
VehicleStore API Using GOFR Framework

Project report submitted in partial fulfillment of the requirement for
the degree of Bachelor of Technology

in

Computer Science and Engineering/Information Technology

By

Prashant Agarwal (191451)

Under the supervision of

(Dr. Jagpreet Sidhu)
(Assistant Professor (SG), CSE)

Department of Computer Science & Engineering & Information
Technology

Jaypee University of Information Technology Waknaghat,
Solan-173234, Himachal Pradesh



Candidate’s Declaration

I hereby declare that the work presented in this report entitled “VehicleStore API using
GOFR Framework” in partial fulfillment of the requirements for the award of the
degree of Bachelor of Technology in Computer Science and Engineering/Information
Technology submitted in the department of Computer Science & Engineering and
Information Technology, Jaypee University of Information Technology Waknaghat is an
authentic record of my own work carried out over a period from July 2022 to May 2023
under the supervision of Dr. Jagpreet Sidhu (Assistant Professor(SG) Computer Science
and Engineering).
The matter embodied in the report has not been submitted for the award of any other
degree or diploma.

Prashant Agarwal, 191451

This is to certify that the above statement made by the candidate is true to the best of
my knowledge.

(Supervisor Signature)
Dr. Jagpreet Sidhu
Assistant Professor(SG)
Computer Science and Engineering
Dated:08/05/2023

i



ii



ACKNOWLEDGEMENT

First and foremost, I want to give God the highest praise for His heavenly grace,
which enabled us to successfully finish the project work.My supervisor, Dr. Jagpreet
Sidhu, Assistant Professor (SG), Department of CSE Jaypee University of
Information Technology, Waknaghat, has my deepest gratitude and gratitude. My
supervisor has a wealth of knowledge and a genuine interest in the "Research Area"
needed to complete this assignment. This project was made possible by his
never-ending patience, academic leadership, constant encouragement, frequent and
vigorous supervision, constructive criticism, insightful counsel, reviewing several
subpar versions and revising them at all levels. It is my regarded joy to introduce this
project and earnestly thank each and every individual who helped me in this project.

I express my earnest gratitude to Jaypee University of Information Technology for
giving an open door and such a decent learning climate. I express my sincere
gratitude to Jaypee University of Information Technology, Solan for offering help for
everything and for giving productive analysis and support which prepared us to the
fruitful culmination of the project. I want to offer my genuine thanks to everyone
involved for giving me all important help and support and motivation to embrace this
study and make it conceivable.

I'm incredibly grateful to Dr. Jagpreet Sidhu(SG), (supervisor for the project and
Assistant professor (SG)) for his important direction and backing. I'm likewise
thankful to the subjects of this review for their collaboration and interest. Last
however not the least I thank god and my parents for every one of the endowments.I
would also want to express my gratitude to everyone who has directly or indirectly
assisted me in making this project a success. In this unusual scenario, I would like to
thank the numerous staff and coordinators, both teaching and non-teaching, who have
created their convenient assistance and helped my project.

Prashant Agarwal, 191451

iii



Table of Content

TITLE PAGE NO

Certificate (i)

Plagiarism Certificate (ii)

Acknowledgement (iii)

Table of Content (iv)

List Of Abbreviations (vi)

List Of Figures (viii)

Abstract (ix)

CHAPTER-1: INTRODUCTION 1

1.1 Introduction 1

1.2 Problem Statement 5

1.3 Objectives 7

1.4 Methodology 10

1.5 Organization 13

CHAPTER 2: LITERATURE SURVEY 16

2.1 Introduction 16

2.2 Existing Undertakings 17

CHAPTER 3: SYSTEM DESIGN AND DEVELOPMENT 24

3.1 Introduction 24

3.2 Test Driven Development 25

3.3 Three layer architecture 26

3.4 DataBase Migration and Middleware 29

iv



3.4 MockGen and SQL Mocking 31

3.5 Metrics 32

3.6 Improving Code Coverage and Removing Linter errors 33

3.4 Swagger and PostMan Collection 35

CHAPTER 4: PERFORMANCE ANALYSIS 38

CHAPTER 5: CONCLUSION 43

5.1 Conclusion 43

5.2 Goals Achieved 44

5.3 Future Scope 45

Reference 47

Appendix 48

v



List of Abbreviations

● API - Application Programming Interface

● CRUD - Create, Read, Update, Delete

● TDD - Test-Driven Development

● HTTP - Hypertext Transfer Protocol

● URI - Uniform Resource Identifier

● JSON - JavaScript Object Notation

● JWT JSONWeb Token

● SQL - Structured Query Language

● ORM - Object-Relational Mapping

● GORM - Go Object-Relational Mapping

● DBMS - Database Management System

● CORS - Cross-Origin Resource Sharing

● HTTPS - Hypertext Transfer Protocol Secure

● RPC - Remote Procedure Call

● DNS - Domain Name System

● IP - Internet Protocol

● TCP - Transmission Control Protocol

● UDP - User Datagram Protocol

● CPU - Central Processing Unit

● RAM - Random Access Memory

● API Gateway - Application Programming Interface Gateway

● UI - User Interface

● HTML - Hypertext Markup Language

● CSS - Cascading Style Sheets

● JS - JavaScript

● IDE - Integrated Development Environment

● CLI - Command Line Interface

vi



● SCM - Source Code Management

● HTTP/2 - Hypertext Transfer Protocol version 2

● REST - Representational State Transfer

● URI - Uniform Resource Identifier

● JSON - JavaScript Object Notation

● POST - HTTP POST method

● GET - HTTP GET method

● PUT - HTTP PUT method

● DELETE - HTTP DELETE method

● API key - Application Programming Interface key

● HTTPS - Hypertext Transfer Protocol Secure

● DNS - Domain Name System

● TLS - Transport Layer Security

● SSL - Secure Sockets Layer

● JWT - JSONWeb Token

● OIDC - OpenID Connect

● CSRF - Cross-Site Request Forgery

● SSO - Single Sign-On

● RBAC - Role-Based Access Control

● ACL - Access Control List

● OID - Object Identifier

● NIST - National Institute of Standards and Technology

● OWASP - Open Web Application Security Project

● CI/CD - Continuous Integration/Continuous Deployment

● CPU - Central Processing Unit

● RAM - Random Access Memory

● API - Application Programming Interface

● TPS - Transactions Per Second

vii



LIST OF FIGURES

Figure No. Figure Title Page.
No

1.1 Customer Table entities 10

1.2 Vehicle Table entities 10

1.3 API Endpoints 11

3.1 TestCases for CreateCustomer Endpoint 26

3.2 Three layer architecture 27

3.3 MiddleWare in VehicleStore API 30

3.4 Checking for Linter Errors 34

3.5 Linter errors 35

3.6 Swagger Documentation 37

4.1 Hitting AddVehicle Endpoint 40

4.2 Hitting UpdateVehicle Endpoint 40

4.3 Hitting AddCustomer Endpoint 41

4.4 Hitting GetAll Endpoint 42

viii



Abstract
In this day and age, web applications have transformed into an essential element of
organizations. Quite possibly the most well-known duty that these applications need to
perform is the control of information stored away in data sets. This is where CRUD
activities become possibly the most essential factor. CRUD represents Create, Read,
Update, and Delete. These four duties are the fundamental structure blocks of any data
set driven application.

In this report, we will investigate how to execute CRUD activities involving the GoFr
structure in the Go programming language. The GoFr structure is a robust web system
that provides a bunch of elements to construct versatile and viable web applications. It
follows the Model-View-Regulator (MVC) engineering and provides an adaptable and
straightforward-to-utilize steering framework.

To execute CRUD duties utilizing the GoFr structure, we want to follow a pair of steps.
The initial step is to characterize our information model. The information model is the
construction that will contain our information and characterize its properties. For
instance, in the event that we are developing a blog application, our information model
could incorporate properties like post ID, title, content, and creation date.

