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ABSTRACT 

 

The purpose of this study was to find common single nucleotide polymorphisms (SNPs) 

associated with rice phenotypic traits. Genome-wide association studies assist scientists in 

identifying genes associated with a specific trait. A genome wide association study was 

performed in four rice trait (grain per plant, grain yield, grain yield per meter square, plant 

height) were selected to examine whether significant phenotypic variances exist in the yield 

among the 186 rice genotype. GWAS will perform in 186 rice varieties with 50051 high-

qualities SNPs. The full phenotypic data of rice core accessions were obtained from IARI. 

(ICAR- Indian Agricultural Research Institute). Manhattan plot show the significant value 

above the p-value >0.001. In this study, we did a comparative analysis between TASSEL 

software and GAPIT R package by using two univariate methods MLM and GLM. 

Phylogenetic analysis revealed the two clusters in the rice diverse collection and population 

structure analysis show they have a four population were present in the rice diverse 

collection. Markers traits associations’ analysis using different GLM and MLM models 

revealed the 23 candidate genes those were associated with four different agronomics traits. 

Further we analysed the linkage disequilibrium with the genotype data. They show the 

closely linked markers. 

 

Keywords: SNPs, Mixed linear model, General linear model, Genome-wide association 

study, GAPIT and TASSEL. 
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1.1 INTRODUCTION  

Genome-wide association studies are just one type of recent method that allows researchers 

studying the genetics of complex traits in different rice varieties to locate the causal loci (or 

perhaps the causal genes) that underlie these features. The genetic underpinnings of the 

agronomic features in agricultural landraces which have evolved to varied agriculture-

climatic environments must be discovered in order to ensure global food security. GWAS 

uses statistical methods to look for links among sequence polymorphisms in the rice genome 

and phenotypic variation throughout rice varieties. Genome-wide association studies 

(GWAS) seek to identify genotype-phenotype associations by looking for genetic variant 

allele frequency differences among individuals who are genetically similar but differ 

phenotypically. Although in the human genome, GWAS can look at copy-number variants or 

sequence variations. Single-nucleotide polymorphisms are the most commonly studied 

genetic variants in GWAS (SNPs). Genomic risk loci are blocks of SNPs that are all 

statistically significant for the trait of interest in GWAS. There is numerous duplicated 

genetic risk loci connected to various diseases and phenotypes after 15 years of GWAS [1].  

The results of GWAS can be used for a variety of purposes. For instance, trait-associated 

genetic variations might be employed as a control variable in epidemiological studies to take 

genetic group differences into account. The outcomes of a person's genetic profile can also be 

used to forecast their risk for both physical and mental illness [2] + 

-*36GWAS has two advantages over conventional biparental populations: The primary lines 

utilised in the segregate populations are substantially less genetically diverse than the rice 

types employed in the GWAS populations & the majority of GWAS can generate rather high 

mapping resolution as a result of the numerous previous recombination events [3]. Some 

critical factors for a successful GWAS include population generation, genotype, phenotype 

and a pipeline for software. We as well summarise the key outcomes of current GWAS for 

rice, as well as functional examinations of GWAS interesting gene. These recent 

investigations have improved our genetic map capability and knowledge of the genetic 

influences on many significant rice traits. For future Prospective breeding applications, the 

future of GWAS, and rapid advances in GWAS follow-up researches [4]. 
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1.2 PROBLEM STATEMENT  

In this study, between present straight increases in worldwide food production and 

anticipated demand, there is a sizable gap. One of the most significant food crops in the world 

and a model plant for so many purposes is rice (Oryza sativa), including the rich natural 

variation within. Genome-wide association studies have emerged in recent decades (GWAS), 

have been conducted employing high-throughput sequencing to analyse the genetic makeup 

of key rice properties. Given its importance to global food security, yield is one of the key 

characteristics that rice breeders concentrate on yield. Rice is a vital cereal that feeds greater 

than 50% of the global population, especially in developing countries. Around 760 million 

tonnes of paddy, or 35% more than the amount of rice produced in 1996, will be needed by 

2025 for the world to meet the rising demand. Arable land is, however, primarily exploited, 

particularly in Asia, where 90% of the world’s rice is produced and consumed. Food 

production has become an extreme challenge due to the rapid growth of the global 

population, the energy the energy sector, and the widespread use of pesticides and fertilisers 

in agriculture have resulted in heavy metal contamination in soil, such as the metalloid 

Arsenic (As)., manganese, nickel (Ni), and cadmium (Cd) Increased levels of heavy metals in 

soil inhibit crop germination and growth, lowering farm productivity. In the meantime, plants 

take in poisonous heavy metals from polluted soil and build up the elements in consumable 

plant tissues, poisoning food [3, 4]. Additionally known as a multigene regulated 

characteristic, yield is thought to be differentiated by a variety of genes and loci. 

Additionally, yield is a complex characteristic that is influenced by a wide range of factors, 

including the number of tillers, plant Ht. no. of grain per plant, grain weight, grain yield, and 

number of major branches [5]. In this research, we collected rice data from IARI. & we 

performed GWAS to examine their HT (PLANT HEIGHT), GW (GRAIN WEIGHT), GN 

(GRAIN NUMBER PER PLANT), and DY (GRAIN YEILD) with the intention of 

identifying genes with linked SNPs that might explain phenotypic differentiation and are 

anticipated for use in subsequent breeding programmes. 
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1.3 OBJECTIVE  

• To identify the sub-population in a rice diversity panel. 

• Identification of marker trait association. 

• Identification of genes associated with significant markers. 
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2.1 Genome-Wide Association Study (GWAS) 

Genome-wide association research permits the identification of the genes associated with 

specific traits. Genome-wide association studies look for correlations across phenotypes 

genotypes and by comparing the allele frequencies of genetic variants in people with similar 

ancestry but diverse characteristics. The more than 5,700 GWAS have examined more than 

3,300 characteristics. GWAS sample sizes have increased to well over a million people as a 

result of efforts to boost statistical power, showing a significant number of linked and 

reproducible variants for many heritable variables [6, 7].  

Genome-wide association research has frequently been utilised to identify genetic variants 

that influence complex traits, either through comparative analysis or correlation analysis, and 

have found a large number of SNPs linked to the target characteristics [8]. Studies employing 

GWAS platforms have successfully analysed the genetic underpinnings of various complex 

variables in important crops during the past few decades, including flowering time and yield-

related parameters [9, 10]. GWAS were conducted to find significant associated loci that 

were persistently expressed across various contexts. The genetics governing the build-up of 

elements in rice grain has also been studied, and this has led to the discovery of closely linked 

loci and possible causal genes [11]. 

Human genome sequencing and the conclusion of the human genome haplotype mapping 

project allowed for these research to be conducted (International Hap Map project, 2005), It 

led to the identification of billions of common significant SNPs, as well as the recording of 

the alleles' correlation structures or linkage disequilibrium, countless numbers of common 

significant SNPs were found, and the alleles at those loci were recorded with regard to their 

relationship structure or linkage disequilibrium. Having chips for testing over 100,000 SNPs 

made available for a few hundred dollars or less per sample because of this understanding of 

genomic variation and cutting-edge bioengineering techniques. With the decline in the 

genome-wide genotyping costs, the number of GWAS research has significantly grown [12]. 

 

2.2 Genome-wide association study in rice (Oryza sativa) 

The "big three" global cereals— wheat, rice and maize—accounted for around 87% of all 

grains produced globally. Rice has a relatively small genome that has been fully sequenced 

using the map-based approach [13]. Numerous genetic researches have been conducted in 

order to categorise the biological functions of hundreds of rice genes, using information from 

https://en.wikipedia.org/wiki/Oryza_sativa
https://en.wikipedia.org/wiki/Oryza_sativa
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the rice reference genome sequence. There are also a number of technical platforms for 

functional genomics studies on rice [14]. The most crucial sources for breeding are the 

extensive germplasm of rice's cultivated species & wild accessions. These new varieties & 

natural accessions had already modified for various agricultural climatic environments & 

continue to have a sizable amount of genetic variation. Rice genetics research has focused 

substantially on knowing the genetic basis of phenotypic variability among germplasm, 

particularly agronomical significant traits. Among the most frequently grown worldwide 

cereal crops, rice is grown in a variety of geographic, ecological, and climatic environments 

[15, 16].  

The small genome size of rice makes it an excellent model crop for functional genomics 

research. Because of large germplasm sources and low sequencing costs, Gene-wide 

association research has enabled researchers to analyse the genetic variation underlying 

agronomic characteristics in rice. Many accessions with significant phenotypic and genotypic 

variety are available due to the diverse adaptations of rice genotypes [17].Many of these rice 

accessions, including those from the japonica, indica & javanica subspecies, have been 

preserved in international gene banks [18]. This is significant because it represents a potential 

source of gene reservoirs for crop improvement initiatives [19]. The majority of rice breeding 

initiatives, however, have only utilised a small percentage of the genetic resources that are 

accessible for rice, there is a high degree of genetic similarity among most commercial rice 

cultivars [17]. Additionally, it is essential to diversify the genetic background of rice 

genotypes by adding genes from wild or close relatives that may result in Quantitative trait 

loci or new genes for essential agronomic characteristics.  

How genetically diverse is a population and the extent to which the desired features are 

heritable both play a significant role in determining the success of any plant breeding 

programme [19]. As a result, finding molecular markers or QTLs linked to desirable traits 

and potentially useful for marker-assisted selection has necessitated association mapping 

using phenotypic and genotypic data. As a result, it is possible to employ a larger variety of 

germplasm that provides a wider allelic coverage without necessarily establishing bi-parental 

mapping populations [20]. 

Understanding the genetic foundation for agricultural features landraces of crops that have 

evolved diverse agricultural climates environments is crucial for ensuring the world's food 

security. Rice (Oryza sativa) is a primary source of nutrition for more than half of all humans 
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[21]. Natural and human selections have led to the development of rice landraces from their 

wild ancestor, maintaining a significant genetic diversity [22]. Moreover, these grown 

varieties have a great tolerance for biotic and abiotic stress, which leads to extremely steady 

yields and an intermediate yield in low-input farming systems. Abiotic stress tolerance genes, 

on the other hand, may be linked to unfavourable traits like Poor grain quality, an excessive 

plant height, and a lack of yield potential caused these cultivars to be disqualified from 

selection during the selection process [23].  

