
Zopstore Web App

Project report submitted in partial fulfillment for the requirement
for the degree of Bachelor of Technology

In

Computer Science and Engineering/Information Technology

By

Piyush Singh (191276)

Under the supervision of

Prof. (Dr.) Vivek Kumar Sehgal

to

Department of Computer Science & Engineering and Information
Technology

Jaypee University of Information Technology Waknaghat,

Solan-173234, Himachal Pradesh

i

CERTIFICATE

I hereby declare that the work presented in this report entitled “Zopstore Web App” in

partial fulfillment of the requirements for the award of the degree of Bachelor of

Technology in Computer Science and Engineering/Information Technology submitted

in the department of Computer Science & Engineering and Information Technology,

Jaypee University of Information Technology Waknaghat is an authentic record of my own

work carried out over a period from July 2022 to May 2023 under the supervision of Prof

Dr Vivek Kumar Sehgal, Professor and Head, Fellow IEI, SM-IEEE, SM-ACM,

Department of CSE Jaypee University of Information Technology, Waknaghat.

The matter embodied in the report has not been submitted for the award of any other degree

or diploma.

Piyush Singh, 191276.

This is to certify that the above statement made by the candidate is true to the best of my

knowledge.

Prof (Dr) Vivek Kumar Sehgal

Professor and Head, Fellow IEI, SM-IEEE, SM-ACM

Computer Science and Engineering and Information Technology

Dated:

ii

PLAGIARISM CERTIFICATE

iii

ACKNOWLEDGEMENT

Firstly, I express my heartiest thanks and gratefulness to Lord Shiva for His divine blessing

makes it possible for us to complete the project work successfully.

I am grateful and wish my profound indebtedness to Prof Dr Vivek Kumar Sehgal,

Professor and Head, Fellow IEI, SM-IEEE, SM-ACM, Department of CSE, for his keen

interest in the field of “Machine Learning” to carry out this project. His endless patience,

scholarly guidance, continual encouragement, constant and energetic supervision,

constructive criticism, valuable advice, reading many inferior drafts and correcting them at

all stages have made it possible to complete this project. I would like to express my heartiest

gratitude for his kind help to finish my project.

I would also generously welcome my friend Suveer Sharma and each one of those

individuals who have helped me straightforwardly or in a roundabout way in making this

project a win. In this unique situation, I might want to thank the various staff individuals,

both educating and non-instructing, which have developed their convenient help and

facilitated my undertaking.

No expression of appreciation is complete without recognition of the prayers, good wishes,

advice and moral support of my affectionate parents, which helped me immensely to

achieve my goal.

Name: Piyush Singh

Enrollment No.: 191276

iv

TABLE OF CONTENT

TITLE PAGE NO.

Certificate i

Plagiarism Certificate ii

Acknowledgement iii

List of Figures vi

List of Tables vii

Abstract viii

Chapter 1: Introduction 1-5

 1.1 Company Profile 1

 1.2 Introduction 2

 1.3 Problem Statement and Motivation 2

 1.4 Objectives 2

 1.5 Purpose and Methodology 3

Chapter 2: Literature Survey 4-25

 2.1 Technology and Literature Review 4

 2.2 Feasibility Study 24

Chapter 3: System Design and Development 26-42

 3.1 Dataset Description 26

 3.2 Project Development, Approach and Justification 27

 3.3 Milestones and Deliverables 30

 3.4 Hardware and Software Requirements 35

 3.5 Assumptions and Dependencies 36

 3.6 System Design 39

 3.7 Implementation Environment 42

v

Chapter 4: Performance Analysis 43-49

 4.1 Test Plan 43

 4.2 Testing Strategy 43

 4.3 Unit Testing 44

 4.4 Test Cases 46

Chapter 5: Conclusions 50-55

 5.1 Conclusions 50

 5.2 Discussion 51

 5.3 Future Scope and Enhancement 51

 5.4 Application Contribution 53

 5.5 Limitation 53

References 56-57

vi

LIST OF FIGURES

FIGURE DESCRIPTION PAGE NO.

Figure 1 ZopSmart Technologies 1

Figure 2 Golang 4

Figure 3 Golang 5

Figure 4 MySQL 6

Figure 5 Postman 7

Figure 6 Git and GitHub 8

Figure 7 Docker 10

Figure 8 Kubernetes 11

Figure 9 Terraform and Terragrunt 11

Figure 10 Terragrunt Infra 14

Figure 11 Helm 15

Figure 12 Swagger 16

Figure 13 REST API 17

Figure 14 Golang HTTP client workflow 19

Figure 15 Three Layered Architecture 21

Figure 16 Database Scema 26

Figure 17 Development Approach (AGILE) 28

Figure 18 APIs 33

Figure 19 REST in action 35

Figure 20 Use Case 36

Figure 21 Sequence Diagram of Login 40

Figure 22 Sequence Diagram of Create Object 41

Figure 23 Sequence Diagram of GetByBrand 41

Figure 24 Test Result Coverage 44

Figure 25 Postman GetById 47

Figure 26 Postman for Creation 49

Figure 27 Postman for Update 50

vii

LIST OF TABLES

TABLE DESCRIPTION PAGE NO.

Table 1 Login Test Cases 46

Table 2 Test Case for GetById 46

Table 3 Test Case for Create Objects 48

Table 4 Test Case for Update 49

viii

ABSTRACT

Making a web application is very simple, but testing, organising, cleaning up, and

maintaining the code is difficult. We adhere to the Three-Layered Architecture and the Go

programming language to address this.

The handler, service, and datastore layers are independent of one another. The handler layer

parses the request body after receiving it to extract any pertinent data. After calling the

service layer, where the program's whole logic is specified, the response is subsequently

written to the response writer. This layer also communicates with the datastore layer. After

obtaining what it needs from the handler layer, it invokes the datastore layer. The datastore

layer holds all of the data.

1

CHAPTER 01:

INTRODUCTION

1.1 Company Profile

A leading provider of retail technology, ZopSmart Technology offers all the

resources needed to launch an online store. We offer services including digital

marketing, m-commerce, e-wallets, etc.

We assist clients in defining business processes and determining the best

integration requirements by utilising sector best practises to increase automation

for data communication and better decision making, allowing businesspeople to

concentrate on their core competencies while technology handles data

communication and facilitates better decision making.

Figure 1: ZopSmart Technologies

Services:

Website Development: Complete website development, from UI/UX design

through website development or client website maintenance.

Framework Development: Framework Development for Java, Golang, and

NodeJS Internal/Client Webservices.

Website for a company that develops mobile applications: https://zopsmart.com

2

1.2 Introduction

This programme is designed for store owners who have access to a database of

data on online goods. Our goal is to make it simple for executives and

administrators to automate their tasks with minimal effort. For instance, they

can quickly produce quotes for any inquiries about online products.