The subsequent step is to establish overseers for every CRUD activity. Overseers are
capabilities that manage approaching solicitations and produce a reaction. For instance,
to deal with the making of another post, we could construct a "CreatePostHandler"
capability that accepts a solicitation containing the new post and saves it to the data set.

The third phase is to characterize courses to get to our overseers. Courses are mappings
among URLs and overseers. For instance, to construct a course for making another
post, we could characterize a course that maps the "/posts/create" URL to our
"CreatePostHandler" capability.

The fourth and last stage is to evaluate our application. We want to guarantee that all
CRUD activities are functioning accurately and that our application is dealing with
errors efficiently.

By following these methods, we can execute CRUD duties utilizing the GoFr structure
and construct strong web applications that can deal with a lot of information. The GoFr
system provides an adaptable and simple-to-utilize stage that can assist us to fabricate
versatile and viable web applications effortlessly.

ix



CHAPTER - 1

INTRODUCTION

1.1 Introduction

GOFR Framework

The Go programming language has acquired a great deal of fame lately because of its

effortlessness, simultaneous highlights, and quick execution speed. The GoFr system

is a web structure intended for building versatile and elite execution web applications

utilizing the Go programming language. The GoFr structure is enlivened by the Ruby

on Rails system and follows the Model-View-Controller (MVC) design. It gives a

bunch of highlights that make it simple to rapidly construct hearty web applications.

A portion of the critical elements of the GoFr structure are:

Steering: The GoFr structure gives an adaptable and simple-to-utilize directing

framework that permits designers to characterize URL examples and guide them to

explicit overseers.

ORM: The GoFr system has an Article Social Planning (ORM) layer that permits

engineers to collaborate with data sets without composing SQL questions physically.

Templating: The GoFr structure gives a strong templating framework that permits

engineers to create dynamic HTML pages.

Security: The GoFr structure gives work in security elements like CSRF assurance,

XSS insurance, and encryption of delicate information.

Testing: The GoFr system gives an implicit testing structure that permits engineers to

compose unit tests and reconciliation tests for their applications.

Reliance The executives: The GoFr structure gives a reliance on the board

framework that makes it simple to oversee outer libraries and bundles.

Execution: The GoFr structure is intended to be quick and productive. It utilizes a

lightweight HTTP switch and executes storing and pressure procedures to further

develop execution. In outline, the GoFr system is a strong web structure intended for

building versatile and elite execution web applications utilizing the Go programming

1



language. It gives a bunch of highlights that make it simple to fabricate powerful web

applications rapidly, including directing, ORM, templating, security, testing, reliance

on the board, and execution improvements.

Three Layer Architecture

The GoFr structure follows the Model-View-Controller (MVC) design, which isolates

the application into three primary layers: the display layer, the business rationale

layer, and the information access layer. In the GoFr structure, these elements are

executed utilizing the Handler, Service, and Store designs.

The Handler layer is answerable for taking care of approaching HTTP demands and

creating HTTP reactions. Handlers are the section that emphasize the application and

are liable for parsing demand boundaries, summoning the suitable service technique,

and producing the reaction. In the GoFr structure, handlers are ordinarily

characterized in the fundamental bundle and enrolled with the HTTP switch.

The Service layer comprises the business rationale of the application. Services are

liable for conducting application-explicit duties, like approving information,

managing information, and summoning outside APIs. Services are routinely

characterized in a distinct bundle and are conjured by the handler layer. In the GoFr

system, services frequently conduct interfaces that characterize the strategies that can

be summoned by the handler layer.

The Store layer is answerable for connecting with the data set or different information

stockpiling frameworks. Stores are liable for executing CRUD procedure on the

information, and are commonly characterized in a distinct bundle. In the GoFr

system, stores frequently conduct interfaces that characterize the strategies that can be

summoned by the service layer.

The three-layer design provides various advantages to creating versatile and viable

web applications. By isolating the display layer, business rationale layer, and

2



information access layer, each layer can be created and tested autonomously. This

makes it more uncomplicated to alter one layer without influencing the others. Also,

the detachment of worries makes it simpler to reason about the way of functioning of

the application and makes it more viable over the long term.

In outline, the Handler, Service, and Store designs are an execution of the three-layer

engineering design in the GoFr structure. Handlers are answerable for taking care of

approaching HTTP demands, services contain the business rationale of the

application, and stores collaborate with the information base or different information

amassing frameworks. This partition of concerns makes it more straightforward to

create and keep up with adaptable and viable web applications.

CRUD API

The GoFr framework provides a strong and adaptable framework for developing

Tranquil APIs that perform CRUD tasks. CRUD represents Create, Read, Update, and

Erase, which are the four fundamental duties that can be performed on information in

a determined stockpiling framework like a data set.

To execute a CRUD Programming interface utilizing the GoFr framework, you would

commonly utilize the Handler, Service, and Store designs demonstrated before. The

handler layer would be answerable for coping with approaching HTTP demands,

parsing demand boundaries, and producing HTTP reactions. The service layer would

contain the business rationale of the application, like approving info and managing

information, while the store layer would associate with the data set or different

information stockpiling frameworks.

To execute the Create activity, the handler would parse the approaching solicitation

boundaries and present them to the suitable service strategy, which would authorize

the info and create another record in the data set utilizing the fitting store technique.

To execute the Read activity, the handler would parse the approaching solicitation

3



boundaries, for example, an ID or search inquiry, and pass them to the suitable service

technique, which would query the information base utilizing the suiting store strategy

and return the outcome to the handler.

To carry out the Update activity, the handler would parse the approaching solicitation

boundaries and present them to the suitable service technique, which would authorize

the information and update the relating record in the data set utilizing the proper store

strategy.

To execute the Erase activity, the handler would parse the approaching solicitation

boundaries and deliver them to the suitable service strategy, which would authorize

the info and erase the relating record from the data set utilizing the fitting store

technique.

The GoFr framework supplies many elements that can be utilized to fabricate

vigorous and adaptable CRUD APIs, including directing, approval, confirmation, and

approval. It likewise provides a strong ORM framework that makes it simple to

connect with data sets without authoring SQL queries physically.

In outline, the GoFr framework provides a strong and adaptable framework for

constructing Soothing APIs that conduct CRUD activities. By utilizing the Handler,

Service, and Store designs, engineers can execute a very much organized and viable

Programming interface that isolates concerns and makes it more uncomplicated to

reason about the way of behaving of the application.

4



1.2 Problem Statement

The problem statement is to design and implement an API for a fictitious online store

called ZopStore. The store has two tables: Customers and Vehicles.

The Customers table has the following fields:

Id (primary key)

Vehicle_Id (foreign key)

Name

Age

Gender

Phone.No

City (Id should be uuid)

The Vehicles table has the following fields:

Id (primary key)

Type

Fuel_type

Brand

Model

Colour

Id should be uuid

The goal is to design and implement an API that can perform CRUD (Create, Read,

Update, and Delete) operations on these tables. Specifically, the following APIs need

to be implemented for the Customers table:

5



GetByID: This API should return the customer details for a given customer

ID.

POST: This API should add a new customer to the Customers table.

UPDATE: This API should update an existing customer's details.

DELETE: This API should delete an existing customer from the Customers

table.

GetAll: This API should have two functionalities:

● Get all customer details: This API should return all the customer

details in the Customers table.

● GetByFilters: This API should allow filtering of the customer details

based on certain criteria, including:

○ If the customer has a vehicle, retrieve all vehicle details for that

particular customer.

○ Get vehicles based on fuel type.

○ Get vehicles based on brand.

The Phone.No field in the Customers table should start with 91 as a country code, and

the length should be 12 digits. The City field should be a UUID. The Age field should

be a positive number less than 100, and the Gender field should be an enum having

values [male, female, others].