In order to breach the yield improvement barrier under drought, advances in molecular 

biology have given breeders new chances to identify such regions, refine them through 

precise mapping, and incorporate them into climatic variety. Until a few years ago, these 

opportunities were not available [24]. Finding the genetic underpinnings of these many types 

will offer crucial insights for creating exceptional types of crops to promote sustainable 

agriculture. 

GWAS have become a popular method for rapidly discovering the genes driving complicated 

traits [25]. GWAS have not been widely used to analyse complex features in crop plants, 

despite their promise [26]. Rice is a superior a potential system for the implementation of the 

GWAS since it reproduces by itself, has access to phenotyping resources, and has a superior 

high-quality reference genome sequence. Such a technique ought to enable the discovery of 

high-quality haplotypes required for precisely connecting molecular markers with phenotypes 

[27]. A significant obstacle to increasing food production is projected to be the effect of 

climate change on agricultural output [28].  

It has long been of tremendous interest to use the GWAS approach to simultaneously map 

several agronomic features in various kinds of rice because it is a significant crop. Rice is a 

selfing crop with substantial germplasm banks, making it an excellent choice for GWAS. In 

previous study, the functional impact of 18 genes related to starch synthesis on regulating the 

cooking and eating quality of rice was previously examined in rice by the use of candidate-

gene association analysis [13]. Even for those who are unfamiliar with the causal genes and 

variations, GWAS on agronomic variables gives useful insights and data that may be 

immediately used to rice breeding [14]. 

Single nucleotide polymorphisms (SNPs) have replaced simple sequence repeat markers as 

the preferred marker for use in genotyping studies with GWAS because next-generation 

sequencing technologies are developing quickly. Comprehensive genome coverage and 
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certain SNP identification are made possible by the enormous amounts of data that can be 

gathered with NGS [29]. 

2.3 Experimental design: 

More than ten years ago, the first extensive GWAS was created for humans. As used in the 

medical genetics, In GWAS analyses Individuals with a disease's genome-wide 

polymorphisms to those of comparable individuals without the ailment. This method is 

known as the phenotype-first design because individuals are classified first according to their 

characteristics then included in the GWAS panel based their phenotypic information [30]. 

The GWAS in plants often uses genotyping first tactics, compared to the phenotype first 

approach, where data for the GWAS panel are mostly picked according to their genetic 

diversity, with no particular emphasis given to one feature [31]. 

In a typical GWAS for crops, genetic information from the population is used for statistical 

analysis in order to examine the relationships between genotype and a variety of phenotypes. 

The population is frequently a source of germplasm with a diverse range of phylogenetic 

relationships and a large geographic spread. Population genetics is therefore frequently used 

while choosing the GWAS panel that was with a highly amount of the genetic variation as 

well as a weak population structure usually serving as the main selection factor. A GWAS 

may capture more loci linked to higher phenotypic variety when there is a high genetic 

diversity among the population, while fewer false positive associations occur from a low 

population structure. In addition, because numerous seed bank accessions lack homozygosity, 

seed purification is a crucial step in creating a viable GWAS population [32].  

Among the most significant crops on the planet, rice is adapted to a variety of ecological and 

agronomic conditions and has a very wide geographic distribution. As a result, rice has an 

extremely diverse genetic makeup. Analysis is based on the rice pan-genomic information 

set, In addition to many more variants in non-coding regions, the typical value for each rice 

gene of sixteen Coding variations distributed over various haplotypes. Such as the promoter 

regions, that may have an impact on the control of gene expression [33]. The GWAS greatly 

benefit from this tremendous diversity. But because it is a self-pollinating plant, rice has a 

very strong population structure. 

For GWAS to have adequate statistical power, sample size is crucial. The mapping power of 

single rice GWAS perhaps too low if sample size is too small, and if it is a very large number 

of accessions were collected, the cost may be too high. Hence, the range of sample sizes in 
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rice GWAS that can produce meaningful results is typically 200 to 3000. While deciding on 

the sample size, there are a number of things to take into account GWAS of complex 

composite characteristics, which are traits governed by a number of genes, each with a tiny 

genetic influence (such as grain yield per plant), require a sizeable sample, whereas GWAS 

of qualitative qualities governed by a limited number of essential genes only need a small 

sample size. For GWAS of challenging to interpret complex features for properly examine 

(such heat tolerance), it is required to increase the number of samples as well as the number 

of duplicates within each sample. When traits are presumably controlled by genes with low-

frequency alleles, the experimental design used for the GWAS must also be improved on the 

basis of sample size and sample diversity. Unless rice accessions with traits enhancing 

resistance to blast disease are enriched in the gathered populations, the GWAS population 

must be sizable [4]. 

2.4 Whole-genome variant genotyping: 

Genotyping work can begin as soon as the rice accessions are required available for a GWAS. 

With a resolution of roughly 100 kb in indicia and 200 kb in japonica species on average, 

rice's linkage disequilibrium is relatively mild, necessitating the use of 1000 of segregating 

markers spread across the entire genome. A snips genotyping array is used for conduct in 

rice, GWAS prior to the widespread usage of high-throughput sequencing technology. Many 

common variations for complex features were discovered thanks to the increased genotyping 

resolution provided by chips [34].  

New high-throughput genotyping methods for rice GWAS include second-generation 

sequencing [8]. There was a significant amount of missing genotypic information each 

addition of rice, as evidenced reads by the raw sequence coverage of >50% the genome of 

rice. Because of linkage disequilibrium between local region polymorphisms in rice, 

Statistical methods could be used to simulate the missing data [35]. The assertions of the 

genotypic sequence-based data were carried out using the K-nearest-neighbours technique, 

which performed admirably for the rice accessions. Second-generation sequencing has seen a 

significant improvement in throughput over the last ten years, and the cost has been falling 

quickly. The cost of building a library and performing whole-genome sequencing for a single 

rice accession is currently around $30; making rice GWAS use the sequencing-based 

genotyping technique as the default strategy [34].  
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The majority of rice accessions are inbred lines since rice is a self-pollinating plant. Both 

genotype calling and missing data imputation are considerably aided by the homozygous 

genotypes. However there are both a lot and a little bit of heterozygous genotypes found in 

native wild rice accessions and hybrid rice, respectively. By sequencing the inbred parental 

lines of hybrid rice accessions, the genotype of those accessions may be precisely known, and 

numerous generations of selfing can "purify" wild rice accessions grown under natural 

conditions. The processes would be more difficult without these data or trials since, it’s 

possible that the raw genotypes are not the true genotypes, even with excellent coverage. For 

instance, it is possible that just one allele at a heterozygous location receives coverage from 

several reads; the other allele has not been sequenced. In order to resolve the ambiguity 

around heterozygous genotypes as well as sequencing and alignment issues, imputation 

approaches are required. With deeper sequencing levels and hidden Markov model-based 

imputation techniques, it is possible to improve genotyping determination considering these 

heterozygous genomes of wild rice or hybrid [36]. The performance is especially enhanced 

when reference haplotype maps are made available [37]. 

To find replicable genome-wide significant connections and the appropriate sample size, 

GWAS frequently need very high sample sizes. The research issue, the intended sample size, 

and the presence of existing data, or the simplicity with which new data can be obtained, all 

have an impact on the GWAS study design and data resource selection. Direct to consumer 

studies or information from sources like cohorts or bio banks that includes disease- or 

population-based data enrolment can be used to conduct GWAS. For a complicated 

characteristic, a well-powered GWAS needs substantial time and financial commitments that 

are beyond the capabilities of the majority of individual laboratories. However, the majority 

of GWAS are carried out using a number of great public resources that already exist and offer 

access to sizable cohorts with data on genotype and phenotype.  

2.5 Phenotyping with high throughput: 

Grain yield, salt resistance, grain quality, and stress resistance are agronomic traits, that have 

attracted a lot of attention in the rice molecular genetic studies, and rice GWAS rely heavily 

on a high-quality phenotypic dataset. Millions of rice accessions with numerous replicates 

were used to phenotype these agronomic features, which requires a great deal of labour and 

time, It often takes numerous researchers or farmers a few months or even two to three years 

to complete, which is substantially slower than the genotyping processes. 
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The possibility of high-throughput phenotyping in rice has been made possible by the 

incredibly quick improvements in robotics and remote sensing technology [38]. By obtaining 

relevant photos for the software processes for the analysis of images have been created to 

predict a range of phenotypic for each plant line of rice grown plant in greenhouse or in the 

wild. [39]. In current GWAS of rice's drought tolerance, morphological changes before and 

after drought shocks were measured using a computerised phenotyping platform [40]. The 

technology for high-throughput research is getting cheaper and smaller, while plants 

phenotypic picture recognition using artificial intelligence systems are getting more accurate. 

As a result, it is extremely possible that additional phenotyping studies for rice GWAS will 

carried out on systems that are automated and require little to no manual input. 

In a broad sense, complex quantitative traits include methylation, metabolite, and gene 

expression profiling. Over the past few years, a rise in curiosity has been shown in utilising 

GWAS to examine genetic diversity in gene expression and methylation levels 

and metabolite content, between rice accessions. As an illustration, the metabolic GWAS of 

rice grains and leaves made it possible to identify and annotation of large number of 

candidate genes implicated in metabolic pathways [41]. The presence of metabolites was 

discovered to have potential physiological and dietary significance. An eGWAS is a GWAS 

that uses gene expression profiling data as the characteristics [42]. Along with the genes 

already recognised to play a role in epigenetic, in GWAS also discovered numerous unique 

sites that control the degree of DNA methylation in the Arabidopsis genome. Future 

investigations into the genetic differences that naturally arise in gene regulation on rice will 

provide essential resources & genetic insights [43].  

2.6 GWAS association method: 

A separate model was used to evaluate the relationship between the genotypes of the SNP 

markers and the associated characteristics. The Mixed Linear Model & General Linear Model 

was both used by TASSEL software to do association mapping analysis. [44].  

TASSEL continues to serve as a tool for examining the link between phenotypes and 

genotypes, despite the fact that it has undergone significant changes since its original public 

release in 2001 [44]. TASSEL provides features for association study, assessing evolutionary 

links, principal component analysis, linkage disequilibrium analysis, missing data imputation 

(SNPs imputation), cluster analysis (phylogenetic analysis), and data visualisation. TASSEL 

design and computational optimisations take into account the biology present in many plants 
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and breeding scenarios because its team with expertise in corn genetics and genomics has 

been in charge of the development. Comparing crop genetics to human genetics reveals that 

inbreeding, large families, and entire genome prediction are all more common, and many 

crops exhibit high levels of nucleotides and structural variation. Due to these biological 

variations, other biological systems other than crops have benefited from various 

optimisations. 

