
SDE Intern - Amazon

Project report submitted in partial fulfilment of the requirement for the degree

of Bachelor of Technology

in

Computer Science and Engineering
By

DEV PRATAP TYAGI (191306)

UNDER THE SUPERVISION OF

Dr. Amit Kumar

Assistant Professor, Deptt. Of CSE & IT

Department of Computer Science & Engineering and Information

Technology

Jaypee University of Information Technology Waknaghat,

Solan-173234, Himachal Pradesh



DECLARATION

I hereby declare that the work presented in this report entitled “SDE Intern - Amazon” in

partial fulfilment of the requirements for the award of the degree of Bachelor of

Technology in Computer Science and Engineering submitted in the Department of

Computer Science & Engineering and Information Technology, Jaypee University of

Information Technology Waknaghat is an authentic record of my own work carried out

over a period from January 2023 to May 2023 under the supervision of Dr. Amit Kumar

(Assistant Professor(SG), Department of CSE Jaypee University of Information

Technology). The matter embodied in the report has not been submitted for the award of

any other degree or diploma.

Dev Pratap Tyagi

191306

This is to certify that the above statement made by the candidate is true to the best of my

knowledge.

(Supervisor Signature)

Dr. Amit Kumar

Assistant Professor (SG)

Department of CSE Jaypee University of Information Technology

(i)



(ii)



ACKNOWLEDGEMENT

Firstly, I express my heartiest thanks and gratefulness to Almighty God for His divine

blessing that made it possible to complete the project work successfully. I am grateful and

wish my profound indebtedness to Supervisor Dr. Amit Kumar, Assistant Professor(SG),

Department of CSE Jaypee University of Information Technology, Wakhnaghat. His deep

knowledge & keen interest in the field of "Cloud Computing and Technologies" helped us

to carry out this Project. His endless patience, scholarly guidance, continual

encouragement, constant and energetic supervision, constructive criticism, valuable advice,

reading many inferior drafts, and correcting them at all stages have made it possible to

complete this Project. I would also generously welcome each one of those individuals who

have helped me straightforwardly or in a roundabout way in making this project a win. In

this unique situation, I want to thank the various staff individuals, both educating and

non-instructing, which have developed their convenient help and facilitated my

undertaking. Finally, I must acknowledge with due respect the constant support and

patience of my parents.

Dev Pratap Tyagi

191306

(iii)



Table of Figures

Figure Name

Figure 1.1 : Roadmap to the Project

Figure 1.2 : Gantt chart displaying the timelines for the different phases of the project

Figure 2.1 : Invoice Ingestion Process

Figure 3.1 : System Architecture

Figure 3.2 : Dynamic Configurations

Figure 3.3 : Data Warehousing

Figure 3.4 : Technologies Used in Project

(iv)



Table of Contents

Content Page no.

Certificate i

Plagiarism Certificate ii

Acknowledgment iii

Table of figures iv

Table of Content v

Abstract vi

Chapter-1 INTRODUCTION 1 - 6

Chapter-2 RELATED WORK 7 - 14

Chapter-3 SYSTEM DESIGN 15 - 23

Chapter-4 IMPLEMENTATION 24 - 29

Chapter-5 RESULT ANALYSIS AND TESTING 30 - 35

Chapter-6 CONCLUSIONS 36

BIBLIOGRAPHY 37

APPENDICES 38-39

(v)



Abstract

This work aims to re-architecture the legacy Invoice Ingestion Platform into multiple

microservices, including the Matcher project. Matcher is a part of the Data Ingestion

platform in the Invoicing Team at Amazon’s Transportation Financial Systems org. We

divide our problem into sub-goals, design, implementation, and development, and create

some tasks in these sub-goals to achieve the solution to the problem. For each sub-goal,

we conduct a series of experiments and test runs to ensure the maximum accuracy of the

application. We explore different and latest technologies to develop the features of the

project to ensure the best quality and sustainability of the software.

(vi)



Chapter 01: INTRODUCTION

1.1 Introduction

In transportation, invoices are typically used to bill customers for the transportation

services provided. The invoice serves as a legal agreement between the transportation

provider and the customer, outlining the terms of the transaction and the payment due. The

invoice may also include additional charges, such as fuel surcharges, insurance, or other

fees.

Transportation companies may use electronic invoicing systems to automate the process of

generating and sending invoices to customers. Electronic invoicing can help to reduce

errors and streamline the invoicing process, as well as provide faster and more accurate

billing to customers. Additionally, electronic invoicing can help to improve the tracking

and management of transportation transactions, which can be useful for financial reporting

and analysis purposes.

Invoice ingestion is the process of automatically extracting data from an invoice and

entering it into a digital system for further processing. This process typically involves

using optical character recognition (OCR) technology to recognize and extract data from

scanned or digital invoices, such as invoice number, date, supplier name, and itemized line

items. The extracted data can then be used for various purposes such as accounts payable

processing, inventory management, financial reporting, and analysis.

Invoice validation with manifests refers to the process of cross-referencing invoice data

with data from shipment manifests to verify the accuracy and completeness of invoiced

items. A shipment manifest is a document that lists the items included in a shipment,

typically including details such as item descriptions, quantities, weights, and other relevant

information. This can be done manually by comparing the invoice data with the manifest

data line by line, or it can be automated using software or tools that can automatically

match and validate the data from the invoice against the corresponding data in the

manifest. This process helps to improve accuracy and efficiency, reduce errors, and ensure

that invoices are properly validated before payment is made.

1



1.1.1 Outline of the report

This report is organised in four main parts:

Chapter 1 describes the outline of the complete internship project and how it is carried

out.

Chapter 2 describes the study of the existing systems that do the job, and why they needs

to be rearchitected into the new system.

Chapter 3 presents the analysis, design, and implementation of this project. This chapter

summarises the design specifications and technical requirements of the system being

proposed for this project.

Chapter 4 presents the implementation methods of the various submodules of this project.

Chapter 5 discusses the results of the system designed in this project and its limitations in

terms of accuracy.

Chapter 6 is the conclusion of the project which also presents the future work and

direction for the project.