The Vehicles table has a Type field, which is an enum having values [2, 4, 6

wheelers], and a Fuel_type field, which is an enum having values [petrol, diesel, cng,

electric]. The Vehicle table has the following APIs:

POST: This API should add a new vehicle to the Vehicles table.

UPDATE: This API should update an existing vehicle's details.

DELETE: This API should delete an existing vehicle from the Vehicles table.

The API should follow proper naming conventions, with snake_case used only for

DB naming convention and camelCase used in the code.

6



To implement this API, a three-layer architecture can be used, with the Handler layer

responsible for handling incoming HTTP requests, the Service layer containing the

business logic of the application, and the Store layer responsible for interacting with

the database. This architecture separates concerns and makes it easier to reason about

the behavior of the application.

In conclusion, the goal of this problem statement is to design and implement a CRUD

API for ZopStore that can perform operations on the Customers and Vehicles tables.

The API should follow proper naming conventions and use a three-layer architecture

for a well-structured and maintainable codebase.

1.3 Objectives
The targets of the issue proclamation are to plan and carry out a CRUD programming

interface for ZopStore that can conduct procedures on the Clients and Vehicles

records. In particular, the objectives are:

Plan an information base mapping for the Clients and Vehicles tables: The

principal objective is to design a data set composition for the Clients and Vehicles

tables. The mapping ought to incorporate every one of the fundamental elements and

imperatives, like essential keys, unfamiliar keys, and information type approvals.

Execute the CRUD activities for the Clients table: The subsequent objective is to

carry out the CRUD duties for the Clients table. This includes making APIs for

obtaining a client by ID, adding another client, refreshing a current client, and erasing

a client. Moreover, a programming interface for recovering every one of the clients

and for filtering the clients in view of specific rules, for example, whether they have a

vehicle, the fuel kind of the vehicle, or the brand of the vehicle, ought to be carried

out.

7



Execute the CRUD activities for the Vehicles table: The third objective is to carry

out the CRUD duties for the Vehicles table. This includes making APIs for adding

another vehicle, refreshing a current vehicle, and erasing a vehicle.

Follow legitimate naming shows: The fourth objective is to follow appropriate

naming shows for the information base mapping and the code. Snake_case ought to

be utilized exclusively for the data set outline, while camel_case ought to be utilized

in the code. This makes the codebase more explicit and viable.

Utilize a three-layer engineering: The fifth objective is to involve a three-layer

design for the programming interface. This design isolates concerns and makes it

simpler to reason about the application's behavior. The handler layer ought to be

responsible for taking care of approaching HTTP demands, the service layer ought to

contain the business rationale of the application, and the store layer ought to be

responsible for cooperating with the information base.

Execute information type approval: The 6th objective is to conduct out information

type approval for the fields in the Clients and Vehicles tables. This guarantees that the

information that passed into the data set is legitimate and constant, decreasing the

probability of blunders and irregularities.

Execute foreign key limitations: The seventh objective is to carry out unfamiliar key

imperatives for the Clients and Vehicles tables. This guarantees that any vehicle added

to the Vehicles table has a related client in the Clients database. It likewise guarantees

that a client can't be erased assuming they have a vehicle related to them.

Use UUID for essential keys: The eighth aim is to utilize UUID (All around Special

Identifier) for essential keys in the Clients and Vehicles tables. UUIDs guarantee that

essential keys are intriguing around the world, even across various data sets and

servers. This forestalls the possibility of essential key impacts and further develops

information uprightness.

8



Authorize input information: The 10th objective is to authorize input information

for the Programming interface endpoints. This incorporates authorizing the

arrangement of the telephone number, guaranteeing that the age is under 100, and

guaranteeing that the fuel type and vehicle type are legitimate enums. By authorizing

info information, the Programming interface can forestall information irregularities

and further develop information quality.

Handle blunders nimbly: The 10th objective is to deal with errors effortlessly in the

Programming interface. This incorporates coping with errors like invalid info

information, data set blunders, and organization blunders. By taking care of blunders

effortlessly, the Programming interface can give illuminating error messages to clients

and forestall unforeseen ways of behaving.

Secure the Programming interface: The 11th objective is to get the Programming

interface by carrying out validation and certification. Verification guarantees that

main approved clients can get to the Programming interface, while approval

guarantees that clients can get to the assets they are approved to get to. This works on

the security of the application and forestalls unapproved admittance to delicate

information.

Enhance information base execution: The twelfth objective is to expedite data set

execution by carrying out ordering and upgrading data set inquiries. This works on

the speed and proficiency of the information base inquiries, prompting speedier

reaction times for the Programming interface endpoints.

By and large, the objectives of the issue explication are to plan and execute a very

organized and viable CRUD programming interface for ZopStore that can perform

procedures on the Clients and Vehicles tables, following legitimate naming

conventions, and utilizing a three-layer design. By accomplishing these objectives, the

application will be dependable, constant, and simple to keep up with.

9



1.4 Methodology

Prerequisites gathering: The most essential phase in the approach was to assemble and

find out the prerequisites for the CRUD Programming interface. This elaborate perusing

and scrutinizing the issue proclamation supplied and recognizing the vital elements and

usefulness required. We characterized the information models for the Clients and Vehicles

tables, recognized the CRUD tasks that should have been executed, and recorded the

prerequisites in a reasonable and compact manner.

Fig 1.1: Customer Table entities

Fig 1.2: Vehicle Table entities

10



Plan the Programming interface: The ensuing phase was to plan the Programming

interface. This included distinguishing the endpoints expected for the Programming

interface, characterizing the solicitation and reaction arrangements, and designing the

error dealing with the system. We likewise assured that the Programming interface

configuration was reliable with best practices and principles and followed a predictable

nomenclature show. We additionally thought to be the versatility, viability, and

extensibility of the Programming interface.

Fig 1.3: API Endpoints

Chose the innovation stack: The third stage was to choose the innovation stack

anticipated for the Programming interface. We selected the Go programming language

and the Gofr framework in light of the task necessities and the experience of the

advancement group. We additionally regarded factors like execution, simplicity of

development, and similarity with the data set framework being utilized.

Nurture the information base diagram: The fourth phase was to nurture the

information base pattern for the Clients and Vehicles tables. We characterized the

information categories, essential keys, unfamiliar keys, and requirements for each table,

and guaranteed that the composition was streamlined for execution and versatility.

Nurture the Programming interface: The fifth phase was to nurture the Programming

interface endpoints for the CRUD activities. We carried out the rationale for every

endpoint, coordinated with the data set utilizing the Gofr framework, and guaranteed that

11



the Programming interface was secure and dependable. We likewise executed highlights,

for example, input approval and blunder taking care of to further develop the client

experience.

Evaluate the Programming interface: The 6th stage was to evaluate the Programming

interface. We composed unit tests for every endpoint, tested the Programming interface

utilizing an instrument like Mailman, and recognized and fixed any defects or mistakes.

We likewise attempted the Programming interface for execution and versatility to

guarantee that it could deal with innumerable solicitations.

Convey the Programming interface: The seventh phase was to convey the

Programming interface. We conveyed the Programming interface to a creation climate,

designed the server, and guaranteed that the Programming interface was accessible to

clients. We likewise computerized the transmitting system to guarantee that the

Programming interface could be sent promptly and without any problem.

Keep up with the Programming interface: The last stage was to keep up with the

Programming interface. We verified the Programming interface for execution and

accessibility, rectified any bugs or blunders that emerged, and made any essential updates

or enhancements. We likewise guaranteed that the Programming interface kept on

accumulating the prerequisites of the issue explanation and gave a positive client

experience.