TASSEL was developed to be accessible to a wide range of users, including those with little 

prior knowledge regarding statistical genetics or computational science. In a few simple 

steps, a GWAS can be carried out by "clicking" on the appropriate options on a graphical 

interface, combining population structure data with cryptic associations using the mixed 

linear model approach [45, 46]. The entire analysis is completed automatically, including the 

import of genotypic and phenotypic data, the imputed generation of missing genotypic or 

phenotypic data, and the conclusion, filtering of markers based on the minor allele frequency 

(MAF), the creation of kinship and main component matrices to depict population structure 

and hidden relationships, as well as the optimisation of the compression level and GWAS 

execution. 

The Genomic Association and Prediction Integrated Tool was used to assess the trait-SNP 

relationships for grain ionomic and agronomic traits in rice was utilised in conjunction with 2 

univariate GWAS methods (GLM and MLM) and 2 multivariate GWAS methods (MLMM 

and FarmCPU) [47]. A package called GAPIT is used with the R programming language. 

EMMA, the unified mixed model, and P3D /EMMAx & compressed mixed linear model, are 

only a few of the cutting-edge statistical genetics techniques used in this programme [47]. 

The general linear model, also referred to as the generic multidimensional regression model, 

is an efficient way to write several different linear regression models simultaneously. In that 

regard, it cannot be considered a different statistical linear model. The following are short 

ways to express the many multiple linear regression models:- 

Y= XB+U, 

Here, Y is a matrix that is contains a number of the multivariate measurements. 

X is a matrix of independent variable observations that could be a design matrix. 

U is a matrix that contains error, and B is a matrix that contains parameters that must 

typically be approximated. 
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The error typically has a multivariate normal distribution and is considered to be uncorrelated 

across measurements. If the errors don't fit a multivariate normal distribution, generalised 

linear models can be employed to modify the Y and U assumptions [48]. 

MLM features both random and fixed effects. An MLM can contain information about inter-

person interactions by including people as random effects. This relationship-related 

information is communicated by the kinship matrix that is used in an MLM (mixed linear 

model) as the matrix of variance-covariance across the individuals. The "Q+K" approach, 

which combines population structure and a genetic marker-based kinship matrix, has greater 

statistical power than the "Q" approach alone [49, 50].  

Henderson's matrix notation can be used to describe an MLM is as follows:- 

Y = Xβ + Zu + e. 

Where Y is a vector encoding the traits discovered; β is an unidentified vector with fixed 

effects, including the genetic marker, population structure. U is an unidentified vector of the 

additive genetic effects resulting from different background QTLs for individuals. E is the 

undetected vector of residuals, whereas X & Z are the known design matrices. 

In compressed MLM, Even though kinship matrix is obtained from each of the markers, 

using kinship (k) to test the MLM markers creates confusion among the testing markers and 

the genetic effects of the people, with the structure of variance represented by the kinship. To 

avoid confusion, Zhang et al.'s 2010 compressed MLM changed individuals by their 

corresponding groups [48]. To categorise people who are similar, cluster analysis is 

employed. In the clustering analysis, similarity metrics are applied to the kinship matrix's 

components. The lines can be grouped together using a variety of connection criteria. The 

user determines the number of groups. After the lines have been divided into groups, a 

reduced kinship matrix is constructed using summarised data on the relationships between 

and within subgroups. At each compression level, a reduced kinship matrix is produced using 

this process. The ideal compression setting is chosen by fitting a number of mixed models. 

Each model's log likelihood function value is calculated, and the level with the highest 

possible log likelihood functional value from the fitted mixed model is deemed the ideal 

compression level. 

In Farm CPU model, In order to address the problems of false +ve controls & confusion 

between the testing marker and cofactors at the same time, the iterative technique known as 
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Fixed and Randomised Model Circulation Probabilities Unification was developed in 2016. 

To avoid false positives while evaluating the remaining markers, the connected markers 

discovered during iterations are fitted as cofactors in a fixed-effect model. Stepwise 

regression's over-model fitted issue is prevented by using a model with random effects as 

well as the maximum likelihood method to select the relevant markers [51]. 

2.7 Significant threshold value in GWAS 

The rice GWAS's association significance threshold values are essential. The genome-wide 

significance cut-off value in the majority of human GWAS research is P value   < 5 × 10−8. 

With rice GWAS, there are no set or accepted thresholds, especially when multiple 

population and several marker counts are used. Permutations tests are used to calculate the 

GWAS the p-value threshold by rearranging phenotypic data & then running a GWAS via the 

rearranged phenotypes. The threshold 10−7 is appropriate in the majority of rice GWAS 

scenarios carried out with a linear mixed model. Furthermore, since each linkage 

disequilibrium block has enough markers and the majority of rice GWAS employ whole-

genome sequencing data, it is frequently incorrect for a single SNP to pass the Manhattan plot 

criterion. In recent years, it has been demonstrated that algorithms, particularly deep learning, 

are quite effective in a variety of fields, including speech and image recognition. Deep 

learning didn't significantly outperform linear models, according to certain exploratory 

investigations in human genetics that compared their performance compared with deep 

learning's ability to solve challenges based on heredity [52]. 

2.8 Population structure 

On the frequency and distribution of alleles controlling economically significant features, 

Analysis of population structure & genome-wide association studies carried out on 

agricultural germplasm collections are very helpful. The usefulness of these analyses is 

significantly increased when the accession numbers are raised from 1,000 to 10,000 or more. 

Population structure across landscapes also affects the source-sink relationships that control 

population survival and the ability to recolonize areas following disruptions. For instance, 

demes' size and dispersion affect their capacity to sustain gene flow or to diverge into new 

species. The distribution of demes provides information about the origin and initial genetic 

composition of colonists coming into a new habitat patch [53]. 

Genome association studies should take population structure analysis or genetic relatedness 

into account to prevent misleading associations. The most popular techniques for the 
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genome-wide association studies take population structure into consideration; however they 

are only applicable to genotyped people with phenotypes. Phenotypes from ungenotyped 

relatives can be used in single-step GWAS (ssGWAS), although its capacity to take 

population structure into account hasn't been thoroughly studied. Here, we evaluate at how 

single-SNP analyses without population structure adjustment and efficient mixed-model 

association expedited and genomic best linear unbiased prediction GWAS compare to each 

other [54]. 

Using a Bayesian technique, the population structure was examined. STRUCTURE software 

was used to achieve model-based clustering. K-values or the population's estimated fixed 

there are between 1 to 12 subpopulations was used to assess population structure. For each K-

value, three independent analyses were employed, and the STRUCTURE programme was 

configured with 100,000 Markov Chain Monte Carlo and 50,000 burn-in iterations 

replications following burn-in period [55]. 

2.9 Population use in GWAS study 

GWAS that are population-based, GWAS frequently use & phenotypic findings from cohorts 

based on population data, where participants are thought to have been randomly selected 

from the population. Testing for associations with genotyped or imputed variations can be 

done for phenotypes related to continuous or binary dependent variables. Case-control 

research, where controls & cases are differentiated according to the existence or absence of 

the particular feature, is a typical GWAS design. The case and control cohorts are frequently 

chosen on purpose in case-control studies in order to ensure that the average number of the 

cases does not coincide with the frequency determined by the population. As a result, the 

statistical analyses should take this into account; for instance, covariate correction would 

require further thought [56]. 

Using controls from population cohorts with uncertain illness status can enable an increase 

cases in people's lives in the control group, even If the population's diseases won't be affected 

much by this < 1%. As an alternative, controls also are purposefully similar to patients based 

on ancestry and gender. It has been demonstrated that the latter strategy is cost-effective and 

has appropriate power when the disease frequency in the population is low (20%). Active 

case and control recruiting is typically favoured when there are limited financial resources 

and a need to increase statistical power [57]. 
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If Cases & controls must be genotyped on the same chip at the same time to limit artefacts, 

then extra care must be given during quality control and following analysis [58]. Noteworthy 

is the fact that, while sample is considered to be picked at randomly using the population, It's 

not like that, Participation is prejudiced and out of place & social-demographic characteristics 

make this assumption false [59]. 

GWAS was in its early stages, 1st -degree relatives were commonly utilised in association 

testing, since well-phenotyping identical and other familial cohorts are available [60]. 

Family-based GWAS require bigger sample numbers to attain the identical statistical strength 

as unrelated people. Concerns with incorrect grouping in based on populations GWAS have 

lately revived interest in doing within-family investigations [61]. Within-family approaches 

often involve variation on the gearbox incompatibility test to study the dispersion of an allele 

amongst a population of people. PLINK allows for the implementation of many variations of 

this test, like a test for qualities that are quantitative which includes Organisation both within 

and between families, albeit, critically, and only within the family component is resistant for 

stratified populations [62]. 

The advantage that incorporating family information into GWAS has this benefit it enables to  

researchers to examine how an allele affects a person's phenotype through the indirect effects 

on members of their immediate family [63]. Furthermore, it has been demonstrated that 

employing phenotypic data from non-genotyped family members, or "GWAS by proxy," 

greatly boosts power for a few features, when researching late-onset disorders for which 

those have some challenging to gather big data sets. A word warning: Self-reported family 

history is used in GWAS by proxy, and is not necessarily reliable [64]. 

Here are several advantages of doing GWAS in communities that have been separated for an 

extended period of time because of a founder event like physical or cultural barriers, have 

limited gene exchange with nearby populations, or both. An important advantage is that 

isolated populations may have more instances of functional variations that are often rare, 

increasing the power of association’s research for these variants [58]. Suppose even only a 

few people from the isolated group are included in the reference panel, the lengthy linkage 

disequilibrium distinctive of isolated populations enhances imputation accuracy and power 

above comparably large non-isolated cohorts [59]. 

