
TASK MANAGER WEB APPLICATION USING
MICROSERVICES

Project report submitted in partial fulfilment of the
requirement for the degree of Bachelor of Technology

in
Computer Science and Engineering

By
NARENDRA BAHADUR VERMA (191337)

Under the supervision of
Mr. Nishant Sharma

To

Department of Computer Science & Engineering and
Information Technology

Jaypee University of Information Technology

Waknaghat, Solan-173234, Himachal Pradesh

Candidate’s Declaration

I hereby declare that the work presented in this report entitled “A Task Manager
Web Application Using Microservices.” in partial fulfilment of the
requirements for the award of the degree of Bachelor of Technology in
Computer Science and Engineering/ submitted in the department of Computer
Science & Engineering and Information Technology, Jaypee University of
Information Technology Waknaghat is an authentic record of my own work carried
out over a period from January 2023 to May 2023 under the supervision of Mr.
Nishant Sharma (Assistant Professor Grade-II - CSE Dept.).

I also authenticate that I have carried out the above mentioned project work under
the proficiency stream Cloud Computing.

The matter embodied in the report has not been submitted for the award of any
other degree or diploma.

Narendra Bahadur Verma 191337

This is to certify that the above statement made by the candidate is true to the best
of my knowledge.

(Supervisor Signature)

Supervisor Name: Mr. Nishant Sharma

Designation: Assistant Professor Grade II

Department name: Computer Science

Dated:

i

ii

ACKNOWLEDGEMENT

Firstly, I express my heartiest thanks and gratefulness to almighty God for his

divine blessing that made it possible for us to complete the project work

successfully.

I am really grateful and wish my profound indebtedness to supervisor Mr. Nishant

Sharma, Assistant Professor, Department of CSE, Jaypee University of

Information Technology, Waknaghat. His endless patience, scholarly guidance,

continual encouragement, constant and energetic supervision, constructive

criticism, valuable advice, reading many inferior drafts and correcting them at all

stages have made it possible to complete this project.

I would like to express my heartiest gratitude to Mr. Nishant Sharma,

Department of CSE, for his kind help to finish my project.

I would also generously welcome each one of those individuals who have helped

me straight forward or in a roundabout way in making this project a win. In this

unique situation, I also want to thank the various staff individuals, both educating

and non-instructing, which have developed their convenient help and facilitated

my undertaking.

Finally, I must acknowledge with due respect the constant support and patience of

my parents.

Narendra Bahadur Verma 191337

iii

TABLE OF CONTENT

Candidate’s Declaration………………………………………………i

Plagiarism Certificate………………………………………………...ii

Acknowledgement…………………………………………………...iii

Abstract………………………………………………………………v

1. INTRODUCTION……………………………………………….1-7

1.1 Problem Statement……………………………………………...2

1.2 Objectives……………………………………………………….3

1.3 Methodology…………………….……………………………3-4

1.4 Technology Used……………………………………………...5-7

2. LITERATURE SURVEY…………………………………….....8-13

3. SYSTEM DEVELOPMENT…………………………..………14-42

4. EXPERIMENT & RESULT ANALYSIS……………………..43-51

5. CONCLUSION.……………………………………………….52-55

References………………………………………………………..56-57

iv

ABSTRACT

With improved state management and asynchronous operations, the Task Manager

web application using the MERN (MongoDB, Express, React, and Node.js) stack

with microservices, Passport local strategy, Redux, and Redux-Thunk is a strong

and effective tool created to assist individuals and teams in managing their tasks

and projects. The programme may be divided into smaller, independent services

thanks to the microservices architecture, which makes it simpler to create, deploy,

and maintain. Users can safely access their tasks and data thanks to the

authentication and authorisation provided by the Passport local approach.

Performance and scalability are increased by using Redux and Redux-Thunk,

respectively, for state management and asynchronous operations. Task creation,

assignment, and tracking, user authentication, task prioritisation, notifications, and

reminders are just a few of the capabilities offered by the application.

React and Redux were used to build the frontend of the programme, which offers a

responsive and interactive user interface. Redux-Thunk middleware enables

seamless management of asynchronous activities, while the Redux state

management library enables efficient handling of complicated application state.

The Passport local strategy guarantees secure user authentication and

authorisation, giving users a convenient and safe experience. Users' personal

information is kept secure while they effortlessly create accounts and log in to

access their chores and data.

A robust and effective solution that can assist individuals and teams in managing

their tasks and projects with improved state management and asynchronous

operations is the Task Manager web application, which uses the MERN stack with

microservices, Passport local strategy, Redux, and Redux-Thunk. The application's

solid and durable basis is provided by the microservices architecture and Passport

local strategy, while better performance and scalability are made possible by the

Redux and Redux-Thunk framework.

v

CHAPTER 1

INTRODUCTION

The Task Manager web application was created to help the teams and individuals

in managing their tasks and projects with better state and time management and

asynchronous operations. It is a complete, good and feature-rich solution.

Microservices, Passport, Passport local strategy, Redux, Redux-Thunk, and at last

the MERN stack (MongoDB, Express, React, and Node.js) all of these

technologies are used in this project. The programme is divided into smaller,

independent services by using the microservices concept, which makes it simpler

to create, deploy, and maintain. The Passport local strategy, which enables secure

user authentication and authorisation, gives users a convenient and safe

experience.

The Redux state management library and Redux-Thunk middleware are used to

successfully handle complicated application state and successfully manage

asynchronous operations. Basically redux is used for better state management than

normal react. Also Redux and React were used to create the frontend, which offers

a responsive and interesting user experience. The application's features include

task creation, assignment, and tracking, user authentication, task prioritisation,

notifications, and reminders, to name a few. Users may easily create accounts and

log in to access their tasks and data, and their personal information is kept private

at all times.

The Task Manager web application is a reliable and efficient solution that may

help individuals and teams manage their tasks and projects with better state

management, time management and asynchronous operations. It uses the MERN

stack with microservices, Passport and the Passport local approach, Redux for

state management, and Redux-Thunk for communicating with the server. Greater

performance and scalability are provided by the Redux and Redux-Thunk

frameworks, while the microservices architecture and Passport local strategy give

1

The application has a stable, secure and long-lasting foundation. It also provides

easy scalability and high security. The program's high degree of versatility allows

for quick customization to match the particular requirements of particular people

or groups.

1.1 Problem Statement:

The task management issue that the MERN (MongoDB, Express, React, and

Node.js) stack-based Task Manager web application attempts to address is the

ineffective and disorganised management of tasks and projects among individuals

and teams. Spreadsheets, emails, and paper-based systems are examples of

traditional task management techniques that can be time-consuming, error-prone,

and challenging to collaborate on.

Expanding and modifying traditional task management techniques to suit the

specific requirements of multiple users or teams may at times be challenging. As a

result, the project's overall performance may suffer from a lack of productivity

and efficiency.

Features like job prioritisation, notifications, reminders, and centralised data

storage are typically absent from these techniques. Tasks could be neglected as a

result, crucial deadlines might be missed, and teamwork might suffer.

The Task Manager web application uses the MERN stack in conjunction with

microservices, Passport and Passport local strategy, Redux, and Redux-Thunk to

produce a comprehensive and effective tool for managing tasks and projects for

both people and teams. The Task Manager online tool takes care of this issue. The

programme can be efficiently developed, deployed, and maintained thanks to the

microservices design. Secure user authentication and authorisation are provided

by the Passport local method, and state management and asynchronous actions are

efficiently supported by the Redux and Redux-Thunk packages.

Our project provides a scalable, and adaptable task and project management tool

that can improve teamwork and productivity on both the individual and team

levels.

2

1.2 Objective:

The Task Manager web application uses improved state management and

asynchronous activities to provide individuals and teams with a comprehensive

and useful solution for handling their tasks and projects. Microservices, the

Passport local method, Redux, and Redux-Thunk are all used along with MERN

(MongoDB, Express, React, and Node.js).

The microservices design enables the programme to be split into smaller,

independent services, which makes it easier to build, deploy, and administer. The

secure user authentication and authorisation provided by the Passport local

strategy enables a seamless and secure user experience.

The application's features include task creation, assignment, and tracking, user

authentication, task prioritisation, notifications, and reminders, to name a few.

Delivering a practical tool that is simple to adapt to the particular needs of

individual users or teams is the aim.