1.3 Problem Statement and Motivation for project:

As online business has grown quite prevalent, regardless of age or gender, it is

now simple to locate online web retailers on the internet.

When pleasing Customers and Employees of the respective online shopping,

using manual techniques may open the door for a number of challenges. These

manual transactions squander the Owners' and Employees' valuable time and

money. These obstacles directly impact the dealership's profits, owners'

interests, and both.

1.4 Objective:

The following are the project's goals:

● Eliminate paper-based labour from the shopping area, such as using

diaries to record brand and product information.

● Keeping Product and Brand details in many locations (such as a diary or

mobile device) and by multiple people (the owner and employees) will

eliminate data redundancy.

● Stop wasting the Owner's and Employees' time, resources, efforts, and

money.

● Enhance the effectiveness and efficiency of a web store's operations,

services, and procedures including storing Product and Brand

information.

3

● Boost employee and owner satisfaction.

1.5 Purpose and Methodology:

The "Product-Brand Store Web API" project is a Web API. Complete details

about the goods and its brand are provided through these API. The foundation

of the online Store is a product database that houses all of the necessary product

data. It offers the ability to locate, create, update, and delete.

important details regarding the project:

● allowing for the addition of Product and Brand details.

● enabling the updating of Product and Brand details.

● enabling the display of information about all products and brands.

4

CHAPTER 02:

LITERATURE SURVEY

2.1 Technology and Literature Review:

 2.1.1 Development Tools:

Goland

An integrated development environment (IDE) used in computer

programming specifically for the Go language is called Goland

Community Edition.JetBrains, a Czech firm, created it. A free, feature-

rich, and extendable IDE for independent developers, open-source

projects, instruction, and scholarly investigation is called Goland

Community version. Goland works on Windows, MacOS, and Linux.

Figure 2: Golang

Language: - Go Language

Go is a general-purpose open source programming language that is

sometimes known as Golang or Go.To construct stable and effective

software, Google engineers created the language Go.

Go is statically typed and explicit, most closely resembling C. A

5

compiled language is Go. Go is utilised for many different applications,

including DevOps, Write Rest Api, cloud and server-side applications,

and more.

Figure 3: Golang

Database: - MySQL

The core of Oracle's relational database management system (RDBMS),

MySQL, is the structured query language (SQL).

A database is a planned collection of data. It might be anything from a

simple grocery list to a photo gallery or a place to store the massive

volumes of data in a corporate network. In particular, a relational

database is a digital repository that gathers data and organizes it

according to the relational paradigm. In this paradigm, tables are made

up of rows and columns, and relationships between data items all follow

a strict logical structure. An RDBMS is a collection of software tools

used to set up, run, and query such a database.

6

Figure 4: MySQL

Postman

design, construction, and documentation of APIs. Developers may send

queries, view responses, and analyse data from APIs thanks to the user-

friendly interface it offers. Developers may manage and run tests for

various endpoints and scenarios by creating and organising groups of API

calls in Postman.

One of Postman's standout features is its support for a variety of HTTP

methods, including GET, POST, PUT, DELETE, and more. This

capability enables developers to interact with APIs and test various

activities. Additionally, it supports many forms of authentication,

including OAuth and API keys, allowing developers to test and validate

secure API endpoints.

7

Figure 5: Postman

A wide range of testing options are provided by Postman, including the

ability to create and execute JavaScript-based automated tests. As a

result, programmers can specify assertions and validations to make sure

that API replies satisfy predetermined requirements. It is convenient to

carry out in-depth testing and confirm the behaviour of APIs by executing

test scripts as a component of collections or individual requests.

Postman also makes it easier to document APIs by offering tools for

creating interactive and shareable documentation. For the sake of

documentation, developers can include explanations, illustrations, and

even mock servers that replicate API responses. Teams may work

together and inform stakeholders about API requirements more easily as

a result.

Version Control: - Git/GitHub

GitHub is a web-based platform for version control and collaboration for

software engineers. Microsoft, GitHub's largest individual donor, bought

the service for $7.5 billion in 2018. Using a software as a service (SaaS)

8

delivery model, GitHub was founded in 2008. Its foundation was Git, an

open-source code management system created by Linus Torvalds to

hasten software development.

Git is a tool for storing project source code and tracking all code

alterations. It enables developers to work on a project more successfully

by offering methods for addressing possibly conflicting modifications

from different developers.

GitHub's public repositories allow for the free modification, adaptation,

and improvement of software by developers; nevertheless, the firm

provides a number of paid plans for private repositories. Both public and

private repositories hold all of a project's files together with each file's

revision history. Repositories can have several collaborators and can be

either public or private.

Figure 6: Git and GitHub

Container Manager: - Docker

Developers may automate the deployment and administration of

applications inside compact, portable containers using the open-source

technology known as Docker. Applications and their dependencies are

packaged inside self-contained Docker containers, which enable them to

function consistently in a variety of contexts.

An overview of Docker and Docker containers is provided here.

9

Containerization: Docker makes use of containerization technology,

which enables the packaging of applications into independent, portable

containers. Each container contains the configuration files, dependencies,

and libraries needed for the application to function. Application

behaviour is guaranteed to be consistent and reproducible across the

underlying infrastructure thanks to container environments.

Docker containers are extremely portable. They make it simple to deploy

and operate the same container on various devices, operating systems, or

cloud platforms since they package the programme and its dependencies

into a single package. This portability solves the "it works on my

machine" issue and makes switching between the development, testing,

and production environments for apps much easier.

Resource Efficiency: Docker containers are effective users of resources.

Docker shares the operating system kernel of the host machine, in

contrast to traditional virtualization, which runs several virtual machines

with their own operating systems. Compared to virtual machines, this

method lowers overhead and maximises resource use, enabling the use of

multiple containers on a single host machine.

Isolation: Docker containers offer some level of separation between the

host system and the applications. Applications and the dependencies on

them are kept separate from one another by operating in separate, isolated

environments in each container. By avoiding conflicts and giving users

better control over the runtime environment, this isolation improves

security, stability, and dependability.

10

Figure 7: Docker

Container Orchestration - Kubernetes

The deployment, scaling, and maintenance of containerized applications

are all automated via the open-source container orchestration technology

known as Kubernetes (also known as K8s). The Cloud Native Computing

Foundation (CNCF) now maintains it after Google initially built it. In a

distributed context, Kubernetes offers a reliable and scalable method for

managing containerized workloads.

Kubernetes is made specifically for managing and orchestrating

containers. It enables you to specify and deploy application workloads as

a group of containers collectively referred to as pods, which serve as the

fundamental scheduling units. The placement, scalability, and lifetime

management of these pods are handled by Kubernetes, ensuring that the

application is kept in the appropriate condition.