2



1.2 Problem Statement

1.2.1 Overview

Matcher, as the name suggests, is a piece of software that does some matching. In the

context of transportation invoices, this service matches the carrier invoices being ingested

by other services into Amazon systems with the shipping manifests.

1.2.2 Purpose

Loosely coupled services refer to a software architecture pattern in which components or

services are designed to be independent and have minimal dependencies on each other. In

this pattern, each service is designed to perform a specific function or task and can operate

independently of other services. With this motivation of rearchitecting the legacy service of

Invoice Ingestion, the matching component is being separated out as a new component

Matcher so that the new service can be used all across Amazon as this step is common for

any invoicing process.

1.2.3 Features

This project has many features, but this document focuses on the features that the author

has worked and contributed on to the project:

1. Dynamic Configurations: Dynamic configurations refer to a software design pattern

in which application settings or configurations are designed to be flexible and

adaptable to changing conditions or requirements. In this pattern, configuration

parameters are stored outside of the application code, often in a database or

configuration file. They can be modified at runtime without requiring a restart of

the application.

2. Data Warehousing: The data warehouse is designed to support complex queries and

data analysis, allowing business users to identify patterns, trends, and insights that

are not readily apparent in individual data sources. It typically includes historical

data that can be used to track trends over time and make more informed decisions

about future operations. This project also includes data warehousing where we store

and publish the data enriched by the new service. This ensures the backward

compatibility of the existing flow and the required data is available for analysis of

the invoicing systems.

3



1.3 Existing System Brief Motivation

The existing system for an organisation may involve a manual process for matching

invoices with shipping manifests or related documents. This process can be

time-consuming, error-prone, and may lead to discrepancies in payments or delays in

processing. By implementing a manifest matching service, we streamline this process and

reduce the risk of errors or discrepancies. The manifest matching service can automatically

compare invoices with shipping manifests or related documents to ensure that the items

listed on the invoice match the items that were shipped. This can help to prevent

overpayments, underpayments, or other financial irregularities, and can reduce the

workload of accounts payable personnel. In addition, a manifest matching service can help

to improve operational efficiency and reduce costs associated with manual invoice

processing. By automating the matching process, the organization can process invoices

more quickly and accurately, which can lead to improved cash flow and better financial

management.

1.4 Project Management Plan

Project planning is crucial in assisting stakeholders, sponsors, teams, and the project

manager as they go through subsequent project phases. To establish desired objectives,

lower risks, prevent missed deadlines, and finally deliver the agreed-upon good, service, or

outcome, planning is necessary. Project performance will almost surely suffer without

adequate planning. A bigger project must be broken down into smaller jobs, a project team

must be put together, and a timeline must be set for when the work is to be finished. In this

phase, you establish more manageable objectives within the overall project, making sure

that each is feasible within the allotted time. A few tasks were delegated from this project,

each having its own execution schedule, deadline, and plan.

1.4.1 Roadmap for the Internship

Figure 1.1 shows the timeline for the internship to date. Since some tasks are confidential,

the task details are not mentioned in the timeline. The internship started with

a 1-week training and a ramp-up task.

4



1.4.2 Gantt Chart

Gantt charts are useful for planning and scheduling projects. They help you assess how

long a project should take, determine the resources needed, and plan the order in which the

tasks are to be completed.

Below is the Gantt chart, which shows the management plan for this project.

5



As can be seen from Figure 1.2, the whole project has been slotted into various phases,

which are Research, Problem Understanding, Algorithm Design, Implementation, Testing,

etc. All the tasks within these phases have been assigned some timeline in which those

tasks are supposed to be completed. Being an industrial project, more time is given to the

review process be it code review, HLD or LLD reviews, etc. to ensure the accuracy and

correctness of each task being completed.

The major tasks are discussed in the further chapters of this document.

1.5 My Contribution

This is a team and internship project, where the contribution of the author is to complete

the tasks with accuracy in the given timeline and to demonstrate the Amazon Leadership

Principles that are being discussed in Appendix A.

1.6 Summary

This chapter is the introduction to the project, the purpose of the project, and its features.

This chapter also defines the layout of the report.

Project Management Plan and its importance along with the phases of the project are

also discussed in this chapter.

6



Chapter 02: RELATEDWORK

Efficient and accurate invoicing is critical for transportation companies to ensure timely

payment and maintain healthy cash flow. Invoicing errors or delays can lead to payment

delays, revenue loss, and strained customer relationships. To streamline the invoicing

process, many transportation companies leverage advanced technologies, such as

automated billing systems, electronic payment processing, and real-time reporting and

analytics. Invoicing in transportation also involves regulatory compliance and adherence to

industry standards. For example, in the United States, transportation companies must

comply with the Federal Motor Carrier Safety Administration (FMCSA) regulations,

which require accurate and timely invoicing and documentation of transportation services

provided. Similarly, international transportation companies must comply with customs

regulations and document requirements specific to each country they operate in.

2.1 Invoice Ingestion

Invoice ingestion refers to the process of extracting relevant data from invoices and

integrating it into a system for further processing or analysis. This process is typically done

using automated tools, such as optical character recognition (OCR) software, that can

extract key information from invoices, such as invoice number, vendor name, invoice date,

line item details, and total amount.

Invoice ingestion typically involves several steps, which may include:

1. Scanning or uploading invoices: Invoices can be scanned or uploaded into a system

that is capable of processing invoices. This can be done using a scanner, a

multifunction printer, or by uploading digital invoices from a computer or other

electronic device.

2. Optical character recognition (OCR): OCR software is used to automatically

recognize and extract relevant data from the invoices. OCR technology scans the

text on the invoices and converts it into machine-readable text that can be

processed by software.

7



3. Data extraction: Once the text has been converted into a machine-readable format,

the relevant data, such as invoice number, vendor name, invoice date, line item

details, and total amount, are extracted using data extraction techniques. This can

involve using pre-defined templates or rules or employing machine learning

algorithms to identify and extract the relevant information.

