
THREE LAYERED CRUD API ARCHITECTURE

Project report submitted in partial fulfillment of the requirement for
the degree of Bachelor of Technology

in

Computer Science and Engineering/Information Technology
By

ANSHU SHARMA (191317)

Under the supervision of

DR. TIRATHA RAJ SINGH
&

DR. RAJNI MOHANA
to

Department of Computer Science & Engineering and Information
Technology

Jaypee University of Information Technology Waknaghat,
Solan-173234, Himachal Pradesh

Certificate
Candidate’s Declaration

I hereby declare that the work presented in this report entitled “THREE LAYERED CRUD

API ARCHITECTURE” in partial fulfillment of the requirements for the award of the

degree of Bachelor of Technology in Computer Science and Engineering submitted in the

department of Computer Science & Engineering and Information Technology, Jaypee

University of Information Technology Waknaghat is an authentic record of my own work

carried out over a period from Feb 2023 to April 2023 under the supervision of DR.

TIRATHA RAJ SINGH Associate Professor , and training mentor Miss CHAITHRA AV

SDE 2 (Zopsmart Technology).

The matter embodied in the report has not been submitted for the award of any other degree or

diploma.

(Student Signature)

ANSHU SHARMA 191317

This is to certify that the above statement made by the candidate is true to the best of my

knowledge.

(Supervisor Signature)

DR. TIRATHA RAJ SINGH

ASSOCIATE PROFESSOR (BT/BI)

Computer Science and Engineering/Information Technology

Dated:

2

3

ACKNOWLEDGEMENT

First and foremost, I would want to express my heartfelt thanks and thankfulness to

almighty God for his wonderful gifts, which enabled me to successfully finish the

project work within the time frame specified.

I would like to express my heartfelt gratitude to my project supervisor, DR. TIRATHA

RAJ SINGH, Associate Professor (BT/BI), Department of Computer Science &

Engineering, Jaypee University of Information Technology, Waknaghat, India. Our

supervisor's extensive experience and genuine interest in the topic of Machine Learning

aided me much in completing this research. His unending patience, intellectual

leadership, persistent encouragement, constant, vigorous supervision, constructive

criticism, excellent counsel, reading many inferior draughts and correcting them at all

levels, and reading many inferior draughts and correcting them at all stages enabled us

to accomplish this project.

I would also like to express my heartfelt gratitude to everyone who has assisted me,

directly or indirectly, in successfully completing this project. In this case, I'd also want

to thank the different staff members, both teaching and non-teaching, who have

provided handy assistance and assisted my project.

Last but not least, I must express my gratitude for my parents' unwavering support and

faith.

ANSHU SHARMA, 191317

4

TABLE OF CONTENTS

TITLE
PAGE NO.

LIST OF ABBREVIATIONS 5

LIST OF FIGURES 6

LIST OF TABLES 7

ABSTRACT 8

CHAPTER 1 - INTRODUCTION 9-24

CHAPTER 2 - LITERATURE SURVEY 25

CHAPTER – 3 SYSTEM DESIGN &

DEVELOPMENT

26-52

CHAPTER 4 - EXPERIMENTS AND

RESULT ANALYSIS 53-58

CHAPTER 5 - CONCLUSIONS 59-60

5

LIST OF ABBREVIATIONS

● TDD : Test Driven Development

● SQL : Structured Query Language

● CRUD: Create, Read, Update, delete

● HTTP: Hypertext Transfer Protocol

● API: Application Programming Interface

● REST: REpresentational State Transfer

● IoT: Internet of Things

● SOAP: Simple Object Access protocol

● URL: Uniform Resource Locator

● DB: Database

● DBMS: Database Management System

● IDE: Integrated Development Environment

6

LIST OF FIGURES

1. Chapter- 1

● (FIGURE - 1.1) Fetching a page

● (FIGURE -1.2) Three Layered Architecture

● (FIGURE -1.3) Goland IDE by JetBrains

● (FIGURE -1.4) Creating a New Project in Goland

2. Chapter- 3

● (FIGURE-3.1 - FIGURE 3.36) Code snippets and DB schemas

3. Chapter- 4

● (FIGURE 4.1) Postman

● (FIGURE 4.2) SWAGGER

● (FIGURE 4.3) SWAGGER

● (FIGURE 4.4) POSTMAN ENDPOINTS

● (FIGURE 4.5) POSTMAN ENDPOINTS

● (FIGURE 4.6) POSTMAN ENDPOINTS

● (FIGURE 4.7) POSTMAN ENDPOINTS

7

LIST OF TABLES

● Table 1.1 (HTTP STATUS CODES) Chapter -1

● Table 3.1 E(HARDWARE REQUIREMENTS) Chapter - 3

● Table 3.2 E(SOFTWARE REQUIREMENTS) Chapter - 3

8

ABSTRACT

The project "CRUD API in Golang using three-layered architecture" aims to offer a

modular and scalable API for performing CRUD (provide, Read, Update, Delete)

operations on a database. Because of its efficiency and ease of use, Golang is the most

popular programming language.