 Due of the close kinship among isolated populations; GWAS frequently uses a method based 

on a linear mixed model. Due to genetic bottlenecks that cause alleles to disappear, isolated 
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populations have a tendency to have high genetic homogeneity, which by fewer neutral 

variants can increase the strength of burden testing [60]. If a variant is sufficiently 

uncommon, discoveries made in remote groups could be difficult to replicate in other 

populations, even if other variants involving the same genes can provide more evidence. For 

instance, variations linking APOA5 to myocardial infarction in various European 

communities may support findings linking triglycerides to the disease in the Sardinian 

community [61]. 

In Biobank, Researchers have access to a variety of sizable, public population biobanks. 

Biobanks contain information from tens of thousands of genotyped people who have 

undergone extensive phenotyping via lab tests, surveys. These individuals were not chosen 

for specific illness features. The UK Bio bank is one notable example, it has allowed for well-

powered GWAS of hundreds of quantitative variables, such as blood cell features, depressive 

symptoms, anthropometric traits, metabolites, and brain imaging traits, in addition to 

increasing sample sizes for GWAS of common disorders. [62].  

2.10 Linkage disequilibrium 

It is therefore possible to determine whether selection was natural, epigenetic, or due to other 

mechanisms like as genetic drift or gene flow, or to past genetic conditions and limitations, 

thanks to the insights into the genetic limitations and situations of the past that are provided. 

When examining populations, LD may be found throughout the genome, which can reflect 

patterns in the breeding system, geographic subdivision, and population history. When LD 

studies genomic regions, it reveals the history of gene conversion, natural selection, mutation, 

and other factors that either cause or contribute to gene-frequency evolution. 

As a result, finding LD does not demonstrate linkage or absence of equilibrium. The local 

rate of recombination ultimately determines how the aforementioned criteria affect LD 

between paired loci or within a specific genomic region. Chromosome linkage is the 

hypothesis that two markers on a chromosome will stay physically connected over the course 

of multiple generations of a family, is related to this, as is to be expected. However, 

chromosomal portions within a family will be split apart by recombination events from 

generation to generation, and the effect is increased over several more generations. Until 

linkage equilibrium is reached among alleles in a population, recombination events will 

inevitably separate portions of chromosomes carrying linked alleles. Linkage disequilibrium, 

put simply, is the coupling of population-level indicators. 



20 
 

Additionally, the number of founding chromosomes within a population, the population's 

size, the population's age and the number of generations has been around all affect the LD 

decay rate. Therefore, when comparing distinct human subpopulations, it is not surprising to 

see a range of LD levels and patterns.  

Strong LD exists between tightly related polymorphic SNPs in general. According to research 

by the International Hap Map project, the human genome comprises haplotype blocks that 

either contain all or the majority of high LD SNPs. As a result, LD is prevalent on a finer 

scale in human populations. As a result, it has been believed that SNPs with significant levels 

of LD correspond to alleles with elevated chances of complicated hereditary disorders. 

When GWAS are conducted and a significant number of SNPs are surveyed, it's interesting to 

note that this has really been analysed for those SNPs that are strongly associated with breast 

cancer. However, it's crucial to remember that LD in GWAS can result from population 

stratification that was either missed or was not known to exist. 

Linkage disequilibrium is a phrase that unfortunately hides its meaning. Every population 

genetics educator is aware of the term's limitations rather than benefits. A lack of equilibrium 

or linkage is not automatically implied by the presence of LD, which is merely a non-random 

connection between alleles at more than one locus. The term 1st was coined by Lewontin and 

Kojima in 1960, and it has stuck around ever since because LD was first a topic of interest for 

population geneticists who didn't care what they called things as long as the mathematics 

made sense. Because there were initially few data available for LD studies, its importance for 

the genetics and evolutionary biology in humans was disregarded besides population genetics 

[63]. However, when extensive analyses of closely related loci became practical and the 

value of LD for the mapping of genes became apparent, interest in LD grew rapidly in the 

1980s. A phrase had already become too well-known by that point to be changed. 

LD is significant in evolutionary biology and human genetics because of the numerous 

factors that influence and are influenced by it. The potential to respond in both natural 

selection and artificial selection is constrained by LD, which further offers information on 

past occurrences. LD across the genome reveals the breeding system,   history  of  the 

population  and the pattern  of geographic subdivision,  while LD  in  each  genomic  region 

reflects the history of factors like gene conversion, natural selection, mutation,  and  other 

methods that impact the evolution of gene-frequency. Local recombination rates control how 

these factors influence the degree of differentiation within a genomic area or a group of loci. 
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A substantial effort is being made for mapping genes in human beings and other 

species using the well established population genetics concept LD. [64]. 

 The extent to which an allele of one SNP is inherited or linked with an allele of another SNP 

in a population is described by a property of SNPs called linkage disequilibrium (LD) on a 

continuous stretch of genomic sequence. Population geneticists developed the concept of 

linkage disequilibrium to statistically evaluate modifications to genetic variation over a perio

d of time among a population. Two chromosomal markers continue to remain physically 

linked over the course of a family's generations, which is related to the idea of chromosomal 

linkage. Chromosome segments are split apart from generation to generation by 

recombination events within a family. Through successive generations, repeated random 

recombination events in a fixe sized population that experiences random mating will split up 

regions of contiguous chromosomes (carrying linked alleles) until finally all of the 

population's alleles are independent or in linkage equilibrium. This effect is magnified. 

Therefore, linkage disequilibrium describes the relationship amongst biomarkers on a 

population scale [55]. 

How many founding chromosomes there are in the population, the population's size, and the 

amount of generations the population has been around are all factors that affect the rate of LD 

decay. As a result, the level & patterns of LD vary among various human subpopulations. 

The underlying element of all recommended assessments of LD is the discrepancy among the 

actual frequency of overlap for two alleles and the frequency expected when two markers are 

distinct [65]. 

Since each SNP is genotyped separately and the stage or chromosome of genesis for each alle

le is unknown, present technology cannot be used for a direct evaluation of haplotype frequen

cies from a sample. This is a problem that is occasionally missed with LD measurements. 

There are numerous established and well-documented techniques for determining the two-

marker haplotype frequencies and inferring haplotype phase, and these techniques typically 

produce accurate findings [66]. 

Tag SNPs are SNPs that have been specifically chosen to capture variation at neighbouring 

genomic sites since each of the the SNPs' alleles tag a nearby stretches of LD. Since LD 

patterns are population-specific, as was already explained, tag SNPs chosen for one 

population could not be useful for another. By avoiding genotyping repetitive information-

giving SNPs, LD is used to enhance genetic investigations [67]. 
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2.11 Meta-Analysis in GWAS 

To do a meta-analysis, the findings of various GWAS research can be combined. Meta-

analysis techniques were developed with the initial goal of assessing and enhancing 

estimations of significant and effect size resulting from numerous studies investigating an 

identical assumption in the research that has been published. The emergence of huge 

academic consortiums has made it possible to synthesise data from numerous studies using 

meta-analysis methods; no protected genotype or clinical data must be disclosed for parties 

who were not involved in the only statistical information from a study that was approved in 

the original need be transferred. For instance, a meta-analysis of 46 researches was used to 

inform a recent study that looked at lipid profiles [68]. 

The research that was included in the meta-analysis looked at the same hypothesis, which is a 

key concept. The assessment of clinical characteristics and phenotypes, as well as the 

methods used to select which SNPs have been included from each site and any covariate 

adjustments should be similar across numerous sites. The idea  that  the  sample  sets  used  in 

each study  should  be  independent should  always  be  tested  because  researchers 

commonly  use  the  same samples in multiple studies. Making sure that all research 

publishes results in relation to a shared genomic structure and reference allele is also a very 

crucial and somewhat annoying logistical issue. Because the effects of the two studies cancel 

each other out, if results from one study are published in relation to the A allele and those 

from another study in relation to allele B, a meta-analysis outcome for this SNP could not be 

significant [69]. 

It is uncommon to discover several studies that match completely on every criterion when all 

of these aspects are taken into account. As a result,  to determine  how distinct  studies  are 

 from  one  another, research  diversity  is  typically  analytically  evaluated  through  a  meta-

analysis.  In the same way that outlier analysis is used to discover locations with excessive 

influence. It  is  crucial  to  emphasise  that  these  data  points  should  be  used  as  a  guide 

 when  looking  for studies  that  could  test  a  different  core  hypothesis  from  the  ones 

 that  were examined by the other studies that made up  the  meta-analysis. However, much as 

with outliers, a study should only be disregarded if there is a clear justification based on the 

study's parameters, not just because a statistic implies that the study raises diversity. 

Otherwise, statistical methods employed in meta-analysis to reduce heterogeneity will 

produce more erroneous findings [70]. 
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Genome-wide association studies have significantly influenced the field of human genetics. 

They have helped the genetics community think on a genome-wide scale and revealed novel 

risk factors that are genetic for a number of common human diseases. The whole genome will 

soon be sequenced. In the coming years, with the entire 300,000,000 nucleotide genome 

sequence in place of one million SNPs, inexpensive sequencing technology will be used. The 

infrastructure and knowledge of computer science and bioinformatics will be put to the test 

by exponentially more complicated challenges related to storage and processing of data, data 

analysis and quality control. Combining sequencing data with information from other 

highly efficient technologies, such as the enormous amounts of data generated by neuro-

imaging, will only make it more difficult to comprehend the connection between phenotype 

and genotype and, ultimately, to improve healthcare. Data manipulation and storing these 

additional high-throughput techniques assess phenotypes, the environment, the proteome, and 

the transcriptase. The future of human genetics lies on the integration of these numerous 

levels of complicated biological data and their coupling with experimental methods [71]. 
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3.1 MATERIAL & METHODS 

GWAS will perform for 186 genotype with 50051 high-quality SNPs. We obtained the 

phenotypic data for rice core accessions from IARI (Indian Agricultural Research Institute) 

four yield-related traits (including Height, grain yield, grain no. per meter square, GN_P) 

were chosen to investigate whether there are any significant phenotypic differences in rice 

yield among the 186 rice types. 

 

Fig. 1: The overview of the GWAS methodology. 
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Rice diverse collection 

The rice diverse collection was taken from IARI (ICAR-Indian Agricultural Research 

Institute, New Delhi). 

Genotyping 

50051 high-quality SNPs were used in GWAS for 186 different rice types. We used hap map 

format for genotyping data in our study. 

Phenotyping 

In this study we analyzed a collection of rice varieties to perform association studies with 

traits of high agronomical interest such as; four agronomics traits (plant height, grain weight 

per meter square, grain yield plant and grain number per plant). 