Redux-Thunk middleware and the Redux state management library are used to

successfully manage asynchronous operations and handle complex application

state. The frontend, which provides a responsive and engaging user experience,

was made using Redux and React.

The main goal of the Task Manager web application is to provide a strong and

practical task and project management tool that might boost team and individual

productivity and collaboration. Microservices, the Passport local approach,

Redux, and Redux-Thunk are combined with the MERN stack to accomplish this.

The programme excels for a wide range of customers and use cases because to its

scalability, robustness, and adaptability.

1.3 Methodology:

The MERN (MongoDB, Express, React, and Node.js) stack with microservices,

Passport local approach, Redux, and Redux-Thunk were used in the creation of

the Task Manager web application.[11] In order to consistently provide usable

3

solutions, the Agile methodology significantly encourages incremental and

iterative development. This approach promotes ongoing input and cooperation

between programmers, stakeholders, and end users, allowing the programme to

change and improve over time to satisfy changing user needs.

The Task Manager web application, which utilises the MERN stack, is created in

the manner described below:

● The requirements collecting and analysis process includes identifying the

features and functionalities that the application should have as well as

determining the project's scope. Understanding user and stakeholder needs and

desires is necessary for this.

● Design: This encompasses developing the application's architecture, which

includes the microservices architecture, database schema, and user interface

and user experience. The design should be built upon the specifications listed

in step 1 of the process.

● The MERN stack, microservices, the Passport local approach, Redux, and

Redux-Thunk will be used to implement the architecture. The foundation for

the execution should be the design and specifications found in phases 1 and

2.[11]

● Testing involves putting an application through its paces to ensure that it

complies with requirements and operates as intended. At different testing

levels, unit testing, integration testing, and acceptability testing should all be

conducted.[6]

● Deployment and maintenance: This involves running the application in a real

environment, monitoring its usage, and sustaining it over time.

Throughout the development process, the Agile methodology strongly emphasises

collaboration and communication between developers, stakeholders, and end

users. This method enables the programme to change over time to satisfy the

users' evolving needs and expectations, ensuring that it continues to be valuable

and helpful to them.

4

1.4 Technology Used:

● ReactJs:

React is a free and open source JavaScript tool used to design user interfaces (UIs)

for internet applications. It was developed by Facebook, and at the moment it is

supported by Facebook as well as a community of independent developers and

companies.

React gives developers the ability to create UI components that can be applied to

many application regions, simplifying maintenance and updating. Furthermore, it

offers a declarative syntax for specifying the organisation and behaviour of the

user interface, which facilitates comprehension and debugging.[17]

Redux for state management and React Native for developing mobile applications

are two examples of other libraries and frameworks that are frequently integrated

with React. Due to the enormous and vibrant community of developers and

businesses who actively participate in its development and upkeep, it has emerged

as one of the most well-known UI libraries for creating online applications.

React uses a thin replica of the real DOM called a virtual DOM (Document Object

Model) to refresh the user interface when updates are made more rapidly and

effectively. Furthermore, it offers server-side rendering, a capability that lets

software create user interface elements on the server before transmitting them to

clients, enhancing performance and SEO (Search Engine Optimisation).

● NodeJs:

JavaScript code can run outside of a web browser thanks to a free, open-source

runtime environment called Node.js. By allowing them to use JavaScript on the

server-side, it enables programmers to build scalable and rapid network

applications.

The V8 JavaScript engine, which powers the Google Chrome browser, is the

foundation upon which Node.js is constructed. The event-driven, non-blocking

I/O (input/output) approach it uses makes it ideal for creating scalable, real-time

systems like web servers, APIs, and microservices.[18]

5

The Node.js package manager, npm (Node Package Manager), which can be

quickly and simply integrated into Node.js applications, gives users access to a

sizable variety of open-source, reusable packages. Instead of starting from

scratch, developers may now use existing code, which makes it easier for them to

quickly and efficiently design applications.

Node.js is widely used by developers and businesses of all sorts, from small

startups to large enterprises, and it has a robust and active developer community

that contributes to its development and maintenance. Due to its widespread

adoption and usefulness, it is the favoured choice for creating web applications,

APIs, and microservices.

● ExpressJs:

Express.js is a well-liked open-source Node.js web application framework. It

includes a range of tools and resources that make it simple and quick to build web

applications and APIs.[19]

Express.js is renowned for its brevity and straightforward architecture, which

makes it easy for developers to get started. It offers a variety of middleware

modules that can be used to enhance an application's capabilities, including

managing HTTP requests and answers, parsing request bodies, controlling

sessions and cookies, and more.

Additionally, Express.js supports a broad variety of templating engines, enabling

developers to quickly create dynamic HTML content using information from a

server or database. Additionally, it includes a strong routing system that enables

developers to define URL routes and map them to certain functions or controllers,

making it simpler to create scalable and maintainable systems.

Express.js may be combined with other Node.js frameworks and plugins to build

complex web apps and APIs. It is extensively utilised by programmers and

companies of all sizes to build web applications and APIs, and it has a substantial

and active developer community that actively contributes to its development and

maintenance.

6

● MongoDB:

A popular choice for building scalable and flexible applications is the widely used

open-source MongoDB document-oriented database, which stores data as

adaptable, JSON-like documents with configurable schemas.

MongoDB offers developers a great lot of flexibility and scalability because,

unlike traditional relational databases, it stores data in collections rather than

tables and allows documents within those collections to have numerous formats

and fields.[16]

A few of the features that MongoDB provides to make it easier for developers to

deal with data include automatic sharding, built-in replication for high availability

and fault tolerance, support for indexing, and aggregation. In addition, MongoDB

features a powerful query language and enables distributed transactions, making it

easier for programmers to build complex, scalable applications.

Developers and organisations of all sizes regularly utilise MongoDB when

building web applications, mobile apps, and other kinds of software that require

adaptable and scalable data storage. It has a huge and vibrant developer

community that actively participates in its development and upkeep. It is highly

known for its ease of use, scalability, and flexibility.

7

CHAPTER 2

LITERATURE SURVEY

The usage of effective design is now essential to retaining visitors of websites and

mobile applications. To specify the precise components needed in successful

website and mobile application design, however, little study has been done. In our

study and synthesis of the literature on effective design, we establish a concise set

of components that are widely employed in studies. Navigation, graphical

representation, organisation, content utility, purpose, simplicity, and readability

were the design features that were most frequently referenced in the literature that

was studied. We go over the definitions and assessments of these seven

characteristics from earlier studies. Design professionals and researchers may find

this review and the ensuing short list of design components useful in

operationalizing best practices for facilitating and forecasting user interaction.

1) Learn MERN stack development by building modern web apps using

MongoDB, Express, React, and Node.js:[1]

Hoque, S. (2020). Full - Stack React Projects: Learn MERN Stack

Development by Building Modern Web Apps Using MongoDB, Express,

React, and Node.js, 2nd Edition.United Kingdom: Packt Publishing. Learn

MERN stack development by building modern web apps using MongoDB,

Express, React, and Node.js" by Shama Hoque is a comprehensive guide for

developers wishing to learn how to create full-stack web applications using the

MERN stack. The book has a decent layout and provides concise explanations of

the theories and procedures necessary to develop modern web apps.Before

discussing the tools and technologies required to develop web applications using

the MERN stack, the book opens with an overview of the MERN stack and its

components. The author then goes into detail about how to build a useful task

management application, providing step-by-step instructions for building the

application's front end, back end, and database.One of the book's main focuses is

on exercises and real-world examples. Exercises are included in each chapter to

help readers put what they've learnt into practise and create their own

applications.

8

2) Learning React JavaScript Library from Scratch:[2]

Sidelnikov, G. (2017). React. Js Book: Learning React JavaScript Library

from Scratch. (n.p.): Independently Published. Greg Sidelnikov wrote a

self-published book titled "React.js Book: Learning React JavaScript Library from

Scratch" that serves as an introduction to the React.js library. The step-by-step

organisation of the book provides a concise and clear explanation of the concepts

required in developing modern web apps with React.

Before discussing the tools and technologies required to build web apps using

React, the book opens with an overview of React and its principles. After that, the

author delves into developing a practical application, laying out step-by-step

instructions for developing both the front-end and back-end of the

programme.Throughout the entire book, the author provides useful tips and

time-saving techniques for using React to build scalable and maintainable online

apps. Thanks to the book's covering of complex topics like routing and data

management, readers will have a solid understanding of the entire development

process.