By separating the display layer, business logic layer, and data access layer, the API's

three-layered architecture provides greater maintainability and scalability. When users

interact with API endpoints, the display layer sends requests to the business logic layer,

which processes them and returns results. The data access layer handles CRUD

operations and database connectivity.

The project creates a RESTful API that adheres to HTTP method basics and industry

best practises. Aside from query parameters for filtering, sorting, and paginating data,

the API provides endpoints for adding, receiving, updating, and removing data from

the database.

The project is being constructed in accordance with test-driven development (TDD)

guidelines, with unit and integration tests covering each important API component. The

API is hosted on a cloud platform and containerized using Docker for scalability and

availability.

Overall, this project provides a solid basis for creating scalable and maintainable

three-layered Golang APIs.

9

CHAPTER - 1

INTRODUCTION

1.1 INTRODUCTION OF THE COMPANY

ZopSmart Technology is a software solutions company that provides all the resources

you need to start an online store. Returning from its range of products, ZopSmart can

help you build and run your dream company. It has many products such as Smart Store

Eazy and Smart Payment Gateway. Zopsmart produces technology solutions for the

retail industry. Its customers range from independent furniture retailers to multinational

corporations, and its solutions include e-commerce platforms, digital marketing,

mobile commerce, automated logistics systems, management platforms, order

management platforms and Internet of Things (IoT) devices. It has its own mission and

provides software solutions to some of the best companies.

Zopsmart Technology helps offline businesses looking to expand online by providing

the tools and advice needed to build an online store. Their mission is to provide

end-to-end products that add value to digitally savvy consumers. They show businesses

how to better reach customers, thrive within budget, and get products online as soon as

possible. They reduce time to market by helping customers rethink their business,

customer interactions, and test analytics through human modeling.

1.2 INTRODUCTION OF THE PROJECT

In recent years, the need to create online applications that provide a good user

experience has increased. Building a good API model that interacts with data and

performs CRUD (create, read, update, delete) operations is essential for building

powerful and capable applications. The performance and simplicity of the popular

10

programming language Golang has captured the attention of the software development

community.

The purpose of this project is to provide a CRUD API in Golang with a three-level

design based on best practices. The design pattern, known as the three-tier architecture,

improves API management and scalability by separating the process from the service

and storage process. When interacting with an API endpoint, the processing layer sends

requests to the service layer, which processes the requests and generates a response.

CRUD operations and database communication are handled by the storage layer.

To assure code quality, we will adhere to test-driven development (TDD) standards,

with unit tests and integration tests covering each essential API component. The

RESTful API will be created in accordance with HTTP method principles and will

include endpoints for adding, removing, updating, and retrieving data from the

database.

1.2.1 WHAT IS API?

API stands for "Application Programming Interface". It is a set of guidelines,

processes, and tools that facilitates information exchange and communication across

different software applications.

Simply described, an API facilitates communication and data sharing by acting as a

bridge between several software programmes. There are several methods that APIs

may be implemented, including REST APIs, SOAP APIs, and GraphQL APIs. Without

APIs, modern software development would be impossible since they enable

programmers to build complex, sophisticated applications that interact with other

software services and systems.

11

RestAPI with Go

REpresentational State Exchange, some of the time known as REST, is an engineering

plan for conveyed hypermedia frameworks. We can streamline the by and large

framework design and improve interaction perceivability by applying the sweeping

statement rule to the component interface.

Several structural confinements help in accomplishing a bound together interface and

controlling component behavior.

The four constraints listed below can help create a standard REST interface:

1. Each asset utilized within the interaction between the client and the server must
be extraordinarily distinguished by the interface.

2. Assets ought to be spoken to reliably within the server reaction to avoid asset

control. These representations ought to be utilized by API buyers to change the

server's state of the assets.

3. Each asset representation ought to have sufficient subtle elements to clarify how
to decipher the message. It ought to moreover detail any additional operations

the client may carry out on the asset.

4. The client should only have the application's starting URL when using

hypermedia as the application state engine. All other resources and interactions

should be dynamically driven by the client application using hyperlinks

What is HTTP ?

Resources like HTML pages may be retrieved via the HTTP protocol. It is a

client-server protocol, which means that all requests for data transmission on the

Internet are initiated by the recipient, which is frequently the Web browser. A full

12

document is created by combining the numerous sub-documents that are collected,

including text, layout descriptions, images, videos, scripts, and more.

(FIGURE - 1.1)

Fetching a page

In contrast to a data stream, individual messages are exchanged between clients and

servers during communication. Requests are messages sent by the client, which is often

a web browser, and replies are messages delivered by the server in return.

Status Codes

In order to convey the outcome of a client's request, HTTP defines a number of

standard status codes. The status codes are divided into five groups.

● 1xx: Informative - information is sent at the protocol level..

● 2xx: Success - represents the client's request being accepted with success.