Genome-wide association studies for 4 agronomics traits 

GWAS was carried out across 186 rice accessions descended from IARI (Indian agriculture 

research institute) with 50051 high-qualities SNPs. Association analyses were performed 

using two univariate models, including MLM (mixed linear model) and GLM (general linear 

model ) used to assess the relationship between grain agronomic characteristics and SNPs by 

using the TASSEL software version 5.0 (https://bitbucket.org/tasseladmin/tassel-5-source) 

[41]. 

A software programme called TASSEL is used to assess the relationships between 

characteristics, evolutionary trends, and linkage disequilibrium. TASSEL's design and 

computational optimisations take into account the biology present in various plants and 

breeding circumstances because its development has been directed by a team specialising in 

maize genetics and genomics. Numerous crops exhibit high nucleotide and structural 

diversity when compared to human genetics. 

 After this, association analyses were performed using two models, GLM and MLM by using 

Genomic Association and Prediction Integrated Tool (GAPIT R Package) (http://www.r-

project.org & source (http://zzlab.net/GAPIT/gapit_functions.txt) [44]. 

GAPIT is a Genome Association and Prediction Integrated Tool that is free to the public. It 

has been periodically updated to include the most recent approaches for the Genomic 

Selection and Genome Wide Association Study. 

https://bitbucket.org/tasseladmin/tassel-5-source.
http://www.r-project.org/
http://www.r-project.org/
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GAPIT Following association analysis, GWAS findings were presented as Manhattan plots 

based on the observed p-values for each SNP-trait relationship that had been negatively (-

log10) transformed. To deem an SNP significant, we utilised a threshold of above log 3.  

Identification of significant SNPs 

The significant SNPs were identified by using different model (GLM &MLM) and different 

software TASSEL and GAPIT R Package. We did a comparative analysis between GAPIT 

tool and TASSEL software by using GLM & MLM models. After this, the common SNPs 

which were identified in GAPIT & TASSEL by using the different model GLM &MLM were 

considered as significant SNPs. 

Population structure analysis & phylogenetic analysis 

For population structure analysis, we analysed by using the structure software version 2.3.4. 

(http://web.stanford.edu/group/pritchardlab/structure.html.) [72]. STRUCTURE software is a 

freely software tool for investigating population structure using multi-locus genotyping data. 

Its applications include inferring presence of the separate populations, assigning people to 

populations, researching hybrid zone, detecting migrants & admixed individuals, & 

calculating populations’ allele frequencies in situations when many individuals are migrants 

or admixed. It is applicable to the vast majority of frequently used SNPs, including genetic 

markers. 

The STRUCTURE algorithm employs a systematic Bayesian clustering approach with 

Markov Chain Monte Carlo (MCMC) estimate. In the MCMC process, people are first 

randomly assigned to a set number of groups, after which the variant frequencies in each 

group are estimated and new groupings of individuals are made based on those estimates. We 

ran a series of model with ranging from 1 to 5, in all the loci. We fixed a Length of Burnin 

Period: - 10,000 and No. of the MCMC Reps after Burnin: - 100000. Find out the highest 

peak of delta K value by using the structure harvester. The tool offers a quick way to evaluate 

and show likelihood values over a range of K values and hundreds of iterations, making it 

simpler to identify how many genetic groups best suit the data. 

The phylogenetic tree was created by the TASSEL software version 5.0 

(https://bitbucket.org/tasseladmin/tassel-5-source) [41] with the NJ method (Neighbor-joining 

method). To examine the cluster in the rice subgroup, the tree was plotted using 

Archaeopteryx. 

http://web.stanford.edu/group/pritchardlab/structure.html.)
https://bitbucket.org/tasseladmin/tassel-5-source.
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Analysis of linkage disequilibrium 

Linkage disequilibrium analysis was determined by using the TASSEL software. 

Identification of candidate gene  

In this study, we identified a candidate gene and its annotation by using the rice genome 

annotation project (http://rice.uga.edu/).we identified the candidate gene by using the locus 

search.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



29 
 

                   

 

 

 

 

 

 

CHAPTER 4 - RESULTS 
 

 

 

 

 

 

 

 

 

 

 

 

 

 



30 
 

4.1 Population structure & phylogenetic analysis: 

To comprehend the population structure of the rice diversity collection, we analysed 

population structure by using the STRUCTURE software based on the admixture- based 

model. The highest peak value for Δk value was noticed at K = 4 (fig.5). Here four 

population observed in the rice diversity panel. 

 

Fig. 2: This plot showing the maximum peak for Δk value. The y-axis shows the Δk value & 

X-axis displays the k value. The maximum peak correspond to k = 4. 
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Fig. 3: Population structure of the rice diverse collection showing four subpopulations. (a) 

This is a graph of a multiple lines of different population (b) This graph is a Q-short graph of 

population structure analysis. 

 

Phylogenetic analysis 

High-quality SNPs (50051 SNPs) were chosen to create a NJ (neighbour-joining) tree to 

show how the 186 rice accessions are related phylogenetically. In a phylogenetics analysis, in 

a total of individuals were presented in two clusters (cluster I and cluster II). The 

phylogenetic tree of the 186 rice accessions was grouped into two clusters. 

(b) 
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Fig. 4: A Phylogenetic tree analysis of 186 accessions of rice by using the NJ method. (a) 

Phylogenetic tree in a circular (alpha) type. (b) phylogenetic tree in a rectangular type. 

 

4.2 Linkage Disequilibrium:  

 The TASSEL generated the triangle plot of linkage disequilibrium. The comparison of two 

sets of marker sites is shown in each cell, with colour coding used to indicate the presence of 

significant LD. The significant threshold values in both diagonals are represented by coloured 

bar codes. A hypothetical genome fragment's genetic distance scale was manually created. 

 

 

 

 

(b) 
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Fig. 5: The triangle plot was created by TASSEL. Above the diagonal shows the r2 values 

and below the diagonal shows the corresponding p-values. 
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4.3 Genome-wide association study by TASSEL software with using the GLM & MLM 

models: 

Four agronomics traits (plant height, grain weight per meter square, grain yield plant, and 

grain number per plant) were examined utilising 2 univariate GWAS (GLM & MLM) 

methods to identify the significant SNPs. 

A total number of 50051 Snips was used for GWAS analysis using two univariate methods 

using GLM and MLM. Significant SNPs were identified using p-value <.001 & 0.0001. 

Under the p-value <0.001, GLM model identified 14, 798, 225 and 1654 significant SNPs for 

GN_P, grain weight per meter square, grain yield plant and ht respectively. Whereas MLM 

model identified 5, 12, 33, and 77 significant SNPs for GN_P, grain wt. per meter square, 

grain yield plant and ht respectively. Under the p-value <0.0001, GLM model identified 2, 

26, 44, and 187 significant SNPs for GN_P, grain weight per meter square, grain yield plant 

and ht respectively. Whereas MLM model identified 1, 7, 1, and 0 significant SNPs for 

GN_P, grain wt. per meter square, grain yield plant and ht respectively. 

 Table 1: List of total number of SNPs after using the filter of p-value >0.001 by TASSEL 

SOFTWARE (GLM model). 

 

 

 

 

 

 

Traits  Total SNPs After using the filter 

of p-value >0.001 

MAF <0.5 

Height 

 

50051 1654 34044 

 

Grain yield plant 50051 225 34044 

Grain wt. per meter 

square 

50051 798 34044 

Grain no. per plant 50051 14 34044 
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Table 2: List of total number of SNPs after using the filter of p-value > 0.001 by TASSEL 

software (MLM model) 

Traits  Total SNPs After using the filter 

of p-value >0.001 

MAF <0.5 

Height 

 

50051 77 34044 

Grain yield plant 50051 33 34044 

Grain wt. per meter 

square 

50051 12 34044 

Grain no. per plant 50051 5 34044 

 

4.4 Genome-wide association study by GAPIT R packages with using the GLM & MLM 

models: 

 Further, Four agronomics traits (plant height, grain weight per meter square, grain yield 

plant, and grain number per plant) were analyzed by GAPIT R package with using the two 

univariate GWAS (GLM & MLM) methods to identify the significant SNPs. 

Total number of 50051 SNPs was used for GWAS analysis using two univariate methods 

using GLM and MLM. Significant SNPs were identified using p-value <.001 & 0.0001. 

Under the p-value <0.001, GLM model identified 129, 1873, 1253 and 2756 significant SNPs 

for GN_P, grain weight per meter square, grain yield plant and ht respectively. Whereas 

MLM model identified 7, 29, 31 and 38 significant SNPs for GN_P, grain wt. per meter 

square, grain yield plant and ht respectively. Under the p-value <0.0001, GLM model 

identified 14, 798, 225 and 1654 significant SNPs for GN_P, grain weight per meter square, 

grain yield plant and ht respectively. Whereas MLM model identified 2, 1, 1 and 6 significant 

SNPs for GN_P, grain wt. per meter square, grain yield plant and ht respectively. 

Table 3: List of total number of SNPs after using the filter of p-value by GAPIT R package 

(GLM model). 

Traits  Total SNPs After using the filter 

of p-value >0.001 

MAF <0.5 

Height 

 

50051 2756 34044 

Grain yield plant 50051 1253 34044 

Grain wt. per meter 

square 

50051 1873 34044 

Grain no. per plant 50051 129 34044 
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Table 4: List of total number of SNPs after using the filter of p-value by GAPIT R package 

(MLM model) 

 

A Millions of genetic variants can be shown in a single figure using a Manhattan plot, which 

shows chromosomes on the x-axis and the association statistical significance value as -log10 

(p-value) on the y-axis. In below, figure 2 and figure 3 shows the Manhattan plot of different 

traits by using two different models (GLM and MLM). Above the threshold p- value 3, all the 

SNPs considers as a significant SNPs in this plot. 

Quantile-quantile plots, also referred to as Q-Q plots, are a probability graphic that contrasts 

the quantiles of two probability distributions. In QQ-plot, the y axis displays the observed -

log10 while the x axis displays the predicted log10 (p-value).  