4. Data validation and verification: Extracted data may need to be validated and

verified to ensure accuracy and consistency. This can involve checking extracted

data against known data sources, such as vendor databases or previous invoices,

and validating the data format and structure to ensure it is in the expected format.

5. Data integration: The extracted and validated data can then be integrated into the

appropriate system or software for further processing, such as an accounting system

or an enterprise resource planning (ERP) system. This integration can be done

using APIs, data connectors, or other integration methods to transfer the data from

the invoice ingestion system to the target system.

6. Exception handling: In some cases, invoices may contain exceptions or

discrepancies that require manual intervention or review. These exceptions, such as

8



missing or ambiguous data, may need to be flagged for further investigation or

resolution.

Invoice ingestion automation can streamline the invoice processing workflow, reduce

manual effort, and minimize errors associated with manual data entry. It is commonly used

in accounts payable (AP) departments of organizations to process large volumes of

invoices efficiently and accurately.

In the context of transportation, an invoice can be a document that outlines the charges

associated with the transportation of goods or services provided by a transportation service

provider. It serves as a formal request for payment from the transportation provider to the

customer, typically the shipper or consignee, for the services rendered.

An invoice in transportation typically includes information such as:

1. Shipment details: This includes the description of the goods being transported, the

quantity or weight of the goods, and any other relevant details such as the origin

and destination of the shipment.

2. Charges and rates: This includes the transportation charges, such as freight charges,

handling fees, surcharges, and any other applicable charges based on the agreed

upon rates or tariffs.

3. Additional services: This includes any additional services provided by the

transportation provider, such as insurance, storage, or customs clearance, if

applicable.

4. Terms of payment: This includes the agreed-upon terms of payment, such as due

date, payment method, and any applicable discounts or penalties for late payment.

5. Contact information: This includes the contact information of both the

transportation provider and the customer, including their names, addresses, phone

numbers, and email addresses for communication and payment purposes.

Invoices in transportation are typically used for billing and payment purposes, and they

play a crucial role in the financial management of transportation services. They provide a

formal record of the services provided, the charges associated with those services, and the

9



terms of payment, which helps ensure accurate billing and timely payment for

transportation services rendered.

2.2 Manifest Matching

Invoice manifests refer to documents or records that provide a detailed listing of items or

goods included in an invoice. An invoice manifest typically contains information such as

item descriptions, quantities, prices, and other relevant details related to the goods or

services being billed.

Invoice manifests can be used for various purposes in business, particularly in the

transportation and logistics industry. For example, in the context of freight transportation,

an invoice manifest may be used to list the individual items or packages that are being

shipped, along with their corresponding details such as weights, dimensions, and shipping

instructions. The invoice manifest serves as documentation of the goods being transported

and provides the basis for generating invoices for transportation services.

Invoice manifests are typically generated by the shipper or logistics provider and provided

to the customer as part of the billing process. The customer can then use the invoice

manifest to verify the accuracy and completeness of the items listed on the invoice before

making payment. Invoice manifests are also used for record-keeping purposes, as they

provide clear documentation of the goods or services provided, which can be useful for

financial, regulatory, or audit purposes.

In some cases, invoice manifests may be generated electronically using specialized

software or systems that automate the process of creating and managing invoice manifest

data. This can help improve the accuracy, efficiency, and speed of the invoicing process,

and can also facilitate electronic data interchange (EDI) with trading partners for seamless

invoicing and payment transactions.

In many businesses, the accounts payable process involves matching invoices to shipping

manifests to ensure that the goods or services listed on the invoice have been received and

10



are accurate. This process can be time-consuming and error-prone, particularly when

dealing with large volumes of invoices and manifests.

Manifest matching is an important process in logistics and supply chain management that

involves matching the items listed on a shipping manifest with the actual items that are

being transported. This process ensures that the correct items are delivered to the correct

location and that any discrepancies are identified and addressed promptly.

There are various roles and responsibilities related to manifest matching, depending on the

specific context and industry. In a warehouse or distribution center, for example, workers

may be responsible for physically checking the items against the manifest, verifying that

the items are in good condition, and updating the manifest as needed.

In the context of software development or automation, manifest matching may involve the

use of technology to compare the items listed on the manifest with data from sensors or

other monitoring devices. This technology can help to automate the manifest matching

process, reducing the risk of errors and improving efficiency.

In addition to ensuring the accuracy of shipments, manifest matching can also help to

improve inventory management, identify trends or patterns in shipping data, and provide

insights into the performance of logistics and supply chain operations.

Some common tasks related to manifest matching include:

● Receiving and reviewing shipping manifests

● Physically checking items against the manifest

● Using technology to automate the manifest matching process

● Resolving any discrepancies or issues with the manifest

● Updating inventory records and other relevant data systems

Overall, manifest matching is a critical process that helps to ensure the accuracy and

efficiency of logistics and supply chain operations and can provide valuable insights into

the performance of these operations over time.

11



2.3 Dynamic Configurations

Allow developers and system administrators to manage and update application settings

more efficiently, without requiring downtime or interruption of the application. This is

particularly useful in environments where applications need to be able to adapt quickly to

changing conditions, such as in cloud computing environments or in applications that need

to be highly available. Dynamic configurations also help to reduce the risk of configuration

errors or mistakes, as configuration parameters can be easily managed and updated through

a centralised interface, rather than requiring manual editing of code or configuration files.

There are several key benefits of using dynamic configurations:

1. Agility: Dynamic configurations enable applications to be more agile and flexible,

allowing them to adapt quickly to changing requirements or conditions.

2. Scalability: Dynamic configurations can be easily scaled to accommodate growing

or changing application requirements, without requiring significant changes to the

underlying code.

3. Reliability: Dynamic configurations help to ensure that application settings are

up-to-date and accurate, reducing the risk of configuration errors that can lead to

system downtime or other issues.

4. Security: Dynamic configurations can help improve security by allowing sensitive

configuration parameters to be managed separately from the application code and

stored in a secure database or file.

Overall, dynamic configurations are an important design pattern in modern software

development and can help organizations build flexible and adaptable applications that can

respond quickly to changing requirements or conditions, while also improving agility,

scalability, reliability, and security.

