the Deep-GAN (i.e. Alex-GAN and VGG-

GAN) model by optimizing the optimizer, learning rate and batch size hyperparameters. The 

 experimental results demonstrate that the proposed Alex-GAN performs better in 
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comparison with proposed VGG-GAN and other reported DL models in literature with an 

improvement of 2% to 4 %. 

▪ The proposed (i) CNN-SVM hybrid model, (ii) GSO-CNN model and (iii) Deep -GAN 

models are evaluated in terms of accuracy, F-measure, specificity and sensitivity parameters 

on the public and collected datasets. Based on the performance evaluation of these proposed 

model among themselves, Deep-GAN model is ranked 1, GSO-CNN model as ranked 2 and 

CNN-SVM model is ranked 3 for the identification and classification of TNDs. 

 
The proposed models can be used by the clinicians, doctors, researchers and practitioners for the 

diagnostic purpose. The proposed models will act as an early alarm for patients having TNDs. 

 
7.2 Future Work 

• Internet of Things (IOT) enabled healthcare application can be developed using DL 

techniques. 

• Different types of optimization techniques can be explored to improve accuracy of model. 

• A mobile based application can be designed for better feasibility to the doctors. 

• Other kinds of diseases related to lung, kidneys etc. can be considered to further verify the 

universality of the proposed approaches. 
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