● 3xx: Redirection - indicates that more steps are necessary for the customer to

complete their request.

13

● 4xx: Client Error - These error status codes all place the blame on the

customers.

● 5xx: Server Error - Server’s fault.

Here are some significant status codes:

S.NO STATUS CODE DESCRIPTION

1 200 OK ACCEPTED

2 201 CREATED CREATED

3 400 BAD REQUEST BAD REQUEST

4 401 UNAUTHORIZED UNAUTHORIZED

INFORMATION

5 403 FORBIDDEN ACCESS DENIED

6 404 NOT FOUND NOT FOUND

7 500 INTERNAL SERVER

ERROR

SERVER ERROR

(TABLE-1.1)

HTTP Status Codes

CRUD OPERATIONS

Make, Perused, Overhaul, and Erase, or CRUD, are the basic information

administration exercises utilized in databases and APIs. By performing these activities,

database engineers can adjust information in a database by including unused records,

recovering ancient ones, overhauling ancient ones, and erasing ancient ones.

14

1. Create: Including a modern record to the database is done utilizing this

operation. For occurrence, the data from the frame is spared as a modern record

within the database once you yield one to form a unused account.

2. Read: Information from the database is recovered utilizing this strategy. For

occasion, the item data is pulled from the database and appeared once you see a

item page on an e-commerce site.

3. Update: This operation adjusts the database's current information. For occasion,

the database is upgraded after you make changes to your profile data on a social

media site.

4. Delete: The database can be cleaned up by using this action. For instance, a

message gets destroyed from the database when you delete it from your inbox.

In order to create APIs and database-driven apps, CRUD procedures are

essential since they let programmers manage data effectively and efficiently.

GOLANG

Go programming is procedural in nature. It was created by Google employees Robert

Griesemer, Rob Pike, and Ken Thompson in 2007, although it wasn't published as an

open-source programming language until 2009. To handle dependencies efficiently

during programme assembly, packages are utilised. This language allows environment

adoption patterns just like dynamic languages do.

Go is a concurrent, statically typed, and garbage-collected programming language that

was created at Google in 2009. Due to its emphasis on simplicity, efficiency, and speed

of comprehension, it is a popular choice for creating command-line tools, web

applications, and scalable network services.

Concurrency, or the capacity to carry out a few exercises at once, is bolstered by Go.

Go's utilize of Goroutines and Channels, which empower you to make code that can

execute numerous activities concurrently, permits for concurrency. Because of this, Go

15

could be a awesome choice for making high-performance, adaptable arrange

administrations as well as for settling challenging computational issues.

Key Features of Golang:

● Go is basic to memorize and utilize since of this. Its clear language structure

makes it a practical choice for both unpracticed and prepared software

engineers.

● Go highlights built-in concurrency back, empowering software engineers to

form adaptable and viable code for multicore and dispersed applications.

● Developers are spared of the burden of handling memory allocation and

deallocation thanks to Go's automated memory management.

● Go's quick compilation times enable quick iteration throughout development.

● Go can be built to work on a wide run of working frameworks, counting

Windows, Linux, and macOS.

● Go may be a statically written dialect, therefore errors are caught at compile

time instead of amid runtime.

GO Basics

1. Packages: Every Go programme has packages. The programmes launch in the

bundle main. A package is a container with several uses to do certain tasks. The

math package, for instance, provides the Sqrt() function to determine the square

root of a value.

2. Imports: When using the import keyword, the desired package is imported

from the given directory or, in the absence of a path, from the directory of

$GOPATH. Simply copying the selected package from its source directory to the

target code—the main program—is all that is required to import a package.

Since it brings the packages that are strictly need to run applications, import is

essential in Go.

16

3. Functions: In a programme, functions are often a group of instructions or

statements that allow the user to reuse previously written code to save memory

use, speed up execution, and—most importantly—to enhance readability. A

function is essentially a collection of statements that cooperate to carry out a

certain job and provide the result to the caller. A function can also do a certain

task without ending in a result.

4. Named Return Values: Go's return values might be named. If so, they are

treated as variables defined at the top of the function.These names ought to be

used in the documentation for the return values.A return statement without

arguments returns the stated return values. A "naked" return is what is meant by

this.Only short functions, such as the one in this example, should make use of

naked return statements. They could make longer functions more difficult to

read.

5. Shorthand variable declarations: Instead of using a var declaration with

implicit type inside of a function, the:= short assignment statement may be used.

Because every sentence begins with a keyword (var, func, and so on), the:=

construct cannot be used outside of a function.

6. Zero Values: Factors that are announced without a clear beginning esteem are

alloted zero.For numeric sorts, the zero esteem is 0; for boolean sorts, wrong;

and for string sorts, "" (the purge string).

7. Type Inference: A variable's sort is gathered from the esteem on the correct

side when it is pronounced without an unequivocal sort being indicated (either

by utilizing the := sentence structure or the var = expression sentence structure).