The Matcher application did not have dynamic configurations. The configurations were

hosted as part of the service code itself. So, any change in the configuration needs the

redeployment of the whole service.

12



2.4 Data Warehousing

Data warehousing is the process of collecting, storing, and managing data from various

sources in a centralised repository. The goal of data warehousing is to provide a single,

unified view of an organisation’s data, which can be used for reporting, analysis, and

decision-making.

Data warehousing involves a number of processes, including data extraction,

transformation, and loading (ETL), as well as data modeling and schema design. Data is

typically stored in a structured format, such as a relational database, and is optimized for

reporting and analysis.

Data warehousing is often used in large organizations or businesses that have complex data

requirements, as it can help to improve data quality, reduce redundancy, and provide a

consistent view of data across the organization. Data warehouses can also be used to store

historical data, which can be useful for trend analysis and forecasting.

One of the key benefits of data warehousing is that it can help organizations to gain

insights into their business operations and improve decision-making. By providing a

comprehensive view of data, organizations can identify patterns and trends that may not be

apparent in individual data sources and can use this information to make more informed

decisions.

Overall, data warehousing is an important technology in the field of data management and

can be a powerful tool for organizations that need to manage and analyze large amounts of

data.

Currently, the data warehousing is performed on the data enriched by the existing Ingestion

platform as part of the matching process. This is done by transforming the enriched data

into an easily consumable format and publishing it into the particular locations of the s3

buckets from where the downstream consume the data for records and analysis.

13



2.5 Summary

In this chapter, the related work is discussed with their purposes and the current

implementation methods of the different features of the Matching component of the

Ingestion platform.

14



Chapter 03: SYSTEM DESIGN

Managing a project, whether it is about software development or planning a corporate

event, can be daunting, to say the least. The reality is that there is no secret formula that

will make your project unwrap flawlessly; very often you’ll stumble upon a series of

challenges and obstacles before you reach success. And the ability to overcome those

unexpected challenges and deal with them on the go is what makes a successful software

developer.

This chapter discusses the system analysis and design for the project and discusses the

technical terms that will be engaged throughout the whole project.

3.1 System Analysis

The problem statement describes a service that is accomplished through multiple tasks.

Being a team project, the tasks of the service are distributed among the team members.

This analysis will cover the tasks that the author has been assigned to.

The following tasks were worked on and completed by the author in this project to date:

● Dynamic Configurations: The configurations of the service were defined in a static

file. Any change in the configuration needs deployment of the service to take effect.

To get rid of the deployments required for change in the configurations, the concept

of dynamic configurations came into the picture.

● Data Warehousing: The service being built enriches the matching results that need

to be stored and published for the downstream to consume for record and analysis.

3.1.1 Dynamic Configuration

Dynamic configurations can be used in various contexts, such as application configuration

settings, system behavior settings, or feature toggles. They may include parameters such as

database connection strings, API endpoints, logging levels, caching settings, or other

runtime settings that affect the behavior or performance of a software system.

15



The benefits of using dynamic configurations include:

1. Flexibility: Dynamic configurations allow for easy and quick changes to system

settings without requiring a system restart or redeployment. This can enable faster

response to changing business requirements, operational needs, or user preferences.

2. Adaptability: Dynamic configurations allow for systems to adapt to different

environments or conditions, such as adjusting performance settings based on

system load or changing integration settings based on external factors.

3. Maintainability: Dynamic configurations can simplify the management and

maintenance of software systems by centralizing configuration settings and

providing a single point of control for making changes.

4. Testing and Deployment: Dynamic configurations can facilitate testing and

deployment processes by allowing different configurations to be used in different

environments, such as development, testing, staging, and production, without

requiring code changes or recompilation.

One of the most popular solutions for this problem is AWS AppConfig. With AWS

AppConfig, users can create configurations for their applications, such as database

connection strings, API endpoints, and other settings, and store them in a centralized

configuration store. These configurations can be updated in real-time, without the need to

restart the application or make any code changes.

AWS AppConfig also provides feature flagging capabilities, which allow users to control

the rollout of new features to their applications. By using feature flags, users can release

new features to a subset of users, test them, and gradually roll them out to more users. This

can help reduce the risk of releasing new features and improve the overall quality of the

application.

16



Some of the key benefits of using AWS AppConfig for dynamic configurations include:

1. Flexibility: AWS AppConfig supports various types of configuration data,

including strings, JSON objects, and YAML files, which can be customised based

on the specific needs of the application.

2. Scalability: AWS AppConfig can handle configurations for applications running on

thousands of servers, providing a scalable solution for managing configurations.

3. Security: AWS AppConfig integrates with AWS Identity and Access Management

(IAM), allowing users to control access to their configuration data based on IAM

policies. 4. Real-time updates: Configurations can be updated in real-time, without

the need to restart the application or make any code changes, allowing for more

agile development and faster deployment.

17



3.1.2 Data Warehousing

Data warehousing is a process of collecting, organising, and analysing large amounts of

data to support business intelligence and decision-making processes. It involves the

creation of a central repository or database that integrates data from various sources and

transforms it into a format that can be easily analysed and queried.

The data warehouse is designed to support complex queries and data analysis, allowing

business users to identify patterns, trends, and insights that are not readily apparent in

individual data sources. It typically includes historical data that can be used to track trends

over time and make more informed decisions about future operations.

Data warehousing involves several key processes, including data extraction,

transformation, and loading (ETL), data modelling, and data analysis. The ETL process

involves extracting data from various sources, transforming it into a common format, and

loading it into the data warehouse. Data modelling involves designing the structure of the

data warehouse to support efficient and effective data analysis. Data analysis involves

querying and analysing the data to generate insights and support decision-making

processes.

AWS Lambda seems the best possible solution to create the Data Warehousing solution for

this project. We will be using AWS S3 as the data warehouse. Using Lambda directly to

load the data will create excessive writes on S3 which makes the process more costly. To

reduce this cost, we introduce an intermediate stream that will buffer before writing to the

data warehouse. This will ensure consistent writes to the data warehouse reducing the write

costs.