High availability and scalability: Kubernetes makes it simple to scale

applications. To accommodate more traffic or demand, the number of

pods can be horizontally scaled. Assuring high availability and balancing

the load, Kubernetes automatically distributes the pods among the

11

available nodes. Additionally, it keeps an eye on the health of the pods

and restarts or reschedules them when there are errors or node

disturbances.

Figure 8: Kubernetes

Terraform And Terragrunt

Two well-known open-source technologies, Terraform and Terragrunt,

make declarative and scalable infrastructure provisioning and

management possible. While Terraform is primarily concerned with

orchestrating infrastructure, Terragrunt expands its functionality with

new tools to improve code reuse and maintainability.

Figure 9: Terraform and Terragrunt

12

Terraform:

HashiCorp created the infrastructure-as-code (IaC) tool known as

Terraform. You may design and manage infrastructure resources across

different cloud service providers, data centres, and service providers

thanks to this. Utilising a high-level configuration language, typically

written in HashiCorp Configuration Language (HCL), Terraform allows

you to describe your infrastructure. Among Terraform's most important

attributes are:

● Declarative Infrastructure: Terraform enables you to specify in

configuration files the desired state of your infrastructure. It

offers a declarative approach to infrastructure management and

automatically manages the provisioning and management of

resources to fit that desired state.

● Support for Multiple Cloud Providers: Terraform offers support

for numerous cloud service providers, including Google Cloud

Platform (GCP), Microsoft Azure, Amazon Web Services

(AWS), and many others. This enables you to manage resources

using a single configuration across several cloud environments.

● Resource Graph and Dependency Management: Based on your

configuration, terraform creates a resource dependency graph

that aids in its comprehension of the links between resources.

This makes it possible for Terraform to effectively plan and carry

out infrastructure modifications while retaining the necessary

dependencies.

● Infrastructure as Code: Terraform considers infrastructure as

code, which enables you to version-control, review, and publish

your infrastructure configuration just like any other piece of

13

code. Collaboration, reproducibility, and best practises in

infrastructure management are encouraged by this.

 Terragrunt

● Terragrunt is a lightweight configuration layer and wrapper for

Terraform, which was also created by HashiCorp. It adds further

capabilities on top of Terraform to improve configuration

management, code reuse, and modularization. Among

Terragrunt's prominent characteristics are:

● Avoid Repetition by Using DRY Configuration: You may

abstract and reuse popular Terraform setups with Terragrunt.

With its support for configuration inheritance and composition,

you may create reusable modules and maintain the DRY

principle in your infrastructure code.

● Management of Remote States: Terragrunt makes Terraform's

management of remote states simpler. It offers integrated

support for remote state storage and enables state sharing

between different Terraform deployments. By doing this, team

members can collaborate more easily and state management is

ensured to be consistent.

● Environment management: By abstracting common

configuration patterns, Terragrunt aids in the management of

many environments (such as development, staging, and

production). It enables you to dynamically apply configurations

tailored to certain circumstances, minimising duplication and

fostering consistency between contexts.

● Terragrunt has functionality for verifying and testing Terraform

setups. Configuration validation. You can use it to run tests

against the infrastructure code, verify module setups, and

14

perform pre-flight checks.

● Management of Dependencies: Terragrunt assists in the

management of dependencies among Terraform modules. It

makes sure that the modules in your infrastructure codebase are

initialised, versioned, and utilised correctly. This makes module

management easier and guarantees uniform module usage across

all projects.

It is simpler to define, provide, and manage infrastructure resources in a

consistent and scalable manner when using Terraform and Terragrunt,

two potent technologies that enable infrastructure-as-code practises.

They offer effective techniques to automate infrastructure provisioning,

encourage teamwork, and spread the word about good infrastructure

management practises.

Figure 10: Terragrunt Infra

Helm

Helm is a well-liked open-source package manager for Kubernetes that

makes it easier to deploy and manage services and applications. With

only one command, users can define, install, and upgrade sophisticated

Kubernetes apps. Application configurations may be shared and reused

15

more easily thanks to Helm's standardised approach to packaging,

distributing, and managing Kubernetes manifests.

Figure 11: Helm

Swagger

Used for creating, constructing, consuming, and documenting RESTful

APIs. It offers a uniform language for describing API endpoints, their

input and output parameters, required levels of authentication, and more.

Tools and frameworks can use the machine-readable format provided by

Swagger to create interactive documentation, client SDKs, and server

stubs.

The ability of Swagger to produce interactive, human-readable API

documentation is one of its main advantages. Developers may

automatically create documentation that include information on

endpoints, their supported HTTP methods, request and response types,

and even sample payloads by specifying API specifications in a Swagger-

compliant manner. Developers may better understand and use APIs

thanks to this documentation, which speeds up development and

improves integration.

Additionally, Swagger encourages uniformity and standardisation in API

design. Swagger makes guarantee that APIs meet best practises and a set

of standards by giving a standardised and unambiguous approach to

specify API contracts. The usefulness and maintainability of APIs are

16

enhanced by this uniformity, making it simpler for developers to interact

with and expand on already-existing services.

The automated generation of client and server code is another feature of

Swagger. Developers can produce client SDKs in a variety of

programming languages by utilising the Swagger specification, which

will save them time and effort when connecting with APIs. Swagger can

be used to generate boilerplate code or server stubs that implement the

API contracts on the server side, which speeds up the creation of API

backends.

Figure 12: Swagger

 2.1.2 Representational State Transfer (REST)

The architectural design approach known as REST (Representational

State Transfer) is used to create networked applications. It offers a

collection of guidelines and limitations for creating scalable, stateless,

and cooperative web services. Application Programming Interfaces

(APIs) that follow the REST principles are often utilised.

17

Figure 13: Rest API

Here are the key aspects of REST:

● Stateless Communication: In REST, each request made by a

client to a server is complete with all the details the server needs

to comprehend and handle it. Between requests, the server

doesn't keep any client-specific state. Statelessness improves

scalability and makes server-side implementation less

complicated.

● Resources are treated as the basic building elements of an

application in resource-oriented design, or REST. Any

identifiable entity, including data objects, services, and even

groups of other resources, can be considered a resource. Each

resource has a distinct URI (Uniform Resource Identifier), also

known as a URL (Uniform Resource Locator).

● Uniform Interface: To encourage simplicity and interoperability,

REST places a strong emphasis on a uniform interface. It

specifies a collection of commonly used HTTP methods for

altering resources, including GET, POST, PUT, and DELETE.

These techniques are used to carry out tasks such as resource

retrieval, creation, updating, and deletion.

● Resources are represented in REST using formats like JSON

(JavaScript Object Notation) or XML (eXtensible Markup

18

Language). The representation format can be agreed upon by the

client and server through content negotiation, allowing for the

most efficient data exchange.