Traits  Total SNPs After using the filter 

of p-value >0.001 

MAF <0.5 

Height 

 

50051 38 34044 

Grain yield plant 50051 31 34044 

Grain wt. per meter 

square 

50051 29 34044 

Grain no. per plant 50051 31 34044 
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Fig. 6: Genome-wide association studies of four different traits. (a) This is a Manhattan plot 

for the simple model for grain weight per meter square. Which shows chromosomes on the x-

axis and the association statistical significance value as -log10 (p-value) on the y-axis. (b) 

Quantile-quantile (Q-Q) plot of the MLM model for grain weight per meter square. (c) 

Manhattan plots for the GLM for grain number per plant (GN_P). (d) Q-Q plot of GLM for 

grain number per plant. (e) Manhattan plots of the GLM model for grain yield plant (f) Q-Q 

plot of the GLM model for grain yield plant. (g) Manhattan plots of the GLM model for plant 

height (h) Q-Q plot of GLM for plant height (ht.) 
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Fig.7: Genome-wide association studies of four different traits. (a) This is a Manhattan plot 

for the simple model for grain weight per meter square. Which shows chromosomes on the x-

axis and the association statistical significance value as -log10 (p-value) on the y-axis. (b) 

Quantile-quantile (Q-Q) plot of the MLM model for grain weight per meter square. (c) 

Manhattan plots for the MLM for grain number per plant (GN_P). (d) Q-Q plot of MLM for 

grain number per plant. (e) Manhattan plots of the MLM model for grain yield plant (f) Q-Q 

plot of the MLM model for grain yield plant. (g) Manhattan plots of the MLM model for 

plant height (h) Q-Q plot of MLM for plant height (ht.) 

4.5 Identification of common significant SNPs by using the comparative analysis 

between TASSEL software and GAPIT R package: 

A total no. of 50051 Snips was using for GWAS analysis by using two univariate models 

(GLM and MLM) with TASSEL software and GAPIT R package. After doing the 

comparative analysis, common significant SNPs were identified by using the p-value <0.001 
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& <0.0001. A total of 23 common significant SNPs those are associate with different traits 

were identified with GAPIT R package and TASSEL software. 

 

Fig.8: Manhattan plot for shows the common significant SNPs for four different agronomics 

traits by using the comparative analysis between TASSEL software and GAPIT software 

package through two univariate methods (GLM and MLM). The common significant SNPs 

were identified using p-value<.001 & 0.0001. Black arrows indicate the common significant 

SNPs. The X-axis shows the position of the snips on which chromosome and Y- axis shows -

log p-value. 
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After getting the result by TASSEL software and GAPIT R package, we used filter of p-value 

>0.001 and >0.0001. After the comparative analysis between GAPIT and TASSEL software 

by using the MLM model. Under  the p-value <0.001 we identified 2, 4, 6 and 12 common 

significant SNPs for GN_P, grain weight per meter square, grain yield plant and ht 

respectively. Whereas under the p-value <0.0001, we identified 0, 0, 0 and 1 common 

significant SNPs for GN_P, grain weight per meter square, grain yield plant and ht 

respectively. The details of SNPs and its chromosomes position shown in below (Table 1). 
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Traits Significant SNPs p-value 

Total no. of 

significant 

SNPs 

Chromosome position 

Grain yield plant 

Affx-93211641 

Affx-93234315 

Affx-93241123 

Affx-93248222 

Affx-93248879 

Affx-93256680 
 

<0.001 4 

Chr5_17096019 

Chr6_17704662 

Chr1_631690 

Chr1_1672453 

Chr4_17531730 

Chr1_33332505 

Grain wt. per meter 

Square 

Affx-93247536 

Affx-93233693 

Affx-93214381 

Affx-93211641 

Affx-93259490 

Affx-93239985 
 

<0.001 6 

Chr1_24239743 

Chr1_27129151 

Chr1_27130473 

Chr5_17096019 

Chr6_29615718 

Chr11_21672937 

Height 

Affx-93221710  
Affx-93239333  
Affx-93240469  
Affx-93234442  
Affx-93232992  
Affx-93261796  
Affx-93261275  
Affx-93261371  
Affx-93228282  
Affx-93227603 

Affx-93211896 

Affx-93215744 
   

<0.001 12 

Chr1_33320802 

Chr1_33805233 

Chr1_38865687 

Chr2_30752216 

Chr6_3221259 

Chr11_1935453 

Chr11_1936049 

Chr11_1936531 

Chr11_9781236 

Chr12_15840841 

Chr5_24021196 

Chr4_4758589 

Grain no. per plant 
Affx-93259858 

Affx-93232175 
 

<0.001 2 
Chr6_3057131 

Chr8_7680994 

Grain yield plant No significant SNPs <0.0001 0 _ 

Grain wt. per meter 

Square 
No significant SNPs <0.0001 0 _ 

Height 

Affx-93221710 

Affx-93228282 

Affx-93215744 
 

<0.0001 3 

Chr1_33320802 

Chr11_9781236 

Chr4_4758589 

 

Grain no. per plant Affx-93232175 <0.0001 1 
Chr11_7680994 

 

Table 5: Common significant SNPs by using MLM method (comparative analysis between GAPIT) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

&Tassel) 
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After getting the result by TASSEL software and GAPIT R package, we used filter of p-value 

>0.001 and >0.0001. After the comparative analysis between GAPIT and TASSEL software 

by using the GLM model. Under the p-value <0.001 we identified 7, 102, 134 and 269 

common significant SNPs for GN_P, grain weight per meter square, grain yield plant and ht 

respectively. Whereas under the p-value <0.0001, we identified 0, 14, 11 and 75 common 

significant SNPs for GN_P, grain weight per meter square, grain yield plant and ht 

respectively.  

Table 6: Common significant SNPs by using GLM method (comparative analysis between 

GAPIT &Tassel) 

Traits p- value Total no. of SNPs 

Grain yield plant <0.001 134 

Grain wt. per meter square <0.001 102 

Height <0.001 269 

GN_P <0.001 7 

Grain yield plant <0.0001 11 

Grain wt. per meter square <0.0001 14 

Height <0.0001 75 

Grain no. per plant <0.0001 No significant SNPs 

 

 

A total number of SNPs 103 were identified after doing the comparative analysis between 

GLM and MLM models (TASSEL software). Under the p-value <0.001 we identified 3, 8, 17 

and 68 common significant SNPs for GN_P, grain weight per meter square, grain yield plant 

and ht respectively. Whereas under the p-value <0.0001, we identified 1, 0, 0 and 6 common 

significant SNPs for GN_P, grain weight per meter square, grain yield plant and ht 

respectively. The detail description was given in below (Table 3) about the associated SNPs 

with particular traits. 
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Traits SNP id p- value 
Total no. Of 

SNPs 

Chromosome 

position 

Grain yield plant 

Affx-93211641 

Affx-93216822 

Affx-93217649 

Affx-93227543 

Affx-93230744 

Affx-93234315 

Affx-93235285 

Affx-93238376 

Affx-93238743 

Affx-93241123 

Affx-93242457 

Affx-93248222 

Affx-93252181 

Affx-93254542 

Affx-93255342 

Affx-93256680 

Affx-93259084 
 

<0.001 17 

Chr5_17096019 

Chr1_587230 

Chr6_1635848 

Chr1_41107928 

Chr6_8309276 

Chr6_17704662 

Chr1_40939528 

Chr3_10537869 

Chr1_623173 

Chr1 _631690 

Chr8_2882889 

Chr1_1672453 

Chr1_41003616 

Chr8_5526927 

Chr1_41155466 

Chr1_33332505 

Chr3_290809 
 

Grain wt. per 

meter square 

Affx-93211641 

Affx-93214381 

Affx-93233693 

Affx-93239985 

Affx-93242457 

Affx-93247536 

Affx-93247708 

Affx-93259490 
 

<0.001 8 

Chr5_17096019 

Chr1_27130473 

Chr1_27129151 

Chr11_21672937 

Chr8_2882889 

Chr1_24239743 

Chr4_17158963 

Chr6_29615718 
 

Height 

Affx-93211379 

Affx-93211713 

Affx-93257821 

Affx-93212357 

Affx-93213301 

Affx-93213819 

Affx-93215521 

Affx-93216212 

Affx-93217819 

Affx-93218894 

Affx-93219343 

Affx-93219464 

Affx-93219940 

Affx-93220999 

Affx-93221710 

Affx-93222027 

Affx-93222177 

<0.001 68 

Chr_1  39816396 

Chr_1  39698544 

Chr6_3199146 

Chr_1  39694313 

Chr_6  3082967 

Chr_6  3079615 

Chr_6  3082458 

Chr6_3214931 

Chr_6  3253283 

Chr_12 23163715 

Chr6_3253397 

Chr4_ 4444977 

Chr6_ 3217070 

Chr4_ 29752183 

Chr1_ 33320802 

Chr1_ 13783038 

Chr2 _12418863 

Table 7: Common Significant SNPs of agronomics traits by using comparative analysis method 

(GLM & MLM in tassel) 

 



46 
 

Affx-93216212 

Affx-93223431 

Affx-93224590 

Affx-93225562 

Affx-93226246 

Affx-93227603 

Affx-93228186 

Affx-93228282 

Affx-93228861 

Affx-93229936 

Affx-93230964 

Affx-93231495 

Affx-93231681 

Affx-93232417 

Affx-93232861 

Affx-93232992 

Affx-93234442 

Affx-93237242 

Affx-93237573 

Affx-93238592 

Affx-93239247 

Affx-93239333 

Affx-93239381 

Affx-93240469 

Affx-93242087 

Affx-93245061 

Affx-93245297 

Affx-93246424 

Affx-93246702 

Affx-93247629 

Affx-93247702 

Affx-93247751 

Affx-93248193 

Affx-93248783 

Affx-93248815 

Affx-93249336 

Affx-93251039 

Affx-93251425 

Affx-93251469 

Affx-93251994 

Affx-93252105 

Affx-93252804 

Affx-93253250 

Affx-93255286 

Affx-93257859 

Affx-93258500 

Chr6_3214931 

Chr6_ 3083259 

Chr2_ 30747337 

Chr5_3654820 

Chr1_33742361 

Chr12_15840841 

Chr6_ 872823 

Chr11_ 9781236 

Chr6_ 3083998 

Chr1_39852428 

Chr11_ 5894739 

Chr6_3082622 

Chr6_3082401 

Chr6_ 3083782 

Chr6_ 3084901 

Chr6_ 3221259 

Chr2_ 30752216 

Chr7_ 23147795 

Chr6_ 3080670 

Chr6_ 3254415 

Chr1_ 34474363 

Chr1_33805233 

Chr8_25329650 

Chr1_38865687 

Chr4_21330713 

Chr1_39853599 

Chr6 _1612901 

Chr6_3259043 

Chr6_3082480 

Chr6_3216262 

Chr6_3255072 

Chr1 _23909305 

Chr4 _29750281 

Chr6_ 3079094 

Chr6_3217847 

Chr6_3083247 

Chr6_3146449 

Chr6_3079863 

Chr6_3082080 

Chr9_14540271 

Chr6_3257231 

Chr12_9361340 

Chr6_3084733 

Chr2_12465795 

Chr6_ 3217504 

Chr6_ 3314059 
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A total number of 98 SNPs were identified after doing the comparative analysis between 

GLM and MLM models (TASSEL software). Under the p-value <0.001 we identified 7, 29, 

23 and 31 common significant SNPs for GN_P, grain weight per meter square, grain yield 

plant and ht respectively. Whereas under the p-value <0.0001, we identified 1, 1, 1 and 5 

common significant SNPs for GN_P, grain weight per meter square, grain yield plant and ht 

respectively. The detail description was given in below (table 4) about the associated SNPs 

with particular traits. 