3.2 Design

The right design ideas and methods provide the necessary road map for addressing

program complexity and scalability. Additionally, the task of creating this roadmap is given

to seasoned software developers and system design strategists with the necessary training.

A sound system design strategy necessitates foresight and a deeper comprehension of both

the present and future needs of the software product.

18



The system, as discussed in the Section 3.1 is divided into two sub-modules or subsystems.

Figure 3.2 shows the relation and flow of data between the two subsystems or phases.

The designs for the different modules of the proposed system are as follows:

3.2.1 Design for Dynamic Configurations

Figure 3.2.1 shows the basic high-level design for implementing the dynamic

configurations setup in the Matcher.

The Matcher application has a client setup called the AppConfigCachingClient that has a

TTL configuration, which basically tells the client to refresh the configurations at that

interval. Whenever a change in the remote configuration is made, the configuration

caching client defined in the application gets the new configuration as it keeps syncing the

configuration from the source. This eliminates the need for deployment of the service for

changing the configurations of the application.

19



3.2.2 Design for Data Warehousing

Figure 3.2.2 shows the basic flow of data in the process of data warehousing. The basic

processes that are part of the DW, abbreviated as ETL (Extraction, Transformation, and

Loading) are:

1. Data Extraction: This part is done by the Lambda that gets triggered whenever a

message is published to the queue. The lambda extracts the data and processes it.

2. Data Transformation: This part of the DW is taken care of by the lambda handler.

The lambda handler is responsible for the transformation of the extracted data into

the required reporting format.

3. Data Loading: This part of the DW is taken care by the lambda and the firehose.

The lambda pushes the reporting data to the firehose delivery stream, which is

basically a stream that has some flush configuration. It has a destination, where the

delivery stream writes the records at some intervals as defined by the stream flush

configuration or bufferingHints property.

20



3.2.3 Technologies Used

The service is implemented in the “Java Spring framework”. The service is built, and

deployed on the AWS infrastructure.

The following is the list of AWS Resources that are widely used in the service:

● AWS CDK

● AWS Servers

● AWS Resources

1. AWS CDK: AWS CDK apps use the AWS CDK to specify AWS infrastructure and

may be created in TypeScript, JavaScript, Python, Java, C#, or Go. One or more

stacks are defined by an app. Stacks, which are comparable to AWS

CloudFormation stacks, contain constructs. Each construct defines one or more

specific AWS resources, such as Lambda functions, Amazon DynamoDB tables, or

Amazon S3 buckets. The CDK Toolkit (commonly known as the CLI), a command

line tool for interacting with your AWS CDK apps and stacks, is a component of

the AWS CDK. The toolkit offers the ability to perform the following among other

things:

a. Convert one or more AWS CDK stacks to AWS CloudFormation[2]

templates and related assets (a process called synthesis)

b. Deploy your stacks to an AWS account and Region

21



2. AWS Servers: AWS servers refer to the virtual machines (VMs) that are

provisioned by AWS for customers to run their applications and workloads on.

AWS offers several types of servers, each optimised for specific use cases and

workloads. Some of the commonly used AWS server types include:

● Amazon Elastic Compute Cloud (EC2): EC2 is a virtual server that can be

used to run a variety of applications and workloads. It provides customers

with complete control over their computing resources.

● Amazon Elastic Container Service (ECS): ECS is a container management

service that makes it easy to run, stop, and manage Docker containers on a

cluster.

22



● Amazon Elastic Kubernetes Service (EKS): EKS is a managed Kubernetes

service that makes it easy to deploy, manage, and scale containerized

applications on Kubernetes.

● AWS Lambda: Lambda[6] is a serverless computing service that allows

developers to run their code without having to provision or manage servers.

● Amazon Lightsail: Lightsail is a simplified virtual private server (VPS) that

is designed for developers, students, and small businesses. It provides an

easy-to-use interface and pre-configured virtual servers.

3. AWS Resources: The following AWS Resources are mostly used in the service:

a. AWS SQS

b. AWS S3

c. AWS Kinesis Data Firehose

d. AWS SNS

e. AWS DynamoDB

f. AWS IAM

3.3 Summary

In this chapter, the discussion is made around the importance of proper planning of a

project and how this planning affects the progress of the project. Dividing the problem into

different phases and planning it with some timeline comes under the system analysis.

Proper analysis will lead to destiny, whereas improper analysis will lead to the failure of

the project. The analysis part discusses the different tasks to achieve in the project and

what those tasks will achieve. Finally, the design part of the project is laid out describing in

brief the technologies and libraries used, and the data flow diagrams of the different

sub-modules.

23



Chapter 04: IMPLEMENTATION

By implementing a project that relies on the strategic planning described earlier in the

process, a team can achieve the project's goals while staying within budget and meeting

key deadlines. Implementation is the part of a project cycle that links planning with project

outcomes. How well this process step is executed ultimately determines the outcome of a

project.

In this chapter, the proposed features of Dynamic Configurations & Data Warehousing are

briefly discussed. The implementation steps of these features are discussed in this chapter.

4.1 Implementation Dynamic Configurations

Dynamic Configurations are often used in modern software development and cloud

computing environments, where the goal is to build scalable, flexible, and resilient systems

that can be easily maintained and updated. By allowing configurations to be updated

dynamically, developers can make changes to the system in real-time, which can help to

reduce the risk of system failures or downtime.

Dynamic configurations can be implemented using a variety of techniques, such as using

configuration files that can be edited at runtime, using a centralised configuration server

that can be updated on the fly, or using containerization technologies such as Docker,

which allow for the creation of lightweight, portable applications that can be easily

deployed and updated.

In this project, we implement dynamic configurations using the service provided by AWS

which is AWS AppConfig. AWS AppConfig enables the deployment, management, and

updating of application configurations. It allows developers to define configuration settings

for their applications and deploy them to different environments, such as development,

testing, and production.

24



With AWS AppConfig, developers can manage configurations for their applications

without having to redeploy the application or make code changes. It supports dynamic

configurations, which means that application settings can be changed in real time without

any downtime or disruption to the application.