● REST isolates the client (user interface or application) from the

server (data storage or service provider) and uses stateless client-

server communication. The client can interact with resources via

a set of clearly defined APIs that the server exposes. Due to its

independence, the client and server can develop separately and

with loose connection.

● HATEOAS: Hypermedia as the Engine of Application State An

essential REST concept known as HATEOAS promotes self-

descriptive APIs. This principle states that each server response

contains a link to relevant information or activities the client can

do. This makes it possible for the client to dynamically learn

about and browse the capabilities of the application.

● Layered architecture and caching: REST provides caching to

enhance performance and lessen server load. Based on the

cacheability guidelines that the server provides, clients can cache

answers. In order to offer scalability, security, or other features,

intermediaries (proxies, gateways) can be inserted between the

client and server according to REST's support for layered

architecture.

RESTful APIs' simplicity, scalability, and compatibility have led to their

extensive usage. They are frequently employed in the development of

distributed systems, microservices, and web services. The foundation

for developing scalable, loosely linked systems that may be used by a

variety of clients, such as web browsers, mobile devices, and other apps,

is provided by RESTful principles.

19

 2.1.3 Golang HTTP Package

An HTTP package is available in the Go programming language's

(Golang) comprehensive standard library. Go's HTTP package offers

tools for creating HTTP servers, sending HTTP requests, managing

sessions, handling cookies, and more. It makes web application

development easier and makes it simple for developers to communicate

with HTTP-based APIs. The Go HTTP package's main attributes and

capabilities are shown below:

Figure 14: Golang HTTP client workflow

Http Server

You may build HTTP servers and manage incoming requests using the

http package.

It offers utilities to register handlers for various HTTP methods and URL

paths, enabling you to create your own unique logic for managing

particular routes.

The programme offers support for managing custom error pages,

redirection, and handling static files.

The server can be set up to handle TLS/SSL encryption, listen on a

certain port, and have timeouts that you specify.

20

The HTTP Client

An HTTP client is included in the http package, which enables you to

send HTTP requests to remote servers.

Making GET, POST, PUT, DELETE, and other HTTP requests is

supported.

You can control response headers and bodies as well as specify request

headers and pass query parameters.

The package offers tools for controlling cookies, following redirection,

and establishing request timeouts.

Using the encoding/json package, it also supports sending and receiving

JSON data.

Middleware

Middleware can be used to manage routine chores and implement cross-

cutting issues thanks to Go's HTTP package.

HTTP handlers can add authentication, logging, rate limitation, and any

other required behaviour using middleware functions.

A HandlerFunc type is offered by the http package and enables the

chaining of several middleware functions.

2.1.4 Three Layered architecture

A software design pattern called three-layered architecture, or three-tier

architecture, divides an application's components into three different

layers: the display layer, the business logic layer, and the data storage

layer. By requiring a distinct separation of interests, this architectural

design encourages modularity, scalability, and maintainability.

21

Figure 15: Three Layered Architecture

The three components of the architecture are as follows:

User Interface's Presentation Layer:

The user interface and user interactions are handled by the presentation

layer.

It consists of elements including websites, mobile apps, desktop

programmes, and other user interaction tools.

The user interface rendering, data collection, and output display are the

22

main goals of the layer.

In order to execute activities depending on user actions and retrieve data

for presentation, it interfaces with the business logic layer.

Application Layer's Business Logic Layer:

The foundational features and regulations of the application are

contained in the business logic layer.

It puts into practise the business procedures, algorithms, and guidelines

that direct how the application behaves.

This layer manages interactions between the presentation and data

storage layers by encapsulating and processing data, carrying out

calculations, enforcing business rules, and orchestrating calculations.

The presentation layer sends requests to it, which it receives, processes,

and then responds to with the relevant information.

Layer for Data Storage (Persistence Layer):

The management of data storage and retrieval is under the purview of

the data storage layer.

It contains any other data sources the programme uses, such as

databases, file systems, external APIs, etc.

Data persistence, querying, updating, and any necessary data

transformations are handled by this layer.

By removing the underlying storage technology, it offers a means for

the business logic layer to communicate with the data.

Dependency Injection

A software design pattern called Dependency Injection (DI) encourages

loose coupling and allows for the separation of responsibilities across

components of an application. Instead of generating or managing

dependencies inside the objects themselves, it helps manage

dependencies between objects by giving them the appropriate

23

dependencies from outside sources.

Micro Services

A collection of small, independent, loosely linked services is how an

application is structured using the microservices architectural style. Each

service represents a particular business capability and may be

independently designed, implemented, and scaled. Modularity,

flexibility, and scalability are encouraged by microservices, which makes

it simpler to create and manage complex programmes.

Flexibility in Scaling

Each microservice's underlying app feature's demand can be scaled

separately from the others.

This enables teams to correctly size infrastructure, ensure service

availability during periods of heavy demand, and forecast feature costs

with accuracy.

Simple Deployment

Microservices enable continuous integration and delivery, making it

simple to test new ideas and roll them back if they don't work. More

experimentation, quicker code updates, and a shorter time to market for

new features are all made possible by the low cost of failure.

Utilisable Code

Software can be broken down into clear, separate modules that teams can

use for a range of tasks. A service created for one function could be the

inspiration for another feature.

24

 2.1.5 Databases Migration

The process of moving information and structures from one database

system to another is referred to as database migration. When an

organisation needs to improve an existing database system, transfer to a

different database platform, or combine many databases into one

system, it is an important operation that they must complete. To

guarantee data integrity and little downtime throughout the change,

database migration requires rigorous planning, execution, and

validation.

The justifications for moving a database can differ. Some businesses

may opt to switch to a new database system in order to benefit from

more sophisticated features, better performance, or more scalability.

Others might be forced to migrate because of vendor changes, financial

constraints, or legal restrictions.

2.2 Feasibility Study:

2.2.2 Technical Feasibility

Since Goland was used in the project's design, it is simple to install in

any system as needed. It is more user-friendly, efficient, and simple for

everyone to understand. PostgreSql can effectively handle enormous

amounts of data and can handle stored procedures.

2.2.2 Time Schedule Feasibility

The project is straightforward to operate, and the fundamental requirements

may be met in the allocated time period, satisfying the condition for time

development feasibility. It was important to decide whether the deadlines were

required or preferred.

2.2.3 Operational Feasibility

25

This application has a very large user base, and any user can use it to

review their individual work. These kinds of applications for software

engineer evaluation are spreading more widely every day. Additionally,

this project is segregated into many modules, meaning that no user has

access to view all modules; instead, they can only view the modules that

they are authorised to view. Therefore, it is possible to operate this

system.