3) Mastering Node.js.United Kingdom:Packt Publishing:[3]

Pasquali,S.(2013).Mastering Node.js.United Kingdom:Packt Publishing.

Developers who want to learn how to use Node.js to create scalable and fast web

apps should read "Mastering Node.js" by Sandro Pasquali. The book is

well-structured and gives succinct, straightforward explanations of the technology

and ideas related to developing contemporary web apps. An overview of the tools

and technologies needed for developing web applications using Node.js follows

an introduction to Node.js and its principles in the book's opening chapter. After

that, the author delves into creating a practical application, outlining how to create

each of its parts, including the front end, back end, and database.

4) Modern Full-Stack Development: Using TypeScript, React, Node.js,

Webpack, and Docker:[4]

Zammetti,F.(2020). Modern Full-Stack Development: Using TypeScript, React,

Node.js, Webpack, and Docker. United States:Apress. Using TypeScript, React,

Node.js, Webpack, and Docker, "Modern Full-Stack Development" by Frank

9

Zammetti is a comprehensive guide for developers interested in learning how to

create modern online apps. Excellent organisation and explanations of the

concepts and technology involved in building full-stack web apps are provided in

the book.

Before discussing the concepts and tools needed in full-stack web development,

TypeScript and React are briefly discussed in the book's opening pages. After that,

the author delves into building a real application, laying down step-by-step

instructions for building the front end, back end, and database of the software.

5) Ten simple rules for researchers who want to develop web apps.[5]

REVIEW OF Saia, S. M., Nelson, N. G., Young, S. N., Parham, S., & Vandegrift,

M. (2022). Ten simple rules for researchers who want to develop web apps. PLoS

Computational Biology, 18(1). Saia et al.'s article "Ten Simple Rules for

Researchers Who Want to Develop Web Apps" (2022) is a useful manual for

researchers who want to create web applications for their research. The paper

provides ten simple recommendations that researchers can apply to produce

effective and practical web apps. This essay's aim is to outline the benefits of

developing web apps for research, including improved accessibility and a

platform for cooperation. The authors then provide 10 clear suggestions for

researchers to follow when developing web apps, including starting with a

detailed problem statement and being aware of the needs of the users.One of the

paper's highlights is how strongly it emphasises the importance of user-centered

design.

6) Modern web-development using ReactJS:[6]

Aggarwal, S. (2018). Modern web-development using ReactJS. International

Journal of Recent Research Aspects, 5(1). The building of interactive user

interfaces uses ReactJS, a component-based technology. It currently holds the top

spot among front-end JS libraries. The M-V-C (Model View Controller) pattern is

used, which incorporates the view (V) layer. Along with a community of

independent developers and organisations, Facebook, Instagram, and other

platforms support it. Fundamentally, React makes it possible to create intricate

and substantial online applications that may update their data without requiring

10

further page refreshes. With lightning-fast and reliable web app development, it

seeks to offer improved user experiences. Other JavaScript libraries or

frameworks, such as AngularJS, can be combined with ReactJS in MVC.

7) Towards a Systematic Approach for the Credibility of Human-Centric

Web Applications:[7]

Kamthan P. (2007). Towards a systematic approach for the credibility of

humancentric web applications. Journal of Web Engineering. 6:2. (99-120).

Online publication date: 1-June-2007. The issue of web application credibility in

light of growing human engagement and collaboration is taken into consideration

in this article. The several stakeholder categories that trustworthiness of web

applications is pertinent to are identified. Based on a credibility taxonomy, the

causes of the issue of credibility particular to human-centric web applications are

investigated, and examples supporting this are shown. It is stressed how important

dealing with credibility is while using flexible and iterative development

procedures. It is suggested as a framework for methodically analysing and

addressing the credibility of human-centric web applications. This framework

comprises qualities that are important to stakeholders as well as workable,

process- and product-oriented solutions to meet them.

8) Secure business application logic for e-commerce systems:[8]

Nabi F. (2005). Internet Technology & E-Commerce. Computers and Security.

24:3. (208-217). Online publication date: 1-May-2005. The business application

logic is a significant weak link in e-commerce systems, and it is discussed in this

article, Secure Business Application Logic for e-commerce Systems. This

research is focused on the security of the middle tier of the e-commerce server,

which implements the business application logic. Traditionally, e-commerce sites

implemented the middle tier of software on the web server using CGI, even

though the security issues of the front-end and back-end software systems in

e-commerce applications warrant equal attention. Additionally, we discuss

methods for securing business application logic, including safe configuration,

protective programming, secure server-side software wrappers, and smart design

and engineering.

11

9) Protecting user accounts from password database leaks:[9]

Kontaxis, G., Athanasopoulos, E., Portokalidis, G., and Keromytis, A. D.

Sauth:Protecting user accounts from password database leaks. In ACM

Conference on Computer and Communications Security (CCS) (2013). This paper

discusses the password-based authentication of an application. The most common

type of access control in online services is password-based authentication. Sadly,

every year it shows itself to be getting worse. Even if users create lengthy,

difficult passwords, a service's management of them may contain flaws that allow

an attacker to obtain them. Recent occurrences on well-known platforms like

LinkedIn and Twitter show the impact that such an event could have.

The development of hardware that makes it possible for potent password-cracking

platforms to operate is a direct challenge to the usage of one-way hash algorithms

to address the issue. In this article, we suggest SAuth, a protocol that makes use of

authentication synergy across several services.Users must authenticate for their

account on service V, which serves as a vouching party, in order to access their

account on service S. Users frequently visit both services S and V on sites like

Twitter, Facebook, and Gmail on a daily basis. If a hacker manages to get the

password for service S, he won't be able to access it until he also manages to get

the password for service V and perhaps more vouching services. SAuth is an

addition to current authentication techniques, not their replacement. It functions at

a layer above without being bound to a particular technique, allowing various

services to use heterogeneous systems. To secure customers who use the same

password across many services, we also use password decoys.

10) Encountering stronger password requirements: user attitudes and

behaviors:[10]

Shay, R., Komanduri, S., Kelley, P. G., Leon, P. G., Mazurek, M. L., Bauer, L.,

Christin, N., and Cranor, L. F. Encountering stronger password requirements: user

attitudes and behaviors. In Proceedings of the Symposium on Usable Privacy and

Security (SOUPS) (2010). Text-based passwords are still the most commonly used

authentication mechanism in information systems.We took advantage of a rare

chance offered by a substantial change in the Carnegie Mellon University (CMU)

computing services password policy that forced users to reset their passwords.In

12

our study of 470 CMU computer users, we gathered information on habits and

routines related to password use and creation.We also obtained the views of the

public regarding the new, stricter policy criteria.According to our analysis, even

though most users disliked having to establish complicated passwords, they feel

more protected now.In addition, we do an entropy analysis and discuss how our

results relate to NIST's recommendations for formulating a password policy. We

also look at how users respond to particular inquiries about their passwords.Our

findings may be useful in creating better password policies that take into account

both the technological and behavioural responses of users to certain policy

restrictions.

13

CHAPTER 3

SYSTEM DEVELOPMENT

3.1 Why do we need a Task Manager Web Application?

A Task Manager Web Application is a useful tool for individuals and

organisations to manage their tasks and projects efficiently. Tools for task

management enable users to work more effectively, complete more tasks, and

achieve more success. Here are some reasons why we need a Task Manager Web

Application:

Organisation: Users can arrange their jobs and projects in a systematic,

understandable manner using a task manager web application. This promotes

effective task management and guarantees that nothing is missed.

Time Management: Effective time management is facilitated by work

prioritisation and deadline setting capabilities provided by task manager web

applications. Users can keep tabs on the status of their activities and projects,

which is useful for spotting bottlenecks and making necessary adjustments.[6]

Collaboration: Within a company, several team members may be engaged on the

same task or project. Users can communicate and share information quickly with

one another using a task manager web application. This lessens the possibility of

misunderstandings and guarantees that everyone is on the same page.

Accountability: Users of a task manager web application are able to assign tasks

to particular team members and monitor their progress. By making sure everyone

is responsible for their tasks, this helps to prevent delays or missed deadlines.