AWS AppConfig provides several features, such as versioning, validation, and deployment

capabilities, that help developers manage configurations efficiently. It also integrates with

other AWS services, such as Amazon S3 and AWS Lambda, to provide a complete solution

for managing application configurations.

The steps involved in implementing this part involve:

1. Create a new AWS CDK application for hosting AppConfig.

2. Setup the environments

3. Define the strategy to host the configuration profiles.

4. Setup the AppConfig Stack and add the required configurations in any format

(JSON, YAML, YML, etc.)

5. Deploy the AppConfig stack in the AWS account. Once the deployment is

successful, the application can be seen in the AWS Management Console. The

application consists of the environment and the configuration profiles hosted in that

environment.

6. In the service, setup the AppConfigCachingClient which fetches the configurations

from the AWS AppConfig and catches them for some time defined by TTL in

seconds at the application level.

7. Write the parsers for the various types of configurations added in the above steps

for parsing the fetched configuration to make it consumable by the various flows of

the service.

8. Make sure the application has enough permissions to access the AppConfig

resource. In the absence of permissions, the application will not be able to access

the hosted configurations. The permissions can be managed using the AWS IAM

roles.

25



The following are the benefits of this implementation:

● Centralised management: With AWS AppConfig, you can manage your application

configurations centrally from a single console, making it easier to update and

deploy configurations across multiple environments.

● Improved application availability: By separating configuration data from

application code, AWS AppConfig makes it easier to update and deploy

configurations without having to redeploy the entire application, which can

improve application availability.

● Faster deployments: AWS AppConfig can help you deploy configuration changes

faster by enabling you to roll out changes in a controlled and gradual manner. This

can help reduce the risk of deployment errors and ensure a smoother transition.

● Reduced operational costs: By automating the deployment and management of

application configurations, AWS AppConfig can help reduce operational costs and

increase operational efficiency.

● Increased security: AWS AppConfig supports encryption of configuration data,

making it easier to secure sensitive information such as API keys and passwords.

● Integration with other AWS services: AWS AppConfig integrates with other AWS

services such as Amazon CloudWatch and AWS Systems Manager, making it easier

to monitor and manage application configurations alongside other AWS resources.

4.2 Implementation of Data Warehousing

Data warehousing is a process of collecting, storing, and managing large volumes of data

from various sources to support business intelligence (BI) activities such as data analysis,

reporting, and decision-making. The data is typically extracted from transactional

databases, operational systems, and external sources, and then transformed and loaded into

a central repository called a data warehouse.

Data warehousing involves several steps, including data extraction, data transformation,

data loading, and data querying. The extracted data is transformed into a format that is
26



suitable for analysis and is then loaded into the data warehouse. Once the data is loaded

into the warehouse, it can be queried and analysed using various BI tools, such as reporting

and visualisation tools, to gain insights into business operations and performance.

AWS Lambda can be used for several data warehousing tasks, such as ETL (Extract,

Transform, Load) processes, data transformations, data enrichment, and data processing.

AWS Lambda is a serverless computing service provided by Amazon Web Services

(AWS), which allows users to run code without having to manage servers or infrastructure.

With AWS Lambda, users can write custom code in various programming languages,

including Python, Java, and Node.js, and deploy it as functions. These functions can be

triggered automatically by other AWS services, such as Amazon S3 or AWS Glue when

new data is available or when certain events occur.

One of the key benefits of using AWS Lambda for data warehousing is the ability to scale

quickly and efficiently. With AWS Lambda, users can create functions that can scale

automatically to handle large volumes of data, without having to to manage servers or

infrastructure. This makes it an ideal solution for data warehousing tasks that require

scalability, such as ETL processes and data transformations.

Another benefit of using AWS Lambda for data wcomputinging is the cost-effectiveness of

the service. With AWS Lambda, users only pay for the compute time that the use their

function, which can result in significant cost savings compared to traditional server-based

solutions.

Data warehousing with AWS Lambda nd Firehose can provide a complete and powerful

solution for managing, processing, and analyzing data. AWS Lambda is a serverless

computing service that allows users to run code in response to events, while Amazon

Kinesis Firehose is a fully managed service that makes it easy to load streaming data into

AWS data stores and analytics tools.

Using AWS Lambda and Firehose together, users can build scalable and efficient data

warehousing solutions that can handle large volumes of data in real time.
27



Here’s how it works:

1. Data is ingested into Firehose from various sources, such as IoT devices, social

media, or other sources.

2. Firehose automatically batches and compresses the data and then delivers it to a

destination, such as Amazon S3 or Amazon Redshift.

3. As the data is delivered to the destination, it triggers a Lambda function that

performs data transformations, data enrichment, or other data processing tasks.

4. The processed data is then loaded into a data warehouse or other analytics tools,

where it can be analyzed and visualized.

By using AWS Lambda and Firehose together, users can achieve several benefits,

including

1. Scalability: AWS Lambda and Firehose can scale automatically to handle large

volumes of data, without having to manage servers or infrastructure.

2. Real-time processing: With Firehose, data can be delivered to the destination in

near real-time, allowing for real-time analytics and insights.

3. Cost-effectiveness: Users only pay for the compute time that their Lambda

functions use, and Firehose offers a cost-effective solution for delivering data to

AWS data stores and analytics tools.

4. Flexibility: AWS Lambda supports various programming languages, allowing users

to write custom code for data processing tasks.

Based on the sampling approach, the data warehousing solution has been designed for the

Matcher application. The attributes that Matcher enriches for the invoices need to be

published downstream for the record and analysis. The below steps include the

implementation of Data Warehousing for Matcher as per the design proposed in the

previous chapter:

1. Create the data warehouse bucket in the AWS S3, Kinesis Data Firehose delivery

stream that uses the S3 bucket as the destination.

2. Setup a Java Lambda application and write the lambda handler functions to perform
28



the extraction and transformation of the reporting data, and to push the transformed

data to the Firehose.

3. Setup the Lambda function with SQS as the event source and handler as the

function defined in the previous step. Setting the SQS as the event source for

lambda will enable the triggering of the lambda function whenever a message is

received in the SQS queue.