26

CHAPTER 03:

SYSTEM DEVELOPMENT

3.1 Dataset Description

Figure 16: Database Schema

Database Tool: Mysql

Due to its simplicity of use, performance, and scalability, MySQL is an open-

source relational database management system (RDBMS) that has grown

significantly in popularity. MySQL AB, a Swedish business, developed it; Sun

Microsystems later bought it; and Oracle Corporation now owns it. The

preferred option for many web applications, content management systems, and

data-driven websites, MySQL is widely utilised across a variety of industries.

The ease of use and simplicity of MySQL's interface are two of its main

advantages. Both novice and expert users can use it because of its simple

installation procedure and well-documented set of tools and commands. Since

27

the SQL-based language used by MySQL is well-known and comprehended,

developers can write and run queries quickly.

The high performance of MySQL is well known. It is a dependable option for

applications that handle a lot of read and write operations because it is optimised

for processing massive datasets efficiently. Its speed and responsiveness are

aided by the support for a number of indexing strategies, caching systems, and

query optimisation capabilities. In order to boost scalability and high

availability, MySQL also provides replication features, enabling businesses to

make multiple copies of their databases.

Another noteworthy aspect of MySQL is its scalability. Without losing

performance, it can manage expanding workloads and support growing data

quantities. In order to enable horizontal scaling and distribute the workload

across different servers, MySQL provides a variety of clustering and sharding

techniques. Because of this scalability, businesses are able to manage more

concurrent users and quickly growing data needs.

3.2 Project Development Approach and Justification

Approach to Project Development: Iterative Waterfall Model

This model separates the cycle into the following phases:

1. Possibility Analysis

2. Analysis and formulation of requirements

3. Unit testing, coding, and design

4. System testing and integration

5. Maintenance

28

Figure 17: Development Approach (AGILE)

Agile is a project management and development methodology that places a

strong emphasis on adaptability, teamwork, and iterative development. It came

about as a reaction to the shortcomings of conventional waterfall approaches,

which frequently led to rigid plans, sluggish feedback, and challenges adjusting

changing requirements. Agile, on the other hand, encourages flexible planning,

ongoing development, and strong cooperation amongst cross-functional teams.

Iterative and incremental development is one of the fundamental tenets of Agile.

Agile divides a project into smaller, more manageable units called sprints rather

than aiming to define and deliver the complete thing at once. The goal of each

sprint, which typically lasts one to four weeks, is to produce a working product

increment. This iterative technique enables teams to collect feedback, allows for

frequent inspection and customization,

29

In Agile techniques, communication and collaboration are essential. Agile

teams are frequently cross-functional and made up of members with a range of

abilities. Daily stand-up meetings, when team members share progress, tackle

problems, and coordinate efforts, build collaboration. Although direct

communication is preferred, dispersed teams can communicate effectively by

using virtual collaboration technologies. Agile fosters teamwork, facilitates

knowledge sharing, and increases the team's collective intelligence by fostering

a shared understanding of the project goals.

Customer engagement is a key component of Agile. It actively incorporates

consumers or stakeholders throughout the development process while

acknowledging that customer demands and priorities may change over time.

Agile teams can gain important insights, verify hypotheses, and make necessary

corrections to guarantee the final product meets customer expectations by

participating in continuous feedback loops. High levels of client satisfaction are

fostered by this customer-centric approach, which also makes it easier to supply

solutions that closely match their needs.

Frameworks and procedures are provided by agile techniques like Scrum and

Kanban to help with the application of these ideas. For instance, Scrum specifies

the roles of the Product Owner, Scrum Master, and Development Team as well

as the rituals of daily stand-ups, sprint planning, sprint review, and sprint

retrospective.

Continuous improvement is also emphasised by agile approaches. Teams

review their performance, pinpoint areas for development, and make changes to

improve output and quality through routine retrospectives. Agile helps teams to

effectively respond to changing requirements, developing technology, and

altering market situations by promoting a culture of learning and adaptation.

Agile offers a flexible and team-based method for managing and developing

projects. It is ideally suited for complicated and dynamic projects because of its

iterative structure, emphasis on client value, and emphasis on continual

improvement. Organisations can improve their capacity to provide high-quality

30

products, better meet customer expectations, and react to changing business

environments by adopting Agile principles and practises.

3.3 Milestones and Deliverables

● Phase of feasibility analysis: one week

● Analysis of requirements and specification phase: 1 week

● Designing phase: 3 weeks approximately

● Phase of coding: about three weeks

● Each form is linked to a specific piece of database information.

● Phase of testing: around 15 days

● Analyses and tests were conducted on all required modules.

● With three tests, every feature operates and navigates properly.

3.3.1 Roles and Responsibilities

All phases were broken down into modules, with each module being given to a

different member of the team because the project development was being

handled by a single person. A job must be completed according to the specified

parameters before the entire project is integrated.To complete the design of the

entire application in the allotted time, I separated my work into numerous

sections.

3.3.2 Group Dependencies

The following duties are dependent on one another:

Even though analysis or a system requirement study (SRS) is independent of all

other work, it will begin once the feasibility study and project planning are

finished.

Prototyping can be done concurrently with system analysis.

Prior to the project's development, a prototype's design and a system analysis

31

are conducted.

Only until certain key functionality have been developed and are ready for

testing can testing begin.

3.3.3 Study of Current System

Examining and evaluating the state of RESTful API implementations across various

businesses and domains is part of the research of contemporary REST APIs. Due to its

simplicity, scalability, and interoperability with the web, REST (Representational State

Transfer) has become a frequently used architectural approach for developing web

services.

Researchers and analysts assess many facets of API design, implementation,

documentation, and usage to investigate contemporary REST APIs. They evaluate how

well REST principles—such as statelessness, resource identification, and standard

interfaces—are adhered to by APIs. Additionally, they look at API endpoints, HTTP

methods, request/response formats, and error handling procedures for consistency and

clarity.

Researchers also look on the general developer experience and usability of

REST APIs. The accessibility and quality of code examples, the clarity of API

versioning and deprecation policies, and the ease of finding and comprehending

API documentation are all evaluated. Reviewing the API's capabilities for rate

restriction, caching, and authentication and authorisation protocols may be part

of the investigation.

Analysing performance and scalability is essential to understanding REST

APIs. Researchers test the performance of API calls in terms of response times,

throughput, and latency under diverse user scenarios and loads. To ensure

optimum speed and scalability, they evaluate the efficacy of caching systems,

load balancing techniques, and API rate restriction rules.

A crucial component of REST APIs is security, which is also looked at in the

study.

Researchers examine how security measures are implemented, including

32

authentication methods (like OAuth, JWT), secure data transmission (like

HTTPS), and defence against common web vulnerabilities (like CSRF, XSS).

They also look into whether the design and use of the API include appropriate

access restrictions and data protection safeguards.