8. For is Go’s “While”: In Go, we utilize the whereas circle to execute a square of

code until a certain condition is met. Not at all like other programming dialects,

Go doesn't have a devoted watchword for a whereas circle. In any case, we will

utilize the for circle to perform the usefulness of a whereas circle.

9. Defer: With a concede articulation, a function's execution is delayed until the

encompassing work completes its run.The inputs of the put off call are evaluated

17

right absent, but the work call isn't carried out until the encompassing work has

wrapped up. Work calls that are conceded are pushed into a stack. Conceded

calls are handled in last-in, first-out arrange when a work returns.

10. Slices: The size of an array is fixed. A slice, on the other hand, provides a

flexible, dynamic view of an array's elements. In real use, slices are much more

common than arrays.A type []T slice is one having components of type T.

In Go, there are several ways to create a slice:

● The []data type values format may be used to create a slice from an array.

● It uses the make() function.

11. Slice as reference to an array: A cut as it were delineates a parcel of the

fundamental cluster; it does not really contain any information. A slice's

fundamental array's related components are changed when the components of

the cut are changed. These adjustments will be unmistakable to other cuts that

utilize the same fundamental cluster.

12.Length and Capacity: A powerful and long document. The length of a piece is

determined by the number of elements it has. The capacity of the slice

calculated from the first element in the slice is all points in the lower row. The

len(s) and cap(s) expressions can be used to determine the length and capacity

of a part.

THREE LAYERED ARCHITECTURE

The three layers architecture are

● Handler

● Service

● Store

18

(FIGURE -1.2)

Three Layered Architecture

HANDLER LAYER

The layer is also known as the distribution layer. The request will be received by the

delivery process that separates it for the required information. The answer is written to

the answer author after reviewing using the document that the call is well established.

SERVICE LAYER

The Use-Case Layer is another name for it. The use case layer is in charge of the

application's business logic. The datastore layer will interface with this layer. After

obtaining what it needs from the delivery layer, it invokes the datastore layer. Both

before and after invoking the datastore layer, the relevant business logic is applied.

STORE LAYER

19

The Data-store layer is another name for it. The datastore houses the data. You can

utilise any kind of data storage device. The use case layer is the only one that

communicates with the datastore. Each layer may be separately verified in this way

from the others.

The only layer that will change if the application grows to support gRPC is the delivery

layer because each layer runs independently from the others. The use case layer and

datastore won't change. Even if the datastore changes, the entire programme does not

have to be altered. Only the datastore layer will change. Because of this, updating the

code, locating and fixing bugs, and growing the programme are all made simple.

In our project, the store layer will store and retrieve data using MySQL.

MySQL

MySQL is simply a database management system.

The systematic collection of information is called a database. It can be anything from a

simple shopping list to a photo library or a large database in network marketing. A

database management system such as MySQL Server is required to add, access, and

manage information contained in computer databases. Whether used as a standalone

service or as an integral part of other services, a database management system is

essential for computing because computers are so good at processing more

information.

A relational database stores the data in separate tables rather than consolidating it into

one enormous warehouse. The database structures are stored in physical files that are

speed-optimized. A versatile programming environment is offered by the logical

model, which includes objects like databases, tables, views, rows, and columns. You

might create rules to govern the relationships between different data fields, such as

20

one-to-one, one-to-many, unique, required or optional, and "pointers" between different

tables. Since a well-designed database upholds these constraints, your application won't

ever run across inconsistent, duplicate, orphan, out-of-date, or missing data.

"Structured Query Language" is what the SQL portion of "MySQL" stands for. The

most used standard language for accessing databases is SQL. Depending on your

programming environment, you might openly enter SQL (for example, to make

reports), embed SQL statements into other languages' code, or use a language-specific

API that conceals the SQL syntax.

1.2 PROBLEM STATEMENT

Build CRUD API using three-tier architecture in Golang. Access tables using MySQL

connections. The name of the file should be zopstore.

There should be two tables, Customer and Vehicle. The id for the client must be uuid,

age must be between 0 and 100, gender must be an enum, phone number must start

with code 91 and length must be no more than 12.

There are endpoints that must be executed for both tables.

Customer

● GETBYID

● UPDATE

● POST

● GETALL [it has two functionalities, one is to get all customer details, and next

is getByFilters]

● DELETE

21

The following filters are available:

a. If "vehicle" is true, receive all vehicle information for that specific customer;

b. receive cars based on "fuel_type"

c. Purchase cars based on brand

Vehicle

● POST

● UPDATE

Snake_case should only be used for database naming conventions, and camelCase

should be used in the code.

1.3 OBJECTIVES

● to use industry best practises to design tested, organised, clean, and maintainable

CRUD API.

● Learn basic and advanced concepts of Golang.

1.4 METHODOLOGY

● learn the fundamentals of golang

● learn the fundamentals of connecting to mysql in golang

● In a database, create tables.

● Layers may be created in Goland IDE.

● Utilising Test Driven Development, create test cases for each tier.