4. Deploy the lambda application for the lambda function to pick up the definition.

5. Start publishing the matcher attributes to the queue.

After the setup is complete and deployed in the required AWS accounts, it will work the

following way:

1. When a message is received in the SQS queue, the lambda function will be

triggered.

2. Lambda will get the message from the queue, perform the required transformation

and push the final record to the Firehose delivery stream.

3. Firehose delivery stream will periodically flush the stream data to the destination

S3 bucket.

4.3 Summary

This chapter discusses the implementation of the two major tasks of the project. The design

and the implementation are done taking all the factors into consideration like cost,

efficiency, ease of scaling, etc. to ensure the developed systems are accurate and

cost-effective.

29



Chapter 05: Result Analysis and Testing

When we use analytics, we want to learn something valuable from the process, therefore

it's critical that the data gathered and used actually has value. At its best, analytics can

result in significant discoveries and opportunities, but at its worst, it can squander time and

put an excessive reliance on potentially deceptive data.

In a software development cycle, the value of software testing and quality assurance is

significant. Both procedures improve the entire process and guarantee the highest possible

product quality.

Software Testing Advantages:

1. Cost-Effective: Software testing has a number of advantages, one of which is

affordability. Any IT project can save you money in the long run if testing is done

in a timely manner. Fixing faults is less expensive if they are discovered earlier

during the software testing process..

2. Security: This delicate and risky benefit of software testing. People are looking for

trustworthy products. It helps to eliminate risks and problems earlier.

3. Product Quality: Product quality is a crucial need for every software product.

Customers will always obtain a high-quality product thanks to testing.

4. Customer satisfaction: Every product has as its main objective to satisfy clients.

Testing for UI/UX ensures the best possible user experience.

At Amazon, testing takes place at different levels. We make sure to cover all the possible

edge and corner cases so that the developed system works as ideal systems in the

production offering the customers the best service. We have multiple non prod

environments to test in, each with different kinds of configuration. As we move towards

the prod environment, the test environment configurations are designed in a way that the

environment get closer to what the prod environment will be.

30



The following types of testing are performed on any developed system before taking it to

production (some kind of testing may not be applicable on some system):

1. Unit Testing: A software testing technique known as unit testing involves testing

each individual unit or component of a software system separately in order to

ensure that each one performs as intended. A function, method, or class can be a

unit.

Unit testing is used to make sure that each piece of code carries out its intended

function accurately and that the integration of these pieces of code functions as

planned. Typically automated, unit tests are created to find flaws and faults early in

the development cycle, when fixing them is simpler and less expensive..

Some of the benefits of unit testing include:

● Early detection of defects: Unit testing can detect errors and defects early in

the development process, which can save time and money by avoiding more

expensive fixes later on.

● Improved code quality: By testing each unit of code in isolation, developers

can ensure that their code is functioning as intended and that it meets the

required specifications.

● Better maintainability: Unit tests can help ensure that changes to the

codebase do not introduce new errors or regressions, making it easier to

maintain and modify the code over time.

● Faster development cycles: Unit testing can help speed up the development

process by catching errors early, reducing the time spent on debugging and

testing.

Some best practices for unit testing include:

● Writing tests that are independent of each other: Tests should be written so

that they do not depend on each other, which can help ensure that each test

is testing a specific functionality and that it is not affected by other tests.

31



● Testing both positive and negative cases: To make sure that the code reacts

effectively to both expected and unexpected conditions, such as invalid

input, unit tests should test both positive and negative scenarios.

● Testing edge cases: Unit tests should test edge cases, such as the minimum

and maximum input values, in order to ensure that the code handles these

cases correctly.

● Automating tests: Unit tests should be automated in order to ensure that

they are run consistently and that they can be easily integrated into a

continuous integration/continuous deployment (CI/CD) pipeline.

2. Integration Testing: The purpose of integration testing is to ensure that the

interactions between different components of a software system are working as

expected and that the system as a whole meets the required specifications.

Integration testing can be particularly important in complex software systems,

where individual components may work correctly in isolation but may fail when

integrated with other components.

Some of the benefits of integration testing include:

● Improved quality: Integration testing can help improve the overall quality of

a software system by detecting defects and errors that may only appear

when different components are integrated with each other.

● Reduced risk: By identifying and addressing issues in the integration of

different components early in the development process, integration testing

can help reduce the risk of problems arising later in the development cycle

or after release.

● Better communication: Integration testing can help identify communication

issues between different components, which can improve communication

and collaboration between development teams working on different

components.

● Enhanced reliability: Integration testing can help ensure that a software

system is reliable and performs as expected in different environments and

under different conditions.

Some best practices for integration testing include:
32



● Planning and design: Integration testing should be planned and designed

carefully, with a clear understanding of the components that need to be

tested, their dependencies, and the expected results.

● Test environment: Integration testing should be performed in an

environment that simulates the production environment as closely as

possible, in order to identify and address issues that may arise in real-world

scenarios.

● Test data: Test data should be carefully selected and designed to ensure that

it covers all the possible scenarios that may occur during integration testing.

● Automation: Integration testing should be automated whenever possible, in

order to reduce the time and effort required and to ensure consistency in the

testing process.

3. Load Testing: Load testing involves testing a software system under heavy loads to

evaluate its performance and behaviour under high stress conditions. The goal of

load testing is to identify and eliminate performance bottlenecks, and to ensure that

the system can handle the expected user load without degrading in performance or

crashing.

Load testing is typically performed by simulating a large number of concurrent

users or requests, and by measuring the system’s response time, throughput, and

resource utilisation. Load testing can be done for different types of software

systems, including web applications, APIs, and databases.

Some of the benefits of load testing include:

● Improved system performance: Load testing can identify performance

bottlenecks in a software system, and can help developers optimise the

system for better performance under high loads.

● Enhanced reliability: Load testing can help identify issues related to system

stability and reliability, and can help ensure that the system can handle

heavy loads without crashing or losing data.