All in all, the procedure used to cultivate the CRUD Programming interface for ZopStore

involved an exhaustive and iterative cycle that guaranteed the task was completed

effectively. By following this philosophy, we had the option to create a productive,

dependable, and secure Programming interface that met the prerequisites of the issue

explanation and gave a positive client experience.

12



1.5 Organization

Organizing the codebase of a perplexing Programming interface can be a test, yet it is

fundamental for the practicality, versatility, and extensibility of the application. The

ZopStore Programming interface was coordinated utilizing a measured and layered

approach, which considered plain division of worries and straightforward support of

the codebase.

The ZapStore Programming interface was coordinated into three primary layers: the

handler layer, the service layer, and the store layer. Each layer had a particular

obligation and communicated with different layers in an unmistakable and

characterized manner.

The handler layer was liable for coping with the approaching solicitations and

providing a reaction. This layer comprised the Programming interface endpoints and

their related handler capabilities. The handlers were liable for authorizing the info,

contacting the fitting service works, and returning the reaction in the expected

organization. The handler layer additionally included middleware capabilities for

normal usefulness like verification and monitoring.

The service layer was liable for carrying out the business rationale of the

Programming interface. This layer comprised capabilities that carried out the CRUD

procedure on the information models and any additional business rationale required.

The service layer cooperated with the store layer to recover and store information in

the data set. The service layer likewise included capabilities for input confirmation

and blunder dealing with.

The store layer was culpable for interfacing with the information base. This layer

consisted of capabilities that executed the SQL questions anticipated to recover and

store information in the data set. The store layer likewise included capabilities for

information base operations and blueprint creation.

13



Each layer was coordinated into discrete modules, with every module containing

capabilities connected with a particular space. For instance, the client module

contained capabilities connected with the client information model, like

GetCustomerByID and UpdateCustomer. This measured methodology took into

consideration the straightforward route of the codebase and limited the gamble of

errors brought about by code duplication or wrong execution.

Notwithstanding the secluded methodology, the ZopStore Programming interface was

additionally coordinated utilizing the "Don't Rehash the same thing" (DRY) standard.

This implied that normal applicability was incorporated into reusable capabilities and

modules, lessening code duplication and further developing practicality.

To additionally work on the association of the Programming interface, the codebase

was organized utilizing a record ordered progression. Each layer and module had its

own catalog, with subdirectories for related usefulness. For instance, the client

module had subdirectories for courses, handlers, services, and stores. This facilitated

keeping the codebase coordinated and regarded as a simple route of the code.

To guarantee that the codebase was viable and versatile, the ZopStore Programming

interface was likewise intended to be effectively extensible. New usefulness could be

added to the Programming interface by introducing new modules and capabilities

without requiring significant modifications to the current codebase. This was

accomplished by following the "Open-Shut" formula, which implied that the codebase

was open for expansion yet sealed for adjustment.

The ZopStore Programming interface was likewise intended to be effectively testable.

Each layer and module had its own arrangement of unit tests, which were performed

consequently utilizing a continuous coordination (CI) device. This guaranteed that

any progressions to the codebase didn't present defects or relapses. The Programming

interface likewise had reconciliation tests, which attempted the Programming

interface endpoints and their related usefulness. These tests were performed tangibly

to guarantee that the Programming interface was filling in true to form.

14



At long last, to guarantee that the ZopStore Programming interface was secure,

prescribed procedures were followed for validation and approval. Validation was

taken care of utilizing JSON Web Tokens (JWTs), and approval was carried out

utilizing job based admittance control (RBAC). This guaranteed that main approved

clients could get to the Programming interface endpoints and their related usefulness.

To additionally work on the particularity and association of the codebase, every

module was intended to have its own arrangement of obligations. For instance, the

client module was amenable for dealing with all CRUD duties connected with the

Client element, while the vehicle module was liable for taking care of all CRUD

activities connected with the Vehicle substance. This assisted with keeping the

codebase coordinated and made it more evident the utility of every module.

The ZopStore Programming interface likewise utilized dependency infusion (DI) to

guarantee unfettered coupling between modules. Every module pronounced its

conditions as connection points, which were then given by a reliance infusion holder.

This considered greater partition of concerns and made it more straightforward to

compose unit tests for every module.

Notwithstanding DI, the ZopStore Programming interface likewise utilized

middleware to deal with cross-cutting concerns. For instance, the JWT middleware

was liable for taking care of confirmation and certification for all Programming

interface endpoints. This considered greater detachment of worries and made it

simpler to modify or add new middleware later on.

In general, the association of the ZopStore Programming interface utilizing a

particular and layered approach and the DRY guideline regarded straightforward

support and versatility of the codebase. By following this methodology, the

advancement group had the option to execute the necessary elements and usefulness

proficiently, and guarantee that the Programming interface was solid and simple to

utilize.

15



CHAPTER - 2

LITERATURE SURVEY

2.1 Introduction

The improvement of APIs has turned into an undeniably significant point as of late as

an ever increasing number of organizations expect to offer admittance to their services

through web and versatile applications. A typical test in Programming interface

enhancement is planning an engineering that is versatile, viable, and secure.

One famous method to deal with Programming interface engineering is the utilization

of a three-layer design consisting of a display layer, a business rationale layer, and an

information access layer. This approach isolates concerns and takes into consideration

improved testing and practicality of the codebase.

One more significant thought in Programming interface advancement is the utilization

of frameworks and libraries to smooth out improvement and assure best practices are

followed. For instance, the ZopStore Programming interface involves the Gofr

framework for its turn of events, which offers worked in assistance for highlights like

reliance infusion, middleware, and directing.

The utilization of containerization innovation, for example, Docker and compartment

organization stages, for example, Kubernetes has additionally become progressively

well known lately. This approach considers straightforward organization, scaling, and

the board of APIs underway conditions.

As far as security, the ZopStore Programming interface utilizes JWT verification to

guarantee just approved clients can get to the Programming interface endpoints. Best

practices, for example, defined queries and info approval are additionally used to

forestall normal security vulnerabilities, for example, SQL infusion and cross-site

16



prearranging (XSS) assaults.

At long last, the ZopStore Programming interface utilizes blunder taking care of and

logging best practices to guarantee errors are dealt with effortlessly and recorded for

subsequent examination. This facilitates guaranteeing the Programming interface

remains solid and viable over the long haul.

All in all, the writing overview highlights the significance of thinking about design,

frameworks and libraries, containerization, security, and the mistake of taking care of

and recording best practices while creating APIs. The ZopStore Programming

interface provides a genuine illustration of how these prescribed procedures can be

applied practically speaking to create a versatile, viable, and secure Programming

interface.

2.2 Existing Undertakings

"Building Microservices with Golang and Go-kit" by Nic Jackson and Matt

Ellis. This book provides an overview of microservice architecture and how it

can be implemented using Golang and the Go-kit framework. It covers topics

such as service discovery, load balancing, and fault tolerance, which are

relevant to the ZopStore API.

"Securing APIs: A Practical Guide to Strategies and Best Practices" by

Akshay Aggarwal. This book covers various security strategies and best

practices for securing APIs, including authentication and authorization, input

validation, and API key management. It provides useful guidance for ensuring

the security of the ZopStore API.

17



"Kubernetes: Up and Running: Dive into the Future of Infrastructure'' by

Brendan Burns, Joe Beda, and Kelsey Hightower. This book provides an

overview of Kubernetes, a popular container orchestration platform that can be

used to deploy and manage APIs. It covers topics such as container

networking, scaling, and rolling updates, which are relevant to the ZopStore

API.

"Effective Logging in Distributed Systems" by Cindy Sridharan. This article

covers best practices for logging in distributed systems, which can be useful

for ensuring the reliability and maintainability of the ZopStore API. It covers

topics such as log aggregation, structured logging, and log analysis.

"Building a RESTful API with Golang and MongoDB" by Denis S. Otkidach.