● In all the levels, write the function implementation.

● Implement Dependency Injection

22

About Goland IDE

It is a Golang IDE that JetBrains.com offers. On our local system, it supports the

creation of a go programme as well as its running, debugging, and many other

functions. Using Goland IDE, we are able to construct Go projects.

(FIGURE -1.3)

Goland IDE by JetBrains

23

(FIGURE -1.4)

Creating a New Project in Goland

Test Driven Development(TDD)

In a method called "test-driven development", test cases are written first instead of the

code that analyzes them. He relies on recovery to get the job done quickly. One

method, called test-driven development, uses automated unit tests to guide design and

ensure unrestricted separation of progress.

The TDD approach includes the following steps:

● By developing a test case that completely illustrates the procedure, you may add

a test. In order to generate the test cases, the developer must fully understand the

features and requirements using user stories and use cases.

● Run each test case to ensure that the new test case is unsuccessful.

● Ensure that the test case is satisfied by your code.

● Put the test scenarios into actions.

24

● Refactoring the code gets rid of duplicate code.

● repetition of the previous stages

Advantages of TDD

1. Unit tests offer continuous input on the functions.

2. Enhancing design quality also helps with proper maintenance.

3. Using test-driven development offers protection from bugs.

4. TDD makes ensuring that your application complies with all of the

specifications that have been laid down for it.

5. The TDD development lifecycle is rather short.

DEPENDENCY INJECTION

Dependency Injection, sometimes called DI, is a technique for implementing code

parsing using some best practices. Sentences that do not make sense together should be

alone or separately. Code injection is required to create this dependency. This is a

simple explanation of successful shoots.

25

(FIGURE -1.5)

Dependency injection

A design called Dependency Injection can help you make decisions outside of your

application. Applications are often based on external APIs, databases, etc. requires. An

application must accept its expectations and use them appropriately; It's not a job to

know these details. Consider a scenario where your application contains the following

code.

Avoiding injections (patterns) but not injecting abstractions (interfaces) is an important

part of injection prevention. It allows you to quickly switch between using specific

progressions and transitions from real use to app. The basic unit of measure depends on

it.

1.5 ORGANIZATION

There are five chapters in the report. The project's chapters together provide crucial

information. The project's fundamental introduction is provided in the first chapter,

which covers CRUD OPERATIONS, GOLANG, and THREE LAYERED

ARCHITECTURE. The literature review of all the research articles we used and read

while creating this project is included in the second chapter.The third chapter contains

information on system development and the use of various software programmes,

databases, project feasibility studies, limits, etc. The performance analysis is in the

fourth chapter. The API project's results and next work are covered in Chapter 5.

26

CHAPTER - 2

LITERATURE SURVEY

1. GO Documentation Go is a statically typed, open source, compiled

programming language that was created by R Griesemer, R Pike, and K

Thompson while working at Google. Information is available in the Go manual

for every topic listed or utilised in golang.

2. MySQL Documentation Open-source relational database management system

MySQL, also known as My Structured Query Language, enables us to store

data, retrieve details, remove a record, etc.

3. GoMock Gomock is a mocking framework that works well with the built-in

testing package in the GO programming language.

4. Git and Github Official documentation It helps you become familiar with the

principles of a version control system, such as Git, and how it functions with

GitHub.

5. Three Layered Architecture Industrial Documentation on three layered

architecture used in ZopSmart Technology by Chaitra AV

6. HTTP Documentation in regards to the use of status codes, client-server

architecture, requests, and answers, etc.

7. SQL Mocks Documentation

8. Dedicated Training and upskilling platform part of the firm.

27

CHAPTER - 3

SYSTEM DESIGN & DEVELOPMENT

3.1 ANALYSIS

Feasibility Study

This project aims to provide a fair and efficient way to manage data using an HTTP

based API to create, read, modify and delete transactions. The three-tier architectural

concept will facilitate maintenance and future growth while ensuring a clear separation

of concerns.

When looking for this quality, the following items will be examined:

Technological viability

Operational viability

Financial viability

Technological feasibility: In order to build scalable and useful apps, the project

comprises developing a CRUD API in the programming language Golang.

Programming language Golang is established and often used. Having built-in support

for HTTP servers and clients, Golang is a powerful standard library that is ideal for

creating online applications. Because there would be a distinct separation of concerns

with the recommended three-layered architecture, it will be easier to manage the

codebase and maintain the application over time.

28

Operational feasibility: The CRUD API's RESTful architecture, which complies with

accepted conventions and standards, makes it easy to use and connect with other

systems. Using common libraries or API clients, users will be able to rapidly generate

HTTP calls for the API to create, read, update, and remove data. Because it is simple to

alter single components or add additional levels, the recommended architecture will

also make future maintenance and extension easier.

Financial feasibility: A variety of factors, including as development expenses, hosting

costs, and income possibilities, will have an impact on the project's financial feasibility.

The cost of development will depend on the application's complexity and the team's

level of experience.