Accessibility: As long as there is an internet connection, a Task Manager Web

Application can be accessible from any location. This enables users to access their

assignments and projects when they are on the go, which boosts productivity and

efficiency.

Enhance productivity and efficiency: Shorter production cycle turnaround times

result from allocating the right mix of time and resources to each task.

14

Reduce waste: Stop wasting time pondering what to do next or redoing work that

wasn't done right the first time.

Meet deadlines: Missed deadlines become a thing of the past when you and your

team use an organised task management system.

Overall, a Task Manager Web Application can help individuals and organisations

in managing their tasks and projects efficiently, saving time and improving

productivity.

Step Of development of task manager app:

In order to create a Task Manager Web Application using the MERN stack,[15]

microservices, passport local approach, Redux, and Redux-thunk, the following

general procedures must be followed:

Gathering needs: Specify the features and requirements for the Task Manager

Web Application.

Architecture design: Design the application architecture, including the API

endpoints, database schema, and microservices.

Environment setup: Installation and configuration of the development

environment, which includes Node.js, MongoDB, and other required tools.

Backend development: Node.js and Express.js are used to create the application's

backend. This entails creating the API endpoints and establishing a database

connection.

Microservices development: Develop the microservices needed for the

application using the microservices architecture.

Frontend development: React.js is used to create the application's front end.

Included in this are the UI design and implementation, backend API integration,

and the addition of Redux for state management.[17]

Authentication and authorization: An application might require data from a

variety of third-party providers. In this case, the application will prompt the user

to "connect" with several accounts, such as Facebook and Twitter. Once this

15

occurs, the user will already be authenticated with the application, therefore any

further third-party accounts only need to be authorised and connected to the user

once.[21] Given that authentication and authorisation are equivalent in this

situation, Passport provides a mechanism to manage them both. The authorization

will be carried out by calling passport.authorize(). If authorisation is granted, the

result of the strategy's verify callback will be assigned to req.account. The current

login session and Req.user won't be affected.

Testing: A functional or requirement specification contains this information. It is

a document that outlines what a user is allowed to do so that he can assess if the

system or application complies with it.[14] In some cases, this may also require

the validation of real-world business side scenarios.

Deployment:A deployment pipeline in software development is a set of

automated procedures intended to transport new code additions and updates from

version control to production with speed and accuracy. Writing, creating, and

deploying code required manual procedures in earlier development environments.

Maintenance: The constant re-evaluation, re-analysis, and modification of your

current software applications is known as application maintenance. Application

maintenance must be a continual effort if you want to ensure that your

applications are always working as effectively as possible. It is crucial to adapt

and embrace new tactics in [11] light of shifting customer expectations, the

struggle to survive in an existing market, and technological advancements in order

to maintain sustainability and remain competitive. Any competitive firm must

constantly maintain and develop the established IT systems in order to remain

relevant and satisfy shifting client needs. In this case, application support and

maintenance are required.

3.2 Technologies/Libraries Used:

BootStrap:

The free, open-source front-end framework known as Bootstrap enables the

development of responsive and mobile-first websites and online applications.

Twitter founded it, and now a developer community looks after it.

16

A collection of CSS, JavaScript, and HTML components offered by Bootstrap

simplify the process of designing and building web pages. Fonts, forms, buttons,

navigation bars, modal windows, carousels, and other components make up these

elements. Bootstrap includes a grid framework that enables programmers to create

flexible layouts that adjust to the size of the screen.

The ability to rapidly and simply create applications and websites with a polished

appearance using Bootstrap is one of the main advantages of utilising it. This is

possible without requiring a deep understanding of CSS and HTML. It can help

developers save time and effort by providing a standardised and consistent

approach to web design and development.

Developers can expand and tweak Bootstrap's components to meet their own

requirements because of its great degree of customization. Sass, a well-liked CSS

preprocessor, can be used to quickly alter the framework, as can custom CSS to

replace the pre-installed CSS styles.

Along with its built-in elements, Bootstrap also comes with a number of

JavaScript plugins that add further functionality. Examples of these are dropdown

menus, tooltips, and scrollspy.

In conclusion, Due to its usability, adaptability, and comprehensive feature set,

Bootstrap has become a popular front-end framework among web developers.

Due to its popularity, there is a substantial developer community that supports

other developers that use Bootstrap by providing support and tools.

Additionally, Bootstrap offers a collection of pre-made CSS classes and

JavaScript plugins that may be used to add interactive and dynamic features to

websites. For example, a carousel plugin from Bootstrap may be used to create

image slideshows, and a modal plugin from Bootstrap can be used to display

pop-up windows with more information or forms.

A further advantage of Bootstrap is the sizeable and vibrant developer community

that supports and helps other developers who use the framework. This community

has produced a tonne of third-party assets, like as templates, themes, and plugins,

that can be utilised to enhance the functionality of Bootstrap or quickly construct

unique websites and applications.

17

ReactJs:

ReactJS, also referred to as React, is a free JavaScript package used to create user

interfaces (UIs) or other front-end elements for online applications. Facebook

created it, and businesses all across the world are now using it extensively.

Declarative design refers to the idea that the developer informs React how they

want the user interface to look, and React handles the rest. By dividing them into

discrete, reusable components that can be maintained individually, it enables

developers to design complicated user interfaces. Developers can put HTML-like

code directly in their JavaScript using the JSX syntax, which can be used to create

React components.

One of React's unique features is support for the virtual DOM (Document Object

Model). The virtual DOM, a slender approximation of the real DOM, allows

React to change the UI successfully without having to directly alter the real one.

This makes React incredibly speedy and efficient, especially when compared to

other traditional front-end frameworks.[17]

In order to increase the effectiveness of the application, React also provides

server-side rendering, which enables designers to develop the first user interface

(UI) on the server and provide it to the client. Numerous back-end frameworks are

compatible with React, and it typically partners with Node.js and Express.js.

Another benefit of React is its sizable and vibrant developer community, which

supports and helps other React users while also making improvements to the

framework. This community has produced a large number of third-party libraries

and tools that may be used to enhance React's features or fast construct original

applications. Redux, React Router, and React Native are three well-known

React-based libraries.

React is widely used by organisations of all sizes and in many sectors, such as

Facebook, Airbnb, Uber, and Netflix. It is frequently combined with other

front-end technologies like Bootstrap and Material UI and is a popular choice for

creating complicated user interfaces and single-page applications (SPAs).

18

Finally, ReactJS is a strong and flexible front-end toolkit that enables

programmers to design intricate and dynamic user interfaces for online

applications. It is quick and effective thanks to its declarative approach, virtual

DOM, and server-side rendering, and any project can rely on it because of its big

and active development community.

Redux:

For JavaScript applications, Redux is a predictable state container that is

frequently used with React. Redux gives developers a means to control an

application's state in a single, immutable store, making it simpler to analyse how

the state evolves over time. Because it clearly separates presentation logic from

business logic, Redux has grown to be a popular solution for creating large-scale

apps. This can make it simpler to maintain and test code over time.

Redux's central idea is the store, a JavaScript object that contains all of an

application's state. Since the storage is immutable, no changes can be made to it

directly. Instead, dispatching actions—basic JavaScript objects that explain what

transpired in the application—is used to make changes to the store. Action

makers, functions that produce action objects, are responsible for creating actions.

Reducers are pure functions that take the current state and the action as input and

return a new state based on the action. Once an action is dispatched, it is

processed by reducers.

Due to their responsibility for managing state changes, reducers serve as the

foundation of the Redux architecture. Reducers are pure functions, which implies

they don't actually alter the state. Instead, they make a fresh copy of the state and

deliver it, keeping the original state unaltered. Due of reducers' predictability and

lack of negative side effects, it is simpler to reason about state changes that occur

over time.

Middleware is a crucial idea in Redux because it gives the dispatching mechanism

more functionality. Prior to being handled by reducers, middleware can be used to

manage asynchronous actions, log actions, or alter actions. As actions are

dispatched, middleware is composed of a sequence of functions that can pass the

19

action on to the subsequent middleware in the chain, change the action, or prevent

it from being handled at all.

The view layer, which is in charge of showing the state of the application to the

user, is the last component of the Redux architecture. React commonly

implements the display layer using components, which are reusable UI building

blocks that may be combined to construct complex user interfaces. By mapping

the state and actions from the store to the component's props, the connect()

function allows React components to be linked to the Redux store.