When analysing REST APIs, interoperability and integration potential are

crucial factors to take into account. Researchers look at the availability of client

libraries or SDKs for well-known programming languages, the support for data

formats like JSON and XML, and the existence of standardised protocols and

specifications like OpenAPI (formerly known as Swagger) for API description

and discovery.

Researchers often perform surveys, interviews, or usability tests with API

developers and users to acquire insights into the user experience and

satisfaction. They elicit input on the difficulties, difficulties, and areas for

improvement in using the API. Finding best practises, patterns, and guidelines

for creating better REST APIs is made easier with the help of this user-centric

approach.

The body of knowledge in API design and development is enriched by studying

current REST APIs. In the API landscape, it assists in identifying trends,

obstacles, and new practises that can direct API providers in enhancing their

products. Additionally, it helps programmers choose and use solid REST APIs

for their applications, thus raising the calibre, usability, and interoperability of

web services.

33

Figure 18: APIs

3.3.4 Problems and Weaknesses of Current System:

Although the architectural style known as REST (Representational State

Transfer) has grown significantly in favour, it is not without its difficulties and

restrictions. REST frequently causes issues, some of which are as follows:

● Lack of standardisation: Unlike SOAP (Simple Object Access Protocol),

REST does not have a standardised specification. While this flexibility

encourages innovation and personalization, it can also result in

inconsistent API implementation and design across various services,

making it more difficult for developers to comprehend and integrate

with new APIs.

● Data over- and under-fetching are common problems with REST APIs

since they often expose pre-defined endpoints that return set data

structures. This might result in over- or under-fetching problems, where

the API response either includes more data than is necessary or does not

offer enough information. This causes inefficient network utilisation and

extra processing on the client-side.

34

● Limited support for real-time communication: Since REST is primarily

built on stateless, request-response interactions, it might not be

appropriate in situations where real-time communication or

bidirectional data flow are necessary. It is frequently necessary to use

extra technologies or protocols, like WebSockets or long-polling, to

provide real-time features like chat, live updates, or push notifications.

● Lack of discoverability: Without enough documentation and

standardised methods for API description and discovery, discovering

and utilising REST APIs can be difficult. While there is a solution in the

form of tools like OpenAPI (previously Swagger), not all APIs follow

these standards, making it more difficult for developers to locate and

comprehend the accessible endpoints and their capabilities.

● Security considerations: Although REST provides secure connection via

protocols like HTTPS and permits authentication and authorization

procedures, the API developer is primarily responsible for putting

security measures in place. If not effectively addressed, this

decentralised method can result in inconsistent security

implementations, raising the potential of vulnerabilities.

● Versioning and backward compatibility: As APIs change over time, it

can be difficult for REST to retain backward compatibility while adding

new capabilities or changing old ones. A smooth transition requires

careful versioning methods and communication with API consumers

because changes to the API structure or behaviour may disrupt current

client applications.

● Lack of transactional support: REST does not have built-in support for

atomic operations or distributed transactions over different resources

since it is not intrinsically transactional. In complicated activities,

ensuring data consistency and reliability frequently necessitates

additional coordination or compensating methods that go beyond what

REST is capable of.

35

Figure 19: REST in action

3.3.5 User Characteristics

One system user primarily needs access to the system.

Administrator of Systems

● Permit adding Product and Brand Information

● Permit updating all product and brand information

● Permit seeing of all brands and products on the det

3.4 Hardware and Software Requirements:

 3.4.1 Hardware Requirements:

• Processor: I3 (or)

• Higher Ram: 1 GB (or) Higher

• Hard disk: 10 GB (or) Higher

 3.4.2 Software Requirements:

• Technology: Go Language

• IDE: GoLand

36

• Designing Tool: Creatly, Lucid Chart

• Server-Side Technologies: Go Lang

• Database Server: MySql

• Operating System: Linux, Mac

3.5 Assumptions and Dependencies:

The following assumptions are listed: -

Users are somewhat aware of how the system works, and the server is functional.

Results from database changes are accurate and as expected.

Following is a description of dependencies: - The system requires a WiFi or Internet

connection.

System Evaluation

Need for a New System:

Case Study Diagram

Figure 20: Use Case

37

This Figure is a use case diagram created to illustrate the system of the Product-Brand

Store. It illustrates the workflow of any online store.

Basically, utilised for storage functionality, a use case diagram

R1: Create: Adding a new product and its reputable brand to the database.

Enter the following information about the product: name, description, price,

quantity, category, brand name, and status.

Data entry into the database is processed.

output: database data inserted

R2: Delete: Erase an item based on its ID from the database

Enter: Id

Processing: Delete the database's data

data deleted from database output

16

R3: Update: Using the item's id, updating the database

Enter: Id

updating the database with new data

Data updated in database as output

View all the Products and Their Brands in

38

 R4: Processing: Obtaining from the database all of the products and their

brands.

Get the entire list of the products in the database as output.

R5: View Particular Product Details: View Particular Product with Brand

Input: Name /Id

Processing: Getting Product with their Brand according to input

Output: get product with their brand details

R6: Login: For Login into system

Input: Enter Username & Password.

Processing: Validate credential

Output: If all details is valid then login successfully

R7: Registration: for new registration

Input: Enter Username, Email id , Password .

Processing: Validate Details

Output: If all details is valid than register successfully

Get the database's whole list of products as an output.

Non-Functional Conditions:

● Security

39

When saving sensitive data to the database, it will first be encrypted. Only

authorised administrators shall have access to the system's back end servers.

Responsive

The API must respond quickly. Therefore, the fully portable component should

work with any system and any web browser and should be able to access all

system functions, including those of any current or future hardware platforms.

The system needs to function on PCs, laptops, etc.

● Maintainability

The developers can easily maintain the system because they have full access

and access credentials.

Accessibility

The authorised developer has access to the system at any time and from any

location.

● Usability

This approach is crucial for giving developers the satisfaction they desire in

accordance with their needs and capabilities.

Mistake Handling

The system ought to prevent incorrect data entry. If the user provides incorrect

inputs when entering the necessary data, the system should be able to alert

various error messages to them.

3.6 System Design

 3.6.1 Sequence Diagrams:

40

This flow chart begins when a user accesses a login page. The user clicks the

login button after entering their username and password. The database receives

a message from the login page containing the user login information to be

verified. Two potential routes become apparent when the username and

password have been verified by the database (alternative fragment). The

database notifies the user that their login has been accepted if the login

information is accurate. The system notifies the user if the login information

was wrong. The password field is cleared by the system. The user can then

reenter the password.