3.2 REQUIREMENTS

A system need is the capacity of the system to satisfy the conditions desired by the

users.

System requirement analysis is completed by separating the requirements into

functional and nonfunctional requirements.

Functional requirements

1. Authentication

● The API should provide user authentication and permission.

● It should be possible for users to create accounts and sign in using them.

● Roles and permissions for users should be defined and maintained.

2. Data Management

● Data management should be possible using the Create, Read, Update, and

Delete actions of the API.

● Data must be saved in a database or file system.

● The API should verify data inputs and keep track of consistency.

29

3. Data Filtering & Sorting

● Data sorting and filtering should be supported through the API using a

variety of criteria.

● The ability for users to query data using specific criteria should be

provided.

4. Error Handling

● The ability for users to query data using specific criteria should be

provided.

● Error messages must be truthful.

5. Testing

● All test cases for API methods should pass with 100% coverage.

● For all layers of unit testing, dependency injection and effective

mock use are required.

6. Documentation

● Information must be accurate and validated for all attributes,

including appropriate registration requirements.

Non-Functional Requirements

1. ascendable

2. production

3. Readability

4. legibility

5. Usable API

6. justifiable

Technical Requirements

30

1. GOLand is an IDE for developing clean code.

2. Postman is a platform for API development and consumption.

3. Mysql server provides database management solutions with connection

and querying features.

4. Swagger is used for API documentation.

5. VCS Git

Hardware Configurations

HP HP EliteBook 840 G7 Notebook PC

Memory 16.0 GiB

Disk Capacity 512 GB

Monitor 13’’

Mouse

Keyboard

(TABLE-3.1)

Hardware Configurations

Software Configurations

OS Ubuntu

31

Coding language GO

Runtime environment GO runtime

Package Manager GO

(TABLE -3.2)

Software Configurations

3.3 IMPLEMENTATION

Project structure

1. Project Folder Name : VehicleStore

2. SubFolders

● api: The documentation for the Swagger API is included.

● driver: Connection file for MySql.

● entities: go files with structure

● handler: Layer files to handle.

● service: Service layer documents

● store: Layer files should be saved.

● postmanCollection: The API Postman Collection

3. main.go

4. go.mod: dependency

32

(FIGURE -3.1)

Project Structure

DB SCHEMAS

(FIGURE -3.2)

DB SCHEMA

33

(FIGURE -3.3)

MySQL docker image

(FIGURE -3.4)

Tables in the Database

34

(FIGURE -3.5)

Customer Description

(FIGURE -3.6)

Vehicle Description

(FIGURE -3.7)

Customer table

35

(FIGURE -3.8)

Vehicle table

In this image, the "Customers" table contains information about the customers, such as

their ID (as a UUID), name, age, gender, phone number, city, and the foreign key for

the automobile they own. The "Vehicles" table contains information about the vehicles,

including their ID (as a UUID), type (2, 4, or 6 wheelers), fuel type (petrol, diesel,

compressed natural gas, or electric), brand, model, and colour.

The "Customer_Vehicle" table, which represents the relationship between the

"Customers" and "Vehicles" databases, is a many-to-many relationship. This table

contains both the customer ID and the vehicle ID that links them.

The tables can be accessed through the following API endpoints:

API for users

● Using the GET /customers/id> query, you may get a customer by ID.

● Add a new customer.

● Using PUT, you may update an existing client by ID.

● Using DELETE, delete a client by ID.

● GET is used to retrieve customers. Obtain every client.

● GET /client?If vehicle=true is specified, get information about all clients' cars.

● GET /client?Using the fuel_type= fuel_type argument, get all customers with

cars that use a specific fuel type.

36

● GET /client?Using the query brand="brand", get all clients who own vehicles of

the specified brand.

API for Vehicles

● Create a new automobile using POST /vehicles.

● PUT /vehicles/ to update a current vehicle by ID.

● Delete a vehicle by entering DELETE /vehicles/.

SYSTEM DESIGN

The use of each layer is individual. First of all, the sites and models to be used in the

project are created in a separate folder called entity. There are three files in the location

folder, Customers.go, Cars. Go to CustomerVehicle.go. Each has different models

named Customer, Vehicle, and Customer. The next part is to create an SQL connection

to run the database. You should make similar tables in MySQL DB, for example note

the Customer and Vehicle schema.

Next is to create the first layer, the renderer layer. In the layer layer there is a file called

interface.go which contains an interface that contains all the layers of the next layer.

This process is called workers.

➔ handler

customer

customer.go

customer_test.go

vehicles

vehicles.go

vehicles_test.go

37

interface.go

mock_interface.go

(FIGURE - 3.9)

Structure of handler layer

The mock_interface.go file is created using the mock gene to generate the model for

testing.

WHAT ARE MOCKS?