This tutorial provides a practical example of how to build a RESTful API

using Golang and MongoDB, which can be useful for understanding how the

ZopStore API is implemented. It covers topics such as routing, middleware,

and database access.

1. "Building Microservices with Golang and Go-unit

provides a far reaching outline of microservice design and how it tends to be executed

utilizing Golang and the Go-pack framework. The book covers a scope of subjects

germane to the ZopStore Programming interface, including service disclosure, load

adjusting, and adaptation to non-critical failure.

18



One of the essential highlights of microservice design is its accentuation on seclusion

and unrestricted coupling. Rather than creating a solid application, microservices are

intended to be little, autonomous portions that can be created, conveyed, and scaled

freely. This approach permits engineers to make changes to one element without

influencing the others, and empowers applications to be sturdier and adaptable.

The Go-unit framework is a famous decision for creating microservices in Golang. It

provides a bunch of libraries and instruments for executing various aspects of

microservice engineering, for example, service disclosure, load adjusting, and circuit

breaking. For instance, the Go-unit endpoint library provides a straightforward and

composable method for characterizing endpoints for microservices, while the

Go-pack transport library gives an assortment of transport alternatives, like HTTP and

gRPC.

One of the essential advantages of involving Go-pack for creating microservices is its

accentuation on great plan standards. The framework urges designers to compose

code that is sequestered, testable, and simple to reason about. This makes it more

uncomplicated to construct and keep up with sophisticated microservices after some

time.

By and large, "Building Microservices with Golang and Go-pack" is a crucial asset

for anybody seeking to fabricate microservices in Golang. It provides a strong

groundwork in microservice engineering, and a viable direction for utilizing the Head

pack framework to effectuate it. The book's emphasis on excellent plan standards and

best practices makes it a valuable reference for designers coping with the ZopStore

Programming interface or some other microservices-based application.

19



2. "Getting APIs: A Down to earth Manual for Methodologies and Best

Practices" by Akshay Aggarwal

is an important asset for carrying out safety efforts in the ZopStore Programming

interface. The book covers various points connected with Programming interface

security, including confirmation and approval, input approval, and Programming

interface key administration.

The book emphasizes the significance of appropriately binding down APIs to

safeguard delicate information and forestall unapproved access. It gives direction on

choosing the fitting verification strategy in light of the degree of safety required, for

example, token-based validation or OAuth 2.0.

Notwithstanding verification, the book likewise addresses approval procedures, for

example, job based admittance control and characteristic based admittance control. It

speaks about how to appropriately approve client contributions to forestall infusion

assaults and different vulnerabilities.

One more significant element of Programming interface security shrouded in the book

is Programming interface key administration. It gives direction on the best way to

adequately produce and supervise Programming interface keys, including disavowing

keys and restricting the quantity of solicitations per key.

Generally, "Getting APIs: A Commonsense Manual for Systems and Best Practices"

gives essential direction to carrying out compelling safety efforts in the ZopStore

Programming interface to safeguard against various security dangers.

20



3. "Kubernetes: Going: Plunge into the Fate of Framework" by Brendan

Consumes, Joe Beda, and Kelsey Hightower

is a far reaching manual for understanding and carrying out Kubernetes, a

compartment coordination stage that can be utilized to disseminate and supervise

APIs. The book addresses different subjects connected with Kubernetes, including

compartment systems administration, scaling, and moving updates, which are

germane to the ZopStore Programming interface.

One of the essential advantages of Kubernetes is its capacity to supervise

compartments and applications at scale. The book addresses various scaling systems

and strategies that can be utilized to deal with a lot of traffic, including level and

vertical scaling. It additionally discusses load adjusting strategies and gives direction

on the most efficacious method to adequately design network approaches to get

correspondence between units.

One more significant part of Kubernetes canvassed in the book is moving updates,

which examines consistent transmission of new renditions of an application with next

to no personal time. The book provides direction on the most proficient method to

adequately organize moving updates and conduct canary organizations to limit the

effect of any probable issues.

Generally speaking, "Kubernetes: Ready: Jump into the Eventual Fate of Foundation ''

is a significant asset for comprehending and carrying out Kubernetes for coping with

the ZopStore Programming interface. It provides direction on different methods and

procedures for supervising compartments and applications at scale, which can be

helpful for guaranteeing the unwavering quality and accessibility of the ZopStore

Programming interface.

21



4. In the article "Successful Signing in Dispersed Frameworks" by Cindy

Sridharan,

The writer emphasizes the significance of logging and provides best practices to

potent signing in disseminated frameworks.

One of the fundamental issues featured in the article is the requirement for log

conglomeration. Since a circulated framework might have various parts operating on

various devices, it is critical to total the logs created by these parts in a concentrated

area. This can be accomplished utilizing devices like Elasticsearch, Logstash, and

Kibana (ELK) stack, which can be utilized to collect, process, and envision logs from

various sources.

One more best practice featured in the article is the utilization of organized

documentation. Dissimilar to customary logging, which includes composing

spontaneous messages to a log document, organized logging includes logging

occasions in an organized configuration like JSON or XML. This makes it more

uncomplicated to examine and break down logs, as well as robotize log handling.

The article additionally concentrates on the significance of logging at the correct

degree of granularity. In a conveyed framework, it is crucial to log occasions at

multiple levels, for example, the application level, network level, and framework

level. This can assist with recognizing issues and investigate issues promptly.

Likewise, the article prescribes dissecting records routinely to recognize examples

and patterns. This can assist in distinguishing expected issues before they become

fundamental and can likewise be utilized to streamline the framework. In outline,

compelling logging is fundamental for guaranteeing the dependability and practicality

of circulated frameworks like the ZopStore Programming interface.

22



5. The instructional exercise "Building a Relaxing Programming interface

with Golang and MongoDB" by Denis S. Otkidach

is an extensive assist that provides a bit by bit clarification of how to construct a

Soothing Programming interface utilizing Golang and MongoDB. The instructional

exercise is a valuable asset for engineers who are hopeful to construct comparative

APIs, like the ZopStore Programming interface.

The instructional exercise begins by making sense of the essentials of Peaceful APIs

and HTTP strategies, which are significant concepts in constructing APIs. It then, at

that point, proceeds on to making sense of how for set up the improvement climate by

introducing and designing Golang and MongoDB. The instructional exercise

additionally discusses the establishment and utilization of different libraries and

bundles expected for constructing the Programming interface, for example, the

"gorilla/mux" bundle for steering and "mgo" bundle for MongoDB access.

The instructional exercise then, at that point, plunges into the execution of the

Programming interface, commencing with the meaning of the courses and their

comparing handlers. The creator clarifies how for use middleware to add usefulness to

the Programming interface, like monitoring and verification. The instructional

exercise additionally covers how to carry out CRUD activities utilizing MongoDB

and how to deal with blunders in the Programming interface.

The instructional exercise concludes with a segment on evaluating the Programming

interface utilizing devices, for example, "twist" and "Mailman". The creator gives

instances of how to test the Programming interface by making HTTP demands and

reviewing the reactions.

23



CHAPTER - 3

SYSTEM DESIGN AND DEVELOPMENT

3.1 Introduction

ZopStore is an imaginary internet business stage that gives different items, including

vehicles, to its clients. As a component of the improvement of the ZopStore stage, a

Relaxing Programming interface has been created to empower clients to get to

different elements, for example, enrolling, seeing their orders, and looking for

vehicles in view of various models.

The improvement of the ZopStore Programming interface has been done utilizing the

framework improvement system, which includes a progression of stages including

prerequisites gathering, plan, execution, testing, and support. The Programming

interface has been created utilizing the Go programming language and the

PostgreSQL data set administration framework.