Redux offers a strong and adaptable method for controlling the state of

complicated applications overall. It is a popular option for developing large-scale

apps with React due to its predictable and immutable architecture, which makes it

simpler to reason about changes to the state over time. Its middleware and view

layer integration is another benefit. Redux is not a panacea, though, and it might

not be suitable for all projects, like any technology. In order to select the right

tools and architecture for your unique use case, it is crucial to assess the

requirements of your application.

Redux-Thunk:

You can create asynchronous logic that communicates with a Redux store using

the middleware for Redux called Redux-Thunk. It offers a method to deal with

asynchronous operations like AJAX calls and other side effects that are frequently

needed in contemporary web applications.

Redux uses a store to keep track of the application's state, and reducers to update

that state in response to dispatched actions. Redux, however, does not have a

built-in method for dealing with asynchronous activities. Redux-Thunk steps in to

help with it.Redux-Thunk enables the creation of action producers that return

functions as opposed to simple action objects. These functions can then carry out

asynchronous activities and send out commands in response to the outcomes of

those operations. This technique is known as "thunking" an action.

Simply said, a thunk is a function that returns another function that can be used

later. A thunk is a function that returns another function that can communicate

with the Redux store in the context of Redux-Thunk.

20

Fig 3.1 : Use of Redux-Thunk Concept

In this case, the function returned by the thunk fetchData takes a dispatch

argument. To signal that we are beginning to fetch data, we dispatch an

FETCH_DATA_START action inside that method. Then, we use the fetch

function to initiate an AJAX call. Depending on whether the AJAX request

succeeded or failed, we send either a FETCH_DATA_SUCCESS or

FETCH_DATA_FAILURE action after it has finished.

We would generally import and dispatch this thunk using the useDispatch hook

from the react-redux library in order to use it in a component:

Fig 3.2 : Use of Redux-Thunk Concept(useDispatch and useEffect)

21

In this illustration, the fetchData thunk is sent when the component mounts using

the useEffect hook. To actually dispatch the action, we are utilising the dispatch

method supplied by the useDispatch hook.

Redux-Thunk, as mentioned before, is a middleware for Redux that enables you to

include asynchronous logic in your action creators. It functions by enabling you to

return functions from your action creators as opposed to straightforward action

objects. These functions have the ability to carry out asynchronous operations and

dispatch actions in response to the outcomes of those operations. As a result,

managing side effects like AJAX calls and other asynchronous actions in your

Redux store is made simpler.

NodeJs:

Using JavaScript, developers may create server-side apps with the help of the

open-source, cross-platform runtime environment Node.js. It supports JavaScript

execution outside of the browser and is developed on top of the Google Chrome

V8 engine. Node.js has an event-driven, non-blocking I/O architecture that makes

it lightweight and effective, making it the best option for developing scalable and

high-performance network applications.

Node.js has become into one of the most well-liked frameworks for building

server-side applications since Ryan Dahl first introduced it in 2009. Developers

from all around the world routinely create web applications, APIs, command-line

tools, real-time applications, and other things.

One of Node.js's key characteristics is its ability to manage numerous requests and

large amounts of data concurrently without causing other processes to halt. The

architecture's event-driven design, which executes code without blocking while

each I/O action starts an event, enables this. Because of this, Node.js is excellent

for building real-time applications like chat programmes and online gaming

platforms.[18]

The enormous library of modules and packages that Node.js offers, accessible via

the Node Package Manager (npm), is another benefit of the software. The usage of

pre-built modules for frequent activities like managing HTTP requests, parsing

22

JSON data, interacting with databases, and more is made simple for developers

thanks to this.

As a result, programmers may create applications utilising a unified language and

paradigm thanks to Node.js's support for JavaScript on both the client and server

sides. Application development becomes less difficult as a result, and client and

server code sharing is made simpler.

The flexibility to add or remove modules based on the particular requirements of

the application makes Node.js another highly adaptable platform. As a result, apps

load more quickly and perform better because of developers' ability to build

lightweight programmes that only contain necessary features.

Node.js has a robust ecosystem of tools and frameworks that expand its capability

in addition to the essential features it already offers. Among the most well-known

Node.js frameworks are Express.js, which is used to create web apps, Socket.io,

which is used to create real-time applications, and Nest.js, which is used to create

scalable server-side applications.

In general, Node.js gives developers a strong and adaptable framework for

creating JavaScript-based server-side applications. It is a preferred option for

creating scalable, high-performance applications because of its event-driven,

non-blocking I/O style, large module library, and support for client-side

JavaScript.

ExpressJs:

On top of Node.js, Express.js is a well-liked online application framework. It

offers a comprehensive collection of capabilities for building web apps and APIs.

Express.js makes it easier to create web apps by giving users access to a small but

mighty set of tools for managing HTTP requests and answers as well as

middleware for adding new features.

Developers can build scalable and maintainable apps with Express.js, which is

renowned for its simplicity and versatility. It offers a straightforward and

opinionated core, thus it won't push a specific application structure on you. This

makes it simple to modify and fit to the particular requirements of your project.

23

A key element of the Express.js framework is middleware. Middleware functions

are those that have access to the request and response objects in an application's

request-response cycle. They are capable of handling faults and logging data. By

allowing middleware routines to be added to the chain of requests being

processed, the app.use() method makes it easy to change an application's

behaviour.[19]

Express.js's routing feature enables programmers to offer a number of routes for

handling HTTP requests. Routes can be built using App.get(), App.post(),

App.put(), App.delete(), and other methods with a similar syntax. This makes it

simple to group your application's functionality into logical sections and to

respond to different request types in different ways.

Express.js' support for templates is a crucial component. By inserting data into a

preset template, templates enable developers to create dynamic HTML pages.

Jade, EJS, and Handlebars are a few of the template engines supported by

Express.js.

Working with databases such as MongoDB, MySQL, and PostgreSQL is also

supported natively by Express.js. In addition to support for connection pooling

and transaction management, it offers a straightforward and consistent API for

carrying out CRUD (Create, Read, Update, Delete) operations on the database.

In conclusion, Express.js is an effective and adaptable online application

framework that offers a wealth of functionality for creating web apps and APIs. It

is the perfect option for developers who wish to quickly and simply create

scalable and maintainable applications due to its simplicity and flexibility. It is a

popular option for developing web applications of various shapes and sizes

because of its middleware architecture, support for routing and templates, and

integrated database support.

MongoDB:

The widely used open-source MongoDB document-oriented database stores data

as adaptable, JSON-like documents with changeable schemas, making it a popular

option for creating scalable and adaptable applications.

24

MongoDB, in contrast to conventional relational databases, stores data in

collections rather than tables, and documents within those collections can have

various forms and fields, giving developers a great deal of flexibility and

scalability.[16]

Automatic sharding, built-in replication for high availability and fault tolerance,

support for indexing and aggregation are just a few of the features that MongoDB

offers to make it simpler for developers to interact with data.

Additionally, MongoDB includes a robust query language and supports distributed

transactions, which makes it simpler for developers to create intricate, scalable

systems.

When creating web applications, mobile apps, and other types of software that

need flexible and scalable data storage, developers and businesses of all sizes

frequently use MongoDB. It is well known for its simplicity of use, scalability,

and flexibility and has a sizable and active community of developers who

contribute to its development and maintenance.

Redis:

Redis is an open-source, in-memory data structure store that can be used as a

database, cache, and message broker.It was first created by Salvatore Sanfilippo in

2009 and has since grown to be one of the most well-liked NoSQL databases.

Redis is well renowned for its great performance, versatility, and scalability and is

frequently used in real-time analytics, online applications, and other applications

where high-throughput data storage and retrieval is essential.

Since Redis is a key-value store, data is kept in key-value pairs. Values can

include texts, hashes, lists, sets, and ordered sets among other data structures.

Redis offers a wide range of data manipulation commands for various types of

data structures, enabling programmers to create intricate data structures and carry

out complex operations on them.

Redis's speed is one of its primary characteristics. Redis is perfect for applications

that require quick data access since it saves data in memory, enabling extremely

rapid read and write rates. Redis also provides data persistence, which enables

25

periodic or on-demand disc storage of data for durability and data recovery in the

event of a system crash or power loss.