Figure 21: Sequence Diagram of Login

41

Figure 22: Sequence Diagram of Create Object

Figure 23: Sequence Diagram of GetByBrand

42

3.7 Implementation Environment:

For implementation, we used the programming language Golang.

as a Database MySql

Specifications for Modules

the admin module

Coding Guidelines

We were quite careful when writing our code to adhere to the fundamental

coding best practises for Golang, such as the limited use of global variables.

observing proper naming practises for constants, functions, global variables,

and local variables.

accurately indenting.

proper handling of errors.

Making comments to aid comprehension.

43

CHAPTER 04:

EXPERIMENTS AND RESULT ANALYSIS

4.1 Test Plan

Black box testing will be the testing approach employed in the project. Black

box testing involves applying the application's anticipated inputs but only

checking the results of those inputs.

In the Go programming language, testing is a crucial step in the creation process

and is strongly encouraged. Developers may easily build tests in Go to check

the quality and correctness of their code thanks to the language's powerful and

integrated testing framework. Go's testing package provides an easy-to-use

syntax for building tests that enables you to declare test functions, make test

cases, and make assertions. The Go testing framework encourages the practise

of creating short, targeted tests that target particular units or capabilities in order

to quickly find and isolate problems. Developers may easily run tests and

provide illuminating test findings thanks to the go test command and the testing

package. putting a big focus on testing

4.2 Testing Strategy

● UnitTesting.

In order to assure the accuracy and dependability of individual units or

components of code, unit testing is an essential practise in software

development. It focuses on controlled and repeatable isolation and

evaluation of small units of code, such as functions, methods, or classes.

Developers can find and fix bugs early in the development process by

testing units separately from the rest of the system. A continuous

integration or build procedure often and automatically runs unit tests as

part of it.

44

● Linters check

Static code analysis, commonly referred to as linter checks, is a crucial

technique in software development for spotting possible problems,

enforcing coding standards, and fostering code quality. Linters

scrutinise source code to find recurring programming errors, potential

bugs, style infractions, and other troubling trends. Linters can offer

developers insightful comments and suggestions to enhance the

codebase by applying a set of established rules or unique configurations.

A project or organisation can benefit from linter checks to maintain

standard coding practises. They uphold coding rules including

indentation, name conventions, and formatting styles to make sure the

source has a consistent and readable structure. This consistency

improves teamwork and makes the process of code review easier.

Linters also have the ability to identify potential flaws and programming

mistakes early in the development process. They can spot problems like

unused variables, variables that haven't been initialised, inappropriate

error handling, or incorrect function calls. Linters assist in lowering the

possibility of running into runtime issues, enhancing code reliability,

and cutting down on debugging effort by drawing attention to these

issues during development.

4.3 Unit Testing

Figure 24: Test Result Coverage

45

Unit Test Requirements Testing Method

checking to see if there are any Code Walk-thru reports available that have

proven the presence of and adherence to coding standards.

Examining unit test specifications

Check that the programme specifications and the unit test specifications are

compatible. • Check to make sure all boundary and null data conditions are

present.

Covering all programme paths during testing (using white-box testing) is the

best technique to ensure that every control flow is taken care of. This indicates

that for a "if" statement, both branches are exercised, for a case statement, all

branches are exercised, for a while statement, the loop is taken once, several

times, or not at all, and for complex logical expressions, all components are

executed. Path Testing is what we call this. The Boolean expression's entirety

is reported by Branch Testing.

assessed to both true and false when tested in control structures.

It also covers the use of switch statements, exception handling, and interrupt

handling. Since it takes into account every potential combination of individual

branch conditions, path testing also includes branch testing. Statement testing,

a less complex variation, checks to see if each programme statement has been

run at least once.

46

4.4 Test Cases

Table 1: Login Test Cases

Table 2: Test Cases for GetbyId

47

Figure 25: Postman GetById

Table 3: Test Case for Create Object

48

Figure 26: Postman for Creation

Table 4: Test Case for Update

49

Figure 27: Postman for Update

50

CHAPTER 05:

CONCLUSION

5.1 Conclusion

It was astonishing how much I learned while working on this project. Working on this

project allowed me to go through every stage of the project's development, which gave

me a newfound appreciation for the field of software engineering. Through the joy of

working and the thrill of conquering various challenges, I developed an understanding

of the development industry. As a result of this project, I discovered how expert

software is produced.

In this project, we developed a dependable, easy-to-use, cost-effective, and useful

system to handle product and brand information.Owners may thus control the specifics

of their internet business with ease and effectiveness. It saves the owner a tonne of time

and money.

In conclusion, REST API training is a worthwhile investment for people and businesses

wishing to improve their knowledge and skills in creating and utilising web services.

Participants receive a profound understanding of REST principles, architecture, and

best practises through thorough training. They acquire the skills necessary to create,

create, and test RESTful APIs, guaranteeing compliance with industry standards and

fostering interoperability.

Participants in REST API training leave with the skills and tools needed to build

reliable and scalable APIs. Important ideas like resource identification, HTTP methods,

request/response formats, and error handling are included in their education.

Additionally, training covers subjects like versioning, security, and authentication to

help participants develop safe APIs.

Participants gain hands-on experience creating RESTful services by participating in

practical activities and real-world scenarios. They get knowledge about how to design,

document, and test APIs using frameworks and tools. With the help of this practical

knowledge, they can speed up the creation of APIs, increase productivity, and provide

users with high-quality APIs.

51

Furthermore, by highlighting the significance of creating APIs with the end-user in

mind, REST API training supports a customer-centric strategy. Participants learn about

the best practises for API documentation, discoverability, and usability. They get

knowledge on how to implement feedback loops and involve stakeholders at every

stage of the lifetime of an API to guarantee that the APIs they design are user-friendly,

thoroughly documented, and offer a superior developer experience.

In general, REST API training equips students with the expertise needed to succeed in

the quickly developing industry of web services. It enables them to create interoperable,

scalable, and secure APIs that support seamless integration, innovation, and digital

transformation. Whether people want to succeed in their jobs or businesses want to

improve their API programming capabilities.

5.2 Discussion

We began the project by becoming familiar with the fundamentals of Golang,

Git/Github, Postman, and MySQL. Next, we were familiar with the workflow of the

software development life cycle before moving on to implementation. I spent time

learning each of these things. This WEB API's implementation took a significant

amount of time. I next tested the entire Web API. I felt confident that once that was

finished, the project would be completed successfully.

5.3 Future Scope and Enhancements

REST API's potential future uses are expanding as technology progresses.

The following are some crucial sectors where REST API is anticipated to

expand and have an impact:

Microservices Architecture: The REST API is essential to the creation and

fusion of microservices. The focus of the microservices design is on dividing

large, complicated programmes into smaller, autonomous services that can

communicate with one another via APIs. Microservices can communicate and

share data using RESTful APIs, which allows for the construction of flexible

and modular applications.