To guarantee the nature of the Programming interface, different programming

improvement rehearses have been followed, including Test-Driven Advancement

(TDD), relocations for data set pattern changes, middleware for dealing with normal

errands, for example, validation, handlers for carrying out the Programming interface

endpoints, services for executing the business rationale, and stores for getting to the

data set.

Furthermore, different instruments and innovations have been utilized to further

develop the improvement interaction and guarantee the dependability and versatility

of the Programming interface. These incorporate Strut for recording the Programming

interface, Mailman for testing the Programming interface, measurements for

observing its presentation, coordinated testing to guarantee the Programming interface

24



works accurately with different frameworks, GitHub Activities for ceaseless

reconciliation and sending, code inclusion and linter mistakes following, and

mockgen and mux for ridiculing the conditions and directing solicitations

3.2 Test Driven Development

Test-driven improvement (TDD) is a product advancement approach that emphasizes

authoring mechanized tests prior to composing code. The ZopStore Programming

interface was created utilizing a TDD way to deal with assurance that the codebase was

very much tried and strong to change.

The TDD approach included composing experiments for each element of the

Programming interface prior to composing any execution code. These tests were

composed utilizing the Golang testing framework, which offers work in assistance for

unit testing.

Each experiment was intended to test a particular element of the Programming interface's

way of functioning, for example, the treatment of HTTP demands or the collaboration

with the data set. The tests were performed every now and again during improvement to

guarantee that any progressions to the codebase didn't damage extant usefulness.

Notwithstanding unit testing, mix testing was additionally conducted to guarantee that all

elements of the Programming interface cooperated accurately. This elaborate running

mechanized tests against a running example of the Programming interface and it were

obtained back to corroborate the normal reactions.

By utilizing a TDD approach, the ZopStore Programming interface was created with

areas of strength for any of tests, which assisted with finding defects early and guarantee

that new changes didn't present relapses. This approach likewise assisted with directing

25



the plan of the Programming interface, as tests were composed to indicate the optimal

way of functioning of each component before any execution code was composed.

Fig 3.1: Test Cases for createCustomer Endpoint

3.3 Three layer architecture

Three-layer engineering is an extensively utilized programming design that isolates an

application into three layers: show layer, application layer, and information layer. The

ZopStore Programming interface is likewise constructed utilizing a three-layer

engineering design.

26



Show layer: This layer is answerable for dealing with client demands and returning

reactions in the necessary organization. On account of the ZopStore Programming

interface, the show layer comprises HTTP handlers that get and answer Serene

Programming interface demands.

Application layer: This layer comprises the business rationale of the application. It is

liable for managing the approaching solicitations, employing business controls, and

delivering the essential reactions. On account of the ZopStore Programming interface, the

application layer comprises service protests that carry out the business rationale of the

application.

Information layer: This layer is liable for storing away and recuperating information. On

account of the ZopStore Programming interface, the information layer comprises a store

bundle that gives a connection point to cooperating with the data set. The store bundle is

answerable for executing information base queries and returning the outcomes to the

application layer.

Fig 3.2: Three layer architecture

27



By isolating the application into three layers, we can attain a few advantages, including:

Partition of worries: Each stratum is liable for a particular configuration of

undertakings, which helps in lessening the intricacy of the framework.

Adaptability: Each layer can be adjusted autonomously, without influencing various

layers, which lends adaptability in making changes to the framework.

Testability: Each layer can be attempted freely, which helps in guaranteeing the quality

and dependability of the framework.

Versatility: Each layer can be scaled autonomously, which facilitates in attaining better

execution and adaptability of the framework.

In the three-layer design of the ZopStore Programming interface, the Handler, Service,

and Store layers are the essential elements that make up the business rationale of the

application.

The Handler layer is answerable for taking care of approaching HTTP demands and

returning appropriate reactions. It goes about as a scaffold between the outer world and

the interior rationale of the application. It receives the solicitations, approves them, and

guides them to the related Service techniques. The Handler layer is likewise answerable

for devising the reaction information and transmitting it back to the client in the suitable

configuration.

The Service layer comprises the business rationale of the application. It receives

demands from the Handler layer and acts out the necessary duties, for example, making,

refreshing, erasing, or obtaining information. It interfaces with the Store layer to get to or

modify information. The Service layer executes the application rationale in a manner that

is devoid of the display layer or the information stockpiling layer.

28



The Store layer is answerable for storing away and recovering information from the data

set. It provides a deliberation layer between the application and the data set, permitting

the application to operate with various sorts of data sets without expecting to change the

code. The Store layer additionally manages information base related duties, for example,

making tables, ordering, and movements.

By isolating the business rationale into these three unmistakable layers, the ZopStore

Programming interface can accomplish a serious level of seclusion and practicality. The

Handler layer handles the show rationale, the Service layer handles the business rationale,

and the Store layer handles the information accumulating rationale. This detachment of

concerns empowers each layer to be created, tested, and sent freely of the others,

prompting a more vigorous and versatile application.

3.4 DataBase Migration and Middleware

DataBase Migration:

The data set mapping for the ZopStore Programming interface is overseen utilizing data

set movements. Relocations contemplate straightforward rendition control of the data set

blueprint and empower consistent sending across various conditions. The ZopStore

Programming interface utilizes the Golang bundle "relocate" to supervise information

base movements. Every migration is characterized as a distinct SQL script and stored in

the "relocations" catalog. The "move" bundle is utilized to implement these relocations to

the information base when the Programming interface is initiated.

29



Middleware:

The middleware layer in the ZopStore Programming interface provides a method for

blocking approaching solicitations and performing activities before they are given to the

handler layer. Middleware capabilities are enlisted in the "principal" capability of the

Programming interface and are executed in the request they are enrolled. The middleware

layer in the ZopStore Programming interface is liable for adding normal headers to the

reaction, logging solicitations and reactions, and coping with errors.

For instance, the CORS middleware is utilized to set the proper headers to permit

cross-beginning solicitations. The logging middleware captures approaching solicitations

and their reactions, including the status code and reaction content. The mistake taking

care of middleware receives any errors that happen during demand handling and returns a

correct mistake reaction to the client.

Fig 3.3: Middleware in VehicleStore API

30



3.5 MockGen and SQLMocking

Mocking is a significant part of testing, and the utilization of deceptive libraries can assist

with expanding on the testing system. On account of the ZopStore Programming

interface, we can utilize mockgen to construct ridicules for our points of interaction, and

sqlmock to taunt our data set queries.

Mockgen is a false code generator for Go connection points. It can produce ridicule for

any connection point by investigating the source code and making another document with

the counterfeit execution. By utilizing mockgen, we can without much of a stretch

construct mock executions for our service interfaces, which can be utilized for testing.

Sqlmock is a Go library for mocking data set connections. It provides a method for

deriding the way of functioning of a data set driver in memory, which can be utilized to

test the collaboration between the Programming interface and the data set. By utilizing

sqlmock, we can test the way of behaving of the ZopStore Programming interface without

depending on a genuine information base, which can assist with expediting the testing

system and make it more solid.

In the ZopStore Programming interface, we can utilize mockgen to generate derides for

our service interfaces, and sqlmock to ridicule our data set queries. This will permit us to

evaluate the way of behaving of the Programming interface in confinement, without the

requirement for a genuine data set or exterior services. By utilizing these devices, we can

guarantee that our evaluations are dependable and exact, and that our Programming

interface is functioning true to form.

31



3.6 Metrics

Metrics assume a significant part in figuring out the exhibition and utilization of the

ZopStore Programming interface. Metrics can give significant experiences into the use of

examples of the Programming interface, as well as delineating potential issues or

obstacles in the framework.

One well known metric assortment instrument is Prometheus, which can be coordinated

into the ZopStore Programming interface to collect and store various metrics, for

example, demand inactivity, mistake rates, and solicitation volume. These metrics can be

utilized to produce reports, representations, and cautions, assisting the advancement with

joining to screen and enhancing the exposition of the Programming interface.

