JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT MAKEUP EXAMINATION - April 2018

B.Tech IV Semester

COURSE CODE: 17B11EC411

MAX. MARKS: 25

COURSE NAME: Electromagnetic Engineering

COURSE CREDITS: 04

MAX. TIME: 1HR 30Min

Note: All questions are compulsory. Carrying of mobile phone during examinations will be treated as case of unfair means. Assume any missing data. Each question carries five marks.

- 1. Find the capacitance per unit area for two infinite parallel plates separated by d units using the Laplace's equation. The medium between the two plates is filled with a dielectric material of relative dielectric constant ϵ_r .
 - 2. Derive the expression for magnetic field intensity at the point (0, 0, 10) if there is an infinite current carrying conductors kept at and y = +10(x-is varying from infinity to infinity). The direction of current is in the positive x-direction.
 - 3. If $H = xyza_x + (x + y + z)a_y + za_zA/m$, verify the Stokes theorem for the area 0 < x < 1 and 0 < y < 2.
 - 4. The interface between two magnetic media is given by y + z = 1. Medium-1($\mu_{r1} = 10$) is present for y+z>1 while medium-2 ($\mu_{r2}=20$) is present for y+z<1. If there is a uniform sheet current density of $10a_x mA/m$ exists on the interface, find H_2 if $H_1 = 2a_x + 3a_y + 4a_z mA/m$.
 - 5. Write in brief about the following.
 - a. Maxwell's Equations in point form.
 - b. Force on a current carrying conductor due to magnetic field.
 - c. Electrical boundary conditions at the interface between two dielectrics.
 - d. Capacitance determination
 - e. Scalar magnetic potential.