Mock testing entails separating the code from others while testing it without being

distracted by dependencies and other factors such as network difficulties and traffic

fluctuations. Mock objects, which replicate real-world behaviour and exhibit genuine

properties, are used to replace dependent elements. The guiding idea of mock testing is

to prioritise testing above dependencies. We'll discuss the following topics here:

USES OF MOCKS

● It is more useful while performing unit testing.

● when you want to avoid relying on others.

● Despite the fact that you want to employ phantom objects to speed up the testing

process.

● Even though it is critical to anticipate how the test will seem.

38

HOW DOES MOCK TEST WORK?

It is a type of unit testing that allows assertions to be made about how the code driving

the test interacts with other system components.

1. During mock testing, dependencies are replaced by objects that replicate the

behaviour of the critical ones. It is based on behavior-based verification.

2. The mock object creates a bogus interface to mimic the real object's interface.

As a result, it is known as mock.

3. Instead of focusing on the complete code, it emphasises the area that will be

checked.

4. The fake object merely reads and responds to test data from a local disc.

5. Mocking requires no modifications to the software.

6. When there are dependencies in the case of constructors and other methods, fake

objects are used in place of the inherited class during testing.

7. Unlike normal unit testing, authentication is done by artificially pre-initiating

the type of call to be made and the desired behavior.

8. Mocking is used to test protocols, control how APIs should be used and how

they will respond when used correctly.

Mock Gen automatically generates mock functions for a particular method in an

interface.

The service layer follows, which validates the logic of the methods and functions.

➔ service

customer

customer.go

customer_test.go

vehicles

39

vehicle.go

vehicle_test.go

interface.go

mock_interface.go

(FIGURE -3.10)

Structure of service layer

The service layer has an interface for the stored procedure called the service layer.

Another reason to create a Mock is that we call the service in the handler stored in the

service and when the test is executed, this test is also called the similar function, so all

these methods will be tested. but since we produce criticism of these works, we will not

be able to measure it.

Next is the storage layer that implements database queries and creates database

connections.

The structure of store layer is given as follows:

➔ store

customer

customer.go

customer_test.go

40

vehicle

vehicle.go

vehicle_test.go

(FIGURE -3.11)

Structure of store layer

The store layer does not employ go mock; instead, it uses SQL mocks to mock the

database, preventing modifications from being made to the actual database.

SOL MOCKS

sqlmock is a mock library that makes use of the sql/driver. In testing, any sql driver

behaviour may be replicated without requiring a true database connection. It

contributes to the correct TDD process.

This library supports multiple connections and concurrency. Mocking and named sql

arguments are also supported for go1.8 context-related features. It does not require any

changes to your source code. The driver may be used to simulate any sql driver method

behaviour.By default, it uses stringent expectation order matching. It does not rely on

other parties.

In this layer, we fake the SQL connection and then use these mocks to construct the test

cases.

41

DOCKER

The open platform for building, deploying and running programs is Docker. With the

help of Docker, you can separate your application from your development process and

ensure fast delivery. You can use Docker to manage your infrastructure the same way

you manage applications. By using Docker's approach to quickly deploy, test, and

deploy code, you can reduce the time between writing code and running it in

production.

We installed a MySQL docker image and ran the operations on the image rather than

the actual MySQL table.

CODE

(FIGURE-3.12)

Sql Driver Connection

42

(FIGURE-3.13)

Entities - customers.go (having Customers struct)

(FIGURE -3.14)

Entities - Vehicles.go(having struct vehicles)

43

(FIGURE -3.15)

Entities - CustomerVehicle.go(having CustomerVehicle struct)

(FIGURE - 3.16)

Handler Layer customer_test.go file(test function for creating a customer)

44

(FIGURE -3.17)

Handler test function for get by Id

(FIGURE -3.18)

Handler Layer customer.go for create customer method

45

(FIGURE -3.19)

Get BY ID method in handler layer

(FIGURE -3.20)

Create vehicle in vehicle.go

46

(FIGURE -3.21)

Update Vehicle in vehicle.go for handler layer

(FIGURE -3.22)

Test function for create vehicle in vehicle_test.go

47

(FIGURE- 3.23)

Interface.go in handler layer

(FIGURE- 3.24)

Create customer method in service layer

48

(FIGURE - 3.25)

GetById and get All method in service layer

(FIGURE - 3.26)

Test cases for Create customer in service layer

49

(FIGURE -3.27)

Test function for GetByID in service layer

(FIGURE -3.28)

Method create vehicle in service layer

50

(FIGURE-3.29)

Update Vehicle Method in service layer

(FIGURE - 3.30)

Test function for create vehicle in service layer

51

(FIGURE -3.31)

Create Customer and GetByIdStore in store layer

(FIGURE -3.32)

Update customer and Delete customer in store layer

52

(FIGURE - 3.33)

Test Function for create customer in store layer

(FIGURE -3.34)

Test Function for GET customer in store layer

53

(FIGURE -3.35)

Create vehicle in store layer

(FIGURE -3.36)

Test function for create vehicle in store layer

54

CHAPTER - 4

EXPERIMENTS AND RESULT ANALYSIS

RESULTS

1. Every test function in every tier passed with 100% coverage.

2. All of the endpoints are functioning normally.

3. The status codes are all right.

Postman is used for end point testing.