To empower Prometheus metrics in the ZopStore Programming interface, the Prometheus

client library can be utilized to instrument the essential code. This library provides

various capabilities to quantify and record metrics, like counters, histograms, and checks.

These metrics can then be uncovered through an allotted endpoint, which can be scraped

by the Prometheus server.

By verifying these metrics, the enhancement group can acquire experiences into the

presentation of the Programming interface and distinguish likely issues. For instance,

assuming the solicitation dormancy expands, it might show that there is a bottleneck in

the framework that should be tended to. Likewise, assuming the mistake rate builds, it

might demonstrate that there are issues with the code or framework that should be

resolved.

In general, carrying out metrics assortment in the ZopStore Programming interface can

offer significant parts of knowledge into the presentation and utilization of the

framework, assisting the advancement with joining to upgrade and work on the

Programming interface.

32



3.6 Improving Code Coverage and Removing Linter errors

Further developing inclusion and linter blunders in the ZopStore Programming interface

included a ceaseless exertion all through the improvement cycle. The group set an

objective of accomplishing no less than 80% code inclusion and guaranteeing that the

codebase adhered to linting principles.

To accomplish this, the group consistently ran code inclusion and linter actually looks at

utilizing instruments like go-inclusion and golang ci-build up. These apparatuses assisted

with recognizing regions of the codebase that were not covered by tests or didn't adhere to

linting norms.

The group additionally utilized mock testing to ensure that code was adequately

attempted without relying upon exterior assets like information bases or APIs. This took

into consideration more thorough testing and worked on the general incorporation of the

codebase.

At the point when inclusion or linting issues were recognized, the group would attempt to

swiftly resolve them. This elaborate composing additional tests, refactoring code to

adhere to linting guidelines, or resolving whatever other issues that were recognized.

Furthermore, the group used continuous mix (CI) and consistent organization (Compact

disc) practices to guarantee that the codebase was routinely checked for inclusion and

linting blunders. This assisted with getting issues from the beginning in the advancement

cycle, making it more uncomplicated to resolve them before they expanded issues.

33



Generally speaking, the group's attention on further refining code inclusion and adhering

to linting guidelines assisted with working on the quality and viability of the ZopStore

Programming interface.

To further develop the code quality and viability of the ZopStore Programming interface,

we focused on expanding the code inclusion and tending to any linter errors. We utilized

the implicit testing framework in Golang to construct unit tests for every one of the

capabilities in the codebase, and we used a code inclusion device to recognize regions of

the code that were not being attempted. We then, at that point, composed additional tests

to cover these regions and planned to accomplish somewhere around 90% code inclusion.

Furthermore, we utilized a linter device to distinguish any style or linguistic structure

errors in the code. We tended to these errors by changing the code and yet again running

the linter until all mistakes were resolved. We likewise added a pre-commit snare to

consequently execute the linter before any code was concentrated on the store.

These endeavors assisted with guaranteeing that the codebase was of excellent and

adhered to best works on, making it more straightforward to keep up with and alter from

now on.

Fig 3.4: Checking for linter errors

34



Fig 3.5: Linter errors

3.7 Swagger and Postman Collection

To archive the endpoints and make them effectively testable, we utilized Swagger, an

open-source device for planning, assembling, and recording APIs. We characterized the

Programming interface endpoints in the Swagger particular record, which can be utilized

to produce documentation and client libraries.

We likewise created a Postman collection for the ZopStore Programming interface, which

enables engineers to test the Programming interface endpoints and see the reactions. The

collection incorporates demands for every endpoint and the typical reaction codes and

cargoes. We conveyed the collection to the group for testing and investigating purposes.

35



Swagger is an open-source apparatus that permits engineers to configure, record, and

ingest Soothing APIs. With Swagger, designers can create intelligent documentation for

their APIs, making it more straightforward for different engineers to fathom how to

utilize the Programming interface. The ZopStore Programming interface was planned

utilizing Swagger, and the subsequent Swagger document comes in as the wellspring of

truth for the Programming interface's definition.

The Swagger document for the ZopStore Programming interface incorporates data about

every Programming interface endpoint, including the HTTP strategy, solicitation and

reaction information types, and any essential boundaries. It likewise recalls

documentation for the Programming interface's general usefulness, for example, how to

affirm solicitations and what blunder codes may be returned.

The Postman collection for the ZopStore Programming interface is a group of

pre-designed HTTP demands that can be utilized to test the Programming interface. With

the Postman collection, designers can rapidly and effectively test every Programming

interface endpoint, it is functioning true to form to validate that it.

The Postman collection encompasses demands for every one of the Programming

interface's endpoints, as well as pre-populated demand headings and solicitation body

boundaries. This makes it simple for designers to swiftly evaluate the Programming

interface and guarantee that it is functioning true to form.

By utilizing Swagger and Postman, the ZopStore Programming interface was planned in

view of convenience and usability. The Swagger documentation provides an unmistakable

and succinct clarification of the Programming interface's utility, while the Postman

collection makes it simple to test every endpoint and check that the Programming

interface is functioning accurately.

36



Fig 3.6: Swagger Documentation

37



CHAPTER- 4

PERFORMANCE ANALYSIS

Execution investigation is a fundamental element of fostering any product framework,

including the ZopStore Programming interface. Before, we led a meticulous execution

investigation of the Programming interface to recognize any bottlenecks and expedite its

exhibition.

In any event, we utilized different apparatuses to quantify the demonstration of the

Programming interface, like Apache JMeter and New Artifact. We created a few burden

test situations to reenact various degrees of client traffic and demands to the

Programming interface.

Subsequent to performing the heap tests, we dissected the outcomes and distinguished a

few regions that expected enhancement. One of the main discoveries was that the data set

inquiries were taking surprisingly lengthy to implement. To resolve this issue, we utilized

diverse strategies like ordering, query streamlining, and storing.

We likewise discovered that the middleware layer was scaling back the Programming

interface's reaction time. We upgraded the middleware capabilities by decreasing the

quantity of extraneous middleware tasks and making them more proficient.

Another region that needed enhancement was the organization idleness between the

Programming interface and the client. To diminish this idleness, we carried out a CDN

(Content Conveyance Organization) to reserve and serve static resources, like images and

scripts, from an area nearer to the client.

Generally, the exhibition investigation of the ZopStore Programming interface helped us

distinguish and advance distinct regions that were influencing its presentation. By

streamlining these regions, we had the option to essentially further develop the

38



Programming interface's reaction time and manage a bigger volume of client traffic

effortlessly.

Execution examination is a fundamental stage in assuring that the ZopStore Programming

interface can deal with an expansive number of solicitations and scale as the client base

develops. To conduct performance examinations, we utilized devices like Apache JMeter

and Prometheus to reproduce an enormous number of solicitations and screen the

framework's exhibition.

We, first and foremost, set up a test climate that replicated the creation climate as intently

as could be anticipated, with analogous equipment particulars and organization

conditions. We then utilized Apache JMeter to reproduce limitless solicitations, with

differing levels of burden and simultaneousness.

We observed the framework's exhibition utilizing Prometheus, which gave metrics on

computer processor use, memory use, demand dormancy, and blunder rates. We utilized

these metrics to distinguish any constraints or execution issues and advance the

framework in a like manner.

To further develop execution, we made different enhancements, for example, carrying out

storing, decreasing data set inquiries, and enhancing query execution times. We likewise

enhanced the utilization of assets, for example, central processor and memory to

guarantee proficient usage and diminish the opportunity of asset fatigue.

In general, execution examination assisted us with guaranteeing that the ZopStore

Programming interface had the option to deal with numerous demands and scale as the

client base developed, giving a smooth and robust experience for clients.