Redis is incredibly scalable both horizontally and vertically. It has the potential to

process huge datasets with millions or even billions of keys and can be set up as a

distributed cluster setup for even more scalability. Redis has replication and

sharding capability, which enables it to manage extremely heavy write loads and

keep excellent availability.

Redis is frequently utilised as a web application caching layer in addition to being

a database. Web applications can increase performance and lessen the stress on

their main database by caching frequently used data in Redis. Additionally, Redis

has a variety of capabilities that are intended expressly for caching, including as

support for time-to-live (TTL) key expiration and LRU key eviction.

As a message broker for real-time applications, Redis is another frequent

application. Due to Redis' support for pub/sub messaging, several clients can

subscribe to a channel and instantly receive messages. Redis is the best option for

creating real-time applications because of this, including chat systems, live sports

updates, and stock market apps.

Overall, Redis is a strong and adaptable technology that can be applied to a

variety of applications. For developers looking for a quick and dependable data

store, cache layer, or message broker for their applications, it is a compelling

option because to its speed, scalability, and broad feature set.

Passport:

Passport is a middleware for Node.js that offers a quick and adaptable foundation

for web application authentication. It enables programmers to quickly create a

number of authentication methods, including OAuth, OpenID, and local

authentication with a username and password.

The primary benefit of Passport is its modularity, which enables developers to

employ only the authentication methods necessary for their application. Through

the use of "strategies" in Passport, which are effectively pluggable authentication

26

modules, this modularity is accomplished. Developers can choose from a variety

of preexisting strategies or design their own unique ones.

Passport offers two main methods for authentication: passport.authenticate() and

passport.serializeUser(), which together make up a straightforward yet effective

API. A user is authenticated using the passport.authenticate() function, and a user

object is serialised into a session using passport.serializeUser(). The user object

from the session can also be deserialized using the passport.deserializeUser()

method.

Additionally, Passport offers middleware features for securing routes that demand

authentication. To make sure that only authenticated users have access to them,

these middleware functions can be added to routes.

OAuth authentication, which is utilised by many well-known websites and

services, like Facebook, Google, and Twitter, is supported by Passport and is one

of its core features. It is simple to incorporate OAuth authentication into your

application because Passport offers pre-built OAuth strategies for these providers.

Passport's support for OpenID authentication, which enables users to authenticate

using their current OpenID credentials, is another significant feature. Numerous

well-known OpenID providers, including Yahoo, Google, and PayPal, are

supported by pre-built OpenID strategies from Passport.[21]

Additionally supported by Passport is local authentication, which is frequently

used for login and password security. The local strategy offered by Passport,

referred to as passport-local, offers a simple structure for including local

authentication in your application. The "verify functions" concept—functions that

accept a username and password as input and return either a user object or an

error—is the foundation of the passport-local strategy.

Passport is an all-around strong and adaptable authentication framework for

Node.js that offers a user-friendly and straightforward API for integrating

different authentication schemes in your online applications.

27

Passport-Local:

With Passport.js, a Node.js authentication package, Passport-Local is a

middleware that can be utilised. Based on a username and password combination,

it is used to authenticate users. Passport-Local offers a method for Passport that

confirms the user's credentials using a local database or another data source.[21]

Users can be verified using a username and password that are kept locally by

using the Passport-Local Strategy. It is a module that may be added to a Node.js

application along with Passport.js to perform local authentication. Two functions

are needed for the strategy: a verification function and a serialisation function.

The verification function is used to check the user's credentials. After receiving

the user's username and password, it checks the local database to see if the user is

there. The function verifies the password against the database's password once the

user has been located. The function returns the user object in the event that the

password is accurate. The function returns a false value if the password entered is

wrong.

To save the user object in the session, use the serialisation function. The user

object is kept in the session after the user has been authenticated. To extract the

user object from the session and attach it to the request object, use the serialisation

function.Databases like MySQL, PostgreSQL, MongoDB, and many others can be

used with the Passport-Local Strategy. Based on a username and password

combination, it offers a quick and efficient method of authenticating users.

Passport-Local Strategy can be used with a variety of authentication techniques,

including multi-factor authentication, two-factor authentication, and social

authentication (Facebook, Google, and Twitter), in addition to the standard

username/password authentication. It gives your Node.js application a flexible

and modular solution to integrate authentication.

The ease with which Passport-Local Strategy can be connected with other

Passport.js strategies is one of its benefits. For local and social authentication,

respectively, you can utilise the Passport-Local Strategy and the

Passport-Facebook Strategy. You may now give your users a variety of

authentication choices thanks to this.

28

The high level of security offered by the Passport-Local Strategy is another

benefit. The database contains the passwords in an encrypted format. This makes

sure that the passwords won't be available to the attacker even if the database is

compromised.

As a result, the Passport-Local Strategy is a well-liked and successful method of

integrating local authentication into a Node.js application. It offers a quick and

adaptable method for authenticating users using a username and password

combination. It can be simply combined with other Passport.js techniques and is

also quite safe.

Bcrypt:

We have used this library for the encryption and decryption of the passwords

using the salt. Popular password-hashing technology called Bcrypt is used to store

passwords securely in computer systems. As a more secure substitute for previous

password-hashing procedures at the time, Niels Provos and David Mazières first

presented it in 1999. As a result of its extensive acceptance, many computer

languages now consider Bcrypt to be a standard tool for password hashing.

To safeguard user credentials in the event of a data breach, password hashing is

used. Passwords are the most private data in a system, and if they are kept in

plaintext or with insufficient encryption, they can be readily hacked. A password

is inputted into a one-way procedure called hashing, which outputs a fixed-length

string of characters that the system stores. In order to confirm a user's identity,

their password is hashed and compared to the hash that has been previously

recorded.

It is more challenging for attackers to break passwords using brute-force

techniques since Bcrypt is intended to be slow and computationally costly. The

Blowfish cypher is used to hash passwords, and the system's security can be

increased by modifying the number of computation repetitions. This indicates that

even if an attacker obtained the hashed passwords, it would be difficult to

decipher them.

Another feature of Bcrypt is salt, which involves pre-hashing each password with

a random string of characters. Salting increases the difficulty of password

29

cracking by attackers using pre-generated tables of hashes. Attackers would have

to recompute each password's hash with a different salt, which would take a lot

longer and be more difficult. Bcrypt has evolved into the de facto industry

standard for password hashing in online applications, mobile applications, and

other systems that necessitate safe password storage. There are numerous libraries

that make using bcrypt in your application straightforward. Several programming

languages, including Python, Ruby, Java, and JavaScript, have all used it.

In conclusion, the passwords of users are protected in the event of a data breach

thanks to the secure and reliable password-hashing function known as bcrypt. It is

intended to be slow and computationally demanding, which makes it harder for

attackers to break passwords using brute-force techniques. It is frequently utilised

in web and mobile applications to safely store passwords and contains features

like salt to boost system security.

3.3 Folder Structure:

Frontend:

Firstly we have our root folder named as client-side. Inside this root folder we

have a public folder which contains an src folder which has stored all the code’s

folder and files inside it. Then we have separate folders for componentes, redux,

and routes.

30

Fig 3.3 : Folder structure Of Client-side

Components:

Inside the components folder we have all listed the components files which have

been used in the projects. Components folder also contains another folder named

as CSS which has all the css code required in the project with respect to every

component.

Redux:

Redux folder contains three folder inside it named as Actions, Constants,

Reducers and Store.

Action:

Action folder contains all the files which have been used for the communication

purposes with the server side using the redux-thunk.

Constant:

The constant folder contains a file which have all the constant value used in the

project.

31

Reducers:

The Reducer folder contains all the files which helps the React for state

management and better flow of the application. It also has an index,js file which

combines all the reducers together.

Store:

The Store folder has an index.js file which creates a store and exports it. This is

also used to use the middleware like thunk in the project.

Backend:

Firstly we have our root folder named as server-side. Inside this root folder we

have two microservices named as Authentication-Services and User-Actions.

Fig 3.4 : Folder structure Of Microservices

These two microservices have separate folder structures. Inside each microservice

which contains the src folder. Inside this src it has config, controllers, models and

routes folder.

32

Fig 3.5 : Folder structure Of Server-side

Config:

Config folder contains a file named passport.js which have the code for the

authentication purpose.

Controller:

Controller folder contains files which have the API function.

Models:

Models have a file name as connection.js which has code for the connection of the

server with the database. It also contains the file which has the schema code of the

database.