52

Internet of Things (IoT): As the IoT ecosystem grows, REST API will be

essential for facilitating data exchange and communication between linked

systems and devices. RESTful APIs offer an industry-standard and

standardised way for IoT devices to communicate with software and services,

enabling seamless integration and the development of creative IoT solutions.

REST API is essential for creating mobile applications that communicate with

backend systems, according to the field of mobile application development.

RESTful APIs act as a link between mobile apps and the server-side

architecture as mobile devices become more and more common. Through well

defined APIs, they enable mobile apps to make transactions, obtain data, and

use a variety of services, assuring effective communication and improving

user experiences.

Machine learning (ML) and artificial intelligence (AI) applications need to

integrate REST APIs in order to access and use data or services from outside

sources. RESTful APIs are frequently used by AI and ML models to receive

data, do computations, and report results. Integration of REST APIs facilitates

fluid communication between AI/ML systems and other applications,

encouraging the creation of smart, data-driven solutions.

Integration with Third-Party Services: RESTful APIs provide a framework for

integrating and communicating with third-party services, including payment

gateways, social media networks, mapping applications, and more. Integration

of REST APIs with external providers offers smooth communication, data

sharing, and functionality as organisations continue to use other services to

improve their products.

RESTful APIs are necessary for integrating decentralised applications with

blockchain networks while working with blockchain technology and

decentralised applications (DApps). They make it possible for developers to

carry out transactions, access blockchain data, and communicate with smart

contracts. Integration of REST APIs makes it easier to create safe,

53

decentralised applications that take advantage of blockchain technology's

advantages.

Security and Authentication: REST API will continue to progress in terms of

providing sophisticated security methods as the demand for secure and

authenticated communication rises. To achieve strict security standards, this

entails integrating strong authentication mechanisms, like OAuth, and

guaranteeing data privacy and encryption.

In conclusion, the REST API has a bright future with a variety of uses and

rising opportunities. It is well-suited for a variety of emerging technologies

and trends because of its flexibility, scalability, and interoperability, including

microservices, IoT, mobile applications, AI/ML, third-party service

integration, blockchain, and security. REST API will continue to develop and

serve a crucial role in enabling seamless communication, integration, and

innovation across various areas as technology develops.

5.4 Application Contributions

Below are a few open source and real-world applications to which GoLang has

contributed.

● The main Python components of Docker Dropbox, a container

management system and set of tools for deploying Linux containers,

were converted to Go.

● Using the go-ethereum implementation of the Ethereum Virtual

Machine, Ethereum is a blockchain for the digital currency Ether.

● A web-based platform called Gitlab for the DevOps lifecycle includes

a Git repository, a wiki, tools for tracking issues, continuous

integration, deployment pipelines, etc.

5.5 Limitations

54

1. Lack of Flexibility: Simple APIs frequently lack functionality and may

not provide the necessary flexibility to accommodate a variety of use

cases. They might only offer a predetermined set of functions or

endpoints, making it difficult to adapt or add functionality to meet

particular needs.

2. Limited Scalability: Simple APIs might not be able to manage high

numbers of concurrent users or requests. They could be deficient in

features like rate limitation, caching, or load balancing, which are

crucial for scaling an API to manage heavy traffic and guarantee peak

performance.

3. Simple APIs may not have adequate security safeguards, making them

susceptible to intrusions, data breaches, and other security risks. The

integrity and confidentiality of data may be jeopardised if features like

authentication, authorization, and encryption are absent or improperly

implemented.

4. Insufficient Error Handling: Simple APIs may only offer a limited

number of error handling options, making it difficult to troubleshoot

and diagnose problems. They might not deliver in-depth error

messages or insightful feedback that aids developers in figuring out the

root of errors or offers advice on how to fix issues.

5. Limited Documentation: Developers may have trouble understanding

how to use simple APIs because they lack thorough and current

documentation. Insufficient documentation can delay integration,

lengthen the development cycle, and prevent third-party developers

from using the API.

6. Lack of Versioning: It's possible that simple APIs don't allow

versioning, which is necessary for managing API upgrades and

modifications without interfering with already-established client

55

integrations. Without versioning support, any changes to the API run

the risk of interfering with already-running apps and creating

compatibility problems.

7. Poor Extensibility: Simple APIs might not offer obvious ways to add

new feature or extend existing capabilities. This constraint may make it

difficult to add new features or modify the API to meet evolving needs,

which could limit scalability and constrain the capacity to make future

improvements.

8. Limited Monitoring and Analytics: Simple APIs might not provide

thorough monitoring and analytics features. For locating problems,

maximising performance, and making data-driven decisions for API

upgrades, real-time monitoring of API usage, performance metrics, and

analytics on user behaviour and trends are essential.

56

REFERENCES

1. https://www.restapitutorial.com/

2. https://swagger.io/docs/

3. https://cloud.google.com/blog/products/api-management/restful-api-

design-best-practices-for-apis-part-1

4. https://docs.microsoft.com/en-us/azure/architecture/best-practices/api-

design

5. https://www.oracle.com/technical-resources/articles/it-

infrastructure/restful-api-design-best-practices.html

6. https://dzone.com/articles/rest-api-design-the-complete-guide

7. https://www.programmableweb.com/api-university/restful-apis/how-

to-design-great-restful-apis

8. https://www.programmableweb.com/api-university/restful-apis/how-

to-make-your-api-restful

9. https://golang.org/doc/

10. https://golang.org/doc/effective_go.html

11. https://gobyexample.com/

12. https://pkg.go.dev/std

13. https://www.tutorialspoint.com/go/index.htm

14. https://golang.org/ref/spec

15. https://github.com/golang/go/wiki

16. https://github.com/avelino/awesome-go

17. https://dev.mysql.com/doc/

18. https://www.tutorialspoint.com/mysql/index.htm

19. https://dev.mysql.com/developer/

20. https://dev.mysql.com/doc/refman/

21. https://dev.mysql.com/doc/workbench/

22. https://www.percona.com/blog/

23. https://www.mysql.com/high-availability/

24. https://stackoverflow.com/questions/tagged/mysql

25. https://docs.docker.com/

26. https://hub.docker.com/

57

27. https://www.docker.com/blog/

28. https://github.com/docker/docker

29. https://forums.docker.com/

30. https://www.youtube.com/user/dockerrun

31. https://stackoverflow.com/questions/tagged/docker

32. https://www.docker.com/customers/success-stories

33. https://kubernetes.io/docs/

34. https://kubernetes.io/docs/concepts/

35. https://github.com/kubernetes/kubernetes

36. https://kubernetes.io/blog/

37. https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.22/

38. https://kubernetes.slack.com/

39. https://stackoverflow.com/questions/tagged/kubernetes

40. https://kubernetes.io/docs/tutorials/