POSTMAN

Postman is an API platform for developing and deploying APIs. Postman increases

collaboration and streamlines every stage of the API lifecycle to help you develop

better APIs quicker.

(FIGURE- 4.1)

Postman

55

Postman can store and manage everything related to APIs, such as API specs,

documentation, workflow recipes, test cases and results, metrics, and more.

The API documentation is created with the swagger API tool.

SWAGGER

You define the internal structure of your API in Swagger so that computers can

understand it. Central to all the benefits in Swagger is the API's ability to define its

own structure. Why is this good? However, we can create a perfectly interactive API

document by reading your API model. We can also review other options such as

technical evaluation and start building libraries for your API in different languages.

Swagger does this by requesting a YAML or JSON response from your API that

provides a general description of your API as a whole.

(FIGURE- 4.2)

Swagger -API documentation for customer

56

(FIGURE- 4.3)

Swagger -API documentation for vehicle

ENDPOINTS RESULT FROM POSTMAN

(FIGURE- 4.4)

Add vehicle Endpoint

57

(FIGURE- 4.5)

Update vehicle endpoint

58

(FIGURE- 4.6)

Add Customer endpoint

59

(FIGURE- 4.7)

GetAll endpoint

60

CHAPTER - 5

5.1 CONCLUSIONS

As a result, best practices and practices were taken into account when creating the

ZopStore programming interface. Handlers, services, and stored procedures are clearly

separated from each other in a three-tier engineering process. Use test-driven

development throughout the development process to ensure code quality and reduce the

risk of errors.

Middleware is used to provide common concerns such as availability and access to

interactions, while data carriers are used to monitor changes in dataset plans. Unit

testing of the storage tier is used by SQL derivation, while unit testing of the tier is

used by mockgen and mux.

Metrics are used to carefully monitor and analyze performance, and measurements are

made to simplify the programming interface and ensure performance even under harsh

conditions. Additionally, the programmatic interface is written entirely using Swagger

and Postman, with clear and concise documentation for each endpoint.

Finally, GitHub activities for automated testing, code injection, and test linter improve

connectivity between the development team. Overall, the ZopStore programming

interface has been designed using best practices and methods that lead to world-class,

reliable and efficient communication that solves customer's problems.

5.2 OBJECTIVES ACHIEVED

1. Flexible Programs.

61

2. Simple to carry out

3. Safe

4. Technical usable

5. Better Quality

5.3 FUTUREWORK

Frameworks can be used to generate this API. Frameworks improve code quality and

aid in the development of a better API. At ZopSmart Technologies, we developed our

own Go Framework called gofr. This API is compatible with the gofr framework.

The programming interface may be upgraded for faster reaction times and greater

diversity. This may be accomplished through the use of techniques such as load testing,

execution profiling, and code enhancement.

The programming interface may interact on cloud platforms such as AWS, Sky Blue,

or Google Cloud, providing additional benefits such as flexibility, consistent quality,

and cost-effectiveness.

In overall, the ZopStore Programming interface offers a few great open doors for future

events and growth, and it will be interesting to see how it evolves over time.

References

All references are collected from the online go documentation and the in-house learning

platform provided by Zopsmart technologies.

62

[1] https://go.dev/doc/

[2] https://github.com/golang/mock

[3] https://github.com/DATA-DOG/go-sqlmock

[4] https://github.com/gorilla/mux

[5] https://dev.mysql.com/doc/

[6] https://www.linux.org/

[7] https://docs.docker.com/

[8] https://kubernetes.io/docs/home/

[9] https://ngdocs.harness.io/

[10] https://prometheus.io/docs/introduction/overview/

63

7%
SIMILARITY INDEX

4%
INTERNET SOURCES

0%
PUBLICATIONS

5%
STUDENT PAPERS

1 1%

2 1%

3 1%

4 1%

5 1%

6 <1%

7 <1%

8 <1%

BTech Thesis
ORIGINALITY REPORT

PRIMARY SOURCES

Submitted to American University of Nigeria
Student Paper

tip.golang.org
Internet Source

Submitted to University of Wales Institute,
Cardiff
Student Paper

Submitted to University of Derby
Student Paper

Submitted to University of Makati
Student Paper

www.fatalerrors.org
Internet Source

Submitted to Liverpool John Moores
University
Student Paper

Submitted to Asia Pacific Instutute of
Information Technology
Student Paper

9 <1%

10 <1%

11 <1%

12 <1%

13 <1%

Exclude quotes On

Exclude bibliography On

Exclude matches < 14 words

Submitted to Hacettepe University
Student Paper

www.coursehero.com
Internet Source

rajabishek.com
Internet Source

Submitted to National School of Business
Management NSBM, Sri Lanka
Student Paper

Submitted to University of Leeds
Student Paper