● Better scalability: Load testing can help ensure that a software system can

scale up or down as needed to handle changes in user load or other

demands.
33



● Improved user experience: Load testing can help ensure that a software

system provides a good user experience, even under high loads.

Some best practices for load testing include:

● Planning and design: Load testing should be planned and designed

carefully, with a clear understanding of the expected user load, the test

scenarios, and the expected results.

● Test environment: Load testing should be performed in an environment that

simulates the production environment as closely as possible, in order to

identify and address issues that may arise in real-world scenarios.

● Test data: Test data should be carefully selected and designed to ensure that

it covers all the possible scenarios that may occur during load testing.

● Automation: Load testing should be automated whenever possible, in order

to reduce the time and effort required and to ensure consistency in the

testing process.

5.1 Result Analysis

The test results of this system for different types of testing are as follows:

1. Unit Testing Results: We intend to cover the different possible scenarios to make

sure the certain piece of code is working fine. To achieve this, first we check the

test coverage report. The goal is to cover 100% of the lines, methods and branches.

After the coverage report gives 100% coverage, we proceed on to test with different

input and output scenarios.

2. Integration Testing Results: The integration tests were written keeping in mind the

best practices discussed above. The integration tests passed with the expected

output produced.

3. Load Testing is not applicable for the features covered as part of this report. Load

tests are usually performed where the load of traffic can affect the efficiency of the

service.

34



5.2 Summary

In this chapter, we discussed the importance of result analysis and testing. The test results

of the system and its developed features ensure the best quality and efficiency.

35



Chapter 06: CONCLUSION

A successful project is the one which keeps on getting updated and upgraded with the new

features, latest frameworks and upgraded versions of itself. The manifest matching project

has successfully achieved its objectives of automating the invoice validation process and

improving the efficiency of the supply chain operations. By integrating the manifests with

the invoice validation system, the project has reduced the error rates and minimised the

need for manual intervention. The project has also enabled the organisation to streamline

its operations, optimise its resources, and enhance its overall productivity. The findings

from this project have significant implications for the industry and can contribute to the

broader goals of improving the accuracy and reliability of supply chain operations. As we

reflect on this project, we recognize that there are opportunities for further improvement

and refinement. We recommend that the organisation continues to invest in the

development of the manifest matching system, leveraging emerging technologies and best

practices to enhance its functionality and scalability.

36



Bibliography

[1] https://docs.aws.amazon.com/cdk/v2/guide/home.html

[2] https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/Welcome.html

[3] https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/concepts.html

[4] https://docs.aws.amazon.com/AmazonECS/latest/developerguide/Welcome.html

[5] https://docs.aws.amazon.com/eks/latest/userguide/index.html

[6] https://docs.aws.amazon.com/lambda/latest/dg/index.html

[7]https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/wel

come.html

[8] https://docs.aws.amazon.com/AmazonS3/latest/userguide/index.html

[9] https://docs.aws.amazon.com/firehose/latest/dev/what-is-this-service.html

[10] https://docs.aws.amazon.com/sns/latest/dg/index.html

[11] https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/index.html

[12] https://docs.aws.amazon.com/IAM/latest/UserGuide/index.html

37

https://docs.aws.amazon.com/cdk/v2/guide/home.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/Welcome.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/concepts.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/Welcome.html
https://docs.aws.amazon.com/eks/latest/userguide/index.html
https://docs.aws.amazon.com/lambda/latest/dg/index.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/welcome.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/welcome.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/index.html
https://docs.aws.amazon.com/firehose/latest/dev/what-is-this-service.html
https://docs.aws.amazon.com/sns/latest/dg/index.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/index.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/index.html


Appendix A

Amazon Leadership Principles

Amazon Leadership Principles are a set of guiding values and beliefs that Amazon uses to

hire, evaluate, and develop its employees. These principles are considered fundamental to

Amazon’s culture and are used to drive decision-making and behaviour at all levels of the

organisation.

The Amazon Leadership Principles are as follows:

1. Customer Obsession: Leaders start with the customer and work backwards. They

work vigorously to earn and keep customer trust. Although leaders pay attention to

competitors, they obsess over customers.

2. Ownership: Leaders are owners. They think long term and don’t sacrifice long-term

value for short-term results. They act on behalf of the entire company, beyond just

their own team. They never say ”that’s not my job.”

3. Invent and Simplify: Leaders expect and require innovation and invention from

their teams and always find ways to simplify. They are externally aware, look for

new ideas from everywhere, and are not limited by ”not invented here.” As we do

new things, we accept that we may be misunderstood for long periods of time.

4. Are Right, A Lot: Leaders are right a lot. They have strong judgement and good

instincts. They seek diverse perspectives and work to disconfirm their beliefs.

5. Learn and Be Curious: Leaders are never done learning and always seek to improve

themselves. They are curious about new possibilities and act to explore them.

6. Hire and Develop the Best: Leaders raise the performance bar with every hire and

promotion. They recognize exceptional talent and willingly move them throughout

the organisation. Leaders develop leaders and take seriously their role in coaching

others.

7. Insist on the Highest Standards: Leaders have relentlessly high standards – many

people may think these standards are unreasonably high. Leaders are continually

raising the bar and driving their teams to deliver high-quality products, services,

and processes.

38



8. Think Big: Leaders create and communicate a bold direction that inspires results.

They think differently and look around corners for ways to serve customers.

9. Bias for Action: Leaders act quickly and decisively. They make progress every day

and are comfortable with ambiguity and risk. They seek to simplify and are

internally driven to deliver results.

10. Frugality: Accomplish more with less. Constraints breed resourcefulness, self

sufficiency, and invention. There are no extra points for growing headcount, budget

size, or fixed expense.

11. Earn Trust: Leaders listen attentively, speak candidly, and treat others respectfully.

They are vocally self-critical, even when doing so is awkward or embarrassing.

Leaders do not believe their or their team’s body odour smells of perfume. They

benchmark themselves and their teams against the best.

These principles are used by Amazon to evaluate job candidates, provide feedback to

employees, and make business decisions. They are considered a critical part of Amazon’s

success and are integral to its corporate culture.

39



40