Routes:

The Route folder contains a route.js file which contains all the API routes.

33

Schema of the Database:

Organization Schema:

34

User Schema:

35

Task Schema:

36

Connection File:

Organization Collection of MongoDB:

37

Task Collection of MongoDB:

Users Collection of MongoDB:

38

4) Flow Of The Application:

Authentication:

Fig 3.6 : Authentication Page

2) Super Admin Interface:

39

Fig 3.7 : Create Admin Page And Show Admin Data Table

Fig 3.8 : Create Organization Page And Show Organization Data Table

40

3) Admin Interface:

Fig 3.19 : Create User Page And Show User DataTable

Fig 3.10 : Create Task for user and change status of the task

Fig 3.11 : Edit A Particular Task

41

3) User Interface:

Fig 3.12 : Create TAsk For User

Fig 3.13 : Search Task by Name

42

CHAPTER 4

PERFORMANCE ANALYSIS

The MERN (MongoDB, ExpressJS, ReactJS, and NodeJS) stack performance

analysis of a task manager app comprises measuring numerous performance

indicators, such as load time, response time, and scalability. When examining the

functionality of a task management application using the MERN stack, keep the

following points in mind:[1]

A website or web application's load time has a significant impact on the user

experience. Slow load times can annoy users and lead to high bounce rates, as

users abandon the website without interacting with it. Therefore, it is important to

measure and improve the task management application's load time once it was

built using the MERN stack.

To gauge how quickly a web page loads, utilise programmes like Google

PageSpeed Insights or GTmetrix. These tools provide a complete analysis of the

website's functionality and offer suggestions for improvements that can shorten

load times.[12] Examples of usual optimisations include image compression, code

minification, lowering server response times, and using a content delivery

network (CDN) to provide static files.

A task management application developed utilising the MERN stack must also

consider response time while evaluating its functionality and user interface.

Response time is the amount of time it takes the server to respond to a client

request. It includes the time it takes to process the request, extract the requested

information from the database, and provide the client their response. User

annoyance from slow response times can lead to high bounce rates and poor user

engagement.

Tools like New Relic or AppDynamics can be used to measure response time.

These tools offer thorough performance analytics for your application, such as the

average response time for various queries. You can locate slow-running queries,

enhance database indexes, and enhance server-side code by examining the

response timings for various requests.

43

Any task manager application created utilising the MERN stack must be scalable.

The ability of the software to accommodate growing user demand and traffic

without compromising on performance is referred to as scalability. It's critical to

confirm that the app can manage the additional load and deliver a consistent user

experience as the user base and traffic to the app expand.

A task manager app's scalability can be evaluated using load testing software like

JMeter or LoadRunner. The purpose of these tools is to stress-test the app and find

any potential bottlenecks by simulating real-world traffic and user scenarios. You

may find the parts of the programme that need to be optimised to handle

additional traffic and users by looking at the performance data during load testing.

One of the most important advantages of using a task manager app for businesses

is improved communication.[14] Any team must have effective communication in

order to collaborate effectively and accomplish shared objectives. Task managers

may significantly enhance communication both within a team and beyond the

organisation by offering a centralised platform for team collaboration.

Team members can communicate in real-time updates, comments, and progress

reports thanks to task managers. This implies that everyone, even those who aren't

physically present, can stay informed about what's going on a project or

assignment. There are fewer risks of misconceptions or miscommunication when

team members can effectively communicate, share ideas, and ask questions.

In general, task managers are crucial tools for businesses trying to increase output,

teamwork, and communication. They aid in making sure that everyone is pursuing

the same objectives and that resources are being utilised effectively. Task

managers will be more crucial as businesses rely more on digital collaboration and

remote work to enable teams to work together efficiently across all locations.

Response Time of the Website:

Perf_hooks, a Node.js built-in module, provides a way to measure how well

Node.js applications are performing. It is used to estimate how long the code's

functions take to execute. [12]

By monitoring the time spent by a specific block of code or function using

perf_hooks, developers can identify bottlenecks and speed up their code.

44

Code:

Fig. 4.1: Response Time API

Fig. 4.2: Output of the response time API

React Hooks:

React version 16.8 introduced a set of functions called React Hooks as a new

technique for controlling state and lifecycle processes in functional components.

State and lifecycle methods could only be utilised in class components before the

invention of hooks.[17]

By enabling developers to leverage state and other React capabilities within

functional components, hooks offer an alternative to using classes. As a result,

developers can now manage state and other React capabilities without the

requirement for classes, giving functional components increased power and ease

of use.

45

Hooks in this project:

useState:

One of the built-in Hooks in React that enables developers to control state in

functional components is the useState() Hook, which was added in version 16.8. A

state variable and a function that can be used to update that variable are declared

using the useState() Hook. The following is the syntax for the useState()

Hook:[17]

Fig. 4.3: useState Syntax

Here, setStateFunction is the function that can be used to update the state variable,

initialValue is the state variable's initial value, and stateVariable is the name of the

state variable that is being declared. Consider the scenario where we want to use a

functional component to build a counter. To control the counter variable's status,

we can use the useState() Hook:[17]

46

Fig. 4.4: useState Example

useEffect:

The useEffect() A further built-in Hook in React that enables developers to carry

out side effects in functional components is called Hook. Side effects are

operations that take place outside of the component, such as DOM updates, event

listener configuration, or data retrieval from an API. Two arguments are required

by the useEffect() Hook: a function and an optional array of dependencies. The

array of dependents determines when the side effect should be re-run, and the

function is the side effect that needs to be executed. [17]

A sample of how to employ the useEffect() Hook is provided below:

47

Fig. 4.5: useEffect Example

useNavigate:

The React Router v6 module makes useNavigate available as a React Hook. You

can use it to programmatically travel through your application to a different route.

The applicationFor travelling to a different route inside your application, Navigate

Hook offers a simple function. Similar to any other React Hook, it can be used in

functional components. Using the useNavigate Hook in a React functional

component is demonstrated here:[17]

48

Fig. 4.6: useNavigate Example

Security:

Some pages in the project can be accessed by admin only and some of them can be

accessed by normal users.[8] Data of the user is being saved in the Local Storage

after logging the user into the website.

LocalStorage:

In order to save data locally on the user's browser, local storage is a crucial

component of web development. This makes it possible for web apps to function

without an internet connection and to retain user preferences or settings even when

the user signs out or closes the browser. Small bits of information, such as user

preferences, settings, or authentication tokens, are often stored in local storage.

Chrome, Firefox, Safari, and Edge are just a few of the contemporary web

browsers that allow local storage. The global localStorage object offered by the

browser's window object can be used by your application to access local storage.

49

This object offers ways to add, get, and delete data from local storage.

Fig. 4.7: user info using localhost

Local storage is only usable from the same domain that produced it, which is

another restriction. This implies that a website's local storage of data prevents

access to such data by another website. Cross-site scripting attacks are guarded

against by this security measure.

To sum up, local storage is an effective tool for web developers that offers a

practical approach to store tiny quantities of data locally on the user's browser. All

current web browsers support it, and it can be used to enhance the functionality

and user experience of web applications. It's crucial to recognise the limitations of

local storage, though, and to make the best use of it.

React Router:

A well-liked library for creating single-page applications (SPAs) with React is

called React Router. It enables you to build dynamic, multi-page apps that

resemble conventional webpages by handling client-side routing declaratively and

effectively.

You may define the routes for your application and traverse between them using

the components and functions provided by React Router. Route and

BrowserRouter are React Router's two most crucial parts. The Route component

specifies a route and the component that should be rendered when that route is

requested, but the BrowserRouter component covers your entire application and

offers the routing capability.[17]

50

Fig. 4.8: React Router

51

CHAPTER 5

CONCLUSION

The MERN (MongoDB, ExpressJS, ReactJS, and NodeJS) stack has skyrocketed

in popularity in recent years among web developers. Due to the stack's capacity to

offer a complete solution for creating scalable, secure, and quick online

applications, it has grown in favour among developers. Task managers are only

one of the many applications that have been built using the stack.

The creation of a task manager utilising the MERN stack was covered in this

article. The task management interface in the application we created allows users

to add, remove, update, and complete tasks. Along with implementing

authentication using JWT tokens, we also used MongoDB to store task data.