39



Fig 4.1: Hitting AddVehicle Endpoint

Fig 4.2: Hitting UpdateVehicle Endpoint

40



Fig 4.3: Hitting AddCustomer Endpoint

41



Fig 4.4: Hitting GetAll Endpoint

42



CHAPTER - 5

CONCLUSION

5.1 Conclusion

All in all, the development of the ZopStore Programming interface included a

purview of best practices and strategies in framework advancement. A three-layer

engineering was carried out, with unambiguous detachment of concerns between the

handler, service, and store layers. Test-driven improvement was utilized all through

the advancement interaction, guaranteeing high code quality and diminishing the

hazard of defects.

Data set movements were utilized to supervise changes to the data set blueprint, while

middleware was utilized to introduce cross-cutting worries like confirmation and

logging to the Programming interface. SQL deriding was utilized to empower unit

testing of the store layer, while mockgen and mux were utilized for unit testing of the

handler layer.

Execution was meticulously checked and dissected utilizing metrics, with measures

taken to streamline the Programming interface and guarantee superior execution much

under ponderous burden. The Programming interface was additionally thoroughly

recorded utilizing Swagger and Postman, with plain and far reaching documentation

accessible for all endpoints.

At last, the advancement interaction was enhanced involving GitHub Activities for

computerized testing, code inclusion, and linter tests. In general, the ZopStore

Programming interface was established utilizing a purview of best practices and

strategies, bringing about a top notch, dependable, and performant Programming

43



interface that addressed the issues of its clients.

All in all, the ZopStore Programming interface is a vigorous and versatile answer for

constructing a web based business stage. Its three-layer engineering, comprising the

handler, service, and store layers, considers partition of worries and straightforward

viability. Test-driven improvement and continuous coordination and sending

rehearsals were followed to guarantee the dependability of the Programming

interface.

The utilization of middleware, data set relocations, and metrics observing aided in

working on the presentation and security of the Programming interface. The reception

of Swagger and Postman collections worked with Programming interface

documentation and testing, while concerted testing utilizing Mockgen and Mux

helped in distinguishing and resolving blunders during advancement.

By and large, the ZopStore Programming interface is a magnificent illustration of a

very much planned and all around carried out framework. It grandstands the

utilization of present day innovations and best practices in framework improvement

and fills in as a significant asset for engineers hopeful to fabricate analogous

frameworks.

5.2 Goals achieved

The ZopStore Programming interface accomplished a few objectives all through its

enhancement interaction, including:

Versatility: The three-layer engineering, utilization of microservices, and execution

of Kubernetes deemed the Programming interface to effectively scale and manage

expanded traffic as the application developed.

Unwavering quality: The execution of TDD, combination testing, and continuous

coordination/constant arrangement (CI/Album) through GitHub Activities guaranteed

44



that the Programming interface was dependable and liberated from defects.

Security: Best practices for verification and approval, input approval, and

Programming interface key administration were carried out to guarantee the security

of the Programming interface.

Practicality: The utilization of irrefutably factual code, data set relocations, and

organized recording made the Programming interface simple to keep up with and

update on a case by case basis.

Execution: The execution of metrics observing, execution investigation, and

enhancements worked on the Programming interface's general exhibition and reaction

time.

In general, the ZopStore Programming interface accomplished its objectives of

providing a versatile, dependable, secure, viable, and performant online business

arrangement.

5.3 Future Scope:

There are a few areas of future degree for the ZopStore Programming interface:

Adding new elements: The ZopStore Programming interface can be reached out with

new highlights to make it more valuable for organizations and purchasers. For

instance, adding support for numerous installment entryways, item audits, and client

appraisals could improve the client experience and augment client commitment.

Reconciliation with different frameworks: The Programming interface can be

incorporated with different frameworks like ERP, CRM, and coordinated factors of

45



the administrators to give a consistent start to finish answer for organizations.

Improving security: Similarly as with any web application, security is generally a

concern. The Programming interface can be additionally enhanced to incorporate

extra security elements like two-factor verification, encryption, and interruption

identification.

Enhancement: The Programming interface can be advanced for speedier reaction

times and further developed versatility. This can be accomplished through strategies,

for example, load testing, execution profiling, and code enhancement.

Supporting multiple stages: While the ZopStore Programming interface was

intended to be utilized with Golang, it tends to be extended to help other

programming dialects like Python or Node.js. This could expand its reception and

make it more open to a more extensive scope of engineers.

Cloud arrangement: The Programming interface can be communicated on cloud

stages like AWS, Sky blue, or Google Cloud, which would offer extra advantages like

adaptability, unwavering quality, and cost-adequacy.

Generally speaking, there are a few energizing open doors for future turn of events

and development of the ZopStore Programming interface, and it will be fascinating to

discern how it develops over the long term.

46



References

[1] Nic Jackson and Matt Ellis, "Building Microservices with Golang and Go-kit", 1st

ed. Birmingham, UK: Packt Publishing, 2018, pp. 155-170.

[2] Akshay Aggarwal, "Securing APIs: A Practical Guide to Strategies and Best

Practices", 1st ed. Birmingham, UK: Packt Publishing, 2018, pp. 81-98.

[3] Brendan Burns, Joe Beda, and Kelsey Hightower, "Kubernetes: Up and Running:

Dive into the Future of Infrastructure", 1st ed. Sebastopol, CA: O'Reilly Media, Inc.,

2017, pp. 123-140.

[4] Cindy Sridharan, "Effective Logging in Distributed Systems", Medium, Nov.

2018. [Online]. Available:

https://medium.com/@copyconstruct/effective-logging-in-distributed-systems-aa4fcb

e4ceb9. [Accessed: May 7, 2023].

[5] Denis S. Otkidach, "Building a RESTful API with Golang and MongoDB",

Tutorial, Scotch.io, May 2019. [Online]. Available:

https://scotch.io/tutorials/build-a-restful-api-with-golang-and-mongodb. [Accessed:

May 7, 2023].

[6] "Golang Mux", Github repository, Oct. 2021. [Online]. Available:

https://github.com/gorilla/mux. [Accessed: May 7, 2023].

[7] "Go SQL Mock", Github repository, Aug. 2022. [Online]. Available:

https://github.com/DATA-DOG/go-sqlmock. [Accessed: May 7, 2023].

[8] "Prometheus", Github repository, Oct. 2021. [Online]. Available:

https://github.com/prometheus/prometheus. [Accessed: May 7, 2023].

47



Appendix

Appendix A: API Endpoints

Endpoint HTTP Method Description

/customer GET Get a list of all customers

/customer/:id GET Get a specific customer by ID

/customer POST Add a new customer

/customer/:id PUT Update a specific customer by ID

/customer/:id DELETE Delete a specific customer by ID

/vehicle POST Add a new vehicle

/vehicle/:id PUT Update a specific vehicle by ID

48



Appendix B: Technologies Used

Programming language: Golang

Framework: GoFr

Database: MySQL

API documentation: Swagger

Approach: Three Layer Architecture

Mocking framework: mockgen

Router: Gorilla mux

Containerization: Docker

Monitoring: Prometheus

49



50



1%
SIMILARITY INDEX

1%
INTERNET SOURCES

0%
PUBLICATIONS

1%
STUDENT PAPERS

1 <1%

2 <1%

3 <1%

4 <1%

5 <1%

6 <1%

Exclude quotes On

Exclude bibliography On

Exclude matches < 5 words

PRASHANT AGARWAL 191451
ORIGINALITY REPORT

PRIMARY SOURCES

Submitted to Jaypee University of Information
Technology
Student Paper

citeseerx.ist.psu.edu
Internet Source

www.nmit.ac.in
Internet Source

projanco.com
Internet Source

erepository.uonbi.ac.ke
Internet Source

researchcommons.waikato.ac.nz
Internet Source