 

 

 

 

 

 

 

Affx-93259067 

Affx-93260636 

Affx-93260941 

Affx-93261159 

Affx-93261350 
 

Chr6 _ 3083366 

Chr1_12574524 

Chr6_3083881 

Chr6_3079191 

Chr5_3651352 
  

Grain no. per plant 

Affx-93221120 

Affx-93232175 

Affx-93259858 
 

<0.001 

 

 

3 

   Chr3_3164066 

   Chr8_7680994 

   Chr6_3057131 

 

Grain yield plant No significant SNPs <0.0001 0 - 

Grain wt. per 

meter square 
No significant SNPs <0.0001  - 

Height 

Affx-93219343 

Affx-93221710 

Affx-93239247 

Affx-93234442 

Affx-93242087 

Affx-93228282 
 

<0.0001 6 

Chr6_3253397 

Chr1_33320802 

Chr1_34474363 

Chr2_30752216 

Chr4_21330713 

Chr11_9781236 
 

Grain no. per plant 
  Affx-93232175 

 
<0.0001 1  Chr8_7680994 
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Table 8: Common Significant SNPs of agronomics traits by using comparative analysis 

methods (GLM & MLM in GAPIT) 

Traits Significant SNPs  p-value 
Total no. of 

Significant SNPs 

Chromosome 

position 

Grain yield plant 

Affx-93211641 

Affx-93211996 

Affx-93212388 

Affx-93213333 

Affx-93219830 

Affx-93224741 

Affx-932265 

Affx-93227314 

Affx-93234315 

Affx-93236110 

Affx-93239691 

Affx-93241123 

Affx-93245490 

Affx-93245777 

Affx-93248082 

Affx-93248222 

Affx-93250221 

Affx-93250332 

Affx-93251143 

Affx-93252350 

Affx-93252682 

Affx-93252849 

Affx-93254004 

Affx-93254700 

Affx-93256063 

Affx-93256178 

Affx-93256680 

Affx-93259041 

Affx-93259970 
 

<0.001 29 

Chr5_17096019 

Chr11_15572855 

Chr11_15777699 

Chr11_15570055 

Chr9_17311319 

Chr9_21197218 

Chr6_4371259 

Chr11_15569746 

Chr6_17704662 

Chr11_15409636 

Chr1_24247953 

Chr1_631690 

Chr5_20353432 

Chr1_21111070 

Chr11_15640800 

Chr1_1672453 

Chr6_7401783 

Chr6_27428615 

Chr9_17310198 

Chr5_20353475 

Chr5_20354059 

Chr1_4141784 

Chr3_335220 

Chr1_4134887 

Chr9_17310389 

Chr9_17309981 

Chr1_33332505 

Chr4_18239785 

Chr8_27139226 
 

Grain yield per 

meter square 

Affx-93211641 

Affx-93214799 

Affx-93217800 

Affx-93217894 

Affx-93219645 

Affx-93221653 

Affx-93224242 

Affx-93225522 

Affx-93232506 

Affx-93233963 

Affx-93235980 

<0.001 23 

Chr5_17096019 

Chr11_18679859 

Chr1_33285434 

Chr3_11004153 

Chr3_35930607 

Chr1_33289000 

Chr1_33289833 

Chr1_33335369 

Chr2_2908628 

Chr2_2623254 

Chr12_9353998 
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Affx-93239049 

Affx-93239691 

Affx-93239985 

Affx-93241873 

Affx-93244148 

Affx-93246152 

Affx-93247536 

Affx-93248205 

Affx-93248244 

Affx-93250183 

Affx-93250221 

Affx-93259490 
 

Chr5_25277519 

Chr1_24247953 

Chr11_21672937 

Chr1_33329230 

Chr6_203398 

Chr1_475294 

Chr1_24239743 

Chr10_14261270 

Chr5_7748187 

Chr6_24494532 

Chr6_7401783 

Chr6_29615718 
 

Height 

Affx-93211896 

Affx-93214447 

Affx-93215744 

Affx-93221710 

Affx-93223785 

Affx-93223893 

Affx-93227480 

Affx-93227603 

Affx-93227665 

Affx-93228282 

Affx-93232992 

Affx-93234442 

Affx-93239333 

Affx-93240469 

Affx-93243068 

Affx-93243861 

Affx-93244800 

Affx-93249760 

Affx-93250190 

Affx-93251836 

Affx-93255782 

Affx-93256813 

Affx-93256846 

Affx-93259809 

Affx-93260832 

Affx-93261218 

Affx-93261275 

Affx-93261371 

Affx-93261437 

Affx-93261673 

Affx-93261796 
 

<0.001 31 

Chr5_24021196 

Chr11_2065080 

Chr4_4758589 

Chr1_33320802 

Chr2_11595159 

Chr10_1177199 

Chr1_38710379 

Chr12_15840841 

Chr6_15867674 

Chr11_9781236 

Chr6_3221259 

Chr2_30752216 

Chr1_33805233 

Chr1_38865687 

Chr5_3305808 

Chr11_2063736 

Chr1_33800408 

Chr11_2106739 

Chr1_5508658 

Chr2_26699583 

Chr1_39358978 

Chr3_5256083 

Chr12_1703264 

Chr2_33360346 

Chr3_7676514 

Chr11_2060290 

Chr11_1936049 

Chr11_1936531 

Chr11_1860463 

Chr11_1931241 

Chr11_1935453 
 

Grain no. per plant Affx-93215477 <0.001 7 Chr12_27316019 
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After doing the comparative analysis between both GLM AND MLM models and TASSEL 

software and GAPIT package (table 1, 2, 3, and 4), we identified 23 common SNPs those are 

associated with different traits. Under  the p-value <0.001 we identified 1, 6, 5 and 11 

common significant SNPs for GN_P, grain weight per meter square, grain yield plant and ht 

respectively. Whereas under the p-value <0.0001, we identified 0, 1, 8 and 1 common 

significant SNPs for GN_P, grain weight per meter square, grain yield plant and ht 

respectively. The details of SNPs and its chromosomes position shown in below (Table 9). 

 

 

 

 

 

 

 

Affx-93215760 

Affx-93259858 

Affx-93218948 

Affx-93224089 

Affx-93242996 

Affx-93256329 
 

Chr3_2240618 

Chr6_3057131 

Chr3_2199340 

Chr9_12221443 

Chr3_26332851 

Chr6_17675280 
 

Grain yield plant Affx-93213333 
 

<0.0001 1 Chr11_15570055 
 

Grain yield per 

meter square 
Affx-93259490 

 
<0.0001 1 

Chr6_29615718 

 

Height 

Affx-93240469 

Affx-93215744 

Affx-93261371 

Affx-93228282 

Affx-93227603 
 

<0.0001 5 

Chr1_38865687 

Chr4_4758589 

Chr11_1936531 

Chr11_9781236 

Chr12_15840841 

 

Grain no. per plant 
Affx-93213333 

 
<0.0001 1 

Chr11_15570055 

 



51 
 

Table 9: Common significant SNPs of agronomic traits by using Tassel and GAPIT R 

package. 

Traits  Significant SNPs  p-value  

Total no. of 

significant 

SNPs  

Chromosome 

position  

Grain yield 

plant  

Affx-9321164 

Affx-93234315 

Affx-93241123 

Affx-93248222 

Affx-93256680 

  

<0.001  5  

Chr5_17096019 

Chr6_17704662 

Chr1_631690 

Chr1_1672453 

Chr1_ 3333250  

  

Grain wt. per 

meter square  

Affx-93211641 

Affx-93239985 

Affx-93247536 

Affx-93259490 

Affx-93233693 

Affx-93214381 
 

<0.001  6  

Chr5_17096019 

Chr11_21672937 

Chr1_24239743 

Chr6_29615718 

Chr1_27129151 

Chr1_27130473  

  

Height 

Affx93221710 

Affx93227603 

Affx93228282 

Affx93232992 

Affx93234442 

Affx93239333 

Affx93240469 

Affx-93211896 

Affx-93215744 

Affx-93261275  

Affx-93261371  
 

<0.001`  11  

Chr1_33320802 

Chr12_15840841 

Chr11_9781236 

Chr6_3221259 

Chr2_30752216  

Chr1_33805233 

Chr1_38865687  

Chr5_24021196 

Chr4_4758589 

Chr11_1936049 

Chr11_1936531 

  
 

Grain no. per 

plant 
Affx-93259858  <0.001  1    Chr6_3057131 

Grain yield 

plant  

Affx-93211641 

Affx-93211996 

Affx-93224741  

Affx-93236110 

Affx-93245490 

Affx-93252350  

Affx-93252682  

Affx-93256680 
 

<0.0001  8  

Chr9_21197218 

Chr11_15572855 

Chr5_17096019 

Chr11_15409636 

Chr5_20353432  

Chr5_20353475 

Chr5_20354059 

Chr1_33332505 
 

Grain wt. per 

meter square  
Affx-93259490  <0.0001  1  Chr6_29615718  

Height  Affx-93228282  <0.0001  1  chr11_978123  
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4.6 Identification of candidate gene and its annotation related with different traits: 

The search for candidate genes by using Rice Annotation Project (RAP) database genome 

browser. According to the results of GWAS, a total of 23 genes were identified, 5 potential 

genes were discovered to be connected to grain yield plant, 6 genes were found to be  related 

with grain wt. per meter square, 11 genes were found to be  related with height, and 1 gene 

were found to be  related with Grain number per plant. These significant candidate genes 

encoded SNF2 family N-terminal domain containing protein, expressed, Cation ellux family 

protein, putative, expressed, RING-H2 finger protein, putative, expressed, OsCML6 - 

Calmodulin-related calcium sensor protein, expressed, heat shock protein DnaJ, putative, 

expressed, transcription factor, putative, expressed, insulin-degrading enzyme, putative, 

expressed, PPR repeat domain containing protein, putative, expressed, roothairless 1, 

putative, expressed, hydrolase, alpha/beta fold family domain containing protein, expressed, 

helicase domain-containing protein, putative, expressed, Homeobox domain containing 

protein, expressed, DUF647 domain containing protein, putative, expressed, avr9/Cf-9 

rapidly elicited protein 137, putative, expressed, GRAS family transcription factor containing 

protein, expressed, GDSL-like lipase/acylhydrolase, putative, expressed, RING-H2 finger 

protein, putative, expressed, tetratricopeptide repeat domain containing protein, expressed, 

and OsDegp7 - Putative Deg protease homologue, expressed. 