MongoDB, Express, React, and NodeJS were some of the MERN stack's

individual elements that we looked at first. We talked about how they fit into the

stack and work together to create a complete web application development

solution.

We then got started on the task manager application's development from the

backend up. A RESTful API with endpoints for task management was built using

NodeJS and ExpressJS. User data was kept in MongoDB and authentication was

implemented using JWT tokens.

To construct a responsive user interface for handling tasks, we used ReactJS in the

frontend development phase. To construct a dynamic user interface, we used a

variety of ReactJS functionalities, including event processing, conditional

rendering, and state management. Additionally, we linked the UI with the backend

API to retrieve and work with task data.

Best practices for creating scalable and secure online applications were

emphasised frequently during the development process. We managed

dependencies using package managers like NPM and Yarn, stored sensitive data in

environment variables, and included error handling to make sure everything ran

smoothly.

52

Finally, creating a task manager using the MERN stack is a great illustration of

how the stack may be used to develop a reliable and scalable web application. We

have shown off the different components of the stack, such as MongoDB,

ExpressJS, ReactJS, and NodeJS. Authentication implementation and data storing

in MongoDB have also been demonstrated.

Overall, the MERN stack offers programmers a complete method of creating web

apps. The development process could be sped up and made more effective by its

flexibility, scalability, and security. The MERN stack has evolved into a crucial

tool for developers aiming to create high-quality web applications in response to

the growing demand for them.

A task manager is a tool that assists teams and individuals in efficiently organising

and managing their tasks. It offers a centralised location where jobs may be

assigned, followed up on, and ranked. Task managers are crucial for businesses

for a number of reasons, including:

Increased productivity: Using a task manager helps teams and individuals stay

on top of deadlines, prioritise tasks, and maintain organisation. Because tasks are

finished quickly and the team is concentrated on the most crucial activities,

productivity increases.

Better teamwork: Task managers enable teams to collaborate more effectively.

Team members can be given tasks to do, and real-time progress can be monitored.

This makes it easier for team members to communicate, share knowledge, and

work towards common objectives.

Increased accountability:Task managers enable team members to assume

ownership of their work, which increases accountability. Each team member

knows their individual responsibilities when assignments are assigned to them.

Team members are more likely to take their duties seriously as a result, increasing

accountability.

Enhanced communication: Task managers give team members a forum for

efficient collaboration. Real-time communication of comments, updates, and

progress reports makes it simple for everyone to keep informed.

53

Effective resource management: Task managers assist businesses in effectively

managing their resources. Companies can find places where resources are being

squandered and take corrective action by tracking tasks.

Better decision-making: Task managers give businesses data that can be utilised

to make better judgements, which leads to better decision-making. Companies can

increase performance by monitoring progress, locating bottlenecks, and

examining patterns.

For businesses trying to increase efficiency, cooperation, and communication, task

managers are crucial tools. They support ensuring that resources are used

effectively and that everyone is working towards shared goals. Task managers will

be more crucial as businesses depend more on remote work and online

collaboration to enable teams to collaborate successfully no matter where they are

located.

Building web apps requires careful consideration of security, particularly when it

comes to MERN (MongoDB, ExpressJS, ReactJS, and NodeJS) stack websites.

The following security precautions must to be applied to MERN websites:

Input validation: This crucial security feature makes sure that information

entered into a web application is in the right format and is free of harmful code.

To make sure that input data is sanitised and doesn't include hazardous code, use

client-side validation as well as server-side validation.

Secure data storage: Use secure data storage techniques, such as encryption, to

prevent unauthorised access to sensitive data. For the protection of data,

MongoDB offers encryption at rest.

Authentication and authorization: Implement authentication and authorisation

processes to make sure that only authorised users can access sensitive data. For

ExpressJS authentication and permission, use passport.js.

Use HTTPS: To ensure that data exchanged between the client and server is

encrypted, use HTTPS rather than HTTP. HTTPS connections require SSL/TLS

certificates.

54

Implement rate restriction: Limit the amount of queries a user can make in a

certain period of time and avoid brute-force assaults by implementing rate

limiting.

Sanitize user input: User input should be cleaned up in order to thwart attacks

like SQL injection and others.

Use a Content Security Policy (CSP): Put a Content Security Policy (CSP) to

use Put a CSP in place to stop injection attacks and cross-site scripting (XSS)

assaults.

Update all software: To prevent vulnerabilities, update all software and its

dependencies.

Be cautious while using third-party libraries and packages: Use only packages

and libraries from reliable sources. Avoid utilising vulnerable or out-of-date

software.

Conduct routine security audits: Conduct routine security audits to find

vulnerabilities and proactively fix them.

In conclusion, creating secure MERN stack websites necessitates using sound

coding procedures, secure data storage, authentication and authorization, and

frequent security assessments. It's critical to be informed about the most recent

security risks and to take precautions to defend your website from them. By

putting these security measures in place, you can create secure MERN websites

that safeguard user information and guarantee a dependable user experience.

55

REFERENCES

[1] Hoque, S. Full - Stack React Projects: Learn MERN Stack Development

by Building Modern Web Apps Using MongoDB, Express, React, and

Node.js, 2nd Edition.United Kingdom: Packt Publishing, March 2020.

[2] Sidelnikov, G. React. Js Book: Learning React JavaScript Library from

Scratch. April 2017.

[3] Pasquali,S. Mastering Node.js.United Kingdom:Packt Publishing, October

2013.

[4] Zammetti,F. Modern Full-Stack Development: Using TypeScript,

React, Node.js, Webpack, and Docker, May 2020.

[5] REVIEW OF Saia, S. M., Nelson, N. G., Young, S. N., Parham, S., &

Vandegrift, M. Ten simple rules for researchers who want to develop web apps,

April 2020.

[6] Aggarwal, S. (2018). Modern web-development using ReactJS, April-2018.

[7] Kamthan P. Towards a systematic approach for the credibility of humancentric

web applications,December 2007.

[8] Nabi F. Internet Technology & E-Commerce. Computers and Security. 24:3.

(208-217). Online publication date: 1-May-2005. The business application logic is

a significant weak link in e-commerce systems, May 2005.

[9] Kontaxis, G., Athanasopoulos, E., Portokalidis, G., and Keromytis, A. D.

Sauth:Protecting user accounts from password database leaks. In ACM

Conference on Computer and Communications Security (CCS), June 2013.

[10] Shay, R., Komanduri, S., Kelley, P. G., Leon, P. G., Mazurek, M. L., Bauer,

L., Christin, N., and Cranor, L. F. Encountering stronger password requirements:

user attitudes and behaviors.

[11] Sanchit Agarwal, Jyoti Verma, “Comparative Analysis of MEAN Stack and

MERN Stack”, International Journal of Recent Research Aspects, March 2018.

56

[12] Mohanish Bawane , Ishali Gawande , Vaishnavi Joshi , Rujuta Nikam , Prof.

Sudesh A. Bachwani, “A Review on Technologies used in MERN stack”,

International Journal for Research in Applied Science & Engineering

Technology (IJRASET), Jan 2022.

[13] David Gillman, Yin Lin, Bruce Maggs, Ramesh K. Sitaraman, “Protecting

Websites from Attack with Secure Delivery Networks”, IEEE, April 2015.

[14] Timothy Kelley, Bennett I. Bertenthal, “Real-World Decision Making:

Logging Into Secure vs. Insecure Websites”, Springer, June 2016.

[15] Tien Pham, “Building an online shop application with MERN stack”,

Bachelor’s Thesis, November 2020.

[16] MongoDB official website for understanding what is MERN stack:

https://www.mongodb.com/mern-stack [Access Date: 10-02-23]

[17] Official Documentation for ReactJS: https://react.dev/learn [Access Date:

13-02-23]

[18] NodeJS official documentation: https://nodejs.org/en/docs [Access Date:

15-02-23]

[19] ExpressJS official documentation: https://expressjs.com/ [Access Date:

24-02-23]

[20] Getting started with Mongoose: https://mongoosejs.com/ [Access Date:

06-03-23]

[21] Passport JS documentation for Google Login:

https://www.passportjs.org/packages/passport-auth0/ [Access Date: 19-03-23]

[22] Using CORS for secure connection between frontend and backend:

https://developer.mozilla.org/en-US/docs/Glossary/CORS [Access Date:

04-04-23]

57