 

 

 

 

 

 

 

 

     

Grain no. per 

plant 
No Significant SNPs  <0..0001  0  ……  
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Traits  SNP ID 
p-

value 

Total 

SNPs 

Chromosome 

position 
Gene ID Annotation 

Grain yield plant 

Affx-9321164 

<0.001  

5 chr5_17096019 LOC_Os05g27340.1  expressed protein 

Affx-93234315 6 chr6_17704662 LOC_Os06g30600.1  expressed protein  

Affx-93241123 1 chr1_631690 LOC_Os01g02170.1  expressed protein  

Affx-93248222 1 chr1_1672453 LOC_Os01g03914.1  
cation efflux family 
protein, putative, 

expressed 

Affx-93256680  1 chr1_ 3333250  LOC_Os01g57110.1  

SNF2 family N-

terminal domain 

containing protein,  

Grain wt. per meter 

square 
Affx-93211641 

<0.001  

5 chr5_17096019 LOC_Os05g29710.1  
RING-H2 finger 
protein, putative, 

expressed 

 Affx-93239985 11 
chr11_2167293
7 

LOC_Os11g37550.1  

OsCML6 - 

Calmodulin-related 
calcium sensor 

protein, expressed 

  Affx-93247536 1 chr1_24239743 LOC_Os01g42190.1  

heat shock protein 

DnaJ, putative, 
expressed 

  Affx-93259490 6 chr6_29615718 LOC_Os06g48920.1  Expressed protein 

  Affx-93233693 1 Chr1_27129151 LOC_Os01g46970.1  
transcription factor, 

putative, expressed 

  Affx-93214381 1 Chr1_27130473  LOC_Os01g46970.1  
transcription factor, 

putative, expressed  

Height  

Affx93221710 

<0.001  

1 chr1_33320802 LOC_Os01g57082.1  

insulin-degrading 

enzyme, putative, 

expressed 

Affx93227603 11 
chr12_1584084
1 

LOC_Os12g27060.1  

PPR repeat domain 

containing protein, 

putative, expressed 

Affx93228282 12 chr11_9781236 LOC_Os11g17600.3  
roothairless 1, 
putative, expressed 

Affx93232992 6 chr6_3221259 LOC_Os06g06820.1  

hydrolase, alpha/beta 

fold family domain 
containing , protein, 

expressed 

Affx93234442 2 chr2_30752216  LOC_Os02g50370.1  

helicase domain-

containing protein, 

putative, expressed 

Affx93239333 1 chr1_33805233 LOC_Os01g57890.1  

Homeobox domain 

containing protein, 

expressed 

Affx93240469 1 chr1_38865687  LOC_Os01g66350.1  

DUF647 domain 

containing protein, 

putative, expressed 

Affx-93211896 5 Chr5_24021196 LOC_Os05g41150.1  expressed protein 

Table 10: list of candidate genes and its annotation for four agronomics traits.  
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Affx-93215744 4 Chr4_4758589 LOC_Os04g08764.1  

avr9/Cf-9 rapidly 

elicited protein 137, 

putative, expressed 

Affx-93261275  11 Chr11_1936049 LOC_Os11g04570.1  

GRAS family 

transcription factor 

containing protein, 
expressed 

Affx-93261371 11 Chr11_1936531  LOC_Os11g04570.1  

GRAS family 

transcription factor 
containing protein, 

expressed 

Grain no. per plant Affx-93259858  <0.001  6 chr6_3057131 LOC_Os06g06520.1  

GDSL-like 

lipase/acylhydrolase, 
putative, expressed  

 

 

 

 

 

 

 

 

 

 

 



55 
 

 

 

 

 

 

 

CHAPTER 5 - 

DISCUSSION 

 
 

 

 

 

 

 

 

 

 

 



56 
 

5.1 Population structure analysis, phylogenetic analysis and linkage disequilibrium: 

Basically, population structure analysis shows a having a diverse population is made possible 

by population structure. Population structure shows a sub-population between the 

populations. In our study, to comprehend the population dynamics of the rice diversity panel, 

we analysed population structure by using STRUCTURE software. The best K value at 4. 

That’s means in rice diverse collections have four populations present.  

Phylogenetic analysis shows the evolutionary relationships between different population and 

sub population. Basically, they show the closely related relationship between different 

groups. In our study, 2 clusters are present in the phylogenetic tree, those I have mentioned in 

the previous page (Fig.No.4). 

LD is important because of the many variables that affect and are affected by it. The 

potential responds to both artificial and natural selection is restricted by LD, which also 

provides historical event information. The TASSEL generated the triangle plot of linkage 

disequilibrium. The comparison of two sets of marker sites is shown in each cell, with colour 

coding used to indicate the presence of significant LD. It is customary to visually separate 

pairings of loci with high levels of LD from those with low levels of LD when considering 

more than two loci together. 

5.2 Comparative analysis by using different method and software: 

We selected to conduct GWAS on 186 rice diverse collections landrace populations in this 

work because the greater size of the sample along with increased genetic diversity enough 

effectiveness of the association analysis. While numerous loci were all mapped of the two 

univariate tested GWAS methods by TASSEL software and GAPIT R package, both of the 

two techniques located a few of the known function loci. We did a comparative analysis 

between GLM and MLM models with the result of TASSEL software and GAPIT R package. 

And after this, those common SNPs were identified after the comparative analysis, which is 

consider as a significant SNPS .In our study, 23 genes were identified by using the 

comparative analysis those were associated with particular traits. All the result of the 

comparative study was shows in previous pages (table 5, 6, 7, 8 and 9). 

5.3 Application of the potential genes in breeding and future research:  

Twenty- three QTLs or genes with crucial agronomic trait agronomic trait control were 

discovered in our study. We identified we identified 1, 6, 5 and 11 common significant SNPs 
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for GN_P, grain weight per meter square, grain yield plant and ht respectively. The candidate 

genes involved in important agronomics traits are crucial tools for comprehending the 

mechanisms that underlie the optimum yield and agricultural breeding.  

However, it is crucial to remember that although though all of these potential genes were 

found based on the expression, sequence and homology analyses of QTLs, more research 

must be done to confirm the findings before drawing any definite conclusions. 
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CONCLUSION 

In this study, we did a comparative analysis between TASSEL software and GAPIT R 

package by using the GLM and MLM models .BY USING THE tassel software, Significant 

SNPs were identified using p-value <.001 & 0.0001. Under the p-value <0.001, GLM model 

identified 14, 798, 225 and 1654 significant SNPs for GN_P, grain weight per meter square, 

grain yield plant and ht respectively. Whereas MLM model identified 5, 12, 33, and 77 

significant SNPs for GN_P, grain wt. per meter square, grain yield plant and ht respectively. 

Under the p-value <0.0001, GLM model identified 2, 26, 44, and 187 significant SNPs for 

GN_P, grain weight per meter square, grain yield plant and ht respectively. Whereas MLM 

model identified 1, 7, 1, and 0 significant SNPs for GN_P, grain wt. per meter square, grain 

yield plant and ht respectively. 

By using the GAPIT R package, Under the p-value <0.001, GLM model identified 129, 1873, 

1253 and 2756 significant SNPs for GN_P, grain weight per meter square, grain yield plant 

and ht respectively. Whereas MLM model identified 7, 29, 31 and 38 significant SNPs for 

GN_P, grain wt. per meter square, grain yield plant and ht respectively. Under the p-value 

<0.0001, GLM model identified 14, 798, 225 and 1654 significant SNPs for GN_P, grain 

weight per meter square, grain yield plant and ht respectively. Whereas MLM model 

identified 2, 1, 1 and 6 significant SNPs for GN_P, grain wt. per meter square, grain yield 

plant and ht respectively. 

 The common significant SNPs after using the comparative analysis, WAS analysis for four 

agronomic traits based on 50051 SNPs was performed using two univariate methods (GLM 

and MLM). Under the p-value < 0.001, we identified 1, 6, 5 and 11 common significant SNPs 

for GN_P, grain weight per meter square, grain yield plant and ht respectively. Whereas 

under the p-value <0.0001, we identified 0, 1, 8 and 1 common significant SNPs for GN_P, 

grain weight per meter square, grain yield plant and ht respectively.  

The search for candidate genes by using Rice Annotation Project (RAP) database genome 

browser. According to the results of GWAS, a total of 23 genes were identified, 5 potential 

genes were discovered to be associated with grain yield plant, 6 genes were found to be  

related with grain wt. per meter square, 11 genes were found to be  related with height, and 1 

gene were found to be  related with Grain number per plant. The common significant markers 

which might be further used for genetic studies. These results will serve as a guide for high-

yielding rice variety breeding in the near future. 
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FUTURE PROSPECTIVE 

 

A potent tool for analysing complex phenotypes is the use of genome-wide association 

studies, which are genetic explorations of the entire genome to identify variants associated 

with a trait in wild populations. The common significant markers which might be further used 

for genetic studies. These results will serve as a guide for the immediate future breeding of 

high-yielding rice cultivars. 
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